Size distribution patterns of silky shark Carcharhinus falciformis shaped by environmental factors in the Pacific Ocean

Citation
Kindong R, Sarr O, Wang J, et al (2022) Size distribution patterns of silky shark Carcharhinus falciformis shaped by environmental factors in the Pacific Ocean. Science of The Total Environment 850:157927. https://doi.org/10.1016/j.scitotenv.2022.157927
Abstract

Commercial fisheries, especially pelagic longline fisheries targeting tuna and/or swordfish, often land silky sharks (Carcharhinus falciformis), which are currently listed as vulnerable by the International Union for Conservation of Nature (IUCN). Due to increasing fishing effort and the fact that they overlap in habitat with target species, the population trend of silky sharks is declining worldwide. Understanding their relationships with environmental variables that lead to their capture by fisheries is critical for their management and conservation. Nevertheless, little is known about their size distribution in relation to environmental variables in the Pacific Ocean. Using data from the Chinese Observer Tuna Longline fishery from 2010 to 2020, this study developed a species distribution model (SDM) to analyze the relationships between silky shark size distribution patterns and environmental variables and spatio-temporal variability at fishing locations. Observed sizes ranged from 36 to 269 cm fork length (FL). The final model suggests that sea surface temperature (SST), primary production (photosynthetically available radiation, PAR), and ocean surface winds were the key environmental variables shaping size distribution patterns of silky sharks in the Pacific. A high proportion of larger silky sharks has been predicted in areas associated with productive upwelling systems. In addition, the model predicted that larger specimens (>140 cm FL) occur near the equator, and smaller specimens farther from the equator but still in tropical regions. Two regions in the eastern Pacific (the coastal upwelling area off northern Peru and the waters around the Galapagos Islands) seem to be important locations for larger specimens. The size distribution patterns of silky sharks in relation to environmental variables presented in this study illustrate how this species segregates spatially and temporally and presents potential habitat preference areas. The information obtained in the present study is critical in the quest for management and conservation of menaced species such as the silky shark.