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Many highly migratory predator stocks that occupy the Gulf of Mexico are at

risk, and the collapse of stocks could harm fisheries and ecosystems. Two pelagic

longline spatial closures within the pelagic waters of the Gulf of Mexico have been

established to protect pelagic species. In 2000, a permanent closure was established

around DeSoto Canyon, with the management objectives of reducing catch and re-

building biomass of bycatch and incidental catch species while minimizing impact to

catch of target species. In 2015, a seasonal closure was established off the Louisi-

ana shelf (Spring Closure), with the management objectives of reducing catch and

rebuilding biomass of bluefin tuna (Thunnus thynnus). Pelagic spatial closures are

relatively untested management tools. Science-driven analysis, including the invest-

igation of ecosystem impacts through mathematical modeling, is necessary to address

their utility. This dissertation presents research used to parameterize an ecosystem

model, Atlantis, for the Gulf of Mexico marine ecosystem, followed by a study that

used the Gulf of Mexico Atlantis model to conduct a policy exploration of the utility

of Gulf of Mexico pelagic longline spatial closures.

Chapter 2 described the collection of Gulf of Mexico historical, species-specific

landings data for the calibration of the Gulf of Mexico Atlantis model, and invest-



igated areas of uncertainty and bias, focusing on outputs from the Gulf of Mexico

Atlantis model and landings-based indicators, due to unidentified landings and lack of

data. U.S. landings not identified to species did not appear to bias landings-based in-

dicators, nor does the aggregation of landings into Gulf of Mexico Atlantis functional

groups. Chapter 3 described Gulf-wide spatial distributions of pelagic predatory

functional groups. Distributions were estimated with generalized additive models fit-

ted with U.S. bottom longline survey catch data (coastal models), and U.S. pelagic

longline commercial catch data (pelagic models). This work advanced our knowledge

on the correlations between the spatial distribution of pelagic predators within the

Gulf of Mexico and the environment, and improved upon the spatial distributions

previously used for the Gulf of Mexico Atlantis model. Finally, Chapter 4 described a

policy exploration assessing if current pelagic longline spatial closures within the Gulf

of Mexico, DeSoto Canyon and Spring Closure, could meet management objectives

and evaluated possible ecosystem impacts. DeSoto Canyon was more successful at

achieving management objectives and had more influence to ecosystem performance

metrics than Spring Closure. Closures reduced Gulf-wide catches of bycatch and in-

cidental groups with little reduction to catches of target groups. Rebuilding biomass

of particular stocks may require additional reductions in fishing mortality.

The Atlantis framework allowed for the detailed, spatially-explicit representation

of biota, fleets and spatial closures, and provided a means to explore broad-scale

ecosystem impacts. This dissertation found that pelagic spatial closures could be

viable means to achieve management objectives for protecting highly mobile pelagic

predators from fishing pressure.
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This work is dedicated to the pursuit to

sustainable oceans.
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CHAPTER 1

Introduction

The Gulf of Mexico is a large marine ecosystem bordered by the United States,

Mexico and Cuba. Due to the Gulf’s complex network of habitats, the ecosystem

supports a high level of biological diversity: from microbial communities to highly

migratory predators (e.g., sharks, tunas, and billfish). Highly migratory predators

are particularly common in the Gulf’s pelagic environment with its highly complex

physical dynamics consisting of strong currents and eddy networks.

As the Yucatán Current moves through the Yucatán Channel, features are con-

stricted increasing surface water flow as it moves into the Gulf of Mexico to become

the Loop Current (Badan et al., 2005). The Gulf’s topology causes the current to

loop clockwise before exiting through the Straits of Florida. The penetration of the

Loop Current into the Gulf varies, but it eventually becomes great enough to produce

large, anticyclonic rings known as Loop Current eddies (Leben, 2005). All of these

physical forces generate a Gulf-wide network of fronts and eddies (Wiseman et al.,

1999; Oey et al., 2005), which create favorable foraging and/or breeding environments

for pelagic organisms by upwelling nutrients as well as retaining and concentrating
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particles (Olson et al., 1994; Bakun, 1996; Wiseman et al., 1999; Bakun and Broad,

2003).

Gulf fisheries contribute significantly to the economies of the surrounding coun-

tries. Coastal communities in particular depend heavily on the fisheries sector. Highly

mobile predators are targeted with hook and line gears; either a vertical line consist-

ing of no more than two hooks (handlines), or a horizontal mainline consisting of

many hooks (longlines). U.S. commercial handliners harvest all across the Gulf shelf

retaining reef fish (e.g., groupers and snappers) and pelagic fish (e.g., tunas and

jacks). Longline operations consist of bottom longliners, which set hooks on or near

the sea bottom, and pelagic longliners, which set hooks within the water column.

U.S. commercial bottom longliners operate along the shelf and the start of the slope

catching reef-based benthic species (e.g., groupers) and some highly migratory pred-

ators (i.e., sharks). U.S. commercial pelagic longliners operate in the open ocean

targeting highly migratory species (e.g., tunas, swordfish and dolphinfish). Landings

from U.S. commercial handline and U.S. commercial bottom longline are mostly re-

ported in Florida, while landings from U.S. commercial pelagic longline are mostly

reported in Louisiana (National Oceanic and Atmospheric Administration, 2012a).

U.S. recreational handlines (i.e., tournaments, for-hire charters, and personal vessel

activities) retain many different organisms but mostly target reef and pelagic fish (i.e.,

groupers and billfish). Recreational fishing plays an important role in the biological

dynamics and coastal economy (National Oceanic and Atmospheric Administration,

2012b; Adams et al., 2004), because for some stocks recreational landings can match

or surpass commercial landings.
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Pelagic predators are particularly vulnerable to overfishing. Some pelagic organ-

isms tend to be found in dense schools as they aggregate around patches of productiv-

ity in an otherwise oligotrophic environment. Advances in knowledge and technology

have made it easier for fishers to locate fish schools. Thus, it is easier to locate and tar-

get large portions of the stock. Some pelagic predators tend to have slow-growing life

history, meaning it can take several years for organisms to become sexually mature,

which means juveniles can be subjected to fishing pressure before having an oppor-

tunity to reproduce. Because of these characteristics, and historically high fishing

pressure which some species continue to experience, the sustainability of many highly

migratory predator stocks are at risk. This includes some large sharks (Stevens et al.,

2000; Baum et al., 2003b; Baum and Myers, 2004; Baum et al., 2005; Burgess et al.,

2005; de Mutsert et al., 2008; Baum and Blanchard, 2010), Atlantic bluefin tuna,

Thunnus thynnus, (Fromentin and Powers, 2005; ICCAT, 2014b), Atlantic marlins,

Makaira nigricans and Kajikia albidus, (Peel et al., 2003; ICCAT, 2011, 2012), and

sailfish, Istiophorus albicans (ICCAT, 2016c).

Shepherd and Myers (2005) found that large coastal sharks appear to cause strong

top-down effects and their removal has lead to changes in community structure in the

northern Gulf of Mexico. Thus, not only would the collapse of highly migratory

stocks be devastating for local fisheries and economies, but research across terrestrial

and marine ecosystems suggest that the removal of top predators could alter the

structure and function of a marine ecosystem. This includes opening a niche which

could be filled by organisms that are potentially harmful to the ecosystem (Parsons,

1992; Whitfield et al., 2007), reducing carbon flow to the benthic community (Par-

sons, 1992), or causing a trophic cascade (e.g., Parsons, 1992; Terborgh et al., 2001;
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Heithaus et al., 2008; Baum and Worm, 2009; Casini et al., 2009; Bornatowski et al.,

2014). A trophic cascade occurs when the removal of apex predators releases their

prey groups (mesoconsumers) from predation, causing increased predation on the

prey of mesoconsumers (resource species) (Heithaus et al., 2008). Trophic cascades

may have negative impacts on an ecosystem, such as reduced fisheries due to the

increase in natural mortality on resource species (Myers et al., 2007), a loss in goods

and services due to shifts in underlining processes (Bakun and Weeks, 2006), and

reducing ecosystem resistance and resilience (Britten et al., 2014).

Management of pelagic predatory stocks is both a domestic and international

effort as these species are highly mobile. The International Commission for the Con-

servation of Atlantic Tunas (ICCAT) is an inter-governmental fishery organization

responsible for the conservation of tunas and tuna-like species in the Atlantic Ocean

and its adjacent seas. In the United States, the National Oceanic and Atmospheric

Administration (NOAA) through the Highly Migratory Species Devision (HMSD)

has primary authority for developing and implementing Fishery Management Plans

(FMPs) for highly mobile species (HMS) in Atlantic federal waters, including the

Gulf of Mexico. Such FMPs have enacted various input and output controls to en-

sure the ecological sustainability of pelagic predators (National Oceanic and Atmo-

spheric Administration, 2016a). This includes establishing two pelagic longline spatial

closures within the pelagic waters of the Gulf of Mexico. In 2000, a permanent pela-

gic longline spatial closure was established around the northern West Florida Slope

(DeSoto Canyon) to reduce the interaction between non-targeted pelagic fish and

longline fisheries. DeSoto Canyon is an area many pelagic predators frequent due

to the increased productivity generated by oceanographic characteristics. In 2015,
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a seasonal pelagic longline spatial closure was established off the Louisiana shelf to

reduce the interactions between bluefin tuna and longline fisheries. This area exper-

iences an increase in bluefin tuna abundance during the spring because it is part of

the spawning grounds of the western stock.

Fishery spatial closures are a type of marine protected area (MPA) within which

fishing is limited and/or prohibited. MPAs are a tool for ocean conservation (Agardy,

1997). They can protect marine biodiversity by conserving habitat and landscape

(Gray, 1997), as well as areas of connectivity (Almany et al., 2009). In addition,

MPAs can provide protection to essential habitats and species of concern by protecting

areas of aggregation, such as spawning areas, foraging areas, nurseries, and migration

stopovers (Norse, 1993). Spatial closures can benefit fisheries by providing biomass

through spillover (e.g., McClanahan and Mangi, 2000; Kelly et al., 2002; Guidetti,

2007; Januchowski-Hartley et al., 2013), and increase the size of individuals (e.g.,

Babcock et al., 1999; Lester et al., 2009).

Much of the current work on MPAs focuses on coastal environments and sedentary

organisms because it was originally thought that MPAs would provide little benefit

to pelagic predators due to their high mobility and weak site fidelity (Roberts, 1997;

Boersma and Parrish, 1999). However, Hyrenbach et al. (2000) argued that pelagic

closures could be feasible tools for protecting highly migratory predators since they

tend to aggregate around predictable oceanographic features. The advancing know-

ledge in life histories of pelagic predators, oceanography, and fisheries science suggest

that pelagic MPAs have the potential to be viable management tools for protecting

pelagic organisms (Game et al., 2009). MPAs for the conservation of pelagic fish are

now being recommended by management agencies and stakeholders (Musick et al.,
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2000a,b; ICCAT, 2007, 2009, 2010, 2014a; Highly Migratory Species Division, 2008).

However, considering that there is a lack of empirical understanding of the direct and

indirect impacts of pelagic MPAs, and that often MPAs can fail to meet manage-

ment objectives (Jameson et al., 2002), it is imperative that science-driven analysis,

including the investigation of ecosystem impacts through mathematical modeling, is

done to address the utility of pelagic MPAs (Kaplan et al., 2010; Game et al., 2010;

Grüss, 2014).

Ecosystem mathematical models are being developed for the Gulf of Mexico Integ-

rated Ecosystem Assessment (IEA) program (Schirripa et al., 2013; Samhouri et al.,

2014). An IEA is a framework to guide the process of synthesizing and analyzing

relevant scientific information supporting Ecosystem-Based Fisheries Management

(EBFM) (National Marine Fisheries Service, 1998, 2012; Levin et al., 2009; Foley

et al., 2013). There has been a movement towards EBFM over the last few decades,

under which scientists and managers aim to manage fisheries in an ecosystem con-

text rather than a single-species context (Ecosystem Principles Advisory Panel, 1999;

Pomeroy et al., 2010). One of the primary purposes of the Gulf of Mexico IEA is to

manage the Gulf of Mexico from a broader perspective (e.g., Grüss et al., 2016b). A

key component to an IEA is using ecosystem models to evaluate how different man-

agement strategies influence the status of indicators. One of the ecosystem models

being developed for the Gulf IEA is Atlantis.

Atlantis is a biogeochemical and biophysical simulation framework (Fulton et al.,

2004c,b; Fulton, 2010; Fulton et al., 2011). It models the turnover of chemical sub-

stances through the biotic and abiotic compartments of an ecosystem, and there are

detailed routines for coupling the biological and physical components. Atlantis is an
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“end-to-end” model, meaning it represents biota from bacteria up to top predators.

Biota can be represented as age-structured groups, or biomass pools. There is a de-

tailed fisheries exploitation routine that allows the simulation of individual fleets, as

well as routines for simulating a range of management measures, including fishery

spatial closures. Interactions between species and fisheries are spatially explicit, and

the spatial domain is composed of a 3-dimensional polygon network that reflects key

geographic features, habitats, and essential management jurisdictions. The Atlantis

framework has been used to investigate the spatial management of fisheries, including

the use of spatial closures, e.g. Ainsworth et al. (2012); Kaplan and Leonard (2012);

Morzaria-Luna et al. (2013). Although Atlantis is argued to be one of the best op-

erating models for ecosystem simulation (Plagányi, 2007), one of the disadvantages

is that Atlantis requires more data than other ecosystem models, including historical

landings data, and seasonal spatial distributions of simulated functional groups (i.e.,

groups of species with similar life histories and ecosystem function).

One method for parameterizing an Atlantis model for forecasting involves first cal-

ibrating a historical Atlantis model with landings time series data. Values of dynamic

parameters in the calibrated historical model are transferred to a present day model

for forward simulations. A critical component of this methodology is the collection of

historical, species-specific landings (organized by gear, season, and state if possible).

Data need to be aggregated based on the Atlantis-defined functional groups, which

could incorporate bias into the historical landings trends. This would impact the

calibration of the Gulf of Mexico Atlantis model and forecasting simulation studies.

Thus, Chapter 2 of this dissertation describes the collection of Gulf of Mexico histor-

ical, species-specific landings data for the calibration of the Gulf of Mexico Atlantis
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model, and investigates areas of uncertainty and bias due to unidentified landings

and lack of data. This investigation provides a detailed picture of the historical de-

velopment of fisheries in the Gulf, and is informative for the Gulf of Mexico Atlantis

model, as well as other ecosystem models and metrics for the Gulf of Mexico.

To investigate the utility of pelagic fishery closures of the Gulf of Mexico, it is

imperative that the forecasting Gulf of Mexico Atlantis model is parameterized with

reasonable seasonal spatial distributions for pelagic functional groups. Spatial distri-

butions can be inferred from predictive statistical models (Guisan and Zimmermann,

2000; Austin, 2002, 2007; Elith and Leathwick, 2009). Statistical models for predict-

ing the spatial abundance of marine fishes depends on the fundamental relationship

between catch rate (catch per unit effort) and density, and the shortcomings of using

catch rate as an index of abundance have been long-studied in fisheries literature

(e.g., Gulland, 1956; Beverton and Holt, 1957; Robson, 1966; Honma, 1973; Seber,

1982; Cooke and Beddington, 1984; Beddington and Cooke, 1984; Hilborn et al., 1992;

Harley et al., 2001). However, advances in statistical methodologies (e.g., generalized

linear modeling) address many of the shortcomings of fisheries data (Maunder and

Punt, 2004).

In Chapter 3 of this dissertation, generalized additive models (GAMs) (Hastie

and Tibshirani, 1986, 1990) were developed to describe the spatial distribution of

pelagic functional groups within the Gulf of Mexico. Species-specific catch records

were grouped according to pelagic functional groups identified for the Gulf of Mexico

Atlantis model. Two types of GAMs were fitted: coastal (covering areas 0 - 200 m

deep), and pelagic (covering areas greater than 200 m deep). Coastal models were

fitted using NOAA’s Bottom Longline Survey data, and pelagic models fitted using
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NOAA’s Pelagic Longline Observer Program data. A delta approach was followed to

account for the zero-inflated catch data. This consisted of fitting a Bernoulli GAM

with binomial data, and a Gamma GAM with zero-truncated catch rate data. Model

descriptors (independent variables) considered for coastal models included year, sea

bottom depth, altimetry, minimum distance from a front, as well as sea surface and sea

bottom temperature, dissolved oxygen, oxygen saturation, and salinity. Descriptors

considered for pelagic models included season, year, sea bottom depth, altimetry,

minimum distance from a front, and sea surface temperature. Fitted models and

data series describing seasonal environmental conditions were used to predict Gulf-

wide seasonal, spatial distributions of pelagic predator groups.

With the Gulf of Mexico Atlantis forecasting model parameterized using historical

landings data, and spatial distributions of pelagic predator functional groups gener-

ated from the statistical models, it was ready to be used to explore the utility of the

Gulf of Mexico pelagic longline spatial closures. Chapter 4 describes a simulation test

for investigating i) if Gulf of Mexico pelagic longline fishery spatial closures are likely

to achieve management objectives, and ii) potential ecosystem impacts from pelagic

longline closures. The Gulf of Mexico Atlantis model was used to simulate scen-

arios and calculate performance measures (indicators) corresponding to management

objectives of the pelagic longline fishery spatial closures, as well as broader ecolo-

gical objectives. Performance metrics were compared to examine potential long-term

impacts of Gulf of Mexico pelagic longline spatial closures.

In summary, this dissertation consists of three components. First, Chapter 2

describes the collection of Gulf of Mexico historical, species-specific landings data

for the calibration of the Gulf of Mexico Atlantis model, and investigates areas of
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uncertainty and bias due to unidentified landings and lack of data. Next, Chapter

3 describes the development of delta generalized additive models for estimating the

Gulf-wide spatial distribution of pelagic predator functional groups as described for

the Gulf of Mexico Atlantis model. Lastly, Chapter 4 describes a simulation test

using the Gulf of Mexico Atlantis model for investigating whether Gulf of Mexico

pelagic longline spatial closures could achieve management objectives, as well as their

potential ecosystem impacts. This dissertation advanced our understanding regarding

the strengths and weaknesses of some of the data currently available for the Gulf of

Mexico IEA. In addition, it advanced our understanding of the drivers and patterns

pertaining to spatial distributions of pelagic predators within the Gulf of Mexico.

This work provided insight with respect to possible benefits from pelagic longline

spatial closures, and improved our understanding and modeling of the Gulf of Mexico

ecosystem.



CHAPTER 2

Landings Data for Ecosystem Fisheries
Science: Lessons Learned from the Gulf of
Mexico

2.1 Summary

Historical landings data are crucial for ecosystem based fisheries management in

that they i) are needed for the calibration of ecosystem modeling tools, and ii) allow

for the assessment of landings-based indicators. Such methodologies require land-

ings data on species. Neglecting data not identified to species (ambiguous landings)

could potentially bias results. This work considers Gulf of Mexico landings data to

discuss potential uncertainties in the development of ecosystem based fisheries man-

agement tools, like the Gulf of Mexico Atlantis model, as well as landings-based

indicators. Gulf of Mexico landings data (1980-2011) were described for the United

States, Mexico, and Cuba. Landings were classified by species, then allocated into

functional groups identified for the Gulf of Mexico Atlantis model. U.S. landings,

both species-specific and functional group-specific, were used to compute qualitat-

ive landings-based indicators relating to stock assessment coverage, and quantitat-

ive landings-based indicators relating to system ecology (pelgic:demersal ration, and

11
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mean trophic level). Commercial landings data have meaningful portions not identi-

fied to species, especially data from Mexico and Cuba (29.2% and 48.9%, respectively,

are unidentified). U.S. recreational data have few ambiguous landings (0.4% are not

identified to species), but there is a lot of variation in landings data from MRIP,

at least some of which is estimation error. Ambiguous landings did not appear to

be adding bias to investigated indicators pertaining to U.S. waters. In addition, the

aggregation of landings into Gulf of Mexico Atlantis functional groups do not appear

to biasing the computation of trends. Qualitative indicators show that a majority

of U.S. commercial landings are of species that are not overfished, but the majority

of U.S. recreational landings are of species of unknown overfished status. Although

ecosystem based fisheries management of the Gulf of Mexico would benefit from more

precise landings, current data is sufficient for the development of ecosystem models.

2.2 Motivation

Under ecosystem-based fisheries management (EBFM), scientists and managers

aim to manage fisheries in an ecosystem context rather than a single-species context

(Ecosystem Principles Advisory Panel, 1999; Link, 2002; Brodziak and Link, 2002;

Pikitch et al., 2004; Link, 2010). There has been a shift towards EBFM (Pomeroy

et al., 2010) due to the perception that fishing operations have the power to alter the

structure and function of marine ecosystems (Marasco et al., 2007), and that healthy

ecosystems are needed to sustain fished populations. Hilborn (2011) argues that even

if single-species management was executed well, EBFM is still necessary because pure

single-species management does not consider impacts on non-target species, trophic

interactions among species, and habitat-destroying fishing practices.
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Integrated Ecosystem Assessment (IEA) is an assessment methodology that sup-

ports EBFM (Foley et al., 2013). Originally described by Levin et al. (2008, 2009), an

IEA is a cyclic process made up of five steps. First, ecosystem objectives and threats

are identified. An important part of EBFM is the capability to monitor progress to-

ward objectives, and this is achieved with indicators (Pikitch et al., 2004). Thus, the

second step of an IEA is to identify and validate indicators for assessing the state of

the ecosystem. EBFM requires a suite of indicators that provide insight into the state

of the ecosystem, particularly in relation to the impact of fishing (Dale and Beyeler,

2001; Rochet and Trenkel, 2003; Fulton et al., 2005; Shin and Shannon, 2010; Powers

and Monk, 2010; Link et al., 2010b). This includes indicators based on landings

data, which can provide information regarding changes in the assessment and fisher-

ies management coverage of the system (e.g., Piet et al., 2010; Gascuel et al., 2012;

Karnauskas et al., 2013), as well as the system’s fisheries ecology (e.g., Rochet and

Trenkel, 2003; Fulton et al., 2005; Shin et al., 2010). Next, there is an evaluation of

the risk posed by human activities and natural processes. This is followed by the use

of ecosystem models to evaluate how different management strategies influence the

status of indicators. This is a process referred to as a Management Strategy Evalu-

ation (Smith, 1994; Sainsbury, 1998; Cooke, 1999; Sainsbury et al., 2000; Butterworth

et al., 2010; Punt et al., 2016). Lastly, ecosystem indicators are monitored and as-

sessed to determine the effectiveness of management strategies. Ideally, this process

is repeated to support adaptive management (Dickey-Collas, 2014) and monitoring

(Uychiaoco et al., 2005).

In the USA, the National Oceanic and Atmospheric Administration (NOAA) has

been developing IEAs for marine ecosystems (Samhouri et al., 2014), including the
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Gulf of Mexico (Karnauskas et al., 2013; Schirripa et al., 2013). The Gulf of Mexico

is a large marine ecosystem that supports the livelihoods of people in coastal com-

munities of the United States, Mexico, and Cuba (Adams et al., 2009; Yoskowitz,

2009), as well as the many populations of marine fauna (Giattina and Altsman, 1999;

Landry Jr and Costa, 1999; Mullin and J, 1999). Some of the stressors facing the

Gulf include habitat modification and unsustainable exploitation of living resources

(Yáñez-Arancibia and Day, 2004), both of which threaten the sustainability of fisher-

ies stocks (Coleman et al., 1996; Baum and Myers, 2004; Ault et al., 2005; Heithaus

et al., 2007a; MacKenzie et al., 2009; Beck et al., 2011). The need for a holistic

approach to meet these threats has influenced a movement towards an ecosystem

approach to the management of the Gulf of Mexico ecosystem and fisheries (Yáñez-

Arancibia and Day, 2004; Nugent and Cantral, 2005; Arregúın-Sánchez et al., 2008;

Carollo and Reed, 2010; Day and Yáñez-Arancibia, 2013; Yáñez-Arancibia et al.,

2013).

To support the Gulf of Mexico IEA, several ecosystem modeling frameworks are

being developed (Schirripa et al., 2013), including Atlantis - a dynamic biogeochem-

ical ecosystem model that simulates physical, chemical, biological, and fisheries com-

ponents within a three-dimensional spatial domain (Fulton et al., 2004b,c, 2007).

Atlantis has been used to investigate ecological indicators for detecting ecosystem

impacts due to fisheries, investigate cumulative impacts, explore ecosystem dynam-

ics, and test management approaches (Fulton et al., 2004a, 2005; Link et al., 2010a;

Fulton et al., 2011; Kaplan et al., 2012; Ainsworth et al., 2012; Masi et al., 2017).

To support the Gulf of Mexico IEA, a model for the entire Gulf of Mexico marine

ecosystem was developed using the Atlantis framework (Ainsworth et al., 2015).
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Initializing of the Gulf of Mexico Atlantis model for forecasting included calibrat-

ing a historical model to fit landings time series (Ainsworth et al., 2015). To do this,

landings time series from 1980 to 2011 were collected and categorized into functional

groups simulated in the Gulf of Mexico Atlantis model (Perryman et al., 2015). In

addition, landings were partitioned across seasons and fishing fleets. Commercially

important species often have complete landings profiles, however species that are not

commercially important are often grouped into ambiguous categories. This includes

records identified to a higher taxonomic classification (e.g., family), or no taxonomic

classification (e.g., “unidentified”). Ambiguous landings may be negligible for some

species, but other species can have significant portions of their landings not appro-

priately identified. Excluding ambiguous landings from EBFM tools could bias the

computation of landings based indicators, as well as the calibration of ecosystem

models (i.e., misrepresent the magnitude of fisheries on stocks).

Landings data pertaining to the Gulf of Mexico were presented and discussed

in detail in the Gulf of Mexico Ecosystem Status Report (Karnauskas et al., 2013).

Karnauskas et al. focused on identifying trends in Gulf-wide indicators. The following

research builds on their findings. This study used Gulf of Mexico landings data that

was somewhat different than data presented by Karnauskas et al. (2013) to discuss

how data uncertainties, including landings not identified to species, aggregation of

landings by Atlantis functional groups, and allocation of landings to season, state, and

gear, could bias the Gulf of Mexico Atlantis model. Lastly, landings-based indicators

were computed to discuss trends and possible bias on how data were grouped for

the purposes of ecosystem modeling, including functional groups, recreational versus

commercial fisheries, and seasonal and regional divisions. This study aims to gain
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insight into some of the uncertainties concerning landings data available for the Gulf

of Mexico for use in ecosystem models.

2.3 Methods

2.3.1 Landings Data

Landings data from Gulf of Mexico waters are available for U.S. commercial,

U.S. recreational, Mexico commercial, and Cuba commercial fleets. The National

Oceanic and Atmospheric Administration (NOAA) Fisheries, Fisheries Statistics Di-

vision provides summaries of U.S. commercial fisheries landings, in weight (lbs), as an-

nual landings, or annual landings itemized by state, season, or gear (National Oceanic

and Atmospheric Administration, 2012a). These landings come from a cooperative

State-Federal fishery data collection system that obtains landings data from state-

mandated trip-tickets (which are filled out at the conclusion of every fishing trip),

landing weigh-out reports provided by seafood dealers, federal logbooks of fishery

catch and effort, and shipboard / portside interviews. Most states get their land-

ings data from seafood dealers who submit monthly reports of the weight and value

of landings by vessel; however, more states are switching to mandatory trip-tickets

to gather landings data (National Oceanic and Atmospheric Administration, 2016b).

U.S. commercial landings are dominated by menhaden, Brevoortia spp., (Figure 2.1).

This analysis excludes U.S. commercial menhaden landings in order to identify un-

derlying trends in the rest of the fisheries (de Mutsert et al., 2008; Karnauskas et al.,

2013).
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The NOAA Marine Recreational Information Program (MRIP) provided the bulk

of the U.S. recreational data (National Oceanic and Atmospheric Administration,

2012b). MRIP is a compilation of regionally-based data collection programs that

collects data from a subsample of anglers and captains, which is then expanded to all

anglers based on a telephone survey to estimate effort (National Oceanic and Atmo-

spheric Administration, 2014a). Texas is not part of MRIP surveys and instead the

state conducts its own survey on recreational landings, which are then provided to

NOAA (Gulf of Mexico Fishery Management Council, 2005). Lastly, NOAA’s South-

east Fisheries Science Center (SEFSC) Recreational Billfish Survey System (RBS)

provided data on recreational billfish tournaments within the Gulf of Mexico (A.

Venizelos at NOAA, personal communication, May 8, 2013). The RBS has been

collecting data on recreational billfish tournaments in the western North Atlantic,

Gulf of Mexico and U.S. territories in the Caribbean since 1972, and is the primary

source of U.S. recreational billfish catch and effort statistics (National Oceanic and

Atmospheric Administration, 2014b). The Gulf of Mexico Ecosystem Status Report

(Karnauskas et al., 2013) did not indicate if the RBS data were considered. Re-

creational data were extracted in numbers. Originally, MRIP data in weight were

extracted but further analysis showed that MRIP data in weight had about half as

many records as MRIP data in numbers. The Gulf of Mexico Ecosystem Status Re-

port (Karnauskas et al., 2013) reports MRIP data in weight and does not discuss data

in numbers.

Annual reports from the Secretaŕıa de Agricultura, Ganadeŕıa, Desarrollo Rural,

Pesca y Alimentación (SAGARPA) through the Comisión Nacional de Acuacultura

y Pesca (CONAPESCA) provided landings data for Mexican commercial fisheries
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(SAGARPA, 2016). Data provided in the reports were collected by the SAGARPA

as well as the Órganos Centrales de la Secretaŕıa from the various agencies active in

the fisheries sector (SAGARPA, 1980 - 2011). Data, in weight (kgs), were extracted

for the coastal Mexican states of Tamaulipas, Veracruz, Tabasco, Campeche, and

Yucatán. Quintana Roo data were not included since landings from the Gulf of

Mexico and landings from the Caribbean could not be separated, and all the major

fishing ports of Quintana Roo are on the Caribbean coast. Data describing Mexican

recreational landings from the Gulf of Mexico were not considered in this study (i.e.,

assumed to be zero) since information could not be found. These commercial landings

are directly from Mexico. Landings considered in the Gulf of Mexico Ecosystem Status

Report (Karnauskas et al., 2013) were from FAO.

The Food and Agriculture Organization of the United Nations (FAO) provided

landings data for Cuban commercial fisheries (FAO, 2013a). Data from FAO describes

total Cuban landings, in weight (tonnes). Claro et al. (2001) provided a regional

breakdown (i.e., southeast, southwest, northwest and northeast) of common groups

of species identified in Cuban commercial landings (1959 - 1998). It was assumed

that the northwest region represents landings solely from the Gulf of Mexico. Thus,

the data provided by Claro et al. (2001) was used to calculate average proportions of

Cuban landings that were in the northwest region, which were applied to the FAO

data on total Cuban landings to infer Gulf of Mexico landings. Data describing

Cuban recreational landings from the Gulf of Mexico were not considered in this

study (i.e., assumed to be zero) since information could not be found. The Gulf of

Mexico Ecosystem Status Report (Karnauskas et al., 2013) did not discuss landings

data from Cuba.
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To evaluate the amount of landings associated to ambiguous groups for each re-

gion, landings data were categorized by species, genus, family+ (which includes land-

ings identified to family or any higher Taxonomic Classification), or unidentified. This

could be easily accomplished for U.S. and Cuban datasets, but many of the identi-

fications used in Mexican data refer to general groups of organisms and not species.

Thus, Mexico landings are instead categorized by “taxonomic classification”, mean-

ing that they were identified to some taxonomic group such as “snappers” or “large

sharks”, or “unidentified”.

To evaluate whether uncertainties in species identification in the U.S. data varied

over state, season, or gear, time series of total landings and fraction ambiguous were

generated for each of these classifications. Both NOAA and MRIP provide landings

itemized by state (i.e., the state of the port where catch was landed). Seasonal data

from NOAA itemized commercial landings by month. Data were aggregated into the

four seasons simulated in the Gulf of Mexico Atlantis model (winter, Jan. - Mar.;

spring, Apr. - Jun.; summer, Jul. - Sep.; fall, Oct. - Dec). Seasonal data from MRIP

itemized landings by six bimonthly intervals. Landings-by-gear data from NOAA

were aggregated according to fleets described for the Gulf of Mexico Atlantis model

(Appendix A) to simplify results while relating the analysis to EBFM tools. Three

miscellaneous gear types could not be directly allocated into a fleet so each were left

to stand alone for this analysis: “Combined Gears”, “Not Coded”, and “Unspecified

Gear”.
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2.3.1.1 Functional Group-Specific Landings

Data described in section 2.3.1 were used to construct landings time series for the

functional groups of the Gulf of Mexico Atlantis model. First, data were allocated into

functional groups. To do this the taxonomic classification of landings were determined

using the Integrated Taxonomic Information System (ITIS, 2012), FishBase (Froese

and Pauly, 2016), SeaLifeBase (Palomares and Pauly, 2016), Salas et al. (2011),

or the Universal Biological Indexer and Organizer (Norton et al., 2013). Species-

specific data were directly allocated into functional groups, while ambiguous data were

split amongst appropriate functional group(s). In some cases, a higher taxonomic

level of identification, such as family, was sufficient to determine the appropriate

functional group. In other cases, ambiguous landings were allocated to functional

groups based on information from the literature, or assumptions made about the

species composition. Second, data were converted to tonnes. Commercial landings

were recorded by weight but recreational data (numbers) were converted to tonnes

using length-weight relationships and the length information included in the datasets.

This entire process was described in detail by Perryman et al. (2015).

2.3.2 Landings-based Indicators

This study considers two types of landings-based indicators: qualitative stock

assessment coverage indicators, and quantitative community indicators. The com-

putation of indicators were restricted to U.S. landings (section 2.3.1) because more

data on species identification and status was available in the U.S. Landings-based

indicators relating to ecological status were computed with i) landings itemized by

season and state, as well as ii) functional group-specific landings constructed for the
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Gulf of Mexico Atlantis model (section 2.3.1.1). The former allowed the assessment of

indicator trends over finer temporal and spatial scales of the fisheries, and the latter

allowed the analysis of impacts to indicators when data are aggregated into func-

tional groups. Indicators are computed separately for commercial and recreational

landings as to assess differences in trends between the two sectors. U.S. recreational

species-specific landings data were in numbers, while the U.S. commercial species-

specific landings data, and all functional group-specific landings data were in weight.

For details on the species composition of recreational and commercial landings, see

Appendix A.

2.3.2.1 Stock Assessment Indicators

Karnauskas et al. (2013) found that, for landings of federally managed stocks

in the U.S. Gulf of Mexico, the ratio of overfished to not overfished stocks has de-

creased. To expand on this analysis, I included all landed species, not just those in

federal fishery management plans, and evaluated overfished status and jurisdiction of

i) number of landed species (combining commercial and recreational data), ii) U.S.

commercial landings, and iii) U.S. recreational landings. Information on status was

provided by annual Congressional Stock Status (CSS) Reports. Since 1997, NOAA

has been submitting reports to Congress describing the state of the nation’s marine

fisheries and the effectiveness of fisheries management under the Magnuson-Stevens

Fishery Conservation and Management Act as amended in 1996 by the Sustainable

Fisheries Act (National Marine Fisheries Service, 1998 - 2012). These CSS Reports

indicate the status of federally managed stocks. Species that are managed federally

are identified under fishery management plans (FMPs) from the Gulf of Mexico Fish-
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ery Management Council (GMFMC). Stocks primarily retained within state waters

(to 16.2 km from the coast in Texas and the west coast of Florida, to 5.6 km in the

other Gulf of Mexico states) are generally managed by the individual states. The

Interjurisdictional Fisheries Program of the Gulf States Marine Fisheries Commis-

sion (GSMFC) provides the Gulf States with information and recommendations for

interstate FMPs.

First U.S. commercial and U.S. recreational landings data were categorized based

on species-specific overfished status in each year’s CSS report. A species landings

were categorized as unknown if the overfished status was not reported. Then, for

species of unknown overfished status, landings were classified according to FMP jur-

isdiction (i.e., GSMFC, GMFMC, or neither). Ambiguous landings were categorized

as unknown overfished status with no FMP jurisdiction, because the overfished status

and FMP jurisdiction cannot be determined. The same categorization was made for

landings associated with species managed by individual states and not associated with

the GSMFC. Spanish mackerel (Scomberomorus maculatus) which has FMPs under

both GSMFC and GMFMC, were allocated to the GMFMC.

2.3.2.2 Pelagic:Demersal Ratio

Landings pelagic:demersal ratio is the ratio of landings of pelagic organisms to

landings of demersal/benthic organisms. To calculate the ratio, information regard-

ing the life history of adults organisms were used to classify landings as pelagic or

demersal, then total landings of pelagic species were divided by total landings of de-

mersal species. The pelagic:demersal ratio may be an informative for the ecosystem

management of the Gulf of Mexico since the metric is primarily linked to the eu-
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trophication (Caddy, 1993; Caddy and Bakun, 1994; Caddy et al., 1998a; Caddy and

Garibaldi, 2000; Caddy, 2000; de Leiva Moreno et al., 2000), and the Gulf of Mexico

experiences periodic large-scale eutrophication which has meaningful ecosystem im-

pacts (Malakoff, 1998; Rabalais et al., 2002b,a). Karnauskas et al. (2013) discussed

the pelagic:demersal ratio with respect to fishery independent trawl survey data, but

do no discuss the metric in terms of landings data. These metrics have a differ-

ent interpretation because the fishery-independent pelagic:demersal ratio is tracking

changes in the ecosystem, while the pelagic:demersal ratio of landings can show shifts

in fishery targets.

In this study, the pelagic:demersal ratio was computed with U.S. commercial, and

U.S. recreational landings time series. This was done for both species-specific and

functional group-specific datasets. Species and functional groups were classified as

pelagic or demersal using life history information from FishBase (Froese and Pauly,

2016) and SeaLifeBase (Palomares and Pauly, 2016). Due to the configuration of

functional groups for the Gulf of Mexico Atlantis model, most groups contained spe-

cies that were either all pelagic or all demersal. The exceptions were the skates and

rays functional group, which was assumed to be demersal, and the large sharks func-

tional group, which was assumed to be pelagic, when calculating functional group

specific pelagic:demersal ratio (Appendix A).

2.3.2.3 Mean Trophic Level

Landings mean trophic level is the sum of the product of species trophic level and

species landings divided by landings summed across all species. This indicator has

been proposed as evidence that there has been a gradual transition in landings from
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long-lived, high trophic level, piscivorous fish toward short-lived, low trophic level,

invertebrates and planktivorous fish caused by sequential depletion of upper trophic

level species to lower trophic level species - a phenomenon called “fishing down the

foodweb” (Pauly et al., 1998; Pauly and Palomares, 2005; Pauly and Watson, 2005;

Pauly et al., 2005). The Convention on Biological Diversity has identified landings

mean trophic level as one of eight indicators to be tested to measure progress towards

achieving a significant reduction in the current rate of biodiversity loss (Convention

on Biological Diversity, 2004). Although, this indicator may be influenced by changes

in fleet targeting, advancing harvesting technology, and fisheries management, rather

than fisheries impact on an ecosystem (Caddy et al., 1998b; Caddy and Garibaldi,

2000; Essington et al., 2006; de Mutsert et al., 2008; Branch et al., 2010; Powers,

2010; Sethi et al., 2010), it can still be informative with respect to the targets and

composition of fisheries (Shin et al., 2010).

Karnauskas et al. (2013) found the average trophic level of both Mexican and U.S.

landings has increased since the 1950’s. To evaluate whether this conclusion would

change when the data were combined into functional groups, or with the additional

datasets considered in this study, landings mean trophic level was calculated for U.S.

commercial and U.S. recreational species-specific data and functional group-specific

data. First, FishBase (Froese and Pauly, 2016) and SeaLifeBase (Palomares and

Pauly, 2016) were used to get species-specific estimates of trophic level. If an estimate

was not provided, then a value from a similar species of the same genus was assumed.

Functional groups in the Gulf of Mexico Atlantis model were assigned trophic level

by averaging the corresponding species-specific trophic levels.
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2.4 Results

2.4.1 Landings Data

The amount of ambiguous landings varies across Gulf of Mexico countries (Fig-

ure 2.2). A majority of U.S. landings are identified to species. On average 94.8% of

the commercial landings, excluding menhaden, (Figure 2.2a), and 95.2% of the re-

creational landings (Figure 2.2b). U.S. ambiguous landings mostly consist of records

identified to a taxonomic classification higher than species. On average 68.6% of the

commercial ambiguous landings, and 92.1% of the recreational ambiguous landings.

Family is the most common taxonomic classification used other than species. Fam-

ily is given for on average 57.1% of the commercial ambiguous landings, and 64.3%

of the recreational ambiguous landings. Generally, the proportion of U.S landings

that are of ambiguous groups fluctuates throughout the data series. After 1986, the

proportion of U.S landings that are of ambiguous groups has decreased because the

landings of ambiguous groups (e.g., miscellaneous finfish, and sharks) decreased while

the landings of species-specific groups remained stable (Appendix A). The trend in

proportion of U.S. recreational landings that are of ambiguous groups is generally

decreasing due to a large decline in ambiguous landings early in the dataset.

Data from Mexico and Cuba have more landings associated to ambiguous groups.

On average, 70.8% of the Mexican commercial landings are identified to taxonomic

classifications while 29.2% are unidentified (Figure 2.2c). A majority of Cuban com-

mercial landings (on average 66.8%) are of ambiguous groups (Figure 2.2d). Most of

the Cuban ambiguous landings (on average 73.0%) are of unidentified groups. The

proportion of Mexican commercial landings identified to a taxonomic classification
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increased over time due a gradual decline in unidentified landings (Appendix A).

The proportion of Cuban commercial landings of miscellaneous/unidentified groups

decreased over time, and the proportion of Cuban commercial landings of groups with

a taxonomic classification other than species increased over time (Appendix A).

On average, more U.S. commercial and U.S. recreational landings occur in the

summer months (Figure 2.3). Commercial ambiguous landings are more common

during the spring, while recreational ambiguous landings are more common in the

summer. The percent of commercial landings that are of ambiguous groups has de-

creased for every season except spring (Figure 2.3c). The percent of recreational

landings that are of ambiguous groups has increased for summer months, and de-

creased for winter months (Figure 2.3d).

U.S. commercial landings (Figure 2.4a) are predominantly landed in Louisiana,

Texas, and Florida. Over time, landings from Florida have decreased and landings

from Louisiana have increased. U.S. recreational landings (Figure 2.4b) are predom-

inantly from Florida. Over time, the proportion of landings from Florida and Texas

have increased while the proportion of landings from Louisiana and Mississippi have

decreased. On average, for both commercial and recreational data (Figure 2.4c, 2.4d),

Mississippi has a higher fraction of landings that are of ambiguous groups, followed

by Florida. However, the higher average of commercial landings from Mississippi is

due to a large spike in ambiguous landings in the mid-90’s. This was caused by a

sudden reporting of unidentified shrimp (see Appendix A). In addition, the higher

average of recreational landings from Mississippi is due to a large spike in ambiguous

landings in 2010. This was caused by a sudden reporting of Carcharhinidae landings

(see Appendix A). Not considering these sudden spikes, Florida has the higher frac-
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tion of landings that are of ambiguous groups for both commercial and recreational

data.

U.S. commercial landings itemized by gear, which have been aggregated by Gulf of

Mexico Atlantis fleets, are highly variable until the late 1990’s (Figure 2.5). From 1980

to 2001, on average half of the commercial landings are not identified to a specific gear,

thus could not be directly allocated to a fleet identified for the Gulf of Mexico Atlantis

model (Figure 2.5a). From 1980 to 1996, over half of the ambiguous landings (55%)

are from gear-types that could not be directly associated to an Atlantis fleet (Figure

2.5b). The percentage of landings that are of ambiguous groups varies amongst U.S.

gear-types. Trends for hook-and-line gear-types stabilize and some are generally lower

in recent years than in the 1980’s and 1990’s (Figure 2.5c). Trends for net gears, both

those operated within estuaries (Figure 2.5d) and those operated within the shelf

Figure 2.5e), vary, with some increasing over time. Trends for miscellaneous gear-

types are highly variable (Figure 2.5f).

2.4.2 Landings-based Indicators

2.4.2.1 Stock Assessment Indicators

On average, about half of the federally managed species harvested by U.S. fleets

are of an unknown overfished status (Figure 2.6a). In addition, on average 62.6% of

the species harvested by U.S. fleets are not identified in a GMFMC or GSMFC FMP.

The number of overfished species, and the number of species of unknown overfished

status has decreased over time. Many of the landed species of unknown overfished

status are from the U.S. recreational data, so it’s possible that this trend is driven

by improvements to the MRIP dataset (e.g., improved identification of landings).
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The number of not overfished species landed has increased over time. This is possibly

driven by improvements and expansion of stock assessments rather than improvements

in fisheries sustainability.

On average, most (60.6%) of U.S. commercial landings (lbs) are of federally as-

sessed stocks declared not overfished (Figure 2.6b), while most (84.0%) of U.S. recre-

ational landings (numbers) are of species with unknown status (Figure 2.6c). Most

of the U.S. commercial landings of unknown status (on average 67.7%) correspond to

species associated to GSMFC FMPs. A majority of these landings are of blue crab

(Callinectes sapidus), eastern oyster (Crassostrea virginica), and striped mullet (Mu-

gil cephalus). Some of these species have been assessed by individual state agencies

for part of the Gulf of Mexico, so U.S. commercial landings of species declared not

overfished may be larger. U.S. recreational landings of unknown status are mostly

(on average 59%) of species not associated to either GSMFC or GMFMC FMPs. A

majority of these landings consist of scaled sardine (Harengula jaguana), pinfish (La-

godon rhomboides), white grunt (Haemulon plumieri), and Atlantic thread herring

(Opisthonema oglinum). Many of these species are used in the bait industry and they

may not be at much risk of being overfished because of their short lived and fast

growing life history.

Trends from U.S. commercial data and U.S. recreational data should not be com-

pared since commercial data were in weight and recreational data were in numbers.

Since the U.S. recreational landings are in numbers, and the data are highly vari-

able, it is difficult to discern the magnitudes of the resulting trends. For instance,

U.S. recreational landings of unknown status are mostly smaller bait fish, while not
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overfished landings (mostly composed of Spanish mackerel) and overfished landings

(mostly composed of red snapper , Lutjanus campechanus) consist of larger finfish.

2.4.2.2 Pelagic:Demersal Ratio

Landings pelagic:demersal ratio trends computed from U.S. commercial and U.S.

recreational data are shown in Figure 2.7. There are no obvious seasonal trends

of the pelagic:demersal ratio for U.S. commercial data (Figure 2.7a) or U.S. recre-

ational data (Figure 2.7d). Seasonal pelagic:demersal ratio from U.S. recreational

data are highly variable, so it is difficult to discern statistically meaningful trends.

The commercial pelagic:demersal ratio trends decreased for all four seasons, while the

recreational pelagic:demersal ratio increased for all six bimonthly intervals. The cer-

tainty of recreational trends is questionable since data are highly variable. Landings

pelagic:demersal ratio trends differ amongst individual states for both U.S. commer-

cial, and U.S. recreational data (Figure 2.7b and (Figure 2.7e), respectively). For

both U.S. commercial, and U.S. recreational data, landings pelagic:demersal ratio is

much larger for Florida landings. Florida landings had significant contributions from

pelagic finfish groups (e.g., scaled sardine) while landings in the other states tend

to be dominated by demersal groups (e.g., seatrout, shrimp, oysters) (Appendix A).

Much of the U.S. commercial ambiguous landings consists of groups that are or have

the potential to be demersal (e.g. shrimp, shellfish, flatfish, finfish), so ambiguous

landings could influence U.S. trends from U.S. commercial data.

The pelagic:demersal ratio computed with functional group-specific landings tends

to be similar to that computed with species-specific landings for both U.S. commercial

(Figure 2.7c). The recreational pelagic:demersal ratio (Figure 2.7f) increased for both
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species-specific, and functional group-specific data up until 2000, after which while

the trend from species-specific data continued to increase, the trend from functional

group-specific data decreased. The divergence in trends is not due to the aggregation

of data into functional groups as most species are assigned to functional groups with

the appropriate pelagic/demersal classification. Species composition of recreational

data suggests the divergence is due to the fact that species-specific data are in numbers

while functional group-specific data are in weight - meaning the species-specific ratio

does not account for weight differences between organisms. Landings of some small,

pelagics (e.g., scaled sardine, Harengula jaguana) increased since 2000 influencing

an increase in the species-specific ratio, while landings of several relatively larger

demersal species (e.g., pigfish, Orthopristis chrysoptera, red porgy, Pagrus pagrus,

and yellowtail snapper, Ocyurus chrysurus) have also increased influencing a decrease

in the functional group-specific ratio.

There are more concerns regarding trends from U.S. recreational data then trends

from U.S. commercial data. First, seasonal landings in pelagic:demersal ratio from

U.S. recreational data are highly variable, so it is difficult to discern trends. Second,

U.S. recreational data landed in Florida appear to be governing the overall trend for

U.S. recreational pelagic:demersal ratio. Lastly, the U.S. recreational pelagic:demersal

trend computed in numbers data has a different ecological meaning than trends com-

puted with data in weight. Thus, caution should be used when interpreting and

comparing the trend to others.
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2.4.2.3 Mean Trophic Level

Landings mean trophic level trends computed from U.S. commercial and U.S.

recreational data are shown in Figure 2.8. There are no obvious seasonal trends of

landings mean trophic level for U.S. commercial data (Figure 2.8a) or U.S. recreational

data (Figure 2.8d). For both commercial and recreational data, summer landings

mean trophic level is the only significant trend and it is declining. In addition,

there are no obvious differences in landings mean trophic level amongst States for

U.S. commercial data (Figure 2.8b) or U.S. recreational data (Figure 2.8e). For

both commercial and recreational data, Texas landings mean trophic level is the only

significant trend and it is decreasing. Landings mean trophic level computed with

functional group-specific data tends to be similar to that computed with species-

specific data for both U.S. commercial (Figure 2.8c) and U.S. recreational (Figure

2.8f) data. Values from species-specific data tend to be smaller than values from

functional group-specific data

Similar to the seasonal pelagic:demersal ratios from U.S. recreational data, sea-

sonal landings mean trophic level from U.S. recreational data are highly variable, so

it is difficult to discern trends. In addition, U.S. recreational data landed in Florida

appear to be governing the overall trend for U.S. recreational landings mean trophic

level. U.S. commercial ambiguous landings may have some influence on landings mean

trophic level, especially since the computation of landings mean trophic level seems

to be particularly sensitive to values used for trophic level (Appendix A). Ambiguous

landings would likely reduce the U.S. commercial metric, especially in the late 80’s

to early 90’s, since much of the U.S. commercial ambiguous landings are attributed
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to groups with lower trophic levels (e.g., miscellaneous shrimp, and unidentified bait

finfish).

2.5 Discussion

Although a relatively small portion of the commercial landings from NOAA are

of ambiguous groups, allocating ambiguous landings to the appropriate functional

groups is important in order to i) maintain the magnitude of biomass extraction in

ecosystem models, and ii) account for landings of organisms of concern that are not

often identified to species. An important example of the latter is sharks. There

have been improvements in the identification of shark species in the Gulf of Mex-

ico U.S. commercial landings (Appendix A), but commercial landings of ambiguous

shark groups may still represent significant amounts of biomass for some species, and

ignoring these landings could bias the representation of harvesting pressure in eco-

system models like Atlantis. Mexico and Cuba landings have large portions that are

of ambiguous groups, particularly miscellaneous, unidentified groups. Omitting these

landings from EBFM tools (i.e., ecosystem models, indicators) would introduce bias

and could lead to inappropriate management advice. Thus, it is essential to associate

these ambiguous landings to taxonomic classifications.

Associating ambiguous landings to inappropriate taxonomic classifications could

also introduce bias into EBFM tools. Considering Atlantis, it could shift fishing pres-

sure and biomass loss from one group to another. This could create a situation where

one group is being represented as more influenced by fishing than it is in reality, and

representing another group to be less influenced by fishing than it is in reality. This,

too, could lead to inappropriate management advice, like suggesting that increased
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fishing pressure is sustainable for one group (when it may not be), and/or that de-

creased fishing pressure is necessary for the sustainability of another group (when

it may not be). This is less of a concern for ambiguous landings associated to a

taxonomic classification higher than species (e.g., genus, family) because these land-

ings are more likely to be associated to appropriate functional groups as functional

groups often aggregate species of similar taxonomic classifications. Fortunately, much

of the U.S. ambiguous landings are associated to a taxonomic classification so much

of these landings are associated to appropriate functional group(s). However, distrib-

uting ambiguous landings from Cuba and Mexico across functional groups required

making additional assumptions about the data as these landings were predominantly

of miscellaneous/unidentified groups. Thus, there is more uncertainty concerning the

Mexican and Cuban fisheries and ecosystem model outputs may not be accurate. The

allocation of ambiguous catches to functional groups could be potentially be improved

by incorporating knowledge of fish distributions, gear selectivity and seasonality, as

the Sea Around Us Project has done in mapping global catches (Pauly, 2007).

Representing biomass loss due to recreational fishing is important for the devel-

opment of EBFM tools for the Gulf of Mexico. Recreational activities are significant

to the overall fishing pressure in the Gulf of Mexico (Coleman et al., 2004b), and

changes in recreational information can impact management recommendations (Grif-

fiths and Fay, 2015). MRIP, currently the best available data on U.S. recreational

landings, is necessary when reconstructing historical landings profiles for the Gulf.

Fortunately, most of the MRIP data are identified to species, so recreational ambigu-

ous landings have little impact on the historical landings time series for the Atlantis

Gulf of Mexico ecosystem model, and the computation of landings-based ecosystem
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indicators. However, MRIP data are highly uncertain as they are estimates based on

surveys expanded across the whole fishery, unlike NOAA commercial data which are

based on fishermen log books and trip tickets that cover the majority of the commer-

cial fisheries. Thus, ecosystem model results concerning recreational fleets should be

interpreted with caution. Specifically, the magnitude of landings of groups not com-

monly harvested by recreational activities as data from those groups tend to have

more variability. Efforts are under way to improve MRIP estimates (Breidt et al.,

2010), and EBFM tools would benefit from considering updated data as it becomes

available. Unfortunately, information pertaining to recreational activities within the

southern Gulf could not be found, and recreational activities are important sources

of fishing mortality for Cuba (Claro et al., 2009), and Mexico (FAO, 2003). This is

also true for illegal, unreported, and unregulated (IUU) fishing, which was also not

considered in this study. Thus, landings data presented here from the southern Gulf

are likely under-representing activities from Mexico and Cuba, and IUU catches could

be taking place anywhere in the Gulf.

U.S. landings datasets itemized by season/state/gear are informative for EBFM,

but need to be considered cautiously as they can introduce uncertainty into ecosystem

model results. Small portions of the seasonal commercial landings are allocated to

ambiguous groups so any uncertainty in the corresponding seasonal functional group

composition or landings distribution is small. Data itemized by state were not used

to calibrate the Gulf of Mexico Atlantis model, but data itemized by state are in-

formative for other EBFM tools (i.e., indicators). Most of the ambiguous landings

(both commercial and recreational) are from Florida, and the proportion of Florida

landings allocated to ambiguous groups is increasing over time. This is an important
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area of uncertainty to be aware of for indicator assessment. Prior to 2000 a significant

amount of the commercial landings could not be directly allocated to an Atlantis fleet

because these data were not specified to a gear-type (e.g., combined gears, not coded).

This does not bias the historical Gulf of Mexico Atlantis model because it simulates

total harvest by functional group, space and time, but does not partition landings

amongst fleets. However, this data will add uncertainty to the average proportions

computed to distribute landings across fleets for forecast simulations.

Some U.S. commercial gears seem to be improving species identification of land-

ings while others seem to be getting worse. Since 1997, gears targeting sharks show

the most improvement towards identifying landings to species. By the end of the

series, U.S. commercial ambiguous landings are dominated by the single identifica-

tion used for hammerhead shark species (Appendix A), which is likely used because

identifying hammerheads to species can be difficult (FAO, 2013b). However, gill

netting gears show an increase in ambiguous landings, specifically of king/cero mack-

erel, and sharks. In terms of management, particularly for sharks, improved species

identification of landings from these gears may be needed.

Trawl and purse seine gears are not associated to much of the ambiguous landings,

which is not surprising as this analysis is restricted to landings and did not consider

bycatch. Bycatch refers to unwanted catch that is often discarded at sea, and it is

an important source of fishery induced mortality especially for trawl and seine gears

(e.g., de Silva et al., 1996; Gallaway and Cole, 1999; Diamond et al., 2000; de Silva

et al., 2001; Baum et al., 2003a; Harrington et al., 2005; Finkbeiner et al., 2011).

The Gulf of Mexico trawl fisheries generate 19,000 tonnes of discards, generating

a discard rate of 46.2 percent (Bojorquez, 1998). More recently, the U.S. National
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Bycatch Report stated the Gulf of Mexico shrimp trawl had the highest ratio for trawl

fisheries (0.75), and the HMS pelagic longline the smallest amongst longline fisheries

(0.23) (National Marine Fisheries Service, 2013). Bycatch can impact assessment of

stocks. For instance, Cortés (2002b) determined that the Atlantic blacknose shark

stock was not overfished nor experiencing overfishing. Those results were influenced

by catch series that did not include bycatch. When the stock was re-assessed by

SEDAR (2007) which included estimates of bycatch, SEDAR concluded that the stock

was overfished and experiencing overfishing. Although landings data are essential

for the construction of EBFM tools and the assessment of ecosystem indicators, so

are bycatch data. Neglecting bycatch can introduce bias into EBFM tools and the

ecosystem indicators, particularly for species for which bycatch is an important source

of mortality.

Landings-based indicator trends computed with functional group-specific data are

similar to those computed with species-specific data. Thus, in the case of the Gulf

of Mexico Atlantis model i) U.S. ambiguous landings have a negligible influence on

landings-based indicators trends, and ii) the aggregation into functional groups has

negligible influence on landings-based indicators trends. Indicator values from func-

tional group-specific data tend to be slightly larger than indicator values from species-

specific data. This is likely because of the aggregation of landings data into functional

groups. Thus, landings-based indicator values from the Atlantis Gulf of Mexico model

may not reflect values from raw data, but the differences observed here are relatively

small. The largest difference observed was between the pelagic:demersal ratio values

from U.S. recreational data, but this is due to functional group data being in weight

and species-specific data being in numbers. Thus, the functional groups defined for
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the Gulf of Mexico Atlantis model seem to appropriately represent the hierarchy of

species across the Gulf of Mexico. To fully investigate this would entail a study of

different hierarchical species compositions of functional groups (e.g., Fulton, 2002).

Recreational indicators presented here should be interpreted with caution since

data were in numbers, not weight, and trends from numbers data have a different

meaning than trends in weight. The recreational landings pelagic:demersal ratio with

species data (numbers) and functional group data (lbs) showed how number data and

weight data can produce different trends. Weight data may be producing metrics with

a more appropriate ecological interpretation of the ecosystem since the impact of a

species on an ecosystem may be more related to the biomass of a stock than number

of individuals. However, MRIP data collected in weight contains half as many records

as MRIP data collected in numbers, thus the weight data do not represent as much

of the U.S. recreational sector as the numbers data. For the Gulf of Mexico Atlantis

model, data collected in numbers were converted to weight. Although this introduces

uncertainty regarding the magnitude of functional group-specific landings in weight

due to the simple assumptions made about average length-weight relationships of

landed species (Hayes et al., 1995), it was the best estimate that could be made.

Quantitative community indicators reveal interesting trends and data considera-

tions. Landings mean trophic level of U.S. recreational data are higher than landings

mean trophic level of U.S. commercial data, and since 1980 both trends are relatively

stable. This agrees with trends presented in the Gulf of Mexico Ecosystem Status Re-

port (Karnauskas et al., 2013), except values in the report are somewhat larger than

the values presented here. First, the U.S. commercial trend presented in the report is

computed with finfish data only while this study excluded only menhaden landings.
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Thus, popular demersal fisheries (e.g., shrimp, crabs, oysters) are driving down the

trend computed in this study. In addition, the computation of landings mean trophic

level seems to be sensitive with respect to the values of trophic levels assumed for

each species, and this study and the Gulf of Mexico Ecosystem Status Report may

have used somewhat different values for some species. Landings pelagic:demersal

ratio was not presented by Karnauskas et al. (2013). The U.S. commercial (lbs)

pelagic:demersal ratio quickly increased in the 1990’s and has been slowing decreas-

ing. The U.S. recreational pelagic:demersal ratio (functional-group trend) steadily

increased until 2000. Indicators computed with data series itemized by season and

state show that general trends from recreational data are dominated by data from

Florida, and that trends in the western Gulf are different from trends in Florida.

Computing indicators with landings datasets itemized by season and state revealed

interesting trends within the ecosystem for both commercial and recreational data

which may be reflecting differences in historical exploitation patterns and manage-

ment (Blanchard et al., 2010).

Stock assessment indicators presented here support statements made in the Gulf

of Mexico Ecosystem Status report (Karnauskas et al., 2013): a majority of landed

stocks have an unknown overfished status, and are not identified under a FMP. This

study found that there has been little change in the number of stocks not identi-

fied under a FMP as a decrease is likely due to the decrease in the overall number

of landed stocks. Also, commercial landings are mostly of assessed stocks that are

not overfished, and landings of overfished stocks decreased over time due to stocks

being re-assessed and recovering from their overfished status. Commercial landings

of stocks with unknown status are predominantly species under GSMFC’s Interjuris-
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dictional Fisheries Program, some of which have been assessed under the GSMFC or

by individual states. For example, blue crabs (Callinectes sapidus) make up much of

these landings, and blue crabs have a GSMFC regional management plan (Perry and

VanderKooy, 2015) as well as a recent stock assessment that found the stock to be

not overfished and not experiencing overfishing (VanderKooy, 2013). Lastly, recre-

ational landings are predominantly stocks of unknown status - particularly stocks not

identified under a GSMFC or GMFMC FMP. This is concerning, and there should

be an effort to assess stocks of unknown status to determine species of concern. As-

sessment at the State level may be more appropriate for some species, in addition

to low data stock assessment methods, such as Carruthers et al. (2014, 2016), and

Southeast Data, Assessment, and Review (2016). In addition, the Atlantis model

provides a means to qualitatively investigate fisheries impact on stocks in order to

identify functional groups of concern.

Landings data are important for many aspects of fisheries science and manage-

ment, and it would be advantageous of EBFM of the Gulf of Mexico if some of the

landings data discussed here were improved. Historical landings from Gulf of Mexico

waters off the coasts of Mexico and Cuba are uncertain due to the lack of recreational

data, and large portions of landings allocated to ambiguous groups. To reduce uncer-

tainty around Mexico and Cuba landings for the purposes of Gulf-wide EBFM tools

like Atlantis, practitioners should continue working with management agencies from

these regions to improve species-specific catch/landing information and develop estim-

ates of recreational landings from Gulf waters. This could include using commercial

data to indirectly estimate recreational catch series (Zeller et al., 2008). Although

the MRIP dataset provides crucial information regarding recreational landings from
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the northern Gulf, EBFM tools of the Gulf would benefit from the incorporation of

improved estimates of recreational landings. Until such efforts can be made, data

discussed here are sufficient for the construction and calibration of EBFM tools like

the Atlantis Gulf of Mexico model, and for calculating ecosystem indicators for the

Gulf of Mexico IEA, keeping data uncertainties in mind.
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Figure 2.1: Species Composition of United States Commercial Landings Over Time.
Legend shows only the seven most common species.
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(a) U.S. Commercial (excluding menhaden) (b) U.S. Recreational

(c) Mexico Commercial (d) Cuba Commercial

Figure 2.2: Regional Landings Categorized by Taxonomic Classification. Landing data are
of United States commercial - excluding menhaden (a), United States recreational (b),
Mexico commercial (c), and Cuban commercial (d) fleets.
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(a) U.S. Commercial (b) U.S Recreational

(c) U.S. Commercial (d) U.S Recreational

Figure 2.3: Seasonal Proportion of U.S. Landings and Percent of Seasonal U.S. Landings
Allocated to Ambiguous Groups. U.S. commercial landings data from NOAA are itemized
into four seasons, and U.S. recreational landings data from MRIP are itemized into six
bimonthly intervals. Panels (a) and (b) show the seasonal proportions for U.S. commercial
landings (excluding menhaden) and U.S. recreational landings, respectively. Panels (c)
and (d) show the percentage of seasonal landings allocated to ambiguous groups for U.S.
commercial data (excluding menhaden) and U.S. recreational data, respectively.



44

(a) U.S. Commercial (b) U.S Recreational

(c) U.S Commercial (d) U.S Recreational

Figure 2.4: State Proportion of U.S. Landings and Percent of State U.S. Landings
Allocated to Ambiguous Groups. Panels (a) and (b) show the state proportions for U.S.
commercial (excluding menhaden), and U.S. recreational landings, respectively. Panels (c)
and (d) show the percentage of state landings allocated to ambiguous groups for U.S.
commercial (excluding menhaden), and U.S. recreational data, respectively.



45

(a) (b)

(c) (d)

(e) (f)

Figure 2.5: See following page for caption.
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Figure 2.5: U.S. Commercial Landings and Ambiguous Landings Itemized by Gear. U.S.
commercial gears are categorized by the fleets represented in the Gulf of Mexico Atlantis
model. Panel (a) shows the proportion each fleet contributes to U.S. commercial landings
(excluding the fleet targeting menhaden). Panel (b) shows the proportion each fleet
contributes to U.S. commercial ambiguous landings. Panels (c - f) show the percentage of
commercial landings allocated to ambiguous groups for hook-and-line fleets (c), estuary
fleets (d), shelf fleets (e), and miscellaneous / unidentified gears (f).
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(a) U.S. Commercial and Recreational Landings

(b) U.S. Commercial Landings (c) U.S. Recreational Landings

Figure 2.6: Number of Landed Species and U.S. Landings Classified by Overfished Status
in Management Jurisdiction. Panel (a) shows the number of species indicated in U.S.
landings categorized by overfished status described in the U.S. Congressional Stock Status
Reports, and Fishery Management Plan jurisdiction. Panels (b, c) show the U.S
commercial (excluding menhaden) and U.S. recreational landings, respectively, categorized
by overfished status described in the U.S. Congressional Stock Status Reports, and
Fishery Management Plan jurisdiction.
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(a) U.S Commercial (b) U.S Commercial (c) U.S Commercial

(d) U.S Recreational (e) U.S Recreational (f) U.S Recreational

Figure 2.7: Trends in Landings-Based Indicator Pelagic:Demersal Ratio. Trends were
computed from U.S. commercial data (a-c) and U.S. recreational data (d-f). Panels a and
d show seasonal trends. NOAA’s commercial data itemized by months were aggregated
into four seasons, and MRIP’s recreational data were itemized by bimonthly intervals.
Panels b and e show trends for Gulf States. Panels c and f show trends from the annual
summaries of species-specific data (solid line) and functional group-specific data (dashed
line).
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(a) U.S Commercial (b) U.S Commercial (c) U.S Commercial

(d) U.S Recreational (e) U.S Recreational (f) U.S Recreational

Figure 2.8: Trends in Landings-Based Indicator Mean Trophic Level. Trends were
computed from U.S. commercial data (a-c) and U.S. recreational data (d-f). Panels a and
d show seasonal trends. NOAA’s commercial data itemized by months were aggregated
into four seasons, and MRIP’s recreational data were itemized by bimonthly intervals.
Panels b and e show trends for Gulf States. Panels c and f show trends from the annual
summaries of species-specific data (solid line) and functional group-specific data (dashed
line).



CHAPTER 3

Predicting the Biomass Distributions of
Pelagic Species Across the Gulf of Mexico
Using Generalized Additive Models

3.1 Summary

Generalized Additive Models (GAMs) were fitted for 16 pelagic functional groups

to predict spatial distributions within the Gulf of Mexico. Since data were zero-

inflated a delta approach was followed, which consisted of fitting a Bernoulli GAM

with binomial data and a Gamma GAM with zero-truncated catch rates [number

of organisms per 100 hooks]. Delta GAMs were either coastal (covering areas 0 -

200 m deep) or pelagic (covering areas greater than 200 m deep). Species-specific

catch records were collated based on the functional groups identified for the Gulf

of Mexico Atlantis model. Coastal models were developed for 4 functional groups

using NOAA’s Bottom Longline Survey data, and pelagic models were developed

for 15 functional groups using NOAA’s Pelagic Longline Observer Program data.

Descriptors considered for coastal models include year, sea bottom depth, altimetry,

minimum distance from a front, as well as both sea surface and sea bottom measure-

ments of temperature, dissolved oxygen, oxygen saturation, and salinity. Descriptors

50
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considered for pelagic models include year, season, sea bottom depth, altimetry, sea

surface temperature, and minimum distance from a front. Forward selection was used

to select model descriptors. Basis dimensions of smoothing splines were iteratively

adjusted based on smoother fits. Model residual diagnostics and performance were

evaluated, which showed that many models seem to be underestimating catch rates.

Models were used to develop seasonal distribution profiles by predicting across en-

vironmental data collected from Archiving, Validation and Interpretation of Satellite

Oceanographic (AVISO) and the National Centers for Environmental Information

(NCEI). Model fits and predictions for the large, predatory sharks group are dis-

cussed in detail. Fitted models for large, predatory sharks have some of the better

fits, diagnostics, and performance. Fitted models are influenced by known environ-

mental drivers as well as minimum distance from a front, and there is little research

identifying the influence fronts have on the distribution of predatory sharks. Model

prediction profiles successfully identify areas known to have higher catch rates of

sharks within the Gulf of Mexico, thus predicted seasonal distribution profiles could

help identify areas where stocks have increased vulnerability. This work advances our

knowledge on the environmental cues and spatial distribution of pelagic groups within

the Gulf of Mexico, suggests areas of future research, and could aid the investigation

of spatial fisheries management within the Gulf of Mexico.

3.2 Motivation

In the Gulf of Mexico, the biomass levels of many pelagic predators are currently

less than historic levels primarily due to overfishing (Pauly et al., 1998; Stevens et al.,

2000; Baum et al., 2003b; Myers and Worm, 2003; Christensen et al., 2003; Peel et al.,
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2003; Baum and Myers, 2004; Baum et al., 2005; Safina and Klinger, 2008). Many of

these stocks continue to be subjected to fishing pressure because they support eco-

nomically important fisheries (e.g., Prince et al., 1989; Weidner et al., 2001; Fromentin

and Powers, 2005; Barker and Schluessel, 2005; Arregúın-Sánchez and Arcos-Huitrón,

2011; Aguilar et al., 2014) or they are caught as bycatch (e.g., de Silva et al., 2001;

Serafy et al., 2004; Mandelman et al., 2008). Because top predators are known to

influence the structure and function of marine ecosystems (Paine, 1980; Duffy, 2002),

and the decline of top predators may reduce ecosystem sustainability (Myers et al.,

2007; Heithaus et al., 2008; Baum and Worm, 2009).

The 1996 Magnuson-Stevens Act includes requirements to identify essential fish

habitats, i.e. waters and substrate necessary to fish for spawning, breeding, feeding or

growth to maturity (U.S. Congress, 1996). The marine environment is heterogeneous,

creating patchy fish populations driven by physical and biotic forcing. When marine

fauna, like pelagic predators, aggregate within essential habits they are vulnerable to

fisheries, so these areas should be targeted for conservation efforts. This is especially

true for bycatch species as bycatch is not only harmful to affected marine fauna but

also a waste of fisheries resources. Fisheries management regulations such as spatial

fishery closures offer a means to protect essential habitats, but first these areas need to

be defined for each species. This can be done by determining the spatial distribution

of species.

Understanding the spatial distribution of fish stocks (one aspect of spatial fisheries

ecology) can not only provide information regarding essential habitats, but can also

lead to a better understanding of how species abundance changes over time (Ciannelli

et al., 2008). The spatial distribution of an organism is often estimated using stat-



53

istical methods relating abundance to measurable environmental conditions. Fishery

independent catch data (i.e., survey data) are collected for statistical analysis, but

sample sizes tend to be low. Fisheries dependent catch data are more abundant, but

often have undesirable features that make them unsuitable to linear modeling (e.g.,

non-random sampling, lack of coverage of an organisms whole spatial range). How-

ever, the advancement of statistical methodologies (e.g., generalized linear modeling)

provides a means to address such issues with fishery dependent catch data (Guisan

et al., 2002; Venables and Dichmont, 2004; Ciannelli et al., 2008). Generalized Addit-

ive Models (GAMs) offer a particularly flexible form of statistical modeling. GAMs

(Hastie and Tibshirani, 1986, 1990) can address non-linear relationships between the

response and explanatory variables with smoothing splines. Such models can provide

information on environmental drivers influencing stock abundance (e.g., Wall et al.,

2009), and identify geographic areas of increased abundance (e.g., Saul et al., 2013).

Spatial distribution models support ecosystem based fisheries management, EBFM

(Brodziak and Link, 2002; Pikitch et al., 2004) by identifying essential habitats, and

provides a means to parameterize the spatial distribution of marine stocks for spatially

explicit ecosystem models (e.g., Atlantis). There is a growing need to understand and

predict the ecosystem effects of changing predator abundances as well as the interac-

tions with intensifying anthropogenic stressors (Baum and Worm, 2009). This can be

accomplished with spatially explicit ecosystem models, but it is important that these

models are appropriately representing the temporal changes in spatial abundance.

Drexler and Ainsworth (2013) presented GAMs for predicting the spatial biomass

distributions of organisms retained by Southeast Area Monitoring and Assessment

Program (SEAMAP) trawls. SEAMAP trawls operate within the northern Gulf of
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Mexico shelf, but models were used to predict the spatial distributions of organisms

across the entire Gulf of Mexico shelf. The developed GAMs successfully predicted

known areas of high abundance for some organisms (e.g., pink shrimp, Farfantepen-

aeus duroarum). Grüss et al. (2014) used survey data spanning the West Florida Shelf

to fit delta GAMs, and found that predictions from fitted models for the different life-

stage groups and seasons correctly predicted known qualitative differences between

low- and high-abundance areas. Both these studies encouraged using fitted models

for generating distribution maps for ecosystem models. Grüss et al. (2014) focused on

the OSMOSE West Florida Shelf model, and Drexler and Ainsworth (2013) focused

on the Atlantis Gulf of Mexico model. Grüss et al. did not discuss the distribution

of pelagic predators, but Drexler and Ainsworth observed that models for groups

less vulnerable to benthic trawling gear, such as pelagic fish, performed poorly. The

authors suggested that their results for these groups may be unreliable and that the

analysis of different data may be necessary.

The following presents a series of GAMs for describing the spatial biomass distri-

butions of pelagic organisms across the Gulf of Mexico. Model fits were assessed using

residual diagnostics and the performance of models were tested. Seasonal, Gulf-wide

distribution profiles were developed using the fitted models to predict across grids of

geographic coordinates representing seasonal averages of environmental conditions.

While spatial distribution profiles are developed for several functional groups, the

results for large, predatory sharks are presented and discussed in detail.
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3.3 Materials and Methods

3.3.1 Data For Model Fitting

Datasets were provided by NOAA’s Southeast Fisheries Science Center (SEFSC)

Bottom Longline Survey, and Pelagic Observer Program (Table 3.1). The Bottom

Longline Survey (Grace and Henwood, 1997; Ingram et al., 2005; Henwood et al.,

2006) collects catch and environmental data along the U.S. continental shelf, operat-

ing in waters with a bottom depth between 9 - 366m. Baited hooks are suspended

near the benthos, and the gear used is similar to commercial longlines. The Pela-

gic Observer Program (Beerkircher et al., 2002, 2004; Brooke, 2012) records catch

data from observers aboard vessels in the U.S. commercial pelagic longline fleet. Ves-

sels suspend longline gear mid-depth (approximately 33-66 m, but the actual fishing

depth is unknown due to the influences by currents and environmental conditions

(Beerkircher et al., 2004) throughout the Gulf’s pelagic waters.

Data were collected from the Bottom Longline Survey between 2005 - 2012, and

Pelagic Longline Observer Program between 2005 - 2010. Catch records were col-

lated based on the functional groups identified for the Gulf of Mexico Atlantis model

(Ainsworth et al., 2015). Tables 3.2 - 3.3 show the species identification and functional

group classification for data from the Bottom Longline Survey and Pelagic Longline

Observer Program, respectively. While some of the functional groups identified for the

Gulf of Mexico Atlantis model consist of a single species (e.g. yellowfin tuna), others

consist of many species (e.g., large pelagic fish). Thus, it is likely that longline catch

data attributed to a multi-species functional group will not include all of the species

identified in the functional group. This study does not consider longline catch data
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attributed to functional groups that i) are not associated to pelagic environments, or

ii) lack sufficient data to fit a GAM.

Fishery-independent and fishery-dependent datasets can be combined to analyze

spatial distributions of marine organisms if the datasets share similar spatial and

temporal ranges (Pecquerie et al., 2004). Except for a small area off Louisiana,

the Bottom Longline Survey and Pelagic Observer Program operate in different areas

(Figure 3.1), so this study keeps the two datasets separate and constructs two series of

statistical models: models fit with Bottom Longline Survey data (referred to as coastal

models) and models fit with Pelagic Longline Observer data (referred to as pelagic

models). Survey datasets, which are fishery-independent, are designed specifically for

statistical analysis and are believed to provide more accurate information regarding

catch rates, but Fox and Starr (1996) found that data from commercial operations,

which are fishery-dependent, can be comparable.

In regards to large, predatory sharks, Grace and Henwood (1997) found that

sharks caught by the Bottom Longline Survey tend to be a size similar to or larger

than the minimum size at maturity, and that they are similar in age and size to sharks

caught by commercial operations (like ones sampled by the Pelagic Longline Observer

Program). Older juveniles and adults tend to spend their time in coastal/offshore wa-

ters (Hueter and Tyminski, 2007), making them more accessible to longline activities.

Thus, models presented here for large sharks relate to older, likely sexually mature,

organisms.

Environmental and temporal variables measured at the time of each catch obser-

vation in the datasets were used as model descriptors. Temporal variables included

year and season. Season was broken down into four categories: 1 (Jan. - Mar.), 2
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(Apr. - Jun.), 3 (Jul. - Sep.), or 4 (Oct. - Dec.). These seasonal categories may

not line up exactly with the warming and cooling of the Gulf of Mexico, since tem-

peratures tend to reach a minimum in early March and warm summer temperatures

peak in October. However, these categories correspond to the seasonality represented

in the Gulf of Mexico Atlantis model. Environmental variables required some reor-

ganization in order to fit models, which included i) generating a single estimate for

the environmental variables that have multiple measurements taken during a longline

set, ii) generating estimates of key environmental variables for longline sets missing

the information, and iii) associating longline sets in both datasets with additional

environmental data directly related to the physical environment. Measurements of

several variables (e.g., sea surface temperature, bottom depth, latitude, longitude,

etc) were collected at various points during the setting and hauling of each longline.

The mean of all observations in each set were used to characterize that set. Estimates

of these variables were generated for all of the records in both catch datasets, however

approximately 25% of the bottom longline records and 5% of the pelagic longline re-

cords were missing estimates of sea surface temperature. The Interpolate PO.DAAC

MODIS L3 SST at Points tool from the Marine Geospatial Ecology Tools (MGET)

toolbox in ArcGIS was used to get estimates of sea surface temperature for these

records (see Appendix B). Approximately 0.05% of the bottom longline records and

9% of the pelagic longline records were dropped from this analysis because necessary

information was missing and could not be recovered (e.g., date, species).

Commercial longlines often set gear based on the target species’ expected position

in the water column (Highly Migratory Species Division, 2000). Day sets tend to

target yellowfin tuna (Thunnus albacares), when the fish tend to dive deeper into
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the water column (Weng et al., 2009). Night sets tend to target swordfish (Xiphias

gladius), to take advantage of their nocturnal, near-surface feeding habits (Takahashi

et al., 2003). Thus, time of day is an important temporal variable to consider when

using commercial data. However, time of day relates less to the local stock horizontal

density and more to the vertical distribution and foraging (i.e., the catchability of

a functional group). Preliminary model fits were investigated using time of day, a

binomial variable indicating if catch occurred at day or night, as a model descriptor

(Appendix B). This work showed that spatial distribution profiles of pelagic model

changed quantitatively (i.e., the magnitude of the predicted catch rates), but not

qualitatively (i.e., observed trends in distribution profiles and resulting proportion

maps). Since this work is more interested in horizontal (not vertical) distribution,

time of day was excluded from further model fitting.

Descriptors corresponding to altimetry and ocean fronts were incorporated into the

catch datasets because top marine predators are known to aggregate around oceano-

graphic features (Olson et al., 1994; Kleisner, 2008; Kleisner et al., 2010). Altimetry

data was provided by the Archiving, Validation and Interpretation of Satellite Ocean-

ographic (AVISO) dataset (Ducet et al., 2000). Estimates of altimetry were derived

by iteratively subsetting AVISO data by catch date and averaging the four AVISO

records nearest to the catch location. The relationship between catch and fronts was

represented by calculating the minimum distance between the catch location and a

frontal feature. Frontal features were derived using the Cayula-Cornillon Fronts in

ArcGIS Raster MGET tool from the MGET toolbox. This tool uses the Cayula

and Cornillon (1992) edge detection algorithm for the identification and extraction of

fronts. The Cayula and Cornillon edge detection algorithm is commonly used with
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sea surface temperature data, but the Gulf of Mexico is known to have weak sea

surface temperature gradients (Legeckis, 1978). Features within the Gulf of Mexico

are largely influenced by the physical oceanography, so AVISO altimetry data were

used to derive frontal features (Appendix B). ArcGIS ’s Model Builder was used to

develop a routine that systematically estimates minimum distance from a front for

catch records (Figure 3.2). For each date represented in the AVISO dataset, frontal

features are derived based on the AVISO data subsetted by date, then the minimum

distance between the features and catch records are calculated.

3.3.2 Model Description

Generalized additive models (GAMs) estimating the abundance index of indi-

vidual functional groups in coastal waters (models fit with survey data) and pelagic

waters (models fit with observer data) were developed using the statistical software

R (R Core Team, 2014; Wood, 2006a, 2011; Wood and Wood, 2015). Catch-per-

unit-effort (CPUE) is the metric commonly used as an abundance index in fisheries

ecology (Hilborn et al., 1992). For this study, the calculation of longline CPUE fol-

lowed an industry standard: the total numbers of individuals caught per 100 hooks.

There was some debate in the literature on whether hook soak time impacts catch

rates calculated from longline datasets. Ward et al. (2004) concluded that whether

or not soak time effects catch rates will depend on the species, and that hook soak

time does effect the catch rates of sharks and billfish. Watson et al. (2005) found

soak time to have a meaningful effect on blue shark catch rates, but not on swordfish

catch rates. However, recently Carruthers et al. (2011), who also studied swordfish

and blue sharks, found that the method of calculating soak time will determine soak
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time impact on catch rates, and ended up concluding that although hook soak time

effects mortality rates it does not effect catch rates. For this study, total numbers

were calculated rather than total biomass because size data, which would be necessary

to convert numbers to biomass, were not available for many of the records.

A Delta approach was followed to account for the zero-inflated nature of both

longline datasets. The Delta method calls for fitting two statistical models: one pre-

dicting the probability of positive catch of binomial data (0,1), the other predicting

the CPUE [number of organisms per 100 hooks] of zero truncated catch data. Determ-

ining an appropriate error structure for generalized models is an important aspect of

model construction (Maunder and Punt, 2004). By convention, the Bernoulli distri-

bution with a logit link function was used to model the error structure of the binomial

data. Preliminary analyses suggested that the catch rate data were best supported

by a gamma distribution with an inverse link function (Appendix B). Other stud-

ies fitting generalized linear models to estimate catch rates from longline data have

achieved comparable, if not improved, model fits using the gamma distribution rather

than the more commonly used lognormal (Punt et al., 2000; Ortiz and Arocha, 2004).

The construction of GAMs requires developing robust smoothing splines for each

numerical descriptor. This study used penalized regression splines, which incorporate

penalties to the least squares fitting objective based on the flexibility of a smoother

(Wood and Augustin, 2002). Penalized regression splines have a smoothing para-

meter (λ), which controls the tradeoff between the model’s fit and smoothness, and a

basis dimension (k), which defines the maximum possible degrees of freedom (Guisan

et al., 2002; Wood, 2006b). The gam() function in R calculates smoothing parameters

using a smoothness selection criterion, either the generalized cross-validation (GCV)
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criterion or the Un-Biased Risk Estimator (UBRE) scores (Wood, 2006b). An addi-

tional penalty was incorporated to allow for the removal of a numerical descriptor if

the smoothing parameter equals zero (i.e., if the smoother does not improve model

fit).

Adjusting the basis dimension makes a spline more flexible (Ruppert, 2002; Li and

Ruppert, 2008; Wood and Wood, 2015) but this is often not investigated (Kauermann

and Opsomer, 2011; Pya and Wood, 2016). Pya and Wood (2016) concluded that the

exact setting of the basis dimension is not crucial as long as it is large enough to avoid

over-smoothing / under-fitting, and that the simple routine presented by Wood and

Wood (2015) performs as well as complex, time expensive approaches. For this study,

the routine described by Wood and Wood (2015), which follows a hypothesis testing

approach, was used to check the adequacy of basis dimensions. The routine uses

the k-index statistic to test if the basis dimension is large enough for the smoothing

spline. The k-index is the ratio of the residual variance estimated by differencing

residuals that are neighbors according to the covariates of the spline, and the residual

variance estimate from the whole model fit (formulas described by Pya and Wood

(2016)). The k-index should be close to one if the basis dimension is large enough.

A k-index less than one indicates the possibility of a missed pattern in the residuals

that could be addressed if the basis dimension is increased.

To adjust basis dimensions, first a GAM is fitted with each smoother’s basis dimen-

sion set to three (the minimum accepted setting). The adequacy of basis dimensions

are assessed individually for each numerical descriptor, in sequential order. If the

computed k-index is less than one the basis dimension is adjusted, but if the sum of

all basis dimensions in the GAM are less than three-fourths of the data’s sample size
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the routine stops - this is to prevent overfitting. The GAM is re-fitted with the basis

dimension set to a default value suggested by Kim and Gu (2004) (10n2/9, where n

is the sample size), which is typically much larger than three. Thus, if the resulting

k-index remains less than one then adjusting the basis dimension will likely not assist

reducing residual variance. In this situation, the routine sets the basis dimension to

max(3, dedfe+ 1), where edf is the effective degrees of freedom. The latter value ac-

counts for some improvement in smoother fit. If the resulting k-index is greater than

one then the routine iteratively searches for the smallest basis dimension value that

still produces a k-index greater than one. This is to find a balance between improved

smoother fit and the preservation of degrees of freedom. The assessed basis dimension

for each numerical descriptor is set to the determined value before assessment of the

basis dimension of the next numerical descriptor commences.

The general form of the fitted GAMs is as follows:

g(η) =
n∑

i=1

s(di, ki) +
m∑
j=1

f(dj) (3.1)

where η is either the probability of positive catch (ηB) or the abundance index (ηZ)

according to the link function g, and d represents model descriptors. Models are the

summation of functions of i numerical descriptors and j categorical descriptors. Nu-

merical descriptors are processed with penalized regression splines (indicated by s()

with k being the spline’s basis dimension, and categorical descriptors are treated as

factors (indicated by f()). The bottom longline dataset contains measurements of en-

vironmental variables because a conductivity, temperature, and depth recorder (CTD)

was deployed at each station. Although measurements were collected at incremental

depths, this study only considers measurements recorded at the sea surface and sea
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bottom as they often represent the extremes. Environmental variables considered as

potential descriptors for models fit with bottom longline data include: bottom depth

(m), temperature (◦C), dissolved oxygen (ppm), oxygen saturation (%), and salinity

(ppt). Commercial longline observers record limited environmental information. En-

vironmental variables considered as potential descriptors for models fit with pelagic

longline data include: bottom depth (m) and sea surface temperature (◦C). Year,

altimetry (m), and minimum distance from a front (m) were considered as potential

descriptors for all models.

Model integrity is jeopardized if a model overfits data, which can occur if the

model contains an excessive number of model descriptors. Over-parameterization is

particularly a concern for coastal models because fitting datasets have relatively small

sample sizes and there are several variables being considered for model descriptors.

Over-parameterization is less of a concern for pelagic models because fitting data-

sets tend to have larger sample sizes and only a few model descriptors were being

considered. Forward model selection was followed to select model descriptors for all

GAMs. Forward model selection was preferable over other methods (i.e., backward

or stepwise) because it ensured that the most influential numerical descriptors had

priority in the routine adjusting basis dimension. For coastal models, forward model

selection ceased (i.e., descriptors were no longer added to a model) once no single

variable improved a model’s explained deviance by more than 5%. Forward selection

for coastal models was conducted with the entire bottom longline dataset. For pelagic

models, forward model selection ceased once no single variable provided any improve-

ment to a model’s deviance explained or AIC. Forward selection for pelagic models

was conducted with data subsetted for cross validation (i.e., training datasets). Basis
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dimensions were not adjusted (remained set equal to three) during forward selection

to ensure that a variable was selected as a model descriptor because the variable

improved model fit and not because of the spline’s flexibility. The presence of highly

correlated descriptors can detract from a model’s descriptive abilities and worsen its

predictability, so forward selection ignored a variable if it was highly correlated (i.e.

correlation greater than 0.80) with any of the selected model descriptors.

Model performance and fit was evaluated for logistic models, and delta models.

The receiver operating characteristic area under the curve (AUC) metric is commonly

used as a global indicator of performance for logistic models (Greiner et al., 2000).

The AUC is equal to the probability that the model will correctly identify a randomly

chosen pair of one positive event and one negative event (Hanley and McNeil, 1982).

This study followed the arbitrary AUC guidelines suggested by Swets (1988) (i.e.,

0.5 is non-informative, 0.5 - 0.7 are less accurate, 0.7 - 0.9 are moderately accurate,

0.9 - 1 are highly accurate, 1 is perfect). Cross validation was used to evaluate

the performance of delta models. Functional group-specific catch records from both

longline datasets were split into training and testing datasets. Training datasets

contained three-fourths of a functional group’s catch records and testing datasets

received the remaining one-fourth. Because pelagic GAMs have factors for year and

season, testing and training datasets from pelagic longline data were created based

on each combination of year and season to ensure training datasets contained all of

the sampled years and seasons. Results are presented by plotting observed catch

rates from the testing dataset against predicted catch rates from the model fitted to

the training dataset (Piñeiro et al., 2008). Model fits were assessed using Pearson

residuals. Residual analysis for logistic regression is complicated because a model
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produces predicted probabilities for a binary response variable, however an adequate

Bernoulli model should have residuals that produce a lowess curve centered along the

horizontal line with a zero intercept.

3.3.3 Spatial Abundance Distribution Profiles

Seasonal, spatial abundance distribution profiles spanning the entire Gulf of Mex-

ico were developed for each functional group based on predicted abundance indices

generated by the fitted statistical models. First, grids describing hypothetical sea-

sonal conditions in the Gulf of Mexico were developed. In ArcGIS a 0.1◦ latitude

by 0.1◦ longitude grid of geographic coordinates spanning the entire Gulf of Mexico

was created using the Fishnet tool. Four versions of the grid were generated, one for

each season. Next, coordinates within the grids were assigned estimates for all model

descriptors. Seasonal data collected from NOAA (Table 3.1) were interpolated into

rasters using the Kriging tool. Then, the Extract Values to Points tool (set to bi-

linear interpolation) was used to assign seasonal estimates of the environmental data

to each coordinate in the appropriate seasonal grid. A single bathymetry raster was

used for all four seasons. Fitted models were restricted to only predict abundance at

geographic coordinates having a depth estimate within the bathymetric range of the

data used to fit the model. Thus, spatial grids were divided into two groups based

on the 250m isobath - creating seperate seasonal grids for coastal waters and pelagic

waters. Lastly, the abundance indices for each functional group were predicted at

each geographic coordinate in the grids using the fitted GAMS (i.e., coastal models

were used to predict across the coastal grids, and pelagic models were used to predict

across pelagic grids).
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Model predictions were used to estimate Gulf-wide abundance distribution pro-

files for the purpose of assigning proportion of biomass across the spatial map of the

Gulf of Mexico Atlantis model. Many of the functional groups are represented in only

one of the two longline datasets, thus general assumptions were made to extrapolate

abundance indices into Gulf-wide abundance distribution profiles (see Appendix B).

Although the large pelagic fish functional group has coastal and pelagic abundance

index profiles, the two profiles could not be merged because the catchability could

not be standardized. Thus, Gulf-wide abundance profiles for large pelagic fish were

generated using general assumptions to extrapolate pelagic predictions across coastal

waters (see Appendix B). For the large sharks and skates and rays functional groups,

predictions from the coastal and pelagic models were merged by standardizing pre-

dictions to account for differences in functional group catchability between the two

longline operations. Catch data from an area where the two longline datasets inter-

sect, an area off the Louisiana coast (Figure 3.1), were used to fit simple statistical

models for each of these two functional groups. Statistical models solving for CPUE

were of the form shown in Equation 3.1. Model descriptors included bottom depth

(m), sea surface temperature (◦C), altimetry (m), minimum distance from a front

(m), year (2005-2010), season (1-4), and longline type (bottom or pelagic). Stand-

ardization factors were calculated by dividing the median fitted pelagic CPUE by the

median fitted coastal CPUE. The coastal and pelagic profiles of predicted abundance

indices were averaged across the spatial map of the Gulf of Mexico Atlantis model, and

averages corresponding the pelagic predictions were standardized with the computed

factor. This calculation of coastal:pelagic ratios for catchability standardization as-

sumes the ratios to be constant across space and time. Coastal and pelagic abundance
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averages were then merged to span the spatial map of the Gulf of Mexico Atlantis

model. Standardization factors were used for all seasonal profiles. Additional details

of the methods can be found in Appendix B.

3.4 Results

GAMs developed from the forward selection process are summarized in Table

3.4. The median model deviance explained by coastal Bernoulli models is 32.23%

(ranging from 18.55% to 46.54%). Based on the AUC values, half of these Bernoulli

models are classified as moderately accurate while other half are classified as highly

accurate. The large sharks model produced one of the best fits (46.54% deviance

explained; 0.91 AUC). Coastal gamma models described between 40.22% and 60.45%

model deviance, with a median of 46.64%. The weakest fit belonged to the large

sharks model. Generally, fits of the pelagic Bernoulli models are weaker than the

coastal Bernouli models or the coastal or pelagic gamma models, describing on average

9.12% model deviance (ranging from 3.79% to 23.27%). Based on the AUC values,

most of these Bernoulli models are classified as moderately accurate while the few

remaining Bernoulli models are classified as less accurate. The large sharks model is

one of the weaker fitting models (explaining 6.14% model deviance; 0.73 AUC). Fits

of pelagic gamma models vary, describing between 8.33% and 71.03% model deviance

with a median of 33.51%. The large sharks model is one of the better fitting models

explaining 70.25% of the deviance.

Residuals from the Bernoulli models can be divided into a few general trends (Fig-

ure 3.3). Most of the Bernoulli models produce residuals that create lowess curves

which are mostly or entirely within the negative region, and have positive residuals
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with heavier tails than the negative residuals. Thus, a majority of Bernoulli models

are successful at estimating low probabilities of catch for non-catch events and un-

successful at estimating high probabilities of catch for catch events. Some of these

Bernoulli models have residuals that produce linear lowess curves and have heavy-

tailed positive residuals (Figure 3.3a), while others have residuals that produce para-

bolic lowess curves and have light-tailed positive residuals (Figure 3.3b). The latter

trend is from Bernoulli models which are more successful at estimating high probab-

ilities of catch for catch events than Bernoulli models producing the former residual

trend. The remaining Bernoulli models produce residuals with the opposite beha-

vior (i.e., lowess curves mostly or entirely within the positive region, and negative

residuals with heavier tails than positive residuals), indicating that these Bernoulli

models are successful at estimating high probabilities of catch for catch events and are

unsuccessful at estimating low probabilities of catch for non-catch events. Residuals

from these Bernoulli models either produce a linear lowess curve with heavy-tailed

positive residuals (Figure 3.3c), or a parabolic lowess curve with light-tailed positive

residuals (Figure 3.3d). The latter trend is from Bernoulli models which are more

successful at estimating low probabilities of catch for non-catch events than Bernoulli

models producing the former residual trend. Residuals from the spanish mackerel

and large sharks pelagic Bernoulli models produce lowess curves that have a tend-

ency to be flat, featureless and more centered around the horizontal axis (Figure 3.3e),

suggesting that there is no left-over pattern found in the residuals.

Residual diagnostic plots for gamma models are very similar to one another, so

residuals for the large sharks pelagic gamma model are shown as a general example

(Figure 3.4). The Q-Q plots often show deviance residuals in a U-shape (Figure 3.4a).
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The weight of the tails differ among functional groups, ranging from light-tailed to

heavy-tailed residuals. Error variances have a right skew (Figure 3.4b), with the

severity of the skew differing among functional groups. Error variance is not constant

and tends to decrease with an increasing linear predictor (Figure 3.4c). This is not

immediately obvious for all functional groups, especially those with larger sample

sizes, but the standardized residuals below the zero residual horizontal line tend to

suggest the trend. There is no obvious trend in residuals over time (Figure 3.4d).

Box-plots showed that all datasets have outliers (Figure 3.4b), some datasets with

more severe outliers than others.

Cross validation results for large sharks are shown as a general example (Figure

3.5), results from the remaining models are presented in Appendix B. Many of the

results resemble that of the coastal large sharks model (Figure 3.5a), however many

of them have a poor r-squared value (e.g., deep water fish have a slope = 1.05 and an

r2 = 0.02, filter feeding sharks, small sharks have a slope = 0.5 and r2 = 0.6). The

large sharks pelagic model (Figure 3.5b) produced the best cross validation results

out of all of the fitted models (slope = 0.82; r2 = 0.457). Most of the models show a

tendency to predict low catch rates for larger observed catch rates. The larger cross

validation residuals from the coastal model tend to be off the Mississippi river outlet

(Figure 3.5c). The same is true for larger cross validation residuals from the pelagic

model, with the addition that larger residuals are closer to the slope (Figure 3.5d).

Bottom depth has a significant impact on the probability of catching large sharks

for both the coastal (p < 2.0E−16) and pelagic (p < 2.0E−16) models. Descriptor

Fits for coastal and pelagic GAMs are shown in Figure (3.6) and Figure (3.7), re-

spectively. The probability of catching large sharks increases moving away from the
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shoreline until approximately 40m, beyond which the probability of catching large

sharks decreases (Figure 3.6a). Depths greater than 1200m influence an increase in

the probability of catching large sharks (Figure 3.7b). Both bottom depth smoother

fits become unreliable in the deeper ranges (exceeding approximately 200m for the

coastal model and 1700m for the pelagic model) due to sparse data.

The binomial pelagic model for large sharks is also significantly influenced by

minimum distance from a front, season, and year. Minimum distance from a front

significantly influenced the probability of catching large sharks in pelagic waters (p =

4.6E−5). The probability of catching large sharks decreases as minimum distance

from a front increases, then the probability of catching large sharks increases (Figure

3.7a). The smoother fit throughout farther distances reflect increasing uncertainty

due to sparse data. The probability of catching large sharks in pelagic waters has

significant differences among seasons. Figure 3.7e shows a decrease in the probability

of catching large sharks in pelagic waters, which is significantly different from winter

months for summer months (p = 0.002) and fall months (p = 4.56E−6). Figure 3.7f

shows a decrease in the probability of catching large sharks in pelagic waters, which

is significantly different from the value in 2005 for all years (2006, p = 0.000516; 2007,

p = 3.96E−5; 2008, p = 0.012; 2009, p = 8.74E−6; 2010, p = 1.6E−11).

The numerical descriptors driving the large sharks coastal gamma model are sea

bottom temperature (p = 1.24E−13) and altimetry (p = 2.56E−15). Higher levels of

abundance of large sharks in coastal waters are encouraged by lower sea bottom tem-

peratures (Figure 3.6b) and altimetry between 0.20 and 0.35 (Figure 3.6c). Smoother

fits become less certain in sparse data ranges. Estimates of the yearly contributions

to mean catch rates tend to increase over time (Figure3.6d), but only 2012 is signific-



71

antly different than the reference year (p = 0.023). There is a decrease in large sharks

abundance within coastal waters for 2011. This may be a response to changes in envir-

onmental influences or fishing effort (e.g., the 2010 Deepwater Horizon oil spill, and/or

the shifting of effort due to the dynamic network of fishing closures that followed the

oil spill). The abundance of large sharks in pelagic waters does not dramatically

increase or decrease over time, but in 2007 their abundance was significantly larger

than the reference year (p = 0.0009). Seasonal changes in the abundance of large

sharks in pelagic waters are significant: spring (p = 9.29E−5), summer (p = 0.0005),

and fall (p = 0.0036). The numerical descriptors in the large sharks pelagic gamma

model are sea surface temperature (p = 0.01), bottom depth (p < 2.0E−16), altimetry

(p = 2.43E−10), and minimum distance from front (p < 2.0E−16).

Before predicting with fitted GAMs, densities of data used to fit GAMs were

compared to densities of data used to make seasonal predictions with GAMs. Data

densities pertaining to environmental data of large sharks GAMs are shown in Fig-

ure 3.8. For much of the environmental data for all functional group GAMs, data

densities are similar to Figure 3.8a. This is an good because i) prediction data are

within the range of fitting data, ii) there is seasonality in the prediction data, and iii)

the prediction data are within plausible ranges. However, data densities for bottom

oxygen saturation and sea bottom dissolved oxygen indicate no seasonality in the

prediction data, and that the prediction data doesn’t span the entire range of the fit-

ting data (e.g., see Figure 3.8b). In addition, data densities indicate that for coastal

models some of the environmental data used for fitting doesn’t span the seasonality

represented in the prediction grids (e.g., see Figure 3.8c). This is caused by the lack

of seasonal coverage of the bottom longline survey, discussed earlier.
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Predictions across seasonal grids for both coastal and pelagic large sharks GAMs

are shown in Figure 3.9. The abundance of large sharks within coastal waters is

relatively low during the winter (Figure 3.9a), increases during the spring (Figure

3.9b) and summer (Figure 3.9c), and is the highest during the fall (Figure 3.9d). The

abundance of large sharks within pelagic waters does not have a strong seasonal signal

(Figure 3.9e - 3.9h). The borders of the pelagic maps often indicate higher levels of

abundance, which seems to be an indication that large sharks abundance increases

moving into shallower waters. The maps reveals several areas where large sharks may

be aggregating (i.e., hotspots). Coastal predictions indicate hotspots in the southwest

Florida shelf, the Mississippi River outlet, the Texas coast, and Campeche Bank.

Pelagic predictions indicate hotspots off the northwest Florida slope, and in the area

connecting De Soto Canyon, Mississippi Canyon, and Mississippi Fan. Predictions

across seasonal grids for all fitted GAMs are shown in Appendix B.

Standard errors of spring predictions for both coastal and pelagic large sharks

GAMs are shown in Figure (3.10). The coastal Bernoulli model is often the most

uncertain along the edge of the grid - areas that are the shallowest or deepest (Figure

3.10a). The spring predictions from the coastal Gamma model have much error

(Figure 3.10b). This is because the altimetry estimates for spring are below the

range of the altimetry data used for model fitting (Figure 3.8c), and smaller altimetry

values are highly uncertain (Figure 3.6c). Thus, this error is largely due to the lack of

seasonal coverage of the data used for fitting. The pelagic Bernoulli model has more

error around the deep-edge of the slope (Figure 3.10c). The same can be said for the

pelagic gamma model, with the addition that there is commonly more error in areas

within the eastern Gulf basin (Figure 3.10d). Sea bottom depth data used for fitting
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does not span the greater depths represented in the seasonal grids (e.g., Figure 3.8c),

which is likely contributing to the error in the two GAMs. Predictions associated to

areas with high standard error should be interpreted with caution. Standard errors

of seasonal predictions for all fitted GAMs are shown in Appendix B.

The coastal:pelagic ratios produced by the catchability standardization (10:5.22

for large sharks, and 100:6.1 for skates and rays) allowed merging coastal and pelagic

predictions to estimate the seasonal proportion of large sharks across the spatial

map of the Gulf of Mexico Atlantis (Figure 3.11). Proportions were not corrected

by polygon area. For instance, the relatively large proportion of large sharks in

the polygon corresponding to Campeche Bank is influenced by the large size of the

polygon.

3.5 Discussion

3.5.1 Model Findings

Models fitted with bottom longline survey data (coastal models) and models fit-

ted with pelagic longline observer data (pelagic models) range in their capabilities to

adequately represent data. The AUC values ranked coastal Bernoulli models between

moderately and highly accurate and pelagic Bernoulli models between moderately and

less accurate. Pearson residuals for coastal Bernoulli models tended to span a smaller

range than Pearson residuals from pelagic Bernoulli models (i.e., pelagic Bernoulli

models have more extreme residuals than coastal Bernoulli models). Thus, coastal

Bernoulli models tend to be more adequate than pelagic Bernoulli models. Consid-

ering all of the Bernoulli models fitted here, most fail to produce residuals evenly
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scattered around the horizontal axis when residuals are plotted against fitted values.

Instead, residuals show that the Bernoulli models can be divided into two general

groups: models better at predicting low probabilities of catch for non-catch events,

and models better at predicting high probabilities of catch for catch events. Most

Bernoulli models fitted in this study are in the former group, which may be caus-

ing the underestimation of delta-model catch rates observed in the cross validation

results.

Residuals from coastal gamma models are often less extreme compared to resid-

uals from pelagic gamma models, however residuals from all of the fitted gamma

models have similar trends. Gamma models residuals appear to be independent, but

they are often not normal nor are they evenly distributed across the linear predictors.

The magnitude of the skew differs between gamma models so, to various degrees,

many of the gamma models do not adequately represent the data. Transforming

the response variable may improve these diagnostics. Log-transforming the response

variable was investigated in preliminary modeling, but was not pursued as it often

failed to normalize the data (Appendix B). Gamma model diagnostics may improve

with the consideration of other transformations like the Basic or Box-Cox, which

were suggested by Mateu (1997) in reference to normalizing environmental data. All

gamma models appear to have extreme residuals which may be leverage points (i.e.,

extreme predictor values), and outliers (i.e., extreme response values). Removing out-

liers could improve the diagnostics and fits for gamma models and possibly smoothing

splines as well. However, because extreme values may be correct measurements rep-

resenting important variations in the system, an analysis of the extreme values might

be informative.
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Cross validation results showed that all delta models have less than ideal prediction

performance, and some have very poor performance (e.g., large pelagic fish, filter

feeding sharks, small sharks, and other turtles). Models for large sharks produced

the best performance results out of all models. Cross validation results showed all

models have a tendency to underestimate higher observed catch rates. This suggests

a systematic bias. This may be driven by the Bernoulli models which tend to have

weaker fits than Gamma models with residuals often being negative. Pelagic Bernoulli

models are particularly poor. This is likely happening since pelagic models are fitted

with fishery dependent data, which doesn’t appropriately represent where fish are,

or are not, since fishers operate in areas where fish tend to be found. This may

also influencing stronger fits for the pelagic Gamma models. When assessing model

predictions to detect population hotspots (i.e., areas of increased catch rates), it

is important to remember that predictions may be under-representing or missing

aggregations considering that many of these models seem to be underestimating higher

catch rates. This may be especially true if aggregations are occurring at time-scales

smaller than season.

This work executed various recommendations from the literature in order to ensure

improved model fits while not violating statistical assumptions. This includes verify-

ing the appropriate error distribution for catch rate data, determining the link func-

tions that improves model fits, checking for correlated descriptors, buffering against

overfitting, and adjusting of a spline’s basis dimension of to improve model fits. Spline

basis dimensions ended up being adjusted for many of the fitted models, and a couple

of interesting observations emerged. First, basis dimensions were adjusted more often

for splines in coastal models than for splines in pelagic models. This may be related
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to the fact that coastal models have fewer descriptors than pelagic models, because

the forward modeling process restricted what variables could be used as descriptors in

coastal models. Also, some descriptors became statistically important after the basis

dimension was adjusted. This point is important to consider when using a model se-

lection routine along with adjusting spline basis dimensions, because selected models

may be different after adjustment of a spline’s basis dimension.

Extrapolating estimates for altimetry and minimum distance from a front into

catch datasets helped improve model fits, especially for pelagic models. This is un-

derstandable as frontal features offer crucial zones of productivity in the open ocean

because the open ocean is oligotrophic compared to nearshore waters. Minimum dis-

tance from a front improved fits for a few of the fitted models. Similarly, Podestá

et al. (1993) found an association between swordfish catch rates and distance to the

nearest front, as did Kleisner et al. (2010), who modeled spatial autocorrelation of

fish species and temperatures at an appropriate range of depths. In addition, min-

imum distance from a front explained more model deviance for pelagic models of

large sharks than the other numerical descriptors. There is growing evidence that

filter feeding sharks orient to fronts (Sims and Quayle, 1998; Sims et al., 2000; Priede

and Miller, 2009; Miller et al., 2015), also the pelagic models presented here for fil-

ter feeding sharks are largely driven by minimum distance from a front, but there

is little information on predatory sharks aggregating near/around frontal boundaries

(Queiroz et al., 2012). Queiroz et al. (2012) found that blue sharks (Prionace glauca)

in the northeast Atlantic ocean displayed site fidelity correlating with local frontal

areas, and that the temporal and spatial pattern overlapped that of pelagic longlining

activities. Queiroz et al. (2016), used movement modeling to find that sharks (i.e.,
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blue shark, shortfin mako; Isurus oxyrinchus, longfin mako; Isurus paucus, tiger; Ga-

leocerdo cuvier, great hammerhead; Sphyrna mokarran, and scalloped hammerhead;

Sphyrna lewini) across the Atlantic ocean prefer habitats characterized by strong sea

surface-temperature gradients (fronts). Large, predatory sharks could be drawn to

frontal zones as these areas could be concentrating food sources. Thus, metrics relat-

ing to the oceans physical dynamics, like minimum distance from a front, have the

potential to be critical model descriptors when estimating the distribution of pelagic

organisms.

3.5.2 Limitations

Coastal models tend to have more adequate diagnostics and tend to explain more

model deviance than pelagic models, and this could be because coastal models are

fitted with fishery independent data while pelagic models are fitted with fishery de-

pendent data. Fishery dependent data (e.g., the Pelagic Longline Observer data) rep-

resent skilled fishers sampling areas known to have increased abundance of targeted

organisms. Thus, the catchability represented in the dataset is higher and can lead

to a overestimate of populations. Also, fishery dependent data have limited informa-

tion regarding environmental conditions during catches. Fishery independent surveys

often measure a variety of environmental variables at each site with devices like a

CTD. Descriptors explaining the most deviance for coastal models often are variables

measured by the CTD (e.g., oxygen saturation and salinity). Similar environmental

information is not present in fishery dependent datasets. Thus, fishery independent

data may offer more contrast of environmental conditions for target species - allowing

the flexibility to capture more environmental drivers in the model.
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Many pelagic stocks have seasonal migrations that cover large areas of the At-

lantic Ocean and include moving into and out of the Gulf of Mexico. Some examples

include Prionace glauca (Matsunaga, 2009), Thunnus thynnus (Block et al., 2001),

and Xiphias gladius (Abascal et al., 2015). Thus, it is no surprise that season often

explained more deviance in pelagic models than other descriptors as season relates

directly to stock density. For the coastal models, season could not be included as a

predictor because data were not available in winter. The lack of a season predictor

may be biasing predictions from some of the coastal models. A seasonal bias is not

easily detected with predictions of large sharks or blacktip sharks because shark popu-

lations are less abundant in the Gulf of Mexico during the winter months due to their

southward migration (Hueter and Tyminski, 2007; Carlson et al., 2010b). A seasonal

bias is obvious in the predictions form the large pelagic fish coastal model. Coastal

predictions reflect much higher catch rates in the summer than other seasons (Ap-

pendix B), suggesting that large pelagic fish are either more abundant or have higher

catchability in summer. There is a seasonal signal in pelagic predictions suggesting

increased abundance in summer months, but not as extreme as the coastal predic-

tions (Appendix B). Seasonal catch records developed in Chapter 2 show that the

magnitude of large pelagic fish catches do not change seasonally. This suggests that

large pelagic fish species are present and can be caught in the Gulf of Mexico all year.

Incorporating additional datasets so that coastal models are fitted with data covering

the entire seasonal range could reduce the bias observed in coastal predictions.

Incorporating other catch datasets into model fitting could improve the taxonomic

coverage of this study. First, models for other important pelagic groups could not be

fitted in this study due to insufficient catch data (e.g., king mackerel, small sharks,
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and small pelagic fish). Also, some of the models for multi-species functional groups

were not fitted with catch information pertaining to all of the species categorized

into the functional group. For example, large pelagic fish catches from the bottom

longline survey primarily consist of Remora and Sphyraena spp., but the group con-

sists of many other genera (Ainsworth et al., 2015). Also, for functional groups with

a coastal, and pelagic model, there is often different taxa represented between the

two catch datasets. Thus, the fitted models are missing the behavior of the other

species in the group. This is important to be aware of when using these results for

the parameterization of the Gulf of Mexico Atlantis ecosystem model. These issues

could relate to the fact that the two operations considered in this study do not select

all pelagic predators throughout the water column, so considering additional catch

datasets with different harvesting strategies could be informative.

Foraging behavior of pelagic piscivores governs how they are exposed to gear like

baited hooks. Humphries et al. (2010) found that many open-ocean predators (e.g.,

sharks, tunas, billfish and ocean sunfish) exhibit vertical movement through the water

column to detect food (bait) via sound, movement, and/or oder plumes. Some of these

predators feed at various depth levels throughout the entire water column - exposing

them to both bottom and pelagic longline activities. Medved and Marshall (1981)

investigated the feeding behavior of young sandbar sharks (Carcharhinus plumbeus)

and were able to catch individuals at surface, mid-depth, and bottom depth. Lowe

et al. (1996) found that larger tiger sharks (Galeocerdo cuvier) move through the

water column to feed at the bottom during the night and near the surface during the

day. However, other pelagic predators like Bluefin tuna (Thunnus thynnus) (Lawson

et al., 2009), dolphinfish (Coryphaena hippurus) (Oxenford and Hunte, 1999), and
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blue marlin (Makaira nigricans) (Goodyear et al., 2008) traverse the near-surface

layer of the water column, so they are only exposed to shallow-set pelagic longline

operations. If species like these are retained in bottom longline operations it is likely

incidental catch occurring during the setting/hauling process while the hooks are

moving through the water column.

Gear design and bait can impact an organism’s susceptibility to harvesting activit-

ies. Hook size, shape, and offset all have species-specific effects on catch rates. Larger

hooks have resulted in decreased catch rates of the pelagic stingray (Pteroplatytrygon

violacea) (Piovano et al., 2010; Coelho et al., 2012). Circle hooks, compared to

J-hooks, can increase the catch rates of yellowfin tuna (Thunnus albacares) (Falter-

man and Graves, 2002; Kerstetter and Graves, 2006), bigeye tuna (Thunnus obseus)

(Pacheco et al., 2011), and blue sharks (Prionace glauca) (Amorim et al., 2015), and

decrease the catch rates of swordfish (Xiphias gladius) (Coelho et al., 2012; Amorim

et al., 2015), sailfish (Istiophorus platypterus) (Pacheco et al., 2011), as well as logger-

heads (Caretta caretta) and leatherbacks (Dermochelys coriacea) (Foster et al., 2012).

Increasing the circle hook offset can reduce the catch rates of swordfish (Rice et al.,

2012). Mackerel bait, compared to squid bait, can result in decreased catch rates of

tuna (i.e., Thunnus obesus and Thunnus alalunga) (Foster et al., 2012) and swordfish

(Coelho et al., 2012; Amorim et al., 2015), in addition to increased catch rates of

some mackerel sharks (i.e., Lamna nasus and Isurus oxyrinchus) (Foster et al., 2012)

and blue sharks (Coelho et al., 2012; Amorim et al., 2015).

A comprehensive list of fishery independent and fishery dependent surveys con-

ducted within U.S. Gulf of Mexico waters was presented at the 2016 Gulf of Mexico

Ecosystem Modeling Workshop, GOMEMOw (Grüss et al., 2016a), and highlights
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additional catch datasets possibly worth integrating with the datasets considered in

this study for future model fitting efforts. Like the NMFS Expanded Annual Stock

Assessment (EASA) Survey, which sampled with both vertical line and longline gear

from April to October in 2011 (Fitzhugh et al., 2012; Campbell et al., 2012), or the

the NMFS Small Pelagics Survey, which samples the northern Gulf of Mexico from

the fall through the winter using a trawl (Ingram Jr., 2008; Pollack and Ingram Jr.,

2014). These two examples are fishery independent surveys but there are also fishery

dependent surveys worth considering, like the NMFS Southeast Region Headboat Ob-

server Program (O’Hop and Sauls, 2012), the Marine Recreational Fisheries Statistics

Survey (MRFSS) At-Sea Observer Program (O’Hop and Sauls, 2012), and the NMFS

Shark Bottom Longline Observer Program (Hale and Carlson, 2007). All of these ex-

amples are conducted within the northern Gulf of Mexico. Considering similar catch

datasets from the southern Gulf of Mexico, if they exist, would greatly benefit model

fits.

Minimum distance from a front was selected for several models fitted in this study.

This metric depends on adequately estimating frontal zones. Estimating frontal zones

by processing altimetry data with the Cayula-Cornillon Fronts in ArcGIS Raster

MGET tool in ArcGIS seems to sufficiently capture macroscale and large-mesoscale

eddies, but struggles to represent sub-mesoscale eddies. These features are also known

to also support pelagic fish (Godø et al., 2012). Thus, some of the catch records

considered in this study may be closer to a frontal edge than estimated. To capture

these features and potentially improve estimates of the minimum distance from a

front - which may improve model fits and predictions - future work should investigate
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incorporating methods that are capable of estimating finer-scaled fronts (e.g., Luo

et al., 2015).

There are descriptors that were not considered in this study that have the potential

to improve fitted models. Chlorophyll-A has been found to influence the movement

of pelagic predators Brill and Lutcavage (2001); Drymon et al. (2013), but this is

likely species specific as some studies found chlorophyll-A did not improve model fits

(Su et al., 2008; Grémillet et al., 2008). Prey dynamics could also inform distribution

models. Schick and Lutcavage (2009) and Benoit-Bird et al. (2013) found that includ-

ing data pertaining to prey groups improved predictions of bluefin tuna distributions.

Drymon et al. (2013) found the CPUE of blacktip sharks was related positively with

crustacean biomass. Also, some studies standardizing the catch rates of sharks found

bait type to be a significant descriptor for models (Carlson et al., 2010a; Carlson and

Gulak, 2013). When interpreting variables to use to model catch rates it is import-

ant to consider not only the ability to explain model deviance but also determining

if the descriptor relates to local density and/or catchability. Variables relating to

local density directly describe changes in stock density, while variables relating to

catchability describe how susceptible an organism is to harvesting gear and methods.

It is important to know an organism’s life history and to make this distinction be-

cause a variable that influences catchability and varies randomly may help explain

model deviance without improving the accuracy of predicting stock density. On the

other hand, if a variable influencing catchability changes over time or space, it may

be necessary to include this variable in the model to avoid bias in the estimates of

density.
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Predictions of spatial abundance using model forecasts have some limitations.

First, models were fit with in situ environmental observations, which represent in-

stantaneous conditions, but models were forecasted with data representing time- and

space-integrated means. This assumes that models trained with data representing

short-term behavioral responses can predict long-term habitat suitability. Thus, res-

ults may not detect acclimation, or estimate a quick population response within

a functional group’s range of environmental tolerance. Second, for some model

descriptors, data used to forecast with fitted models do not to properly repres-

ent the seasonality of the ecosystem. This may be driving some of the differences

between model predictions and information presented in literature and other data

sources. Some variables could not be considered as descriptors because seasonal

Gulf-wide estimates could not be developed. For instance, preliminary model fits

showed beam transmission (%), a measurement of the penetration of light through

the water column, to be a statistically important descriptor (Appendix B). However,

beam transmission depends on dynamic environmental processes (e.g., cloud cover,

sediment, etc), so averages spanning large temporal and spatial scales would not be

meaningful.

Predictions within the southern Gulf of Mexico should be interpreted with caution

as they are extrapolated (i.e., there are no data from Mexican nor Cuban waters in the

datasets used for model fitting). Thus, these predictions assume that the relationship

between environmental drivers and functional groups densities in the southern Gulf

are the same as those in the northern Gulf, which may or may not be valid. To

produce more robust predictions within the southern Gulf of Mexico models should

be re-fitted with datasets that include hook and line catch data from these waters.
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3.5.3 Large Sharks Models

Temperature and depth are driving both the coastal, and pelagic larges sharks

models. Water temperature is the most influential on abundance (catch rates), and

bottom depth influences where sharks are (probability of positive catch) as well as

abundance. Movement of shark species often corresponds with changing sea temper-

atures (Morrissey and Gruber, 1993; Bigelow et al., 1999; Parsons et al., 2005; Hueter

and Tyminski, 2007; Ortega et al., 2009; Carlson et al., 2010b; Baum and Blan-

chard, 2010), and depth influences habitat selection (Morrissey and Gruber, 1993;

Heithaus et al., 2007b; Carlson et al., 2010b; Hoffmayer et al., 2014) and catch rates

(Carlson et al., 2010a; Baum and Blanchard, 2010; Drymon et al., 2010; Carlson

et al., 2012). Factors time and season were also significant for larges sharks pela-

gic models, which has been observed in studies standardizing catch rates of sharks

(Carlson et al., 2010a, 2012; Carlson and Osborne, 2013; Carlson and Gulak, 2013).

Sea bottom habitat could also drive the distribution of some shark species (Hannan

et al., 2012). Salinity can also influence the habitat selection for sharks (Heupel and

Simpfendorfer, 2008; Ubeda et al., 2009; Bethea et al., 2015), but models fitted with

salinity (large sharks coastal models) did not select salinity as a model descriptor.

This is because studies relating to salinity tend to focus on young, juvenile sharks

and localized inshore systems, but this research aimed to describe the distribution of

older juveniles and adults, which often spend most of their time in coastal/offshore

waters (Hueter and Tyminski, 2007). Constructing models to describe the distribu-

tion profiles for younger organisms would be beneficial, but would require catch data

that retains those individuals and should focus more on small scale, inshore studies.
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Major features of predictions made with the fitted large sharks coastal model

seem to be supported by observations from the literature. First, predictions indicate

a seasonal signal. Catch rates are very low in the winter, but increase in the spring,

summer, and fall. This corresponds to the theory of a general southward migration of

sharks (Hueter and Tyminski, 2007; Carlson et al., 2010b). Second, areas of increased

catch rates in the northern Gulf are predicted off the coasts of Texas, Louisiana,

Mississippi and south Florida. Hotspots off of Texas, Louisiana, and south Florida

appear in the spring while the hotspot off of Mississippi appears in the summer.

Hueter and Tyminski (2007) concluded that 16 different species of sharks use areas

off of Florida and Texas as primary and/or secondary nurseries. Their results for

Texas show more older individuals were observed off Corpus Christi, and their results

for Florida indicate that many older individuals were observed off the Florida Keys.

These areas are approximately where the corresponding hotspots are occurring in the

results presented here. Bethea et al. (2015) determined some areas in the northeast

Gulf to be important nursery grounds. Results presented here did not show increased

abundance in these areas, but Bethea et al. (2015) studied young of the year and

juveniles while this study only studied adults.

Results presented in this study suggest a connection between large, predatory

sharks and the Mississippi River outlet, particularly the dead zone. First, for both

the coastal and pelagic large sharks models, extreme outliers from the cross valida-

tion tend to be located off the Mississippi River outlet. Although removing extreme

outliers could improve model fits, it appears these outliers represent important in-

stances of variation in the ecosystem - specifically how variable shark catches are in

this area. Second, the predictions from the large sharks coastal model show increased
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abundance of sharks along the Gulf’s northeastern shelf in the summer months. This

temporal and spatial domain matches that of the Gulf of Mexico hypoxic zone (a.k.a.,

dead zone). Studies of hypoxic conditions within the Gulf of Mexico have observed

fish aggregating along the edge, and/or immediately above, the hypoxic areas since

many marine teleost can not inhabit hypoxic waters (Stanley and Wilson, 2004; Zhang

et al., 2009). However, experimental studies have found that some sharks are capable

of altering their physiology and swimming behavior to tolerate hypoxic conditions

(Metcalfe and Butler, 1984; Wise et al., 1998; Carlson and Parsons, 2001). Also,

Heithaus et al. (2009) found dissolved oxygen to drive the distribution of bull sharks

(Carcharhinus leucas) within Everglades National Park even in the absence of hyp-

oxia. Thus some species of sharks might take advantage of the Gulf of Mexico hypoxic

zone to forage for benthic organisms (e.g., crabs) and/or locate aggregations of fish

occurring around the zone-edge. Prince and Goodyear (2006) analyzed tag data from

individuals exposed to the eastern tropical Pacific hypoxic zone and suggested that

the larger sizes of sailfish observed may be due to the enhanced foraging opportunities

afforded by the closer proximity of predator and prey in compressed habitat.

Predictions of large sharks across the pelagic environment do not have noticeable

seasonality, but there are two distinct features of these results that stand out. First,

the continental slope has higher catch rates than deep, pelagic waters. Many studies

have found sharks in the Gulf to have an affinity for the shelf and coast, but there have

been individuals observed making trips into the deep, pelagic waters. For instance,

Hoffmayer et al. (2014) tagged several dusky sharks (Carcharhinus obscurus) in the

northern Gulf, and observed sharks spending most of their time along the shallow

edges of the slope. However, in the fall one shark swam south to spend time at depths
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greater than 300m. Second, the slope has areas of increased catch rates. Higher catch

rates are estimated around DeSoto Canyon, Mississippi Canyon, and Mississippi Fan.

These increased estimates are consistent through winter to summer but decrease in

the fall. Coincidentally, this spatial range and temporal pattern is similar to that of

the intrusion and eddy shedding of the Loop Current (Leben, 2005). Considering the

influence minimum distance from a front and altimetry have on the delta model, it

is possible that these features may be connected to the physical dynamics generated

from the Loop Current. Some research have suggested these areas to be important

for various shark species. For instance, Etnoyer and Warrenchuk (2007) suggested

the Mississippi Canyon may be a nursery for catsharks (Scyliorhinidae spp.). Also,

Hueter and Tyminski (2007) found offshore coastal nurseries off Texas, Louisiana,

and Mississippi through longline surveys in the months of July and August. The

importance of these areas for predatory shark populations should be an topic of

future research in order to improve our understanding of shark habitats in the Gulf

of Mexico.

Predictions show that sharks may appregate in areas of the southern Gulf of

Mexico - primarily within Campeche Bank, some coastal estuaries, and the continental

slope. These results should be interpreted with caution since forecasts across the

southern Gulf of Mexico were extrapolated, but some of these trends are supported by

the literature. In Cuba, sharks are commonly caught as bycatch in the pelagic longline

fisheries (Guitart, 1975; Aguilar et al., 2014). In Mexico, some of the indicated areas

correspond to shark fisheries Castillo-Géniz et al. (1998); Pérez-Jiménez and Mendez-

Loeza (2015), and possible nurseries (Montiel, 1988; Bonfil, 1997).
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3.5.4 Moving Forward

Spatial distributions of pelagic fish within the Gulf of Mexico can be quite different

from one another. Some of the species investigated here are not properly represented

by longline datasets alone, and more catch and environmental information is needed

to get a better understanding of their Gulf-wide distribution. Models for large sharks

produced some of the best fits with few diagnostic issues which resulted in good

performance, thus these models could aid conservation efforts for large, predatory

sharks inhabiting Gulf of Mexico waters. However, The large sharks functional group

consists of twenty-six different shark species, all of which have slightly different life

histories, behaviors, and habitat preferences. As our knowledge and data-banks grow,

species-specific investigations should be pursued so conservation plans can aim at spe-

cies of concern in addition to the large sharks complex. Seasonal predictions from all

of the models presented here can provide some improvement to the representation of

pelagic functional groups in the Gulf of Mexico Atlantis ecosystem model, which will

aid ecosystem based fisheries management efforts in the Gulf of Mexico. Considering

that many of these highly migratory stocks inhabit waters far beyond the Gulf, eco-

system models like Atlantis are critical in gaining insight on how conservation efforts

covering very small areas of their spatial range impact the overall status of these

stocks.
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Table 3.1: Data Used For Model Fitting and Predicting. Catch and effort data were provided
by the Southeast Fisheries Science Center (SEFSC), and were supplemented with sea surface
temperature and altimetry data from the Moderate Resolution Imaging Spectroradiometer
(MODIS) and Archiving, Validation and Interpretation of Satellite Oceanographic (AVISO)
datasets, respectively. AVISO data were collected from NOAA’s Easier Access To Scientific
Data database, while MODIS data were assigned to catch records using the Interpolate
PO.DAAC MODIS L3 SST at Points tool from the Marine Geospatial Ecology Tools tool-
box in ArcGIS. Data used to forecast with fitted models all came from NOAA. The National
Centers for Environmental Information (NCEI) provided bathymetry data, and the NOAA’s
National Centers for Environmental Information (NCEI) provided climatological seasonal
averages of sea temperature, dissolved oxygen, oxygen saturation, and salinity.

Data Source Spatial/Temporal Resolution Use
Coastal catch and effort SEFSC Northern Gulf of Mexico (9 - 366m isobaths) Fitting
Pelagic catch and effort SEFSC Northern Gulf of Mexico (200m isobath - EEZ ) Fitting
Sea surface temperature MODIS grid (4km/9km) / (Daily/8Day/Monthly)‡ Fitting
Altimetry AVISO 0.25◦ x 0.25◦ grid / weekly averages Both
Bathymetry NCEI Gulf-wide (5 - 4000 m isobaths) Forecast
Sea temperature† NCEI 0.25◦ x 0.25◦ grid / seasonal averages Forecast
Dissolved oxygen† NCEI 1◦ x 1◦ grid / seasonal averages Forecast
Oxygen saturation† NCEI 1◦ x 1◦ grid / seasonal averages Forecast
Salinity† NCEI 0.25◦ x 0.25◦ grid / seasonal averages Forecast
† Averages for both sea surface and sea bottom
‡ See Appendix B for details



90

Table 3.2: Species identified in NOAA’s Bottom Longline Survey dataset collated by func-
tional groups defined for the Gulf of Mexico Atlantis Model (Ainsworth et al., 2015).

Greater amberjack (AMB)? Large reef fish (LRF)† Sciaenidae (SCI)†

Seriola dumerili Brotula barbata Menticirrhus americanus
Conger oceanicus Micropogonias undulatus

Black drum (BDR)† Echiophis punctifer

Pogonias cromis Rhynchoconger flavus Scamp (SCM)†

Ophichthidae Mycteroperca phenax
Benthic feeding sharks (BEN)? Ophichthus Gulf of Mexicoesi

Heptranchias perlo Ophichthus puncticeps Small demersal fish (SDF)†

Hexanchus vitulus Ophichthus rex Scorpaena agassizii
Trichiurus lepturus

Deep serranidae (DSR)† Seatrout (SEA)†

Centropristis striata Little tunny (LTN)? Cynoscion arenarius
Epinephelus drummondhayi Euthynnus alletteratus Cynoscion nothus
Epinephelus flavolimbatus

Epinephelus nigritus Lutjanidae (LUT)† Small sharks (SMS)?

Epinephelus niveatus Etelis oculatus Centrophorus granulosus
Lutjanus analis Squalus

Flatfish (FLT)† Lutjanus griseus Squalus cubensis
Syacium papillosum Pristipomoides aquilonaris

Small pelagic fish (SPL)?

Gag grouper (GAG)† Other demersal fish (ODF)† Merluccius bilinearis
Mycteroperca microlepis Arius felis

Bagre marinus Small reef fish (SRF)†

Jacks (JCK)? Gymnothorax kolpos Caulolatilus microps
Carangidae Gymnothorax nigromarginatus Lopholatilus chamaeleonticeps
Seriola zonata Haemulon plumieri Rachycentron canadum

Muraena retifera Synodus foetens
King mackerel (KMK)? Opsanus pardus Trachinocephalus myops
Scomberomorus cavalla Pagrus pagrus

Prionotus tribulus Swordfish (SWD)?

Large sharks (LGS) Urophycis Xiphias gladius
Carcharhinidae Urophycis cirrata
Carcharhinus Urophycis floridana Blacktip sharks (TIP)
Carcharhinus acronotus Carcharhinus limbatus
Carcharhinus altimus Skates and Rays (RAY)

Carcharhinus brevipinna Dasyatidae Vermilion snapper (VSN)†

Carcharhinus falciformis Dasyatis Rhomboplites aurorubens
Carcharhinus isodon Dasyatis americana

Carcharhinus leucas Dasyatis centroura Not Assigned†

Carcharhinus plumbeus Dasyatis sabina Gadidae
Carcharhinus signatus Mustelus Unidentified
Galeocerdo cuvier Mustelus canis
Ginglymostoma cirratum Mustelus norrisi
Negaprion brevirostris Mustelus sinusmexicanus
Rhizoprionodon terraenovae Raja eglanteria
Sphyrna Raja garricki
Sphyrna lewini Rhinoptera bonasus
Sphyrna mokarran Scyliorhinus retifer
Sphyrna tiburo Triakidae
Sphyrnidae

Red drum (RDR)†

Loggerhead (LOG)? Sciaenops ocellatus
Caretta caretta

Red grouper (RGR)†

Large pelagic fish (LPL) Epinephelus morio
Acanthocybium solandri

Coryphaena hippurus Red snapper (RSN)†

Echeneis naucrates Lutjanus campechanus
Echeneis neucratoides
Remora remora
Sphyraena barracuda

† Functional group is not considered pelagic-based fish
? Functional group does not have enough data to fit a statistical model
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Table 3.3: Species identified in the NOAA’s Pelagic Longline Observer dataset collated by
functional groups defined for the Gulf of Mexico Atlantis Model (Ainsworth et al., 2015).

Benthic feeding sharks (BEN)? Large sharks (LGS) Other demersal fish (ODF)†

SSG Heptranchias perlo XTH Alopias PUX Tetraodontidae
BTH Alopias superciliosus

Other billfish (BIL) PTH Alopias vulpinus Other tuna (OTN)?

BIL Istiophoridae SRQ Carcharhinidae FRM Auxis thazard
SAI Istiophorus albicans SBN Carcharhinus acronotus
WHX Tetrapturus SSP Carcharhinus brevipinna Skates and Rays (RAY)
SPX Tetrapturus FAL Carcharhinus falciformis SRX Elasmobranchii
SPG Tetrapturus georgii SFT Carcharhinus isodon DGS Mustelus canis
SPF Tetrapturus pfluegeri SBU Carcharhinus leucas PEL Pteroplatytrygon violacea

OCS Carcharhinus longimanus

Blue marlin (BMR) DUS Carcharhinus obscurus Red snapper (RSN)†

BUM Makaira nigricans SRF Carcharhinus perezi RSN Lutjanus campechanus
SSB Carcharhinus plumbeus

Bluefin tuna (BTN) SNI Carcharhinus signatus Surface feeding birds (SBR)†

BFT Thunnus thynnus SBG Carcharhinus ultima FRB Fregata magnificens
SST Carcharias taurus

Diving birds (DBR)† TIG Galeocerdo cuvier Spanish mackerel (SMK)
SWC Calonectris diomedea XMA Isurus GEM Lepidocybium flavobrunneum
GUX Laridae SMA Isurus oxyrinchus OIL Ruvettus pretiosus
GHE Larus argentatus LMA Isurus paucus
GBB Larus marinus SMK Lamnidae Small sharks (SMS)
GLA Leucophaeus atricilla POR Lamna nasus SCO Isistius brasiliensis
GAN Morus bassanus BSH Prionace glauca SHX Elasmobranchii
SPW Oceanites oceanicus SCR Pseudocarcharias kamoharai SGR Somniosus microcephalus
PBR Pelecanus occidentalis SAS Rhizoprionodon terraenovae SDG Squalidae
SWX Puffinus XHH Sphyrna DGY Squalus acanthias
SWG Puffinus gravis SPL Sphyrna lewini DGV Zameus squamulosus

GHH Sphyrna mokarran

Deep diving odontocetae (DDO)† SHH Sphyrna zygaena Squid (SQU)†

PSW Kogia breviceps SQX Teuthida
WSP Physeter macrocephalus Loggerhead (LOG)?

TTL Caretta caretta Small reef fish (SRF)†

Dolphins and porpoises (DOL)† CBA Rachycentron canadum
MDO Delphinidae Large pelagic fish (LPL)
MCO Delphinus delphis WAH Acanthocybium solandri Swordfish (SWD)
MPW Globicephala LAX Alepisaurus SWO Xiphias gladius
PWL Globicephala macrorhynchus DOL Coryphaena
PWS Globicephala melas REM Echeneidae Blacktip sharks (TIP)?

MRD Grampus griseus SKJ Katsuwonus pelamis SBK Carcharhinus limbatus
WNB Hyperoodon ampullatus OPA Lampris guttatus
WHA Cetacea MST Masturus lanceolatus Other turtles (TUR)
MKW Orcinus orca MOX Mola TTG Chelonia mydas
MPD Stenella attenuata MOC Mola mola TLB Dermochelys coriacea
MCL Stenella clymene BLU Pomatomus saltatrix THB Eretmochelys imbricata
MSD Stenella coeruleoalba BON Sarda sarda TTX Chelonioidea
MAD Stenella frontalis CHM Scomber japonicus
MBD Tursiops truncatus MAC Scomber scombrus White marlin (WMR)
WBK Ziphiidae BAR Sphyraena WHM Tetrapturus albidus

TUN Thunnus
Deep water fish (DWF) ALB Thunnus alalunga Yellowfin tuna (YTN)
CUB Cubiceps BLK Thunnus atlanticus YFT Thunnus albacares
DEA Trachipterus arcticus BET Thunnus obesus

Not Assigned†

Filter feeding sharks (FIL) Large reef fish (LRF)† BRD Aves
MAN Mobulidae CNG Conger MAM Mammel

TPL Lobotes surinamensis UNC Unknown
Jacks (JCK)? TRX Trichiuridae UNK Unknown
JAC Caranx ACT Trichiurus lepturus
RUN Elagatis bipinnulata
AMJ Seriola Little tunny (LTN)

LTA Euthynnus alletteratus
King mackerel (KMK)?

KGM Scomberomorus cavalla Medium pelagic fish (MPL)
POA Brama

Kemps ridley (KMP)? TAR Megalops atlanticus
TKR Lepidochelys kempii

† Functional group is not considered pelagic-based fish
? Functional group does not have enough data to fit a statistical model
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Figure 3.1: Geographic Distribution of Effort from NOAA’s Bottom Longline Survey and
NOAA’s Pelagic Longline Observer Program. Effort [# of hooks per km2] from NOAA’s
Bottom Longline Survey is shown in green, and effort from NOAA’s Pelagic Longline
Observer Program is shown in blue. This map was calculated and created in ArcGIS via
the Point Density tool.
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Figure 3.2: Conceptual Routine for Calculating Minimum Distance from A Front. The
routine to calculate minimum distance from front (MDF ) was constructed in ArcGIS ’s
Model Builder. Oval boxes indicate data files, square boxes indicate ArcGIS tools, and
oblong boxes indicate tool outputs. The diamond box indicates a feature for iterating
through unique dates identified in the altimetry dataset. A front profile is constructed for
an individual date (n), which is used to calculate the minimum distance from a front for
catch records associated to longline sets that occurred on date n.
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Table 3.4: Generalized Additive Models Fitted for Seasonal Predictions. Results from the
forward model selection procedure for all fitted models. Models were determined for both
parts of the delta model predicting CPUE: the probability of positive catch (ηB) and the
abundance index (ηZ). Numerical descriptors include bottom depth (BD), sea surface
temperature (SST ), sea bottom temperature (SBT ), sea surface height (SSH), oxygen
saturation (OS), dissolved oxygen (DO), salinity (SAL), and minimum distance from front
(MDF ) - subscripts indicate whether the descriptor is measured from the sea surface (S) or
sea bottom (B). All of which were fitted with penalized regression splines (s()). Year (yr)
and season (sn) are treated as factors (f()). Deviance explained (D.E., %) is displayed
for each model, and the receiver operating characteristic area under the curve (AUC) is
displayed for Bernoulli models.
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Table 3.4: Continued.

Models Fit with NOAA’s Bottom Longline Survey Data
Functional Group Model D.E. AUC

large sharks
ηB s(BD, 7) 46.5 0.91
ηZ s(SBT, 13) + s(SSH, 12) + f(yr) 40.2

large pelagic fish
ηB s(OSB , 4) + s(SST, 7) + s(DOS , 4) + s(BD, 9) + s(SALB , 7) 22.9 0.86
ηZ s(DOS , 3) + s(SSH, 3) + f(yr) + s(OSB , 3) 60.4

skates and rays
ηB s(SBT, 11) + s(OSB , 3) 18.5 0.79
ηZ s(SBT, 5) + s(SST, 10) + s(SALS , 4) 50.9

blacktip sharks
ηB s(SBT, 6) + s(SALS , 3) + s(SSH, 3) + s(OSB , 3) 41.6 0.91
ηZ s(SALB , 3) + s(DOB , 15) + s(BD, 3) 42.4

Models Fit with Pelagic Longline Data
Functional Group Model D.E. AUC

other billfish
ηB s(SST, 3) + f(yr) + f(sn) + s(MDF, 3) + s(BD, 3) + s(SSH, 3) 13.6 0.75
ηZ f(yr) + s(BD, 22) + s(SST, 28) + s(MDF, 3) + s(SSH, 3) 37.5

blue marlin
ηB s(SST, 3) + f(sn) + f(yr) + s(SSH, 3) + s(MDF, 3) + s(BD, 3) 9.5 0.71
ηZ s(SST, 3) + s(SSH, 3) + f(yr) + s(BD, 3) + s(MDF, 21) + f(sn) 31.8

bluefin tuna
ηB f(sn) + s(SST, 3) + f(yr) + s(SSH, 3) + s(MDF, 3) + s(BD, 3) 18.2 0.78
ηZ f(yr) + s(SSH, 3) + f(sn) + s(MDF, 3) + s(BD, 3) 8.3

deep water fish
ηB f(sn) + s(SST, 3) + s(MDF, 3) + s(BD, 3) + s(SSH, 3) 11.1 0.77
ηZ f(sn) + s(SST, 3) + s(MDF, 3) + f(yr) + s(SSH, 3) + s(BD, 3) 55.0

filter feeding sharks
ηB f(sn) + f(yr) + s(MDF, 3) + s(BD, 3) + s(SSH, 3) 7.0 0.72
ηZ f(yr) + s(BD, 5) + s(SSH, 3) + s(MDF, 3) + s(SST, 3) 33.4

large sharks
ηB f(sn) + f(yr) + s(MDF, 3) + s(BD, 3) + s(SST, 3) + s(SSH, 3) 6.14 0.73
ηZ s(SST, 3) + s(BD, 3) + f(yr) + f(sn) + s(SSH, 29) + s(MDF, 33) 70.3

large pelagic fish
ηB f(sn) + f(yr) + s(SSH, 3) + s(BD, 3) + s(SST, 3) 8.7 0.65
ηZ f(yr) + s(BD, 46) + s(SST, 12) + s(SSH, 37) + f(sn) + s(MDF, 8) 33.6

medium pelagic fish
ηB s(SSH, 3) + f(yr) + f(sn) + s(SST, 3) + s(BD, 3) + s(MDF, 11) 6.5 0.68
ηZ f(sn) + f(yr) + s(SSH, 3) + s(SST, 3) + s(MDF, 3) + s(BD, 3) 16.6

skates and rays
ηB f(yr) + f(sn) + s(SST, 3) + s(MDF, 3) + s(BD, 3) 16.1 0.76
ηZ f(sn) + f(yr) + s(SST, 3) + s(SSH, 3) + s(BD, 3) + s(MDF, 13) 36.5

spanish mackerel
ηB s(SST, 3) + f(yr) + f(sn) + s(MDF, 3) + s(SSH, 8) 3.8 0.63
ηZ f(sn) + s(BD, 41) + f(yr) + s(SST, 19) + s(SSH, 9) + s(MDF, 43) 25.5

small sharks
ηB f(sn) + f(yr) + s(SST, 3) + s(BD, 3) + s(MDF, 3) + s(SSH, 3) 4.3 0.65
ηZ s(BD, 35) + s(MDF, 3) + s(SSH, 19) + s(SST, 3) + f(yr) + f(sn) 58.5

swordfish
ηB f(sn) + f(yr) + s(SSH, 3) + s(SST, 9) + s(MDF, 3) + s(BD, 3) 14.9 0.76
ηZ s(BD, 49) + s(MDF, 3) + s(SST, 3) + s(SSH, 3) + f(yr) + f(sn) 48.7

other turtles
ηB f(sn) + f(yr) + s(BD, 3) + s(SSH, 3) + s(SST, 3) + s(MDF, 11) 4.7 0.67
ηZ f(yr) + s(MDF, 4) + s(SST, 3) + s(SSH, 3) + s(BD, 4) 71.0

white marlin
ηB s(SST, 3) + f(yr) + s(SSH, 3) + f(sn) + s(BD, 3) + s(MDF, 10) 18.7 0.82
ηZ f(yr) + s(SST, 3) + s(SSH, 3) + s(MDF, 3) + s(BD, 3) 25.1

yellowfin tuna
ηB f(sn) + f(yr) + s(SSH, 3) + s(MDF, 3) + s(SST, 3) + s(BD, 3) 23.3 0.80
ηZ s(SST, 3) + s(BD, 3) + f(yr) + f(sn) + s(SSH, 28) + s(MDF, 4) 14.7
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(a) coastal large pelagic fish (b) coastal blacktip shark

(c) pelagic large pelagic fish (d) coastal large sharks (e) pelagic large sharks

Figure 3.3: General Trends of Residual Diagnostics for Fitted Bernoulli Models. Examples
of the general trends of residuals from fitted Bernoulli models are shown for indicated
functional groups. Red lines indicate the lowess smooth.
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(a) (b)

(c) (d)

Figure 3.4: Residual Diagnostics from the Large Sharks Gamma Model Fitted with Pelagic
Longline Observer Data. Residual diagnostics include: the Q-Q plot (a), box plot (b),
residuals against linear predictor (c), which is the predicted value for each data point in the
scale of the link function, and residuals against time (d).
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(a) (b)

(c) (d)

Figure 3.5: Cross Validation Results from the Large Sharks Delta Generalized Additive
Models. Results are presented as observed against predicted catch rates for the coastal
model (a) and pelagic model (b). Results from a linear regression on the points (solid line)
are shown: intercept (int), slope (s), and adjusted r-squared value (r2). The dashed line
indicates the 1:1 ratio between observed and predicted values. Cross validation residuals
are presented based on the corresponding geographic coordinates for the coastal model (c)
and pelagic model (d). Point size indicates if the residual is larger than the 95% quantile.
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(a) (b) (c) (d)

Figure 3.6: Model Descriptor Fits from the Large Sharks Generalized Additive Model Fitted
with Bottom Longline Survey Data. Panel (a) displays the model descriptor fit for the
binomial data model, and panels (b) - (d) display the model descriptor fits for the zero-
truncated data model. Solid lines indicate the fit, dashed lines indicate the 95% confidence
interval, and the black dashes along the horizontal axis display the rug plot. The estimated
degrees of freedom for smooth fits are included in the vertical axis label.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.7: Model Descriptor Fits from the Large Sharks Generalized Additive Model Fitted
with Pelagic Longline Data. Panels (a) - (f) display descriptor fits for the binomial data
model, and panels (g) - (l) display descriptor fits for the zero-truncated data model. Solid
line indicates the fit, dashed lines indicate the 95% confidence interval, and black dashes
along the horizontal axis display the rug plot. The estimated degrees of freedom for smooth
fits are included in the vertical axis label.
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(a) large sharks pelagic model (b) blacktip sharks coastal model (c) large sharks coastal model

Figure 3.8: Examples of Density Plots Comparing Fitting and Predicting Data. The density
curve for data used for model fitting is plotted in black, and the density curves for data used
for seasonal predictions are plotted individually in the indicated shades of grey. Panel (a)
displays an ideal situation: prediction data within the range of fitting data, and seasonality
amongst prediction data. Panel (b) displays a less ideal situation: prediction data failing
to span the range of fitting data, and no seasonality amongst prediction data. Panel (c)
displays a less ideal situation: fitting data failing to span the range of prediction data.
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Figure 3.9: Seasonal Predictions of Large Sharks Catch Rates. Panels (a) - (d) display the
catch rates predicted from the large shark GAM fit with bottom longline survey data for
season 1 (a), season 2 (b), season 3 (c), and season 4 (d). Panels (e) - (h) display the catch
rates estimated when predicting the large shark GAM fit with pelagic longline observer
data across for season 1 (e), season 2 (f), season 3 (g), and season 4 (h).
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Figure 3.10: Example of Standard Errors of Predictions from Large Sharks Generalized Ad-
ditive Models. Standard error of season 2 predictions for the large sharks coastal Bernoulli
model (a), coastal Gamma model (b), pelagic Bernoulli model (c), and pelagic Gamma
model (d).



104

(a) (b)

(c) (d)

Figure 3.11: Proportion of Large Sharks Abundance Aggregated by Gulf of Mexico Atlantis
Polygon Map. Seasonal predictions for the coastal and pelagic large sharks models were
merged using a standardized relative catchability coastal:pelagic ratio (10:5.22), which was
computed with data collected from an area where the two longline catch datasets overlapped.
Figures are partitioned seasonally: season 1 (a), season 2 (b), season 3 (c), and season 4
(d).



CHAPTER 4

Can Gulf of Mexico Pelagic Longline
Fishery Closures Meet Management
Objectives?

4.1 Summary

The Gulf of Mexico has two pelagic longline closures, a permanent closure (DeSoto

Canyon), and a seasonal closure (Spring Closure), which span pelagic waters where

highly migratory predators aggregate to spawn and/or forage. Management objectives

of these closures include reducing the catch and rebuilding the biomass of bycatch

groups (i.e., Atlantic billfish, bigeye tuna, some pelagic sharks, prohibited sharks,

and sea turtles) and incidental species (i.e., bluefin tuna), without impacting catch

of target species (i.e., swordfish, yellowfin tuna, bigeye tuna, skipjack tuna, alba-

core, dolphin fish, wahoo, and some coastal sharks). Ecosystem modeling tools like

Atlantis can be used to address the utility of pelagic MPAs for mitigating fishing

pressure experienced by highly migratory predators, as well as broader ecosystem

impacts. A policy exploration was conducted with the Gulf of Mexico Atlantis model

to investigate if Gulf of Mexico pelagic longline spatial closures could achieve man-

agement objectives, as well as potential ecosystem impacts. Performance measures

105
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corresponding to management objectives were monitored, as well as the ecosystem

performance measures average individual weight, proportion mature, pelagic:demersal

ratio (for catch and the ecosystem), and ecosystem biodiversity. DeSoto Canyon was

more successful at achieving management objectives than Spring Closure. Both clos-

ures reduced Gulf-wide catches of some bycatch and incidental groups (especially

green turtles and miscellaneous tunas) with little reduction to total catch of target

groups. Gulf-wide catch of targeted yellowfin tuna actually increased. Neither clos-

ure caused meaningful increases in biomass of bycatch or incidental groups, but there

were meaningful increases in biomass of some targeted groups (especially yellowfin

tuna). DeSoto Canyon changed ecosystem performance metrics while Spring Closure

did not. In particular, DeSoto Canyon reduced catch pelagic:demersal ratio which

increased ecosystem pelagic:demersal ratio. This study suggests that DeSoto Canyon

could be meeting most of the management objectives, and that Spring Closure may

not meet long-term management objectives.

4.2 Motivation

Many pelagic predators around the globe have historically low biomass (Pauly

et al., 1998; Myers and Worm, 2003; Christensen et al., 2003; Baum and Worm, 2009).

Reduction in top-down pressures can restructure marine communities (Parsons, 1992;

Heithaus et al., 2008; Baum and Worm, 2009) and initiate impacts, including shifting

mortality to stocks that cannot sustain such pressure (Myers et al., 2007), shifting

ecosystem functionality (Casini et al., 2009), and reducing ecosystem resistance and

resilience (Britten et al., 2014). Although there are stocks of Atlantic of pelagic pred-

ators (e.g., billfish and tuna) that are not overfished nor suffering overfishing (Die,
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2006; Collette et al., 2011; Juan-Jordá et al., 2011), there are other stocks that are

of concern. Some species of large sharks are particularly depleted (Stevens et al.,

2000; Baum et al., 2003b; Baum and Myers, 2004; Baum et al., 2005; Burgess et al.,

2005; de Mutsert et al., 2008; Baum and Blanchard, 2010). Around the world sharks

are targeted by large-scale, artisanal, and sport fisheries (Castillo-Géniz et al., 1998;

Smale, 2008; Morgan et al., 2009; Pérez-Jiménez and Mendez-Loeza, 2015; Fahmi

and Dharmadi, 2015), in addition to being caught as bycatch (McKinnell and Seki,

1998; de Silva et al., 2001; Beerkircher et al., 2002; Rogan and Mackey, 2007; Man-

delman et al., 2008; Petersen et al., 2009; Belcher and Jennings, 2011). The intense

fishing pressure combined with their slow growing life history makes sharks particu-

larly vulnerable to overfishing and extinction (Monte-Luna et al., 2007; Dulvy et al.,

2008; Garćıa et al., 2008; Field et al., 2009; Worm et al., 2013; Ceccarelli et al.,

2014). Atlantic yellowfin tuna (Thunnus albacares) are overfished but not experi-

encing overfishing (ICCAT, 2016b). Recently, the western stock of Atlantic bluefin

tuna (Thunnus thynnus) were declared to not be experiencing overfishing and may

no longer be overfished (ICCAT, 2016a). Previously, the stock was considered over-

fished and experiencing overfishing (Fromentin and Powers, 2005; ICCAT, 2014b), and

possibly at risk of collapsing (Bjørndal and Brasão, 2006; Safina and Klinger, 2008;

MacKenzie et al., 2009). Atlantic marlin (Makaira nigricans, and Kajikia albidus)

are considered overfished, and possibly risk extinction, due to mortality experienced

from recreational fisheries, which target marlin, pelagic longline commercial fisheries,

which incidentally catch marlin, and artisanal fleets, which target marlin (Peel et al.,

2003; ICCAT, 2011, 2012).
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Management of pelagic predatory stocks is both a domestic and international effort

as these species are highly mobile. In the United States, the National Oceanic and At-

mospheric Administration (NOAA) Fisheries Program, known as the National Marine

Fisheries Service (NMFS), has primary authority for developing and implementing a

Fishery Management Plan (FMP) for highly mobile species (HMS) in federal waters of

the Atlantic. Such FMPs have enacted input and output controls (National Oceanic

and Atmospheric Administration, 2016a), including fishery area closures. Fishery

time and area closures, a type of marine protected area (MPA) within which fishing

is limited and/or prohibited, have been recommended by management agencies and

stakeholders as a viable management option for protecting pelagic predators. The

American Fisheries Society (AFS) and the International Commission for the Conser-

vation of Atlantic Tunas (ICCAT) recommend the development, use, and evaluation

of large time and area closures to protect and rebuild shark populations (Musick et al.,

2000a,b; ICCAT, 2007, 2009, 2010). In 2008 NMFS implemented time/area closures

proposed by the South Atlantic Fishery Management Council (SAFMC) to protect

and rebuild shark stocks (Highly Migratory Species Division, 2008). ICCAT recom-

mends the consideration of area and/or time restrictions to prevent directed fishing

on the bluefin tuna spawning stock within the western Atlantic spawning grounds

(i.e., the Gulf of Mexico) (ICCAT, 2014a). Peel et al. (2003) concluded that coupling

time and area closures with some restraint on targeted effort may help rebuild some

billfish stocks.

The Gulf of Mexico is a key area in which to consider fishery closures because the

physical dynamics and topology make for a productive system for Atlantic pelagic

predators. The pelagic waters consist of a dynamic network of cyclonic and anticyc-
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lonic features (both filaments and eddies) primarily due to the physical forcing of the

Loop Current and the episodic shedding of a warm-core, anti-cyclonic Loop Current

eddy (Wiseman et al., 1999; Oey et al., 2005). Cyclonic features, which create patches

of nutrient upwelling, retention, and concentration, are intensified by these dynam-

ics (Schmitz, 2005), enhancing favorable environments for foraging planktonic larvae

(Bakun, 1996). Bluefin tuna migrate into the northwest Gulf of Mexico between

April and June to spawn (Dicenta et al., 1980; Richards, 1990; Mather et al., 1995;

Block et al., 2005). Yellowfin tuna (Thunnus albacares) spawn in the northern Gulf

of Mexico between July and August (Lang et al., 1994). Billfish, particularly sailfish

(Istiophorus albicans) and blue marlin (Makaira nigricans), are believed to use the

northern Gulf of Mexico as spawning grounds and early life habitat (Rooker et al.,

2012). Spawning season can vary amongst billfish species (de Sylva and Breder,

1997). Although some shark species are more common within the Gulf’s expans-

ive shelf, which is used for migration (Branstetter, 1981, 1987), foraging (Hoffmayer

and Parsons, 2003; Hammerschlag et al., 2012), and to access nurseries and pupping

grounds (Bethea et al., 2006; Hueter and Tyminski, 2007), shark species are also en-

countered in the Gulf’s pelagic environment (Branstetter, 1981; Beerkircher et al.,

2002; Cortés, 2002a), and it is possible that these species aggregate around fronts

(Queiroz et al., 2012, Chapter 3 of this dissertation).

The Gulf of Mexico’s U.S. pelagic longline fleet targets swordfish, yellowfin tuna,

skipjack tuna, albacore, dolphin fish, wahoo, and some coastal sharks, while incident-

ally catching bluefin tuna, billfish, miscellaneous tunas (e.g., some bigeye tuna), some

pelagic sharks (e.g., blue sharks), prohibited sharks (e.g., hammerheads), sea turtles,

seabirds, and mammals (Highly Migratory Species Division, 2000). To mitigate the
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incidental catch of non-targeted species (a.k.a, bycatch), two pelagic longline fishery

closures are currently established in the Gulf of Mexico. The first is a permanent

closure around DeSoto Canyon with the primary management objectives to reduce

the catch and rebuild the biomass of groups caught incidentally while having little

impact on the catch of targeted species (Highly Migratory Species Division, 2000).

The second is a seasonal closure off the Louisiana shelf with the primary manage-

ment objectives to reduce the catch and rebuild the biomass of bluefin tuna (Highly

Migratory Species Division, 2014). Although it was originally thought that MPAs

would provide little benefit to pelagics due to their high mobility and weak site fidel-

ity (Roberts, 1997; Boersma and Parrish, 1999), more recent research supports spatial

closures as viable tools for mitigating bycatch, including bycatch of pelagic species

(Goodyear, 1998; Grantham et al., 2008; Dunn et al., 2011), but there is uncertainty

regarding the success of pelagic spatial closures.

Hyrenbach et al. (2000) suggested pelagic spatial closures may be feasible tools

for pelagic conservation since the physical habitats highly mobile predators aggregate

around tend to be spatially and temporally predictable. More recent research supports

this and argues that pelagic MPAs are defensible tools for pelagic conservation due to

the advances in conservation, oceanography, and fisheries science (Game et al., 2009,

2010). However, there are still concerns regarding the utility and feasibility of pelagic

MPAs. First, areas must be identified within which pelagics of concern have high

site fidelity, and practical enforcement plans must be developed (Kaplan et al., 2010).

Second, it is not known if pelagic spatial closures will provide the same benefits as

some coastal spatial closures, like providing biomass to the fisheries through spillover

(e.g., McClanahan and Mangi, 2000; Kelly et al., 2002; Guidetti, 2007; Januchowski-
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Hartley et al., 2013) or increasing the size of individuals (e.g., Babcock et al., 1999;

Lester et al., 2009). Lastly, MPAs often fail to meet management objectives (Jameson

et al., 2002). Thus, science-driven analysis, including the investigation of ecosystem

impacts through mathematical modeling, should be done to address the utility and

feasibility of pelagic MPAs (Kaplan et al., 2010; Game et al., 2010; Grüss, 2014).

For this study, a policy exploration was conducted to investigate i) if Gulf of Mex-

ico pelagic longline fishery spatial closures are likely to achieve management object-

ives, and ii) potential ecosystem impacts from pelagic longline closures. An ecosystem

model of the Gulf of Mexico was used to simulate scenarios and calculate performance

measures (indicators) corresponding to management objectives of the pelagic longline

fishery spatial closures, as well as broader ecological objectives. Performance metrics

were then compared to evaluate potential long-term impacts of Gulf of Mexico pelagic

longline spatial closures.

4.3 Methods

4.3.1 The Simulation Framework

Atlantis is a biogeochemical and biophysical modeling framework (Fulton et al.,

2004c,b, 2011). It models the turnover of chemical substances through the biotic

and abiotic compartments of an ecosystem, in addition to the biological and physical

components. The Atlantis framework is appropriate for this study in many ways.

First, Atlantis was developed with the intention to evaluate performance measures

(i.e., indicators) for use in ecosystem-based fisheries management (Fulton et al., 2004a;

Plagányi, 2007; Fulton et al., 2011). Second, Atlantis is an ’end-to-end’ model (Fulton,
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2010), meaning it represents biota from bacteria up to top predators in addition to

human activities (e.g., fisheries). Third, species and fisheries interactions are spa-

tially explicit. Fourth, the spatial domain is represented by a network of polygons

that reflect the ecosystems geographic features, habitats, and essential management

jurisdictions. Lastly, Atlantis contains a detailed exploitation routine which allows

for the simulation of individual fleets, as well as a management routine to simulate a

range of fishery management measures, including spatial closures.

The Gulf of Mexico Atlantis Model (GoMAM) is described in detail by Ainsworth

et al. (2015), so the following will be a summary of the model. The spatial domain

of GoMAM consists of a polygon network spanning the entire Gulf of Mexico marine

ecosystem (Figure 4.2), which was developed based on bathymetry, habitat, physical

oceanography, and management boundaries. The simulated biology consists of 91

functional groups of finfish, invertebrates, seabirds, mammals, plankton, and bac-

teria/detritus. Vertebrate functional groups have 10 age classes and all remaining

groups are represented as biomass pools. The flux of nitrogen for primary producers,

biomass pools, and age-structured groups are modeled differently.

Spawning and recruitment are only explicitly modeled for age-structured groups.

Reproduction of simple biomass pools is included in the growth terms. For age-

structured groups, nitrogen produced as spawn is temporarily removed from the sys-

tem and returned as recruits after a defined larval period. In GoMAM, for tuna,

billfish, and sharks this period is about a month. The stock recruitment curve as-

sumed is the Beverton-Holt with recruitment based only on species biomass. This is

for all functional groups except mammals, birds, and large sharks, which are assumed

to have a constant recruit production per adult. The assumed vertical distribution
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of recruits is the same as the daytime vertical distribution of juveniles. The assumed

horizontal distribution of recruits is the same as the horizontal distribution of adults

in the first season.

GoMAM was parameterized for forecasting based on the parameterization of a

historical version of GoMAM, which was driven by historical landings time series

(summarized in Chapter 1 of this dissertation, and discussed in detail by Perryman

et al. (2015)), calibrated to fit historical abundance trends from 1980 to 2010. Alloc-

ating the biomass of functional groups across space is important for spatially explicit

models like Atlantis (Grüss et al., 2016a). Biomass of demersal functional groups

were spatially allocated using statistical models presented by Drexler and Ainsworth

(2013). Statistical models presented in Chapter 2 of this dissertation were used to

refine the spatial allocation of pelagic fish groups as they were originally based on

somewhat homogenous assumptions.

Sedentary functional groups in GoMAM do not have horizontal movement amongst

polygons. For mobile functional groups, GoMAM is set-up to simulate “prescribed

movement”. This means density dependent movement is not allowed and instead

mobile functional groups move based on distributions that define the horizontal shift

a functional groups throughout the year. GoMAM prescribes quarterly shifts, and

quarterly shifts differ between adults and juveniles. Atlantis calculates the abundance

(A, in biomass for biomass pool groups and numbers for age structured groups) of a

functional group in a polygon (p) at any given time-step as

Ap = Atotal

(
ε
(
F(Q+1),p − FQ,p

)
+ FQ,p

)
, (4.1)
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where ε is the proportion of the quarter of the year that has passed (12 hour time

steps), and FQ,p is the proportion of biomass in polygon p during quarter Q provided

by the prescribed parameters. If Q is the last quarter of the year then Q+1 is the first

quarter of the next year. Atlantis can also simulate density dependent movement,

which means that the spatial distribution will be determined by the food availability,

but GoMAM has density dependent movement deactivated for all functional groups.

Thus, any changes in catch outside fishery closures are because of changes in total

biomass and not changes to local biomass due to groups responding to changes in

food availability.

Simulated functional groups are allowed to migrate out of and into the Gulf of

Mexico modeling domain. Abundance of functional groups migrating out of the Gulf

of Mexico system are stored in a boundary polygon until the time is reached which

the abundance starts to migrate back into the model domain. The abundance of

functional groups while outside of the modeling domain is allowed to change (i.e.,

this biomass is subjected to mortality, growth, etc.). In GoMAM, migration inputs

have been parameterized for functional groups that correspond to mammals, birds, sea

turtles, large sharks, mackerels, billfish, yellowfin tuna, and bluefin tuna (Ainsworth

et al., 2015). This is particularly important for bluefin tuna as they are a species of

concern for pelagic longline fishery closures.

In GoMAM, migration inputs for adult bluefin tuna (age-classes 2 - 10) differ from

those for juvenile bluefin tuna (age-class 1). Bluefin tuna are outside the modeling

domain throughout most of the year. Migration of mobile functional groups occurs

gradually rather than all at once. For bluefin tuna, the migration of juveniles spans a

couple of months, while the migration of adults spans a couple of days. Some mortality
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is applied to juveniles while outside the system in that 4% of the abundance does not

return. Mortality outside of the system is currently not applied to adults. The

abundance of juveniles and adults increases while groups are outside of the modeling

domain, which adds nitrogen to the system. Preliminary work was done to adjust

some of the migration inputs of bluefin tuna to reflect observations in the literature,

but these alterations were not used for this study because they caused bluefin tuna

to quickly collapse (Appendix C).

4.3.2 Gulf of Mexico Pelagic Longline Closures

The Gulf of Mexico has two fishery closures pertaining to pelagic longline opera-

tions: the DeSoto Canyon Pelagic Longline Closure, and the Spring Gear Restricted

Areas (Figure 4.1).

4.3.2.1 DeSoto Canyon Pelagic Longline Closure

DeSoto Canyon is a valley that cuts through the broad continental shelf in the

northeast Gulf of Mexico. The area’s bathymetry and physical forces driven by the

Loop Current interact to form cyclonic eddys that upwell cool, nutrient-rich water.

This causes relatively high primary productivity (Vukovich and Maul, 1985; Hamilton

et al., 2000a,b; Yuan, 2002). During a comment period for a proposed highly migrat-

ory species bycatch rule, NMFS received many comments indicating that the DeSoto

Canyon area should be closed to pelagic longlining due to the high occurrence of

undersized swordfish (Highly Migratory Species Division, 2000). Based on an assess-

ment of logbook data, two areas were identified and approved as a year-round pelagic

longline fishery closure that went into effect November 1, 2000. A formal assessment
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of the effectiveness of DeSoto Canyon Pelagic Longline Closure, from here on referred

to as DeSoto Canyon, has yet to be conducted. Landings data presented in Chapter 2

(Appendix A) suggests some evidence of decreased landings of some indicator species

after DeSoto Canyon was enacted.

4.3.2.2 Spring Gear Restricted Areas

To protect the Atlantic bluefin tuna stock while spawning in the Gulf of Mexico,

NMFS established a seasonal pelagic longline fishery closure (Highly Migratory Spe-

cies Division, 2014). Several configurations were considered, but the final amendment

establishing the Spring Gulf of Mexico Gear Restricted Areas consisted of two areas:

one large area spanning the northwestern Gulf, and another smaller area bordering

the DeSoto Canyon closure. Starting in 2015, from April 1 to May 31, pelagic longline

operations are prohibited within Spring Gulf of Mexico Gear Restricted Areas, from

here on referred to as Spring Closure.

4.3.3 Simulated Scenarios

Simulations start at the conditions from the end of the model fitted to historical

data (2010) and spanned 30 years, under constant fishing mortality rates, because this

was long enough to capture significant changes in the simulated ecosystem, and short

enough to save on computation time. Results consist of comparing 30 year projections

under the status quo scenario to the projections under other modeled scenarios. The

study considers two types of scenarios: (1) fishing mortality sensitivity scenarios (the

increasing and decreasing of fishing mortality rates), and (2) pelagic longline fishery

closure scenarios (evaluation of pelagic longline fishing closures DeSoto Canyon and
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Spring Closure). All scenarios have the same parameterized biology, ecology, and

oceanography. The only variations were changes to fisheries.

4.3.3.1 Status Quo

This scenario allows the evaluation of system dynamics under a baseline rep-

resentation of current fisheries. This includes DeSoto Canyon and Spring Closure.

Fishery closures are modeled by reducing fishing mortality rate(s) within the poly-

gon(s) corresponding to the closure’s location. Often, polygons in the simulation map

do not match a closure’s geometry. The Intersect tool in ArcGIS was used to de-

termine the polygon(s) covering the spatial range of a closure, and the percentage of

the polygon corresponding to the closure. This information was used to develop the

polygon-specific input files for simulating fishing closures, which, once a designated

time step is reached in the simulation, reduce a fleet’s fishing mortality within the

polygon based on the regulation and the percentage of closure within the polygon.

For instance, if a MPA occupies half of a polygon and the regulation closes pelagic

longline fishing, then the pelagic longline fleet’s fishing mortality is reduced by half

within that polygon. This method does not effect fishing mortality rates in polygons

that do not correspond to a closure, thus the underlining assumption here is that

closed areas remove the effort that would have been in the closure. Input files were

updated to include Spring Closure as it was not represented in the original calibration

of GoMAM because the closure wasn’t activated before 2010.
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4.3.3.2 Fishing Mortality Sensitivity

Longline fishing mortality sensitivity scenarios are to i) evaluate the overall impact

of longline fishing on the Gulf ecosystem in order to put the impact of closures into

context, and ii) make sure the GoMAM behaves reasonably under large perturbations

(Kaplan et al., 2012). Sensitivity scenarios consisted of two types: all longline, and

pelagic longline. The former focused on all longline fleets in GoMAM, including

shelf longline (reef fish), shelf longline (shark), and pelagic longline. The latter only

focused on the pelagic longline fleet. These two types of sensitivity scenarios quantify

the pressure pelagic longline fleets exert on pelagic predators compared to all longline

fleets. Both of these two types of simulations consisted of 3 scenarios in which the

fishing mortality of the indicated fleet(s) was multiplied by 0, 0.5, and 2. Thus, in

total, there are 6 fishing mortality sensitivity scenarios.

Some aspects of GoMAM’s fisheries were not adjusted for this study. GoMAM

contains 22 fleets (16 U.S. fleets, 5 Mexican fleets, and 1 Cuban fleet), and assumes

the selectivity curve is logistic for all functional groups. Fishing mortality rates were

altered for this study. Removal of biomass due to fishing is simulated with a series

of constant, daily fishing mortality rates reflecting the pressure each fleet exerts on

each functional group. Fishing mortality rates were originally computed using 2010

landings data (Perryman et al., 2015), but these did not include data on bycatch.

To represent pelagic longline bycatch, GoMAM fishing mortality rates were updated

using data describing the 2010 bycatch (National Marine Fisheries Service, 2013). In

addition, these updated rates were iteratively adjusted to match 2010 simulated catch

to 2010 catch data. For full details see Appendix C.
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4.3.3.3 Pelagic Longline Closures

Because pelagic longline spatial closures DeSoto Canyon and Spring Closure are

represented in the status quo scenario, to investigate their impacts to the system

scenarios were simulated in which the two closures were removed from the status quo

version of GoMAM. This includes a scenario in which DeSoto Canyon was removed, a

scenario in which Spring Closure was removed, and a scenario in which both DeSoto

Canyon and Spring Closure were removed. This allowed the assessment of individual

impacts, as well as the possibility of compounding impacts. In addition, another

scenario was investigated in which Spring Closure was altered to span the entire

U.S. Gulf - simulating a seasonal, Gulf-wide closure of the U.S. pelagic longline fleet.

This was an alternative measure considered instead of Spring Closure, but ultimately

Spring Closure was preferred due to the estimated ecological gains with low fisheries

impact (Highly Migratory Species Division, 2014). Thus, in total, there are 4 pelagic

longline closure scenarios.

4.3.4 Management Objectives and Performance Measures

The primary management objectives for DeSoto Canyon are to i) reduce bycatch

and incidental catch, ii) minimize the reduction in target catch, and iii) optimize

survival of bycatch and incidental catch species (Highly Migratory Species Division,

2000). Performance measures for these objectives were tracked for the appropriate

GoMAM functional groups. U.S. pelagic longliners target swordfish, yellowfin tuna,

bigeye tuna, skipjack tuna, albacore, dolphin fish, wahoo, and some coastal sharks

(Highly Migratory Species Division, 2000). The corresponding GoMAM functional

groups are: swordfish, yellowfin tuna, other tuna, large pelagic fish, and large sharks.
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U.S. pelagic longline incidental catch (organisms that are not targeted but may be re-

tained if caught) primarily consists of bluefin tuna (Highly Migratory Species Division,

2000), which has its own GoMAM functional group. Catches of marine mammals and

sea birds, which are always either released alive or discarded dead, were not evaluated

here since more work is necessary for GoMAM to appropriately represent their spatial

heterogeneity and bycatch. U.S. pelagic longline discarded bycatch (organisms caught

but not retained) includes: Atlantic billfish, undersized swordfish, bigeye tuna, pela-

gic sharks (e.g., blue sharks), prohibited sharks, and sea turtles (Highly Migratory

Species Division, 2000; National Marine Fisheries Service, 2013). The corresponding

GoMAM functional groups are: white marlin, blue marlin, billfish, swordfish, other

tuna, large sharks, loggerhead, Kemp’s ridley, and other sea turtles.

Reducing the catch of undersized swordfish caught by U.S. pelagic longlines was

a specific concern (Highly Migratory Species Division, 2000). Undersized swordfish

caught by U.S. pelagic longlines are individuals weighing less than 25kg whole weight

(Cramer, 1996). In GoMAM, vertebrate functional groups, including swordfish, are

represented with age structured models. The 10 age-groups were adjusted to cover

the whole lifespan of the fish. In GoMAM, swordfish are first selected by pelagic

longline gears by age-group 3. The median weight of swordfish of age-group 3 is

23.2 kg, so the parameterization of GoMAM is consistent with the fishery data, and

catch of swordfish of age-group 3 was tracked to represent catch of undersized sword-

fish. The parameterization of some model inputs can be different between adult

age-groups and juveniles age-groups (e.g., seasonal spatial distribution, migration,

diet, etc.). GoMAM assumes swordfish become sexual maturity at age-group 3, thus
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all of the age-groups selected by the fishery are considered adults and have the same

parameterization.

Performance measures tracked for the reduction of bycatch and incidental catch

included: catch of bluefin tuna, total catch of all bycatch groups, catch of individual

bycatch groups, and proportion of swordfish catch being age-group 3 (i.e., age-at-first-

capture). Performance measures tracked to minimize the reduction in target catch

included: the total catch of all target groups, and catch of individual target groups.

Performance measures tracked for optimizing the survival of bycatch and incidental

catch species included: the total biomass of all bycatch groups, biomass of individual

bycatch groups, and biomass of bluefin tuna. For consistency, total biomass of target

groups, and biomass of individual target groups were also monitored. See Table 4.1

for details.

The FMP amendment proposing Spring Closure reports a variety of socioeco-

nomic, fisheries quota, and biological objectives (Highly Migratory Species Division,

2014), the primary objective being to prevent overfishing and rebuild bluefin tuna.

The primary objective for the gear restricted areas was to reduce bluefin tuna inter-

actions with pelagic longliners, thereby decreasing dead discards (bycatch). Thus,

this work tracked the reduction of incidental catch of bluefin tuna using bluefin tuna

catch as a performance measure, and the rebuilding of bluefin tuna using bluefin tuna

biomass as a performance measure.

U.S. fleets targeting highly migratory pelagics, in addition to the pelagic longline

fleet, include U.S. recreational groups, and U.S. hook-and-line fleets not using pelagic

longling gear (e.g., fleets using vertical lines, or bottom longlines). It is possible that

changes to the U.S. pelagic longline fishing may change catches from these fleets.
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To evaluate this, total catches of tuna billfish, and large shark functional groups

from simulated U.S. recreational fleets and non-pelagic, U.S. hook-and-line fleets (i.e.,

handline, shelf longline (reef fish), and shelf longline (shark)) were compared across

the investigated scenarios.

Ecological objectives were also monitored to identify if closures could have broad

scale ecosystem impacts, some of which have been observed for coastal spatial closures.

See Table 4.1 for a summary of indicators and equations. In many fished ecosystems,

the size of individuals, particularly top predators, has decreased over time due to

heavy exploitation and fishing practices such as minimum size regulations focusing

fishing pressure on larger organisms (Bianchi et al., 2000; Swain et al., 2007; Dari-

mont et al., 2009). This could impact food webs and trophic structure (Woodward

et al., 2005; Brose et al., 2006; Shackell et al., 2010). The reduced number of lar-

ger individuals also means a reduced number of sexually mature individuals, which

can have a negative impact on spawning (Hutchings, 2000). As discussed in the in-

troduction, spatial closures can mitigate and potentially reverse these impacts. The

metric proportion of mature fish (biomass) was used to track shifts in the amount

of sexually mature stock. The metric average individual size was used to track the

size structure of functional groups. Changes to the average weight of multi-species

functional groups should be interpreted with caution as they are composed of differ-

ent species with different growth trajectories. The proportion of mature fish and size

related metrics, such as average individual size, are important indicators of overfish-

ing (Froese, 2004; Shin et al., 2005). These two stock-specific metrics were computed

for individual pelagic predator functional groups, and functional group assemblages

(e.g., billfishes, tunas, sharks, etc.). Results discussed in the main text will focus on
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billfishes and tunas, and the corresponding functional groups. Additional results of

other functional groups are shown in Appendix C.

Objectives relating to the ecosystem community were also monitored. The pela-

gic:demersal ratio was tracked for the catch and for the ecosystem. The pelagic:demersal

ratio is primarily linked to the eutrophication (Caddy, 1993; Caddy and Bakun, 1994;

Caddy et al., 1998a; Caddy and Garibaldi, 2000; Caddy, 2000; de Leiva Moreno et al.,

2000), and the Gulf of Mexico experiences periodic, large-scale eutrophication which

has meaningful ecosystem impacts (Malakoff, 1998; Rabalais et al., 2002b,a). In addi-

tion, the pelagic:demersal ratio can show large shifts in fishery targeting, and Fulton

et al. (2005) found it to be strongly correlated with a marine ecosystems popula-

tion and community attributes. Functional groups were categorized as pelagic or

demersal/benthic based on life history of adults. Information from FishBase (Froese

and Pauly, 2016) and SealifeBase (Palomares and Pauly, 2016) was used to classify

individual species and Atlantis functional groups. The ratio was calculated as the

total biomass of pelagic groups divided by the total biomass of demersal groups.

Marine ecosystem biodiversity was also monitored. Marine protected areas are

used as a means to restore and/or preserve biodiversity since anthropogenic impacts

(i.e., overfishing) can diminish biodiversity (Coleman and Williams, 2002; Jones et al.,

2007) which can reduce ecosystem resources, resilience, and water quality (Duffy,

2002, 2003; Worm et al., 2006; Stachowicz et al., 2007; Cardinale et al., 2012). Much

of the research on using MPAs to protect biodiversity is from coastal systems, but

there is growing discussion regarding the use of pelagic MPAs to protect biodiversity

(Worm et al., 2003; Game et al., 2009; Morato et al., 2010; Grantham et al., 2011).

The Q90 biodiversity statistic was used to monitor marine ecosystem biodiversity.
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Q90 is the Kempton and Taylor (1976) species diversity statistic adapted for use with

ecosystem models (Ainsworth and Pitcher, 2006), which aggregate individual species

into functional groups. Q90 is the interdecile slope of the cumulative log-abundance

curve:

Q90 =
0.8S

log(R2/R1)
(4.2)

where S is the total number of functional groups in the model, and R1 and R2 are

the biomass values of the 10th and 90th percentiles in the cumulative abundance

distribution across all functional groups.

Performance measures were calculated as the average of the values spanning the

last four time steps, which are the four seasons of the last year of the simulation. All

performance metrics were computed at multiple spatial scales: Gulf-wide (the entire

spatial map), U.S. Gulf (all polygons within the U.S. EEZ), U.S. pelagic (all polygons

within the U.S. EEZ, and a max depth greater than 200m), DeSoto Canyon waters

(all polygons intersecting DeSoto Canyon), and Spring Closure waters (all polygons

intersecting Spring Closure). This is allows the assessment of the spatial extent of

the impacts of management measures.

4.4 Results

Performance measures for management objectives are summarized in Table 4.2.

DeSoto Canyon caused meaningful reductions on catches within the Desoto Canyon

region. Within the DeSoto Canyon polygons, removing the DeSoto Canyon closure

increased catch of bycatch tunas by 53.6%, bycatch billfishes by 37.2%, and incidental

bluefin tuna by 63.0%, compared to doubling pelagic longline fishing mortality which
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increased catch of bycatch tunas by 89.5%, bycatch billfishes by 88.2%, and incidental

bluefin tuna by 52.0% within the DeSoto Canyon polygons. Within the polygons

around Spring Closure, removing Spring Closure increased catch of bycatch tunas by

6.4%, bycatch billfishes by 7.9%, and incidental bluefin tuna by 1.5%, compared to

doubling pelagic longline fishing mortality which increased catch of bycatch tunas by

89.5%, bycatch billfishes by 89.7%, and incidental bluefin tuna by 19.7%.

At the scale of the whole U.S. Gulf, removing DeSoto Canyon increased catch of

bycatch tunas by 18.8%, bycatch billfishes by 3.1%, and incidental bluefin tuna by

10.2%. Removing Spring Closure increased catch of bycatch tunas by 3.4%, bycatch

billfishes by 0.7%, and incidental bluefin tuna by 0.6%. When compared to doubling

pelagic longline fishing mortality, which increased catch of bycatch tunas by 89.9%,

bycatch billfishes by 15.7%, and incidental bluefin tuna by 39.9%, it suggests that

DeSoto Canyon is more effective than the Spring Closure at reducing U.S. Gulf catch

of bycatch groups and incidental bluefin tuna. Removing DeSoto Canyon increased

U.S. Gulf catch of target groups by 0.7%, while removing Spring Closure increased

U.S. Gulf catch of target groups by 0.1%. When compared to doubling pelagic longline

fishing mortality, which increased U.S. Gulf catch of target groups by 3.8%, it is

apparent that DeSoto Canyon and Spring Closure did not have meaningful impacts

on U.S. Gulf catch of target groups.

DeSoto Canyon and Spring Closure had smaller impacts on U.S. Gulf biomass.

Doubling pelagic longline fishing mortality decreased U.S. Gulf biomass of bycatch

tunas by 4.2%, bycatch billfishes by 0.7%, incidental bluefin tuna by 1.7%, and target

groups by 0.8%. Removing DeSoto Canyon decreased U.S. Gulf biomass of bycatch

tunas by 0.9%, bycatch billfishes by less than 0.01%, incidental bluefin tuna by 0.4%,
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and target groups by less than 0.01%. Removing Spring Closure decreased U.S. Gulf

biomass of bycatch tunas by less than 0.01%. The biomass of incidental bluefin tuna

was more affected by simulated scenarios within Spring Closure polygons than DeSoto

Canyon polygons or U.S. Gulf polygons. For instance, eliminating pelagic longline

fishing increased the U.S. Gulf biomass of bluefin tuna 4.4%, the DeSoto Canyon

biomass of bluefin tuna 4.0%, and the Spring Closure biomass of bluefin tuna 13.3%.

This is likely related to the fact that Spring Closure waters include a hot spot for

bluefin tuna (see spatial distribution maps in Appendix B).

The impact DeSoto Canyon had on management objective performance measures

varied amongst species (Figure 4.3). Within DeSoto Canyon waters, the presence

of the DeSoto Canyon closure increased the biomass of miscellaneous tunas, green

turtles, yellowfin tuna, and swordfish (Figure 4.3a, 4.3b). Increases in biomass were

visible across spatial scales of the Gulf, especially for green turtles, miscellaneous

tunas, and swordfish. Also within DeSoto Canyon waters the closure was associated

with reductions in catches of billfish groups, miscellaneous tunas, bluefin tuna, green

turtles, yellowfin tuna, and swordfish (Figure 4.3c, 4.3d). Gulf-wide catch of yellowfin

tuna increased with the presence of DeSoto Canyon (Figure 4.3d).

Within Spring Closure waters, Spring Closure increased the biomass of yellowfin

tuna but had very little effect on the biomass of other functional groups (Figure 4.4a,

4.4b). The biomass of bluefin tuna did not change within Spring Closure waters,

but there was a slight increase across the Gulf ecosystem (Figure 4.4a). Within

Spring Closure waters, catches of billfish groups, miscellaneous tunas, green turtles,

swordfish, and yellowfin tuna were reduced (Figure 4.4c, 4.4d). Gulf-wide catches of
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miscellaneous tunas, green turtles, and swordfish decreased, but catches of yellowfin

tuna increased within Gulf-wide polygons as well as Spring Closure polygons.

U.S. pelagic longline effort and U.S. pelagic longline spatial closures impact catches

of U.S. hook-and-line fleets other than pelagic longliners (Figure 4.5). Spring Closure

had little impact on the catches from non-pelagic U.S. commercial hook-and-line

fleets, but DeSoto Canyon increased the catches of billfishes from non-pelagic U.S.

commercial hook-and-line fleets by 2.8%, compared to an increase of 4.6% when U.S.

pelagic longline fishing is reduced by half, or 9.6% when U.S. pelagic longline fishing

is eliminated. In addition, DeSoto Canyon increased recreational catches of billfishes

by 1.4% and tunas by 1.6%. Eliminating U.S. pelagic longline fishing caused a 5.3%

increase in recreational billfish catch, and a 14.1% increase in recreational tuna catch.

None of the closures reduced the catch of non-pelagic U.S. hook-and-line fleets, but

increasing U.S. pelagic longline fishing mortality did. In particular, there was a 8.2%

reduction in billfish catch from non-pelagic U.S. commercial hook-and-line fleets, and

a 7.7% reduction in tuna catch from recreational fleets when U.S. pelagic longline

fishing mortality was doubled.

Results for ecosystem performance measures are shown in Table 4.3. Spring Clos-

ure had less influence on ecosystem metrics than DeSoto Canyon. Removing DeSoto

Canyon decreased billfish U.S. Gulf average individual weight by less than 0.01%,

compared to a 0.3% reduction when U.S. pelagic longline fishing mortality is doubled.

In addition, removing Desoto Canyon decreased tuna U.S. Gulf average individual

weight by 0.2%, compared to a 0.8% reduction when U.S. pelagic longline fishing

mortality is doubled. Impacts to average individual weight and proportion mature

are species specific (Figure 4.6). A reduction in pelagic longline fishing mortality had
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some influence increasing U.S. Gulf average individual weight for swordfish, but no

influence on other billfish groups. Reducing pelagic longline fishing mortality had

the most influence on the U.S. Gulf average individual weight of tunas: increasing it

for miscellaneous tunas and yellowfin tuna, and decreasing it for bluefin tuna. Re-

ducing U.S. pelagic longline fishing mortality increased U.S. Gulf proportion mature

for all billfish and tuna groups, with bluefin tuna experiencing the largest increase

(53.4%). Removing DeSoto Canyon increased U.S. Gulf catch pelagic:demersal ratio

by 0.6%, compared to a 2.8% reduction when U.S. pelagic longline fishing mortality

was doubled. In addition, removing DeSoto Canyon decreased U.S. Gulf ecosystem

pelagic:demersal ratio by 0.2%, compared to a 1.1% reduction when U.S. pelagic

longline fishing mortality is doubled. None of the scenarios changed the ecosystem’s

Q90 biodiversity metric.

4.5 Discussion

4.5.1 Model Findings

Model simulations show that the Gulf of Mexico pelagic longline spatial closure

DeSoto Canyon, which has been in affect since 2000, could be achieving some manage-

ment objectives. Considering U.S. Gulf metrics, first, DeSoto Canyon reduced catch

of the incidental group, bluefin tuna. Total catch of bycatch groups did not change,

but there were meaningful changes on a species-specific level. Specifically, catch of

functional groups representing bycatch tunas, and green sea turtles were reduced. In

addition, DeSoto Canyon reduced the proportion of swordfish catch being of age-

class 3 (age-at-first-capture). Second, total catch of target groups was reduced only
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slightly. Thus, DeSoto Canyon did not negatively impact the catch of target species.

In fact, DeSoto Canyon increased the Gulf-wide catch of yellowfin tuna, suggesting

that spill over is occurring, and increased the biomass of yellowfin tuna. It would

be expected to have increased catch or increased biomass, but having both is pecu-

liar. This could be explained by the possibility of the stock being overfished in the

model, which would be consistent with the latest stock assessment (ICCAT, 2016b).

DeSoto Canyon also increased the biomass swordfish and miscellaneous tunas. Lastly,

biomass of the incidental group bluefin tuna increased slightly, and, although total

biomass of bycatch groups did not change, the biomass of groups representing bycatch

tunas and green sea turtles increased slightly.

DeSoto Canyon had some influence on ecosystem objective performance metrics.

Considering U.S. Gulf metrics, DeSoto Canyon increased the average weight of tunas

and billfishes, particularly yellowfin tuna, miscellaneous tunas, and swordfish. Both

density and biomass of these groups increased but biomass increased more, suggest-

ing that individuals could be getting larger. The exception is bluefin tuna, which

decreased in average individual weight because density increased more than biomass.

DeSoto Canyon slightly increased the proportion of billfishes and tunas sexually ma-

ture. Fishing mortality sensitivity scenarios showed that bluefin tuna are especially

sensitive - their proportion mature increased more than any other group. DeSoto

Canyon reduced catch pelagic:demersal ratio because pelagic catches were reduced

with little influence on demersal catches. In response, the ecosystem pelagic:demersal

ratio increased.

None of the scenarios had a meaningful influence on ecosystem biodiversity. It is

possible that these scenarios may not have enough impact on simulated biota to cause
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an impact to biodiversity since pelagic longline fleets interact with a small portion of

the total functional groups. While scenarios have an impact on some functional groups

in the pelagic waters, benthic and microbial functional groups in the same areas are

not impacted. These functional groups are abundant, and could be buffering the Q90

calculation. Also, the Q90 metric is being computed over large spatial ranges, which

may be masking a signal if one is there. The Q90 calculation can be made more

sensitive by passing a filter over the calculation to omit the biomass of functional

groups if their biomass falls below a reference value (Ainsworth and Pitcher, 2006).

This would require defining reference values for each functional group, as well as a

threshold. More research is needed to fill the gap of our understanding of how pelagic

MPAs may preserve biodiversity (Game et al., 2009; Grantham et al., 2011)

Spring Closure had very little influence on performance measures corresponding

to its management objectives. Considering U.S. Gulf metrics, as well as those from

Spring Closure waters, Spring Closure only slightly reduced catch of bluefin tuna,

and did not change bluefin tuna biomass. These results suggest that Spring Clos-

ure, which has only been in affect since 2015, may not meet biological management

objectives over the next couple of decades. In addition, Spring Closure had little

to no influence on ecological objective performance measures. These results could

be a realistic reflection of the Gulf of Mexico due to the state and dynamics of the

bluefin tuna stock as a whole, or this could reflect possible model limitations. It is

worth noting that Spring Closure influenced performance metrics relating to DeSoto

Canyon management objectives. Specifically, Spring Closure reduced the U.S. catch

of bycatch and incidental groups, and increased the biomass and catch of yellowfin

tuna. This shows that DeSoto Canyon and Spring Closure had compounding im-
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pacts on performance measures. Thus, objectives were more attainable when both

closures were active. Networks of marine protected areas have shown to be successful

management strategies (Balmford et al., 2004; Russ et al., 2008; Gaines et al., 2010).

Fishing mortality sensitivity scenarios reveal some important dynamics. First,

pelagic fishery closures are not providing enough reduction in fishing mortality to

cause meaningful increases in biomass. For instance, removing Spring Closure de-

creased bluefin tuna biomass around Spring Closure by 0.1%, compared to a 5.3%

reduction when pelagic longlining is doubled. Removing DeSoto Canyon decreased

biomass miscellaneous tunas around DeSoto Canyon by 0.9%, compared to a 4.4% re-

duction when pelagic longlining is doubled. Thus, increasing the biomass of indicator

species may be dependent on complimentary management efforts further reducing

fishing mortality (Allison et al., 1998; Myers and Worm, 2005). Second, alterations

in longline fishing mortality influence bycatch and incidental groups more than tar-

get groups. For instance, decreasing longline fishing mortality increased the biomass

of bycatch billfishes (0.7%) and tunas (4.5%), and incidental bluefin tuna (4.4%),

compared to a 1.4% increase to biomass of target groups. Thus, increasing longline

effort had more negative impacts on bycatch and incidental groups than a gain from

target catch. In addition, decreasing longline effort had more positive impacts on

bycatch and incidental groups than loss of target catch. Target catch amongst sensit-

ivity scenarios remained relatively stable due to catches from U.S. recreational fleets

and U.S. non-longline, hook-and-line fleets since these fleets also target these groups

(e.g., landings of recreational and non-longline, hook-and-line fleets increased with

reductions in pelagic longline effort).
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4.5.2 Limitations

Diagnostics of GoMAM show potential issues with the current calibration of

bluefin tuna biology. First, during the simulation there is a sudden loss of bluefin

tuna beyond the 3rd age-class. Although the western Atlantic bluefin tuna stock is

severely depleted and it is possible very few older organisms are in the stock, the

loss of these organisms in the simulated system was very sudden. Body weight dia-

gnostics suggested it could be due to unbalanced consumption dynamics for bluefin

tuna. However, adjusting parameters relating to bluefin tuna consumption caused

additional problems to model dynamics (Appendix C). Second, GoMAM’s modeling

of the bluefin tuna seasonal migration could be improved. For instance, adults are in

the simulated ecosystem longer than what is currently suggested in the literature (e.g.

Block et al., 2005; Teo et al., 2007). Also, adult bluefin tuna are not subjected to

additional mortality outside the system, although the Atlantic Ocean is where bluefin

tuna experience significant mortality (ICCAT, 2014b, 2016a). Adjusting bluefin tuna

migration, like making the seasonality stronger, improved some diagnostics but made

other diagnostics worse (Appendix C). If future projects using the GoMAM model

intend to focus specifically on bluefin tuna, it is recommended to adjust the treatment

of the functional group in order to improve model diagnostics while still representing

their known ecology. This will not be a trivial task since model tuning can directly

and indirectly impact various components.

GoMAM’s fisheries module could be advanced. For instance, this study reduced

pelagic longline fishing mortality proportional to the area of the closure when, in

reality, spatial closures may displace fishing effort (Kellner et al., 2007). The decision
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to not redistribute fishing effort is an important limitation. This means indicator

values for bycatch and incidental groups could be more optimistic, and indicator

values for target groups could more pessimistic, than in reality since effort outside

closures were not increased. Parameterizing GoMAM to model spatial closures with

displaced fishing effort would require some work, but would benefit future fishery

management investigations with GoMAM. It would also be beneficial to parameterize

dynamic fisheries. Dynamic fisheries would be ideal especially for investigating Spring

Closure, because spatial effort would respond to higher seasonal concentrations of

stocks (e.g., bluefin tuna).

The fisheries module in GoMAM should also be advanced in order to improve the

representation of bycatch. First, future fishery management studies with GoMAM

would benefit if the model distinguished retained catches from discarded catches.

Management objectives for pelagic fishery closures are not simply to reduce bycatch

because this could be accomplished with lower quotas. In reality, these closures aim

to reduce discards while preserving target catch, that is, increase the ratio between

target catches and discarded catches. Currently, this can not be tracked in GoMAM

since retained catches and discarded catches are not distinguished. Second, simulating

the bycatch of sea turtles, birds, and mammals can be improved. Fairly homogenous

spatial distributions were assumed for these groups, which could be improved with

statistical models. Also, simple assumptions were made to parameterize fleet-specific

bycatch of these groups, which could be improved by analyzing additional bycatch

data.
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4.5.3 Management Recommendations and Conclusions

Atlantic bluefin tuna is a indicator species for both DeSoto Canyon and Seasonal

Closure. Both closures aim to reduce the bycatch of bluefin tuna, especially Spring

Closure which aims to protect the mature stock whilst spawning in the Gulf. Gulf

spawners are known to be within the Gulf of Mexico for a relatively short period of

time before migrating back to their foraging grounds in the north Atlantic (Block

et al., 2005). The Northern Atlantic is where the western stock spends most of their

time, and it is also where most of the fishing mortality is exerted on the stock (ICCAT,

2014b). Although this study found Gulf pelagic longline closures, especially Desoto

Canyon, had some influence on reducing bluefin catch these closures alone may not be

providing enough protection to the spawning stock of bluefin tuna. Further reduction

to the fishing mortality within the Atlantic Ocean may be necessary despite the fact

the stock is already highly regulated due to its economic importance in international

fisheries and the concern regarding the stock’s ecological sustainability.

Replenishing the bluefin tuna stock depends on the survival and recruitment of

larvae, which depends on a variety of environmental factors, including sea surface

temperature (Teo et al., 2007; Muhling et al., 2010). Climate change could diminish

spawning habitat within the next 50 years within the Gulf of Mexico (Muhling et al.,

2011, 2014), which could have a negative impact on recruitment. This could be

bad for the western bluefin stock as ICCAT (2014b) has shown that the stock is

unlikely to rebuild under poor recruitment. However, there is potential for a shift in

aggregation locations as ocean conditions continue to change (Martell et al., 2005).

GoMAM should be considered to investigate impacts to bluefin given changes to
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physical and environmental conditions due to inter-annual variability and/or climate

change. This could be done by building upon the current hydrology sub-model, which

would also allow advanced investigations pertaining to pelagic spatial closures within

the Gulf of Mexico. The success of pelagic spatial closures will likely depend on

inter-annual variability and changing ocean conditions, which can shift aggregation

locations (Martell et al., 2005). Dynamic fishery spatial closures, those not fixed in

space or time, could be designated to protect hydrographic features where pelagics

aggregate. Fronts, being predictable, could be the basis for setting the closure’s

boundaries (Hyrenbach et al., 2000).

For many pelagic predators (i.e., tunas and billfishes) pelagic longlining is the

dominant form of commercial longline fishing mortality, as pelagic longline fishing

mortality sensitivity scenarios often produced similar results as all longline fishing

mortality sensitivity scenarios, however this is was not the case for shark groups.

GoMAM combines many of the large shark indicator species into one functional group,

so there is no distinction between coastal species and pelagic species. The functional

group’s dynamics are driven more by coastal species than by pelagic species since

most of the species in the group are coastal. Coastal species are more susceptible to

benthic gears, e.g., bottom longlining (Ingram et al., 2005; Henwood et al., 2006; Hale

and Carlson, 2007) than pelagic gears, so it is not surprising that this study saw that

pelagic longline fishing and spatial closures had little influence on the large sharks

functional group. Efforts to reduce the bycatch and improve the biomass of large

shark species need to also incorporate coastal fleets (see Appendix C). This could

include adjusting current coastal longline restriction zones, like the Reef fish longline

and buoy gear restricted area (Gulf of Mexico Fishery Management Council, 1989;
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Coleman et al., 2004a; Gulf of Mexico Fishery Management Council, 2016) and/or

the Seasonal prohibition applicable to bottom longline fishing for Reef fish (Gulf of

Mexico Fishery Management Council, 2016), to include restrictions/bans directed at

shark species.

Pelagic fishery spatial closures can be a useful tool to achieve management object-

ives pertaining to the protection and rebuilding of highly migratory pelagic predators,

but it is imperative that science-driven analysis via mathematical modeling is done

to address their utility and feasibility. Although there are uncertainties regarding res-

ults from the Gulf of Mexico Atlantis model, the tool remains useful for investigating

broader impacts from fisheries regulations within the Gulf. Gulf of Mexico pelagic

longline spatial closures are likely reducing the bycatch of some pelagic predators,

DeSoto Canyon possibly being more successful than Spring Closure. However, the

impacts of the closures are likely limited since closures tend to shift fishing pressure,

and the closures constitute a small part of the range of many pelagics. Rebuilding

overfished populations such as bluefin tuna and the billfishes will be contingent on a

suite of management strategies aiming to reduce fishing mortality inside and outside

of the Gulf of Mexico, both through ICCAT and in national fisheries management

plans. Future studies should consider the use of an updated hydrology sub-model in

order to investigate more advanced spatial closures (e.g., rotating MPAs) and impacts

due to changing ocean conditions.
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Figure 4.1: United States Gulf of Mexico Pelagic Longline Fishing Closures. The shapefile
for DeSoto Canyon was provided by Frick (2011), and the coordinates for Spring Closure
were provided by National Oceanic and Atmospheric Administration (2016c). Figure
generated in ArcGIS.
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Figure 4.2: Gulf of Mexico Atlantis Model Spatial Map. Figure generated in ArcGIS.
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Table 4.2: Summary of Results for Management Objectives Performance Metrics. Manage-
ment objective performance metrics relative to the status quo. Biomass and catch metrics
for bycatch groups are the sum of all bycatch groups (total), the sum of only billfish bycatch
groups (billfishes), and the sum of only tuna bycatch groups (tunas). Incidental biomass
and catch metrics refer to bluefin tuna. Biomass and catch metrics for target groups are
the sum of all target groups. The age structure of swordfish (SWD) catch represents the
proportion of swordfish catch being age-at-first-capture.
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(c) Bycatch & Incidental Catch
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(d) Target Catch

Figure 4.3: Evaluation of Functional Group Specific Management Objective Performance
Measures Upon the Establishment of DeSoto Canyon. Functional group-specific impacts
for white marlin (WMR), blue marlin (BMR), other billfish (BIL), miscellaneous tunas
(OTN), bluefin tuna (BTN), large sharks (LGS), loggerhead sea turtles (LOG), kemp’s
ridley sea turtles (KMP), other sea turtles (OTN), swordfish (SWD), yellowfin tuna
(YTN), and large pelagic fish (LPL). Performance metrics are compared across the whole
Gulf (black), U.S. Gulf (red), U.S. Gulf open ocean (blue), and DeSoto Canyon (green).
Axis values are from the status quo relative to no DeSoto Canyon.
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(a) Bycatch & Incidental Biomass
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(c) Bycatch & Incidental Catch

0.75

0.8

0.85

0.9

0.95

1

1.05

SWD

YTN

OTN LPL

LGS

 

 

  

 

 

 

 

 

   

 

 

   

 

 

 
 

 

 

 

 

(d) Target Catch

Figure 4.4: Evaluation of Functional Group Specific Management Objective Performance
Measures Upon the Establishment of Spring Closure. Functional group-specific impacts
for white marlin (WMR), blue marlin (BMR), other billfish (BIL), miscellaneous tunas
(OTN), bluefin tuna (BTN), large sharks (LGS), loggerhead sea turtles (LOG), kemp’s
ridley sea turtles (KMP), other sea turtles (OTN), swordfish (SWD), yellowfin tuna
(YTN), and large pelagic fish (LPL). Performance metrics are compared across the whole
Gulf (black), U.S. Gulf (red), U.S. Gulf open ocean (blue), and Spring Closure (green).
Axis values are from the status quo relative to no Spring Closure.
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Desoto Canyon
Established

Spring Closure
Established

Seasonal PLL
Fishery Closure

PLL F * 0

PLL F * 0.5

PLL F * 2

Catch
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Large sharks
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Figure 4.5: Changes in Catch from Non-pelagic, U.S. Hook-and-Line Fleets Resulting
from Pelagic Longline Fishing Mortality Sensitivity and Spatial Closure Scenarios.
Changes in catch of tunas (dark grey), billfishes (grey), and large sharks (light grey) from
hook-and-line shelf fleets (dashed) and sport fleets (solid) amongst indicated scenarios.
Values corresponding to pelagic longline fishing mortality sensitivity scenarios (PLLF) are
relative to the status quo. All other values are from the status quo relative to pelagic
longline spatial closure scenarios.
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Table 4.3: Summary of Results for Ecological Objectives Performance Metrics. Ecological
objective performance metrics are relative to the status quo. Average individual weight,
and proportion mature is shown for all billfish groups (billfishes), and all tuna groups
(tunas). The pelagic:demersal ratio (P:D) was computed based on biomass in the marine
environment (ecosystem), and biomass caught by the fisheries (catch). The ecosystem Q90
biodiversity metric is based on biomass in the marine environment.

Scenarios Average Ind. Weight Proportion Mature P:D ratio Q90

billfishes tunas billfishes tunas ecosystem catch ecosystem
Values computed within US Gulf waters
Status Quo 1 1 1 1 1 1 1
All Longlining F * 0 1.003 1.011 1.007 1.004 1.014 0.974 1.000
All Longlining F * 0.5 1.001 1.005 1.004 1.002 1.007 0.988 1.000
All Longlining F * 2 0.997 0.992 0.993 0.996 0.988 1.019 1.000
Pelagic longlining F * 0 1.003 1.011 1.007 1.004 1.013 0.966 1.000
Pelagic longlining F * 1 1.001 1.005 1.004 1.002 1.006 0.984 1.000
Pelagic longlining F * 2 0.997 0.992 0.993 0.996 0.989 1.028 1.000
No DeSoto Canyon 0.999 0.998 0.998 0.999 0.998 1.006 1.000
No Spring Closure 1.000 1.000 1.000 1.000 1.000 1.001 1.000
No DC or SC 0.999 0.998 0.998 0.999 0.997 1.007 1.000
Seasonal PLL Closure 1.000 1.001 1.001 1.001 1.002 0.995 1.000
Values computed within DeSoto Canyon
Status Quo 1 1 1 1 1 1 1
All Longlining F * 0 1.003 1.009 1.007 1.004 1.017 0.972 1.000
All Longlining F * 0.5 1.001 1.004 1.003 1.002 1.008 0.988 1.000
All Longlining F * 2 0.998 0.994 0.994 0.996 0.985 1.020 1.005
Pelagic longlining F * 0 1.003 1.009 1.007 1.004 1.015 0.960 1.000
Pelagic longlining F * 1 1.001 1.004 1.003 1.002 1.007 0.981 1.000
Pelagic longlining F * 2 0.998 0.993 0.994 0.996 0.986 1.032 1.005
No DeSoto Canyon 0.999 0.999 0.998 0.999 0.997 1.028 1.000
No Spring Closure 1.000 1.000 1.000 1.000 1.000 1.000 1.000
No DC or SC 0.999 0.998 0.998 0.999 0.997 1.028 1.000
Seasonal PLL Closure 1.000 1.001 1.001 1.000 1.002 0.994 1.000
Values computed within Spring Closure
Status Quo 1 1 1 1 1 1 1
All Longlining F * 0 1.001 1.006 1.005 1.002 1.022 0.938 1.000
All Longlining F * 0.5 1.000 1.003 1.002 1.001 1.011 0.972 1.000
All Longlining F * 2 0.999 0.997 0.995 0.998 0.980 1.047 1.004
Pelagic longlining F * 0 1.001 1.006 1.005 1.002 1.021 0.932 1.000
Pelagic longlining F * 1 1.001 1.003 1.002 1.001 1.010 0.968 1.000
Pelagic longlining F * 2 0.999 0.997 0.995 0.998 0.981 1.055 1.004
No DeSoto Canyon 1.000 0.999 0.999 1.000 0.996 1.009 1.000
No Spring Closure 1.000 1.000 1.000 1.000 0.999 1.004 1.000
No DC or SC 1.000 0.999 0.998 1.000 0.995 1.013 1.000
Seasonal PLL Closure 1.000 1.001 1.001 1.000 1.003 0.994 1.000
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(a) Average Individual Weight
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(b) Proportion Mature

Figure 4.6: Evaluation of Ecosystem Objective Performance Metrics for Billfish and Tuna
Functional Groups. Ecosystem objective performance metrics average individual weight
(a), and proportion mature (b) for billfish and tuna functional groups: yellowfin tuna
(YTN), bluefin tuna (BTN), little tunny (LTN), miscellaneous tunas (OTN), swordfish
(SWD), white marlin (WMR), blue marlin (BMR), other billfish (BIL). U.S. Gulf metrics are
compared amongst longline fishing mortality sensitivity scenarios in which fishing mortality
for all longline fleets were multiplied by 0 (green), 0.5 (yellow), and 2 (red). Axis values are
relative to the status quo.



CHAPTER 5

Conclusion

5.1 Summary of Dissertation

The Gulf of Mexico is an important ecosystem for Atlantic predatory pelagics (e.g.,

sharks, tunas, billfish) due to the environmental and physical dynamics which drive

areas of productivity. The sustainability of fisheries for Atlantic pelagic predators is

a concern, and the reduction of top-predators could have negative socioeconomic and

biological impacts. Management efforts have included the establishment of two pelagic

longline spatial closures within the pelagic waters of the Gulf of Mexico. Considering

the lack of empirical data regarding the direct and indirect impacts of pelagic fisheries

closures, the parameterization of a mathematical ecosystem model was necessary to

assess the utility of these closures. This dissertation aided the parameterization of the

Gulf of Mexico Atlantis model (i.e., chapter 2 and chapter 3), and used the model to

assess if Gulf of Mexico pelagic longline closures could meet management objectives,

and identify potential ecosystem impacts (chapter 4).

The work presented in Chapter 2, Landings Data for Ecosystem Fisheries Science:

Lessons Learned from the Gulf of Mexico, considered Gulf of Mexico landings data

to evaluate potential uncertainties in ecosystem based fisheries management metrics,
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focusing on inputs to the Gulf of Mexico Atlantis model, and landings-based indic-

ators. Meaningful portions of landings from commercial fisheries are ambiguous (not

identified to species), especially in Mexico and Cuba which have large portions of

unidentified landings (29.2% and 48.9%, respectively). U. S. recreational data have

minimal ambiguous landings (0.4%), but landings are highly variable in part due to

sampling error. U. S. ambiguous landings do not appear to be biasing the indicat-

ors. In addition, the aggregation of landings into Gulf of Mexico Atlantis functional

groups do not appear to be biasing trends of landings-based indicators. While season-

specific and State-specific U. S. landings do not introduce significant bias, much of

the fleet-specific landings early in the time series could not be allocated to an Atlantis

fleet due to the lack of detail in the landings dataset. This will not impact historical

calibration because landings are not partitioned across fleets, but this should be con-

sidered when computing fleet-specific landings proportions for forecasting. Current

landings time series appear to be sufficient for the development of ecosystem models,

but ecosystem based fisheries management of the Gulf of Mexico would benefit from

more precise landings data.

The work presented in Chapter 3, Predicting the Biomass Distributions of Pelagic

Species Across the Gulf of Mexico Using Generalized Additive Models, Delta GAMs

were fitted for describing the Gulf-wide spatial distributions of pelagic predatory func-

tional groups using Gulf of Mexico U. S. bottom longline survey catch data (coastal

models), and U. S. pelagic longline commercial catch data (pelagic models). This work

advanced our knowledge on the environmental cues and spatial distribution of pelagic

groups within the Gulf of Mexico, which can aid fisheries management by identifying

areas of increased vulnerability. Fitted models for large, predatory sharks had some of
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the better fits, diagnostics, and performance. The large, predatory sharks model was

influenced by minimum distance from a front, in addition to environmental drivers.

There is little research linking the spatial patterns of predatory shark species to fronts,

so this suggests further studies investigating possible connections between physical

features and the presence of predatory shark species. The fitted model presented in

this dissertation successfully identified areas of the Gulf known to have higher catch

rates of sharks, which could aid spatial management and conservation of predatory

sharks.

Although many of the fitted GAMs presented in this dissertation had poor dia-

gnostics and performances, these models improved the representation of the spatial

distribution of pelagics in spatially-explicit ecosystem models. In the case of the Gulf

of Mexico Atlantis model, spatial distributions were previously assumed to be fairly

homogenous, lacking variability across space and season. Thus, the heterogeneous

profiles produced from the statistical models improved the characterization of food

web dynamics, fisheries, and spatial regulations. Also, estimates are being aggreg-

ated into large polygons, so inaccuracies at the predicted level are probably averaged

out. However, distribution profiles are only used in the initial setup of Atlantis and

a new stable spatial distribution is formed based on a number of simulated factors

(e.g., habitat affinity, predator/prey dynamics, fisheries, etc.). Thus, it is uncertain

how the spatial distributions mesh with the rest of the model. For example, if the

distribution of prey groups do not correspond to the distributions estimated by the

GAMs to some extent, then Atlantis will not allow the spatial distribution of predator

groups to persist because they can not find food. The spatial distributions estimated

by GAMs should be compared to spatial distributions GoMAM stabilize to, and if
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there are significant differences than there are likely issues with the distributions of

large pelagic functional groups, or their prey groups.

The work presented in Chapter 4, Can Gulf of Mexico Pelagic Longline Fishery

Closures Meet Management Objectives?, conducted a policy exploration investigat-

ing if current pelagic longline spatial closures could meet management objectives,

and possible ecosystem impacts. Current closures include a permanent closure over

DeSoto Canyon (DeSoto Canyon), and seasonal closure off the Louisiana shelf (Spring

Closure). Closures are intended to reduce bycatch and promote the rebuilding of bio-

mass for pelagic predators. The Gulf of Mexico Atlantis model was used to simulate

management scenarios altering spatial closures and pelagic longline fishing mortality,

and tracked changes to performance measures. Closures reduced Gulf-wide catches

of bycatch and incidental groups with little reduction to catches of target groups, but

the reduction in fishing mortality was not enough to cause meaningful increases in

biomass of bycatch and incidental groups. DeSoto Canyon was more successful at

achieving management objectives, and had more influence to ecosystem metrics, than

Spring Closure. Pelagic spatial closures can be useful tools to achieve management

objectives pertaining to the protection of pelagic predators within areas where they

are known to aggregate and be particularly vulnerable, but rebuilding the biomass

of particular stocks may require additional reductions in fishing mortality across the

Atlantic Ocean. In addition, the pelagic spatial closures may not reduce fishing mor-

tality enough to cause meaningful impacts to ecosystem performance measures, but

the pelagic:demersal ratio indicated that pelagic spatial closures can adjust the catch

composition which may impact community structure.
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5.2 Limitations

Data are a recurring limitation to this work. Gulf of Mexico landings time series

from Mexico and Cuba used to calibrate the Atlantis historical model are likely an un-

derrepresentation as data did not include recreational fisheries and historical reporting

of artisanal landings are often incomplete, particularly for Mexico. In addition, there

is uncertainty pertaining to U. S. recreational landings as data are estimates based

on surveys of fishers that are expanded to the whole fishery.

Catch data used to fit GAMs were the primary limitation to describing the spa-

tial distribution of pelagic predators. First, pelagic models were fitted with fisheries-

dependent data. Using fisheries-independent data is preferable as it adheres to the

statistical assumption of data independence (i.e. random sampling has a better repres-

entation of where species are and are not common). In addition, fisheries-independent

data often contains more environmental data allowing for the consideration of a vari-

ety of model descriptors. While incorporating estimates of some model descriptors

into fisheries-dependent data allowed the improvement of some model fits, this also

introduces uncertainty. Second, coastal models only considered bottom longline data

and lacked mid-depth hook-and-line data. Thus, organisms feeding within the water

column and not at bottom (e.g., tunas, billfish) were not considered. Incorporating

mid-depth hook-and-line data into this study would expand the species coverage and

improve fits for coastal models. Lastly, catch data only spanned the northern Gulf,

and extrapolating across the southern Gulf produced highly uncertain predictions.

GAMs were an appropriate method for modeling the spatial abundance of pelagic

predatory groups. Smoothing splines allowed adequate flexibility when fitting the
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environmental data, and the relaxed statistical assumptions of GAMs allowed the

use of fisheries-dependent data. There are ongoing efforts for developing a GAM

framework, using carefully chosen environmental predictors and a blending of avail-

able fisheries-independent and fisheries-dependent survey data, for enhancing Gulf

of Mexico ecosystem models (Grüss et al., 2016a). Residual analysis of the GAMs

presented in this dissertation showed that many of the gamma GAMs did not rep-

resent the data very well. This could possibly be addressed in future research by

transforming the response variable using transformations like the Basic or Box-Cox

(as recommended by Mateu (1997) when normalizing environmental data).

This dissertation found some parameterizations of the Gulf of Mexico Atlantis

model worth adjusting to benefit future studies investigating the fisheries manage-

ment of pelagic predatory groups. First, the harvesting module can be altered to

distinguish bycatch from landings. This will allow more nuanced investigations of

management strategies aiming to reduce bycatch while maintaining landings. In ad-

dition, the representation of fleets can be advanced to allow the redistribution of

fishing mortality around MPAs, rather than reducing mortality. Also, diagnostics for

some of the pelagic predatory functional groups, specifically bluefin tuna, could be im-

proved. Model diagnostics show a sudden loss of adults seemingly due to unbalanced

consumption, and bluefin diagnostics got worse when bluefin migration patterns are

adjusted to better represent migration described in current literature. These may be

related, as bluefin tuna spawning in the Gulf do most of their foraging in the north

Atlantic. Conservation of bluefin tuna while the stock is breeding in the Gulf of

Mexico is a pressing issue. To conduct this investigation strictly focusing on bluefin

tuna impacts, not only would the above need to be addressed, but methods should
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include different scenarios modeling possible fisher behavior regarding the pelagic

longline spatial closures (especially Spring Closure as it was specifically established

for spawning bluefin tuna). In addition, metrics describing the overlap between mi-

grating bluefin tuna and the spatial closures should be analyzed, as well as catch rates

in areas outside of the closures.

This dissertation project has identified several areas where the Gulf of Mexico

Atlantis model could be refined to advance its functionality, and improve its modeling

of the system (e.g., partitioning the large coastal sharks functional group into two

functional groups: coastal sharks, and pelagic sharks), but the Gulf of Mexico Atlantis

model was a very useful tool for study. The Atlantis framework allowed for the

detailed, spatially-explicit representation of biota, fleets and spatial closures, and

provided a means to explore broad-scale, ecosystem impacts. To take this study

one step further, it would be interesting to simulate the investigated scenarios with

another spatially-explicit ecosystem model to compare and contrast results. However,

currently the other spatially-explicit ecosystem models of the Gulf of Mexico do not

span the whole ecosystem.

5.3 Future Research

Qualitative assessment indicators shown in Chapter 2 reveal that a majority of U.

S. commercial landings are of species that are not overfished, but the majority of U.

S. recreational landings are of species of unknown overfished status. Because U. S.

recreational fleets are important sources of fishing mortality in Gulf of Mexico waters,

expanding assessment coverage to incorporate these species would be informative for

fisheries management. Data-limited methods may be desirable as these species are not
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commercially important and data are probably not adequate for the usual assessment

methodologies. In addition, methods for reducing the uncertainty in U. S. recreational

data would help landings-based investigations of the Gulf of Mexico.

Because fisheries-independent datasets are preferable to fisheries dependent data-

sets for statistical investigations, developing an annual pelagic longline fisheries-

independent survey within the Gulf of Mexico would be beneficial for tracking and

monitoring the status of pelagic predatory stocks within the Gulf of Mexico. Getting

funding for such a project may be difficult since the open ocean is expansive and oli-

gotrophic. Considering the importance of physical metrics (e.g., fronts) when fitting

GAMs, these efforts should collect metrics relating to physical oceanography (e.g.,

altimetry, currents) in addition to at-depth data from CTDs. Such surveys have been

previously done in the Gulf but they have been discontinued(Fitzhugh et al., 2012;

Campbell et al., 2012). Such a survey may become more necessary in the future as

changing ocean conditions might impact recruitment and shift productive areas were

pelagics aggregate.

Because foraging pelagic predators are actively seeking out food, incorporating

model descriptors relating to predator-prey dynamics into GAMs could improve model

fits and performance, and could be informative for the spatial ecology of some species.

Schick and Lutcavage (2009) found that the fit of a generalized model predicting the

distribution of bluefin tuna improved with the inclusion of prey dynamics. However,

Benoit-Bird et al. (2013) found that many studies have found weak or ephemeral

spatial associations between predators and prey within pelagic environments, and re-

ported that their statistical models were unable to find a spatial relationship between

predators and their prey. Instead, authors found that habitat use by predator groups
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considered in their study were most strongly predicted by prey patch characteristics

(i.e., depth and local density within spatial aggregations).

Mitigating the bycatch of sea turtles, birds, and mammals are also objectives for

the management of pelagic longline gears. Mapping the Gulf-wide spatial distribution

of these groups would benefit the parameterization of spatially explicit ecosystem

models, and be informative for spatial management of the Gulf of Mexico. Considering

the Gulf of Mexico Atlantis model, data should be located or collected in order to

appropriately parameterize the bycatch modeling of these groups.



APPENDIX A

Additional Methodology and Results for
Chapter 2

A.1 Additional Methods for Section 2.3.1

Table A.1: NOAA Commercial Gear-types Assigned to Atlantis Fleets.

GillnetEst LLPelgc PotCrbEst OtherUS
Entangling Nets (Gill) Unspc Lines Troll, Other Brush Trap By Hand, Other
Gill Nets, Drift, Runaround Lines Long Set With Hooks Pots And Traps, Crab, Blue By Hand, Oyster
Trammel Nets Lines Long Drift With Hooks Pots And Traps, Crab, Other Cast Nets
Gill Nets, Stake Pots And Traps, Eel Diving Outfits, Other
Gill Nets, Sink/Anchor, Other OytEst Dip Nets, Drop
PotLbtShf Rakes, Other LLReefShf Dip Nets, Common
Pots And Traps, Spiny Lobster Dredge Other Lines Long, Reef Fish Fyke And Hoop Nets

Tongs and Grabs, Oyster Lines Trot With Baits Haul Seines, Beach
LLShkShf Tongs and Grabs, Other Haul Seines, Long
Lines Long, Shark PotCrbShf Hooks, Sponge

HLReefShf Pots And Traps, Fish Lampara & Ring Nets
TwlShpEst Reel, Electric or Hydraulic Pots And Traps, Other Spears
Beam Trawls, Butterfly Nets Rod and Reel Pots And Traps, Shrimp
Skimmer Net Lines Hand, Other Not Assigned

Lines Long, Vertical SeineMenShf Not Coded
TwlShpShf RoyalRed Encircling Nets (Purse) Combined Gears
Otter Trawl Bottom, Shrimp Otter Trawl Bottom, Shrimp Purse Seines, Other Unspecified Gear
Otter Trawl Bottom, Fish Skimmer Net Purse Seines, Menhaden Troll & Hand Lines Cmb
Otter Trawl Bottom, Scallop Slat Traps (Virginia)
Trawls, Unspecified

156
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A.1.1 Landings Data Discrepancies

To determine if there are any discrepancies between the annual and itemized

datasets from either NOAA and MRIP, plots were made to describe time series of i)

the ratio between total landings in the itemized dataset against total landings in the

annual dataset, and ii) the ratio between the total number of groups identified in the

itemized dataset against the total number of groups identified in the annual datasets.

A.2 Additional Methods for Section 2.3.1.1

A.2.1 Spatial Distribution

Seasonal landings time series were distributed across space (i.e., Atlantis polygons)

using the seasonal biomass distributions of the functional groups. The construction of

the seasonal biomass distributions are described above under Biomass distributions.

First, the polygons that make up the region where each of the territorial fleets (i.e.,

U.S. commercial, U.S. recreational, Mexican commercial, and Cuban commercial) op-

erate within were determined. Commercial landings are harvested from polygons that

lie within the appropriate EEZ boundaries (note, all commercial fleets can harvest

in international waters at the center of the Gulf, in the area called the donut hole).

Polygons within the U.S. EEZ that do not exceed 200 m in depth were designated

to contain U.S. recreational harvesting. However, U.S. recreational landings for the

functional group crabs and lobsters were restricted to polygons 27 and 28 (SEDAR,

2005). Since boundary polygons 0 and 65 are reserved for flux characteristics, they

were not included in the spatial distribution of landings.
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Landings were only partitioned for the polygons described above; since the sea-

sonal biomass distributions of the functional groups consider the entire polygon grid,

they were partitioned in the same manner. Then, for each season and each territorial

fleet, seasonal biomass distributions of the functional groups for the polygon subsets

were adjusted so the distributions summed to 1. We utilized these adjusted seasonal

distributions to allocate the corresponding seasonal landings across the appropriate

polygons for U.S. commercial, U.S. recreational, Mexican commercial, and Cuban

commercial landings.

A.3 Additional Methods for Section 2.3.2
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Table A.2: Functional Group Metrics for Ecological Indicator Computations.

FID Functional group Trophic Level Trophic Level Standard Error Pelagic/Demersal
GAG Gag grouper 3.6 0 D
RGR Red grouper 3.6 0 D
SCM Scamp 4.4 0 D
SSR Shallow serranidae 3.9 0.5 D
DSR Deep serranidae 4.1 0.3 D
RSN Red snapper 4 0 D
VSN Vermilion snapper 4.3 0 D
LUT Lutjanidae 4 0.3 D
BIO Bioeroding fish 2.5 0 D
LRF Large reef fish 3.4 0.6 D
SRF Small reef fish 3.3 0.7 D
BDR Black drum 3.9 0 D
RDR Red drum 4.1 0 D
SEA Seatrout 4.1 0.3 D
SCI Sciaenidae 3.4 0.3 D
LDY Ladyfish 3.9 0 D
MUL Mullets 2.4 0.1 D
POM Pompano 3.7 0.6 D
SHP Sheepshead 3.5 0 D
SNK Snook 4.2 0 D
FLT Flatfish 3.4 0.3 D
ODF Other demersal fish 3.7 0.6 D
SDF Small demersal fish 3.7 0.5 D
YTN Yellowfin tuna 4.3 0 P
BTN Bluefin tuna 4.5 0 P
LTN Little tunny 4.4 0 P
OTN Other tuna 4.2 0 P
SWD Swordfish 4.5 0 P
WMR White marlin 4.5 0 P
BMR Blue marlin 4.5 0 P
BIL Other billfish 4.4 0.1 P
AMB Greater amberjack 4.5 0 P
JCK Jacks 4.1 0.4 P
KMK King mackerel 4.5 0 P
SMK Spanish mackerel 4.2 0.3 P
SAR Spanish sardine 3.1 0 P
LPL Large pelagic fish 4 0.5 P
DWF Deep water fish 3.6 0 P
MEN Menhaden 2.3 0.1 P
PIN Pinfish 3.6 0 P
MPL Medium pelagic fish 3.5 0.7 P
SPL Small pelagic fish 3.3 0.4 P
TIP Blacktip shark 4.4 0 P
BEN Benthic feeding sharks 4.3 0 P
LGS Large sharks 4.3 0.2 P
FIL Filter feeding sharks 3.4 0 P
SMS Small sharks 4.3 0 P
RAY Skates and rays 3.7 0.5 P
BSH Brown shrimp 2.5 0 D
WSH White shrimp 2.5 0 D
PSH Pink shrimp 2.5 0 D
OSH Other shrimp 2.5 0 D
DBR Diving birds 3.6 0 D
SBR Surface feeding birds 3.6 0 D
MAN Manatee 4.5 0 D
MYS Mysticeti 3.2 0 D
DOL Dolphins and porpoises 4.7 0 D
DDO Deep diving odontocetae 4.7 0 D
LOG Loggerhead 3.4 0 P
KMP Kemps ridley 3.3 0 P
TUR Other turtles 3.3 0 P
BCR Blue crab 2.7 0 D
SCR Stone crab 2.7 0 D
LOB Crabs and lobsters 2.7 0 D
COR Stony corals 2.3 0 D
CCA Crustose coralline algae 2.3 0 D
OCT Octocorals 2.3 0 D
SPG Sponges 2.3 0 D
CMB Carnivorous macrobenthos 2.2 0 D
INF Infaunal meiobenthos 2 0 D
ECH Herbivorous echinoderms 2 0 D
OYS Oysters 2 0 D
BIV Bivalves 2 0 D
SES Sessile filter feeders 2 0 D
EPI Epiphytes 1 0 D
GRS Sea grass 1 0 D
ALG Macroalgae 1 0 D
MPB Microphytobenthos 2.1 0 D
LPP Large phytoplankton 1 0 D
SPP Small phytoplankton 1 0 D
DIN Toxic dinoflagellates 1 0 D
PRO Protists 1 0 D
JEL Jellyfish 3.1 0 D
SQU Squid 3.2 0 D
LZP Large zooplankton 2.1 0 D
SZP Small zooplankton 2.1 0 D
PB Bacteria 1 0 D
BB Sediment bacteria 1 0 D
DC Carrion detritus 1 0 D
DL Labile detritus 1 0 D
DR Refractory detritus 1 0 D
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A.4 Additional Results for Section 2.3.1

(a) (b)

(c)

Figure A.1: Species Composition Time Series of United States Commercial Data. Panel
(a) shows the species composition for total landings. Panel (b) shows the species
composition for total landings, excluding menhaden. Panel (c) shows the species
composition of ambiguous landings. Legend shows only the seven most common species.



161

(a)

(b)

Figure A.2: Species Composition Time Series of United States Recreational Data. Panel
(a) shows the species composition for total landings. Panel (b) shows the species
composition for ambiguous landings. Legend shows only the seven most common species.
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(a)

(b)

Figure A.3: Species Composition Time Series of Mexican Commercial Data. Panel (a)
shows the species composition for total landings. Panel (b) shows the species composition
for ambiguous landings. Legend shows only the seven most common species.
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(a)

(b)

Figure A.4: Species Composition Time Series of Cuban Commercial Data. Panel (a)
shows the species composition for total landings. Panel (b) shows the species composition
for ambiguous landings. Legend shows only the seven most common species.
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(a) (b)

(c) (d)

Figure A.5: Species Composition Time Series of Seasonal U.S. Commercial Data. Species
compositions are shown for winter, Jan. - Mar. (a), spring, Apr. - Jun. (b), summer, Jul.
- Sep. (c), and fall, Oct. - Dec. (d). Legend shows only the seven most common species.
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(a) (b)

(c) (d)

Figure A.6: Species Composition Time Series of Seasonal U.S. Commercial Ambiguous
Landings. Species compositions are shown for winter, Jan. - Mar. (a), spring, Apr. - Jun.
(b), summer, Jul. - Sep. (c), and fall, Oct. - Dec. (d). Legend shows only the seven most
common species.
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(a) (b)

(c) (d)

(e) (f)

Figure A.7: Species Composition Time Series of Seasonal U.S. Recreational Landings.
Species compositions are shown for wave 1, Jan. - Feb. (a), wave 2, Mar. - Apr. (b), wave
3, May. - Jun. (c), wave 4, Jul. - Aug. (d), wave 5, Sep. - Oct. (e), and wave 6, Nov. -
Dec. (f). Legend shows only the seven most common species.
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(a) (b)

(c) (d)

(e) (f)

Figure A.8: Species Composition Time Series of Seasonal U.S. Recreational Ambiguous
Landings. Species compositions are shown for wave 1, Jan. - Feb. (a), wave 2, Mar. - Apr.
(b), wave 3, May. - Jun. (c), wave 4, Jul. - Aug. (d), wave 5, Sep. - Oct. (e), and wave 6,
Nov. - Dec. (f). Legend shows only the seven most common species.
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(a) Alabama (b) Florida

(c) Louisiana (d) Mississippi

(e) Texas

Figure A.9: Species Composition Time Series of United States Commercial Data by State.
Menhaden landings were excluded from the figures. Legend shows only the seven most
common species.
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(a) Alabama (b) Florida

(c) Louisiana (d) Mississippi

(e) Texas

Figure A.10: Species Composition Time Series of United States Ambiguous Commercial
Data by State. Legend shows only the seven most common species.
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(a) (b)

(c) (d)

(e)

Figure A.11: Species Composition Time Series of United States Total Recreational Data
by State. Legend shows only the seven most common species.



171

(a) (b)

(c) (d)

(e)

Figure A.12: Species Composition Time Series of United States Ambiguous Recreational
Data by State. Legend shows only the seven most common species.
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(a) Combined Gears (b) GillnetEst

(c) HLReefShf (d) LLPelagc

(e) LLReefShf (f) LLShkShf

Figure A.13: Species Composition Time Series of United States Total Commercial Data
by Gear. Plot legends are restricted to only show seven identifications with with the most
landings data associated to the plot.
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(a) Not Coded (b) OtherUS

(c) OytEst (d) PotCrbEst

(e) PotCrbShf (f) PotLbtShf

Figure A.13: Continued.
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(a) SeineMenShf (b) TwlShpEst

(c) TwlShpShf (d) Unspecified Gear

Figure A.13: Continued.
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(a) Combined Gears (b) GillnetEst

(c) HLReefShf (d) LLPelagc

(e) LLReefShf (f) LLShkShf

Figure A.14: Species Composition Time Series of United States Ambiguous Commercial
Data by Gear. Plot legends are restricted to only show seven identifications with with the
most landings data associated to the plot.
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(a) Not Coded (b) OtherUS

(c) OytEst (d) PotCrbEst

(e) PotCrbShf (f) PotLbtShf

Figure A.14: Continued.
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(a) SeineMenShf (b) TwlShpEst

(c) TwlShpShf (d) Unspecified Gear

Figure A.14: Continued.
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A.4.0.1 Landings Data Discrepancies

To evaluate discrepancies between annual landings datasets and itemized landings

datasets, plots were constructed showing the changes in the ratios comparing i) total

landings from itemized datasets and total landings from annual datasets, and ii) total

number of landed groups from itemized datasets and total number of landed groups

from annual datasets.

U.S. commercial data series have some discrepancies between itemized data series

and the annual data series (Figure A.15). The landings dataset itemized by season

tends to have more landings represented than the annual landings dataset (Figure

A.15a), but less identified taxonomic groups (Figure A.15d). The landings dataset

itemized by state and the annual landings dataset tend to have the same amount

of landings (Figure A.15b), as well as the same number of identified groups (Figure

A.15e). The landings dataset itemized by gear appears to have less landings represen-

ted than the annual dataset (Figure A.15c), as well as fewer identified groups (Figure

A.15f).

U.S. recreational data series have more discrepancies between itemized data series

and the annual data series (Figure A.16). The landings dataset itemized by season

tends to have more landings represented than the annual landings dataset (Figure

A.16a). In the earlier years, the seasonal dataset tends to have more identified groups,

but since 1990 the annual dataset tends to have more identified groups (Figure A.16c).

The landings dataset itemized by state tends to have more landings represented than

the annual landings dataset (Figure A.16b). In the earlier years, the dataset itemized
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(a) Seasonal Data Series (b) State Data Series (c) Gear Data Series

(d) Seasonal Data Series (e) State Data Series (f) Gear Data Series

Figure A.15: Data discrepancies between NOAA’s landings data itemized by season (a,d),
state (b,e), and gear (c, f) and annual landings data. Panels (a - c) show the ratio
between landings from itemized data series and landings from annual data series. Panels
(d - f) show the ratio between the number of groups identified in itemized data series and
the number of groups identified in annual data series.

by state tends to have more identified groups, but since 1990 the annual dataset tends

to have more identified groups (Figure A.16d).
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(a) Seasonal Data Series (b) State Data Series

(c) Seasonal Data Series (d) State Data Series

Figure A.16: Data discrepancies between MRIP’s landings data itemized by season (a,c),
and state (b,d), and annual landings data. Panels (a - b) show the ratio between landings
from itemized data series and landings from annual data series. Panels (c - d) show the
ratio between the number of groups identified in itemized data series and the number of
groups identified in annual data series.
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A.5 Additional Results for Section 2.3.1.1

A.5.1 Historical Landings Time Series for Atlantis

Information was developed for the calibration and implementation of the Gulf of

Mexico Atlantis model. Historical time series of U.S. commercial, U.S. recreational,

Mexican commercial, and Cuban commercial landings for model calibration are shown

in Tables A.3, A.4, A.5, and A.6 (respectively). Average seasonal distributions for

functional groups identified in the U.S. commercial, U.S. recreational, and Mexican

historical time series are shown in Table A.7, A.8, and A.11 (respectively). The

proportions for distributing landings across fleets are presented in Table A.10.
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Table A.3: United States Historical Commercial Landings by Atlantis Functional Group
(tonnes)

Group 1980 1981 1982 1983 1984 1985 1986 1987 1988
GAG 643.7 898.8 1069.9 788.4 703 819.7 771.8 697.7 551.8
RGR 1316.8 1542.5 1792.9 2715 2466.6 2598.3 2863.5 3047.2 2151.2
SCM 0 0 0 0 0 14.4 174 164.4 125.3
SSR 218.9 256.4 259 269.3 340 279.1 993.6 900.7 715.7
DSR 223.2 372.8 406.5 280.7 294.9 403.5 703 711.9 1002.2
RSN 2273.4 2706.1 2907.1 3302.6 2604.5 2013 1798.5 1522.7 1841.6
VSN 139.9 164.1 180.4 258.8 652.4 670.7 793.5 728.2 705.1
LUT 715.8 767.7 1194.2 1002.6 939.3 797.4 960.6 1226.2 1085.6
BIO 0 0 0 0 0 0 0 0 0
LRF 72.6 84.8 76.7 85 142.5 110.8 87.2 152.9 119.5
SRF 267 509.9 490.2 475.7 727.3 593 475.1 818.3 878.1
BDR 2691.9 2954.4 1932.2 2389.5 2691.5 3180.2 3455.5 4828.2 4748.5
RDR 1240.2 1249.7 1103.3 1422.1 1972.6 2881.8 6410.6 2223.9 136.5
SEA 2234.7 2112.4 1847 1921.3 1684.3 1491.8 1862 1878 1599
SCI 3474.5 3612.1 2147.5 1282 1121.7 939.6 844.1 1120.5 827.2
LDY 612.5 1814.4 1494.3 1888 1560.3 1342.9 2032.6 2322.7 1881.5
MUL 13896.6 15270.3 12211.1 11718.3 10292.9 9006.8 11899.1 10758.6 11602.5
POM 300.8 247.4 320.7 274.4 247 213.1 240.2 250.1 263.1
SHP 539.9 474.8 558.5 760.6 683.8 749.5 791.7 1518.3 1439.1
SNK 0 0 0 0 0 0 0 0 0
FLT 697.6 713.2 990.2 931.3 937.2 987 1034.5 1207.7 724.4
ODF 569.9 694.1 728.4 792.3 1292.8 1046.6 740.5 1377.7 1155.4
SDF 42.1 55.7 55.9 62.4 112.1 81.5 45.7 96.4 70
YTN 33 18.2 63.6 100.2 376.7 1505.9 3393.6 4179.4 7815.8
BTN 5.1 12.1 16.4 38.8 70 69.1 108.5 175 138.6
LTN 0.7 0.5 2.9 2.3 1.9 2.3 0.1 1.5 108.7
OTN 0 0 0 0 0 0 0 0 0
SWD 837.8 532.3 587.9 327.7 307.2 511.7 320.9 666.3 970.1
WMR 0 0 0 0 4.1 9.4 39.1 24.6 0.2
BMR 0 0 0 0 0.9 5 16.2 16.4 3.2
BIL 0 0 4.3 1.2 5 10.2 11.2 18.1 0
AMB 81.6 107.5 102.3 127.5 240.9 346.2 506.4 705.7 932.4
JCK 2424.6 2125.5 2335.1 2261.8 1679.1 1499.2 1414.9 2034 2868
KMK 1543.2 2399.6 662.4 1437.7 978.8 826.5 917 1109.1 865
SMK 887.9 1670.2 1524.1 1031.5 1596.8 1375.8 1244.5 1300.6 1054.4
SAR 1348.2 1264.6 1268.3 1217.6 1601.9 2069.4 2774.4 2925.9 1594.2
LPL 1226.1 860 869.7 705.8 641.8 588.2 631.3 684.2 1115
DWF 0 0 0 0 0 0 0 0 0
MEN 702081 553684.4 861426.8 962982 985411.7 884189.2 830743.7 911642.5 639787.1
PIN 34.6 45.9 46 51.4 92.3 67.2 37.6 79.4 57.6
MPL 71.8 91.8 115 125.5 180.5 132 68.5 151.8 128.3
SPL 158.2 334.2 824.5 939.2 415.7 406.2 1417.6 825.8 1678.8
TIP 60.6 60.6 60.6 65.5 89.5 83.1 596.5 825.1 1460
BEN 0 0 0 0 0 0 0 0 0
LGS 155.6 258.3 304.5 352.9 306.7 417.6 855.9 2052.8 3781
FIL 0 0 0 0 0 0 0 0 0
SMS 0 0 0 0 0 0 0 0 0
RAY 0 0 0 0 0 0 40.2 0 77.7
BSH 49861.9 72678.6 56121.7 48553 62929.2 63706 72075.9 67305.6 59535.4
WSH 29835.2 32212.8 27443.7 29559.9 39196.7 41175.1 49417 37339.1 31600.1
PSH 9345.8 13625.5 8454.8 9196.7 10632.4 11526.7 8502.1 7557.5 6583.4
OSH 6276 4700.6 3073.6 3772.8 3546.5 3491.3 8644.1 5572.3 4855.6
TUR 0 0 0 0 0 0 0 0 0
BCR 19444.9 19248.4 16761.2 18362.6 25558 25335.4 24047.6 35592.7 35992.1
SCR 1710.6 1894 2583.3 2173.4 1798.3 1847.2 1834.9 2160.4 2367.2
LOB 2594 2292.7 2594 1708.4 2772.1 2787.6 2010.5 2513.2 2648.5
SPG 0 0 0 0 0 0 0 0 43.8
CMB 0 0 0.2 0.9 0 0 0.6 0.5 1.5
OYS 7039.7 8785.8 11408.8 13229 12520.5 12024.8 10220.3 8515.2 8103.4
BIV 7.9 21.3 5.9 17 44 55.6 8 8.9 33.5
SQU 26.9 43.9 35 32.1 55.4 67.2 80.1 75.3 104.7
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Table A.3: Continued

Group 1989 1990 1991 1992 1993 1994 1995 1996 1997
GAG 767.9 814.4 710.1 754.8 847.6 734.4 751.1 712.6 727.4
RGR 3342 2181.5 2310.8 2024.5 2893.8 2223.9 2152.8 2020.4 2199.2
SCM 137.5 131.7 163 146.8 164 112 123 122.5 153.4
SSR 967.2 919.1 715.1 625.5 1049.3 747.5 545.1 646.6 572.8
DSR 548.1 817.3 741.2 813.7 679.9 939.7 698.7 513.4 610.4
RSN 1406.1 1207.5 1016.5 1380.3 1544.5 1475.1 1339.9 1973.6 2187.7
VSN 752.4 1113.1 814.1 1028.7 1233.6 1197.1 987.9 828.8 964.3
LUT 1348 1213.6 1396.2 1324.1 1700.4 1500.9 1267.2 1070.3 1202.3
BIO 0 0 3.6 1.5 0.3 0.5 0.5 0.3 0.4
LRF 170.2 198.6 198.3 202.7 465.3 361.7 250.5 273.5 266.2
SRF 812.9 829.3 812.2 831.5 1846.9 1396.3 1026 1128.4 1200.1
BDR 2490 1722.4 1215.7 1801.4 1890.9 2596.1 2737 2729.9 2569.6
RDR 81.6 9.5 17.3 35.2 58.7 32.6 19.3 25.9 21.7
SEA 1485 1010.3 1312.8 1131.5 1552.5 1446.2 882.3 806.6 686.5
SCI 1071.1 1171.8 1154.2 1258.8 2232.4 1683.1 1765.3 1294 1277.8
LDY 2073.1 2629.7 2058.3 2073 1819 1935.4 1245.1 844 858.1
MUL 12818.3 13307.5 11624.9 11675.4 13804.4 12392.1 9624.6 7023.6 7941.1
POM 245.9 327.6 278.5 253.6 253.1 266.4 179 120.6 261.9
SHP 1927.4 1796.3 1472.6 1880.7 2113 1964.9 1818.6 1558.8 1685.3
SNK 0 0 0 0 0 0 0 0 0
FLT 813.8 831 1062.9 1022.7 1712.5 1399.9 995.8 847.3 841
ODF 1550.8 1765.6 1859.3 1666 3971.5 2841.7 1932.8 2338.9 2254.6
SDF 105.3 121.7 123.7 119.2 338.8 221.4 144 192.2 186.7
YTN 5786.2 3665 2567.7 4229.4 2910.3 2105.4 1588 2125.2 2407.4
BTN 66.4 102.1 120.4 81.4 47 34.2 26.9 22.5 16.9
LTN 49.2 51.6 51 460.7 263.7 28.4 29.5 89.1 171.9
OTN 0 0 0 0 0 0 0 0 0
SWD 957.1 445.8 632.5 590.1 466.9 339 583.6 752.9 593.8
WMR 0 0 0 0 0 0 0 0 0
BMR 0 0 0 0 0 0 0 0 0
BIL 0 0 0 0 0 0 0 0 0
AMB 886.9 555.2 817.3 461.2 729.5 578.2 573.1 576.6 507.4
JCK 3101.6 2981.6 3031.7 3062.6 3497.9 2499.3 1403.1 661.1 766.1
KMK 788.7 912.4 881.4 1045.9 1352.3 1140 1007.7 1363 1367.4
SMK 1448.2 1212.7 1646.6 1816.2 1303.6 1310 769.1 412.6 367.3
SAR 1079.1 974.4 760.8 848.4 772.2 984.2 173 498.6 413.3
LPL 1177.4 1258.3 1881.7 1814.9 1728.6 1958.5 1387.8 1211.4 1287.6
DWF 0 0 0 0 0 0 0 0 0
MEN 583185.8 539421.6 552946.5 432763.4 551534.6 774825.8 472059.7 491689.1 622013.7
PIN 85.8 99.5 106.6 112.9 296.5 221.3 128 166.5 168.3
MPL 234.3 243.7 250.3 290.6 635.3 487.2 354.7 383.7 333.6
SPL 4339.6 2160.8 2475.8 2676 3216.9 3059.7 2082.6 2449.5 2425.9
TIP 1594.7 960.3 388.2 444.6 476.8 1002.3 708.7 489.9 377.6
BEN 0 0 0 0 0 0 0 0 0
LGS 5543.5 4005 3505.5 3237 1757.1 2000.1 1914.3 1827.7 1727
FIL 0 0 0 0 0 0 0 0 0
SMS 0 0 0 0 0 0 0 0 0
RAY 224.9 280.9 132.7 122.9 73.3 33.8 45.3 8.7 0.1
BSH 69213.4 76343.7 64545.4 50898.6 50212.5 49684.1 57209.3 55140.8 49559.2
WSH 25567.2 30912.2 32000.3 33681.8 27581.2 32467.8 34996.8 25561.6 27993.3
PSH 6274.6 5470.3 4921.5 4651.9 6937.8 7313.9 10356.9 13969.2 9227.5
OSH 4362.6 3183.9 3311.3 10745.2 8642.4 5862.2 4241 7716.2 9957
TUR 0 0 0 0 0 0 0 0 0
BCR 25240.2 26467.1 29866.1 31664.8 29781.1 24164.4 24800.9 28331.3 29095.9
SCR 2337.2 2853.7 2843.4 3013.5 3021.5 2976.1 2713 2924.7 2897.2
LOB 3265.1 2467.1 2762.1 1840.7 2066.8 2885.6 3537.6 3386.7 3276.1
SPG 277.5 360.5 381.2 338.9 338.7 387.8 357.4 324.3 236.4
CMB 0 0 0 0.7 1.1 1.3 0 1.7 1.4
OYS 7177.7 5600 5607.1 7414.2 8252.6 9219.5 10016.8 10571 10881.1
BIV 1322.2 28.7 0.4 2.7 2206.9 868.9 23.8 94.2 180.8
SQU 61.4 58.4 38.7 69.2 54.2 64.5 70.6 97.2 68.7
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Table A.3: Continued

Group 1998 1999 2000 2001 2002 2003 2004 2005 2006
GAG 1151.8 952.3 1053.9 1470.5 1385.6 1239.8 1369.9 1233.8 661.3
RGR 1799.5 2705.3 2646.6 2697.4 2678.4 2239.5 2605.2 2454.4 2333.2
SCM 115.9 138 104.4 143.3 163.4 168.3 172.6 164.9 117.3
SSR 506.8 530.8 521.9 370.6 343.9 364.9 347.2 221 217.9
DSR 513.8 763.6 899 737.5 756 976.4 767.6 664.1 614.8
RSN 2129.2 2212.2 2197.2 2116.5 2187.7 2016.2 2121.4 1863.7 2103.5
VSN 785.9 899.2 662.2 778 911.1 1095.8 968.1 847.4 800.3
LUT 1056.5 1178.2 1108.9 977.7 996.5 936.3 1009.8 856.1 836.8
BIO 0.2 0.3 0.2 0.1 0.3 1.1 0.4 0.7 0.4
LRF 203 239 246.5 133.2 166.2 142.8 141.4 82.1 87.8
SRF 940.3 950.2 916 602.1 648.6 588.7 614.4 542 437.6
BDR 2066.2 2308.3 2630.1 2560.1 2510.1 2379.4 2526.1 2060.4 1909.5
RDR 24.4 26.2 24.6 13.8 11.4 13.3 11.2 15.5 12.2
SEA 393.2 403 342 239.2 219.3 177 145.3 113.8 107.7
SCI 992.9 972 856.8 477.1 423.3 402.8 378.9 246.4 280.8
LDY 970.4 1917.3 154.8 544.2 760.5 866.2 665.1 870.8 795.8
MUL 7153.1 9092.1 7625.7 7295.6 5742.8 5877.3 6237.1 4092.6 5772.9
POM 305.8 210.5 222.6 166.1 135.9 130.1 108.8 102.8 160.9
SHP 1299.6 1661.8 1433 1186.3 1036.3 1072.1 911.3 681.5 442.5
SNK 0 0 0 0 0 0 0 0 0
FLT 729.4 774.7 695.9 435.2 438.6 385 370.4 281.8 277.5
ODF 1794.4 1778.6 1706.3 1125.4 990.6 968.7 879.4 641.2 577.7
SDF 140.3 136.1 124.1 59.6 56 53 48.5 31.6 36.7
YTN 1721.3 2369.2 1957.1 1329.6 1927.4 1711.6 1584.6 1202.1 1096.2
BTN 13.7 36.1 34.5 16.9 29.5 38.5 66.3 43.5 16
LTN 105.3 232.1 54.1 193.3 207.6 506.2 81.1 110 144
OTN 0 0 0 0 0 0 0 0 0
SWD 510.5 447.8 467.8 347 413.2 375.7 402.4 345.8 267
WMR 0 0 0 0 0 0 0 0 0
BMR 0 0 0 0 0 0 0 0 0
BIL 0 0 0 0 0 0 0 0 0
AMB 317.6 354.2 415.7 332.9 357.2 451.1 442.7 337.4 286.9
JCK 1176.7 891.7 835 878.9 775.8 967.6 1013 956.1 736.8
KMK 1374.7 1363 1135.5 1281.9 1218.1 1098.2 1273.6 1113.9 1515.1
SMK 303.9 552.1 610.3 701.8 533.8 839.6 617.4 819.5 820.3
SAR 371.5 312.4 621.7 626.6 653.4 725.3 964 458 1023.2
LPL 1162.7 947.4 840.7 1018.6 1024.6 982.8 894.7 539.2 623.9
DWF 0 0 0 0 0 0 0 0 0
MEN 495684.2 694272.6 591487.6 528569.9 585341.5 518362.8 464162.4 369914.8 408881.9
PIN 128.9 124.3 116.2 64.4 61.1 62.2 60.4 46.3 52.5
MPL 274.7 280.5 274.5 192.9 175 190.4 199.7 131.1 180.6
SPL 2543.2 2559.8 2453.7 2675.8 2919.6 2311.9 2728.5 2012.7 1327.2
TIP 521.8 436.8 351.8 329 250.9 597.4 368.9 242.2 364.8
BEN 0 0 0 0 0 0 0 0 0
LGS 1924.3 691.7 658 775.9 1053.2 1230.2 1059.9 907.2 1238.4
FIL 0 0 0 0 0 0 0 0 0
SMS 0 0 0 0 0 0 0 0 0
RAY 10.2 0.4 23.4 0 22.1 1.3 6.6 0.6 8.6
BSH 59092.6 60651.8 71592.5 65725.2 55472.7 62187.3 54625.3 43559.1 64925.7
WSH 39036.9 39187.3 49640.8 37874.8 38050.8 43369.7 51317.1 46179.7 60594.6
PSH 12436.6 5912.8 5417.9 7000.7 7760.6 6844.1 7015.1 6508.3 4379
OSH 9517.6 4902.7 4391.8 6020.2 4776.8 4178.2 3086.1 1938.6 1189.7
TUR 0 0 0 0 0 0 0 0 0
BCR 30715.2 31432.3 31283.1 24722.9 29953.2 29088.6 27484.8 22718.3 30612.2
SCR 3171.8 2579.9 3109.9 3031.1 2918.7 2409.1 2708.8 2058.9 2180.5
LOB 2530 3270.3 2557.2 1479.4 1914 1774.6 2099.2 1394.3 1983.5
SPG 280.2 285.1 268.1 235.8 234.2 187.3 202.1 185.5 140.2
CMB 1.2 0.7 0 0 0 0 0 0 0
OYS 9349.9 10946.5 11699.9 11622 10939.2 12291.5 11365.6 9158.7 8925.2
BIV 1293.1 1267.7 250.6 230.9 218.3 257.6 121.1 97.5 43.6
SQU 108 58.5 57.6 85 55.5 55.1 49.1 34.4 45.8
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Table A.3: Continued

Group 2007 2008 2009 2010 2011
GAG 621.3 678.6 384.6 264.9 161.4
RGR 1670.5 2141.6 1990.8 1582.6 2512
SCM 147.4 149.4 135.9 84.1 69.3
SSR 251 166.2 136.8 126.3 245.2
DSR 673.7 650.7 696.5 422.2 620.9
RSN 1360 1074.2 1135.3 1478.3 1605.7
VSN 1081.3 1273.8 1722.2 956.9 1391.3
LUT 654.7 831.1 1072.7 879.6 1043.4
BIO 1.2 0.7 0.8 0.6 0
LRF 113.3 99.3 99.1 71.5 143.6
SRF 561.9 538.5 482.2 344.5 641.4
BDR 1907.3 1838.2 2254.9 2079.4 2402.6
RDR 14.1 15.6 17.1 18.7 18.2
SEA 175.6 149 146.3 129.8 225.8
SCI 446.2 357.9 320.3 295 597
LDY 547.3 664.5 389.2 660.5 415.3
MUL 4052.1 4799 5126.8 4064 6455.8
POM 156.3 147.3 125.5 39.4 33.2
SHP 631 664.3 690.6 611.3 562.2
SNK 0 0 0 0 0
FLT 347.8 303.9 307 236.9 508.5
ODF 897.1 801.3 884.1 680.7 1416.8
SDF 64.7 49.7 43.3 37.2 91.4
YTN 1348.8 731.3 1114.4 302 658.1
BTN 32.9 25.2 17.4 20.5 3.1
LTN 127.7 34 119.6 266.2 26.7
OTN 0 0 0 0 0
SWD 337.9 301.2 398.4 174.1 320.4
WMR 0 0 0 0 0
BMR 0 0 0 0 0
BIL 0 0 0 0 0
AMB 280.6 228.7 287.1 452.4 386.4
JCK 834.9 647.4 599.3 633.2 681
KMK 694.6 1017.5 1306.6 1042.8 1208.2
SMK 500.6 610.9 890.5 615.7 660.9
SAR 3.8 986 628 909.3 5.4
LPL 731 768.3 1081.5 271.9 1007.6
DWF 0 0 0 0 0
MEN 456034.1 420734.8 528882.8 438650 623408.5
PIN 88.3 61.2 53.8 134.2 102.9
MPL 213.7 185.9 155.3 158.3 165.5
SPL 1395.2 1867.6 2009.5 1496.9 1565.7
TIP 382.2 117.3 121.4 175.4 228.7
BEN 0 0 0 0 0
LGS 477.9 585.6 650.9 652.9 471
FIL 0 0 0 0 0
SMS 0 0 0 0 0
RAY 5.5 15.4 2.8 1 3.2
BSH 52838.1 36466.2 56968.4 33909.1 54333.2
WSH 46157.7 44995 53315.2 42053.1 41705.1
PSH 2449.4 3286.9 3132.5 4539.3 3845.3
OSH 1171.1 894.8 581.4 1006.9 1746.2
TUR 0 0 0 0 0
BCR 26416.7 22346.4 27795.8 18694.7 25464
SCR 2686.7 2777.6 2420.4 2318.8 2512.9
LOB 1558.4 1355.4 1792.4 2398.3 2438.3
SPG 200.8 184.3 91.5 100.9 46.7
CMB 0 0 0 0 0
OYS 10262.4 9369.8 10358 7199 8439.7
BIV 59.4 66.5 68 70.7 76.3
SQU 23 33.2 30.4 39 60.4
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Table A.4: United States Historical Recreational Landings by Atlantis Functional Group
(tonnes)

Group 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
GAG 992.2 829.9 1459.2 2893.6 884.7 2980.5 1631.8 1110.3 1699.8 1049.8
RGR 446.1 446.1 739.6 1577.6 3218 1533 1088.8 664.4 1123.1 1252.5
SCM 34.1 34.1 40.6 54.9 5.2 6.9 52.4 10.1 19.4 21.5
SSR 1236.6 1236.6 1347.4 4753.9 1678.5 2507.4 4026.8 2311.6 2976.2 1846.4
DSR 21090.8 21090.8 22237.9 12566.1 12845.7 87930.8 22805.7 10596.5 9651.9 45938.7
RSN 3669.7 3669.7 3255.4 5683.7 2095.1 2069.7 1816.5 1455.6 1757.4 1537.4
VSN 52.2 52.2 6.1 34.3 44.9 128.4 482.3 500.2 665.1 416.1
LUT 138125.2 138125.2 1535.9 64608 123888.6 7214.3 29803.7 54095.4 46023.9 27297.3
BIO 19.4 19.4 5.6 139.7 16.8 8 14 15.5 4.7 61.5
LRF 941.7 941.7 561.3 1262.1 2526.9 233.8 249.4 2004.8 277.2 106.7
SRF 2175.8 2175.8 5854.4 1239.6 860.1 660.8 2089.8 2728.3 1002.6 695.3
BDR 685.7 685.7 1349.4 1589.8 800.5 912.8 1350.7 1799.6 1098.9 936.3
RDR 2248.2 2248.2 3428.2 3703.3 3577.6 3435.9 2853.5 2675.4 1820.1 3050.1
SEA 8504.4 8504.4 10298.5 12081.6 11544.1 10475.4 12391.3 1665.1 8085.3 6172.4
SCI 1327.5 1327.5 1303.7 1112.4 1010 1045.2 1442 120.4 583.6 249.1
LDY 528.9 528.9 216.2 128.5 206.8 234 172.2 130.1 152 65.3
MUL 979.3 979.3 1064.9 6272.4 10711.2 11478.4 6321.3 2674.9 3190 1072
POM 11.4 11.4 64.6 345.6 98.6 29.1 60.9 62.4 30.4 50.4
SHP 875.8 875.8 1104.8 2032.6 1499.7 1575.1 1164.5 985.8 2181.2 2346.3
SNK 31 31 23.6 35 0 16.8 7.2 18.8 19.8 8.8
FLT 312.9 312.9 3096.9 4475.3 774.4 913.4 897.4 448.8 557.8 318.7
ODF 40392.9 40392.9 232027.2 57408.7 60719.3 287598.9 245347.4 214242.1 313932.5 74275
SDF 0.9 0.9 9.5 2.5 2.2 0.6 0.9 0.5 6.5 5.5
YTN 0 0 71.3 0 109.6 0 115.4 13.7 48.6 20.2
BTN 0 0 0 4.1 9.5 0.4 2.8 6.2 0.7 0
LTN 293.7 293.7 419.7 292.4 190.4 167 743.4 610 568.7 308
OTN 6 6 5 0.6 0.5 0 1.7 2.7 0 0
SWD 0 0 0 0 0 0 0 0 0 0
WMR 87.6 81.3 30.5 12.2 16.1 6.1 5.7 16.9 3.7 0.7
BMR 43.1 66.4 3269.1 3754 453.2 11427.4 1203.9 799.3 4995.3 18.1
BIL 464.9 464.9 762.6 13 682.8 15 268.8 207.7 71.7 12.5
AMB 261 283.7 2094.5 1220.8 592.8 1055.3 2634 2106.8 1024 1588.8
JCK 1828.7 1828.7 8004.8 30669.1 13265.5 7785.2 9947.4 8595.2 7307.7 23103.9
KMK 1695.1 4536.1 5949 2360 2521.8 1309.9 1452.2 3493.6 2704.1 2237
SMK 65.7 65.7 65.7 3717.3 1504.7 1619.5 11585.1 143.4 24.3 1759.7
SAR 3.9 3.9 2 7.9 10.7 22.1 0 1.2 0 0.4
LPL 21673.1 21673.1 12376.3 15977.2 8819.5 12481.2 25097.2 15537.4 10401.7 13981.1
DWF 0 0 0 0 0 0 0 0 0 0
MEN 210 38 54 24 5 449 258 209 488 440
PIN 368.7 368.7 423.7 372.1 622.6 217.8 363.2 188.5 375.1 309.7
MPL 98 98 117.6 88.6 4.1 9.4 160.9 65.4 11.9 48
SPL 279.3 279.3 170.5 364.4 254.9 54.5 50.7 239.1 103.5 85.4
TIP 45.8 45.8 162.9 29.1 60.3 250 500 184.8 397.2 322.1
BEN 0 0 0 0 0 0 0 0 0 0
LGS 9068.6 9068.6 7832.1 10199.8 12170.8 11404.7 16225.9 7752.1 15590.6 8700.2
FIL 0 0 0 0 0 0 0 0 0 0
SMS 0 0 0 0 0 0 0 0 0 0
RAY 25.1 25.1 109.7 77 379.8 466.7 146.4 77.9 199.6 170.2
LOB 640.2 798.9 692.8 717.2 535.7 582.3 564.5 528.1 627.5 841.3



187

Table A.4: Continued

Group 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
GAG 571.5 1246.6 1018.7 1264.6 907.1 1224.8 1067.5 1167.1 1596.3 1688.2 2255.5
RGR 511.5 805.2 1205.1 948.5 820.2 844.8 405.4 255.1 291.7 522.9 956
SCM 2.3 8.6 14.8 17.5 31.5 2.2 5.5 30.6 36.9 46.7 12.3
SSR 353.6 236 233.9 225.6 243.6 214.5 210.1 269.5 177.2 108.9 105
DSR 15256 3815 1195.6 3289.8 3629.9 3518.9 732.6 570.3 1096 1018.4 373.3
RSN 964 1511.7 2217.9 3002.3 2263.6 1936.4 1674.6 2252.8 1769.8 1434.9 1428.4
VSN 570 627.4 657 581.2 477.9 594 283.2 300.6 152 204.5 161.8
LUT 31589.9 37691.2 39300.8 40448.9 19691 24318.1 15058.2 10916.5 9706.1 14222.9 3585.5
BIO 19.2 2.8 0 3.1 36.3 9 2 0 0 0 0
LRF 742.2 157.7 516.5 576.6 644.8 432 267.4 267.4 252.3 267.2 156
SRF 645.4 820.2 688.3 762.2 795 768.4 982.1 1156.8 497 535.1 411
BDR 463.1 619.9 773.2 775.4 664.3 713.5 651.7 915.7 1052.7 658.5 1610.9
RDR 2201.9 2724.9 4004.6 4736.5 4161.4 6144.5 6016.4 6132.4 4492.1 4984.2 7260.7
SEA 3781.7 6523.2 4760.3 4591.2 5466.8 5558.2 5332.6 5209.1 3636 5318.4 4501.9
SCI 262.6 475.9 318.5 194.8 282.7 264.5 310.5 253.1 322.9 358.3 329
LDY 58.3 39.2 105.2 30.7 84 47.5 62.6 40.1 93.4 46.3 124.3
MUL 388.8 1860.5 1067.3 1501.1 908.9 660.2 1023.2 699.9 642.6 741.1 1102.2
POM 4.1 564.4 82.3 18.5 48.6 65.3 54.7 36.2 383 72.5 47.4
SHP 1216.3 1538.3 2346.5 2201.8 1378 2405.3 1726.1 1959.6 1790.2 1815.2 1698.2
SNK 0.6 7 12.8 14.8 6.1 10.9 5.8 48.1 13.7 29.8 10
FLT 579.9 676.5 371 348.8 292.9 282 222.9 251.6 233.2 327.7 189.6
ODF 88709.9 82406.3 38978 51599.6 61849.9 76264.3 66112 60576.2 40935.4 31167.5 29843.4
SDF 0 0.6 0.7 2.1 0.6 1 0.8 2.7 1.7 0 4.3
YTN 0 39.2 76.6 312.5 30.9 0 2.9 34.8 57.1 115.1 112.8
BTN 0 1.9 0 0 15.1 0 0 0 0 0 0.6
LTN 655.1 1106.1 679.6 412.1 609.7 369.4 359.6 282.4 313.3 311.4 259.1
OTN 0.7 0 0 0 0 0 12.7 2.9 0 0 0.6
SWD 0 0 0 0 0 0 0 0 0 0 0
WMR 1.1 1 1.1 0.6 1 0.8 0.6 0.8 0.2 0.1 0
BMR 16.5 196.2 16.4 9.4 17.1 18.6 10.7 13.5 5.7 10.3 6.2
BIL 75.7 144.6 34.6 122.6 56.9 81.9 122.4 5.7 45 33.6 3.7
AMB 429.8 1345.7 1132.2 1370 732.5 394.2 583.8 538.4 295.1 384.7 470.6
JCK 6003.4 9699.6 4751 69465.3 17795.4 6885.5 3614.3 5165.3 8563.5 7714.4 19771.1
KMK 3162.3 4872.4 3236.6 4144.6 4428.8 4059.7 4750.9 4461.1 3782.1 2971.1 3498.6
SMK 2140.8 2587.2 3060.5 1931.6 1702.4 1677.1 1265.6 1218 1247.8 1854.7 1781.7
SAR 26 2.2 0.5 0.2 0 28.7 0.9 0.3 3.4 2.6 0.9
LPL 8613.7 12145.9 13422.1 17121.7 11245.4 18779.2 13452.6 20680 23391.2 17655.7 17692.6
DWF 0 0 0 0 0 0 0 0 0 0 0
MEN 135 51 138 170 189 56 82 20 47 51 207
PIN 257.5 364.8 402.4 446.7 475.3 547.3 397 604.4 788.1 487.7 852
MPL 57.7 3.5 14 27.1 28.8 15.9 26.5 229 44.8 12.3 19.2
SPL 59.2 366.7 136.6 158.9 168.7 387.3 147.1 175.6 146.7 112.1 90.4
TIP 300.1 302.1 274.9 128.6 88.6 154.6 170.1 236.9 173.9 132 287.4
BEN 0 0 0 0 0 0 0 0 0 0 0
LGS 6216.1 3521.7 1953.5 2903 2462.7 2890 5336.8 3130.8 2062.8 1366.1 1599.6
FIL 0 0 0 0 0 0 0 0 0 0 0
SMS 0 0 0 0 0 0 0 0 0 0 0
RAY 113.2 43.8 43.6 22.6 36.3 33.4 30.4 4.8 0.5 7.9 6.8
LOB 827.3 720.7 963.4 613.4 854.2 830.6 845.3 847.3 1022.5 568.4 1088.8
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Table A.4: Continued

Group 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
GAG 1828.6 2011.9 1711.5 2228.7 1618.1 1087.3 1001.3 1369.5 579.8 604.3 262.8
RGR 602.3 730.8 578.7 1377.6 664.5 420 435.3 390.5 444.7 338.5 290.2
SCM 26.4 26.1 30.6 55.6 34.9 66.3 32.2 49.6 40.3 22.6 25.2
SSR 59.5 88.4 107.9 218.3 123.5 108.3 138.8 118.3 91.4 10.5 20.9
DSR 635.7 608.4 512.5 895.1 1098.3 621.9 390.5 451.9 568.3 348.6 817.3
RSN 1537.3 1982.2 1819.9 1866.2 1489.7 1735.3 1932.8 1249.2 1666.9 799.2 1626.6
VSN 303.7 248.3 288.9 396.4 123.2 161.5 176.8 161.2 167.6 114.3 302.8
LUT 3317.8 9390.9 16721.9 8973.8 3028.6 25879.3 34000.6 30384.9 12403.3 9761.6 5762.6
BIO 2.4 0 1.5 2.9 0 0 0.6 0 0 0 0
LRF 183.4 240.1 314.7 412.5 278.3 234.6 274.5 274.3 205.2 177.1 178.3
SRF 595.4 460.7 643.8 795.6 606.5 488.5 585.1 842.2 434.7 2709.7 592.7
BDR 1224.8 1238.9 1403 1341.9 1106.9 1146 1285.1 1613.7 1357.1 1310.5 1313.5
RDR 6771.9 5907.1 6706.5 7321.6 5640.4 6080.8 6801.2 7327.1 6141.1 6870.8 7945.6
SEA 3744.6 3379.4 2848.5 3254.7 2951.2 3508 3234 3250.7 2887.2 1764.6 3216.5
SCI 625.4 231.7 271.8 208.1 153.2 193.3 122.8 174.3 102.1 127.6 129.4
LDY 130.9 77.4 223.1 299.3 156.2 265.7 145.2 358.1 206.9 151.7 150.7
MUL 917.9 415.4 442.7 531.3 732 1172.4 500.2 750.1 192.8 521 787.9
POM 93 75.9 43.5 142 34.5 244.1 61.4 156.7 37.9 36.9 11.1
SHP 2168.9 1900.6 2440 3147.7 2531.8 1489 1700.7 2106.8 1847.7 1606.1 3289.8
SNK 16.9 10.4 8 35.4 4.9 3.8 3.9 1.7 3.1 0 0
FLT 262.7 197.7 189.8 198.6 133.7 104.3 146.6 118.2 133 122.4 184.6
ODF 38494.5 34102.4 40969 67956.9 44269.9 48908.3 79342.7 79270.3 48483.9 70510.6 139676.5
SDF 0.1 2.2 0 0 0.1 0.2 0.4 0.1 0 1.6 0
YTN 350.3 141.9 455.6 267 288.1 337 204.7 444.4 121.1 18.4 417.4
BTN 0 0 0 0 3.4 0 0 0 0 0 0
LTN 268.9 398.7 269.2 484.7 158.6 292.7 265.5 200.4 235.7 192.1 198.6
OTN 0 0 0 0 0 0 4.3 0 0 0 0
SWD 0 0 0 0 33.4 0 0 47.1 308.1 24.3 7.1
WMR 0.1 0 0 0 0 0 0 0 0 0.1 0
BMR 6.8 6.4 60.6 3211.9 6.5 8.9 4.5 3.5 3.4 2.2 4.3
BIL 0 0 2 0 0 8.5 3.4 0 0 0 0
AMB 571.1 928.8 1206.6 1080.2 655.3 640.5 489.2 589.8 723.2 675 430.2
JCK 13856 8727.9 7732 8953.6 4109.1 8870.1 20958.2 13329 15333.2 7257.1 2957.1
KMK 3442.4 3573.4 2996.3 2883.3 2537.1 4937.2 1884.8 881.6 1789.2 869.1 855.8
SMK 3233 2110.6 1909.6 3230.7 1678.3 2656.6 1818.6 2614.1 1651.6 1795.1 1944
SAR 4 16.8 13.6 8.5 3.5 28.5 3.6 3.8 0.7 0.3 0.4
LPL 11270.6 9787.2 9947.1 14615 9106.1 19110.4 16336.7 17906.4 18674.7 8642.5 17294
DWF 0 0 0 0 0 0 0 0 0 0 0
MEN 48 108 118 64 48 55 30 28 61 44 78.7
PIN 708.7 761.1 789.4 1253.2 587.2 395.9 632.7 921 364 920.6 680.1
MPL 11.4 8.2 16.9 61.8 0.1 21.5 29.8 36.6 18.6 0.5 0.5
SPL 456 266.2 364.8 568 260.5 1234.2 559.8 735.5 1805.4 476.6 166.1
TIP 163.2 134.1 89.7 125.6 134.2 73.1 102.9 29.8 42.6 57.3 75
BEN 0 0 0 0 0 0 0 0 0 0 0
LGS 2325.8 1092.4 950.7 1461.6 908.4 1105.8 825.9 442.7 694.4 3318.4 716
FIL 0 0 0 0 0 0 0 0 0 0 0
SMS 0 0 0 0 0 0 0 0 0 0 0
RAY 5.6 8.8 8.1 1.5 18.6 0.5 0.3 13.4 0.3 1.9 9.5
LOB 870.7 540.1 607.7 572.1 572.1 572.1 572.1 572.1 572.1 572.1 572.1
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Table A.5: Mexican Historical Commercial Landings by Atlantis Functional Group (tonnes)

Group 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
AMB 1242.8 1906.2 1590.4 655.7 883 704.2 294.3 547.3 1062.4 1809.3 2285.2
BCR 6282.7 9142.2 10864 6841.4 6784.1 6304.8 4891.7 5569.2 12042.1 7053.6 8360.9
BFS 1240.2 1905.8 1624.4 701.5 940.1 753.8 332 587.1 1145.6 1861.2 2339.2
BIL 1219.2 1874.4 1590.4 655.7 883 704.2 294.3 547.3 1062.4 1809.3 2285.2
BIV 3176 3756.8 3784 2477.4 3148.2 2292.7 1943.6 1635 2200 2225 2832.7
BMR 1219.2 1874.4 1590.4 655.7 883 704.2 294.3 547.3 1062.4 1809.3 2285.2
BSH 22946.2 25402.5 19493.1 18763.3 20866 20304.3 19104.9 18732.5 37423.7 20640.3 20478.5
BTN 1219.2 1874.4 1591.7 662 893.8 710 301.1 547.7 1068.2 1812.9 2288.2
CMB 3006.4 4316.6 4927 2144.4 4367.5 2714.5 1452.8 1879.1 4550.5 4551.6 4573.3
DSR 1619.3 2283.2 1977.8 962.6 1225.3 1097.8 679.3 1042.2 2233 1860.4 2882.9
FLT 1263.7 1963.3 1634 655.7 883 704.2 294.3 547.3 1062.4 1809.3 2285.2
JCK 2662.5 3829.4 4439 3598.7 4711.3 2610.2 1968.1 2375.3 4322.8 3190 3325.7
KMK 3186.4 4415.5 4957.4 655.7 883 704.2 294.3 547.3 1062.4 1809.3 2285.2
LGS 4310.2 8466.3 8746.8 9013.9 10056.2 8787.6 7958.1 8008.5 17597.7 8322.6 10943.8
LOB 1436.7 2073.3 1904.7 889.8 1166.6 904.1 514 884.5 2311 2226.5 2481
LOG 2.5 3.8 14.8 147.6 101.3 89.7 0.2 0.4 0 0 0
LPL 4431.1 6160 7341.3 3315.8 3808.7 3358.6 3090.1 3475.7 5186 4823 6348.6
LRF 1339.9 2416.9 1884.4 655.7 883 704.2 294.3 547.3 1062.4 1809.3 2285.2
LTN 1291.3 2057.7 1763.2 655.7 1220.5 799 294.3 547.3 1062.4 1909.5 2470.2
LUT 2590.4 7111.4 3963.6 693.3 916.9 738.6 360.2 589.6 1150.5 1846.7 2324.9
MPL 12575.3 23615.1 32905.5 8365.9 7870.1 7051.8 5727.5 7096.3 15792.3 5598.3 4303.3
MUL 7930.6 6968.3 7424.5 4695.4 6100.2 4472.6 8948.9 9675.4 19754.9 9703.2 11425.5
ODF 4878.8 7587.9 7733 695.7 3369.6 3246.1 2725.6 4192.4 8397.9 6081.8 7052.2
OSH 1702 2397.3 1988.3 1058.1 1327 1139.8 712.3 951.4 1870.4 2227.8 2689.5
OYS 47763.2 36080.7 29167 31051.9 38086.6 36430 35177.4 42572.7 95458.6 1809.3 2285.2
PIN 1472.8 2187.9 1906.6 655.7 883 704.2 294.3 547.3 1062.4 1809.3 2285.2
POM 1465 2045 1764.6 655.7 883 704.2 294.3 547.3 1062.4 1809.3 2285.2
PSH 2184.8 2920.1 2386.1 1460.5 1771.1 1575.3 1130.4 1355.6 2678.4 2646.2 3093.8
RAY 1355.5 1947.6 2077.1 701.5 940.1 753.8 332 587.1 1145.6 1861.2 2339.2
RDR 1903.7 2527.6 2225.9 1624.6 1850.9 1507.1 1386.6 1432.3 2873.1 2510.5 3078
RGR 8420.4 9233.2 8563.9 6178.3 7044.9 7788.7 7223.7 9455 22132.9 2729.5 13045.4
RSN 2361 3207 3441 3073.9 4082.9 3763.7 3977.1 4839 7881.3 3773.5 7067
SAR 1219.2 1986.9 1693.8 3282.1 6184.6 3575.4 1903.7 1348.4 2096.6 3684.4 2912
SCI 1860.6 2596.5 2372.4 655.7 883 704.2 294.3 547.3 1062.4 1809.3 2285.2
SCR 1333.2 2038.1 1799.2 795 1015.9 830.3 397.8 660.4 1309.6 1927.4 2422
SDF 1219.2 1874.4 1590.4 655.7 883 704.2 294.3 547.3 1062.4 1809.3 2285.2
SEA 2808.1 3775.9 3732.7 1624.6 1850.9 1507.1 1386.6 1432.3 2873.1 2510.5 3078
SHP 1472.8 2187.9 1906.6 655.7 883 704.2 294.3 547.3 1062.4 1809.3 2285.2
SMK 3487.6 4655.9 5062.7 3302.5 3457.6 3254.7 3080.7 3475.3 5168.8 4703.7 6155.2
SMS 1261.3 1937.2 1658.4 747.3 997.1 803.4 369.8 626.8 1228.9 1913.2 2393.2
SNK 3767.5 5234.6 6331.4 4499.5 3876.7 4030.8 3244.5 3474.8 6983.6 3709.3 3782.6
SPL 2763.2 3567.2 4500.2 655.7 883 704.2 294.3 547.3 1062.4 1809.3 2285.2
SQU 7104.1 8133.1 7449 8406.7 6115.6 6453.9 8752.9 7905.5 14791.7 2849.8 16124.3
SRF 1368 2209.2 2174.2 655.7 883 704.2 294.3 547.3 1062.4 1809.3 2285.2
SSR 4150.3 4421.5 3955.5 962.6 1225.3 1097.8 679.3 1042.2 2233 1860.4 2882.9
SWD 1219.2 1874.4 1590.4 655.7 883 704.2 294.3 547.3 1062.4 1809.3 2285.2
TIP 2482 3758.8 3629.4 3403.4 4307.2 3680.5 2557.6 2932.5 6058.1 4926.6 5527.6
TUR 22.9 34.3 133.1 1328.4 912 807.5 1.6 3.3 0 0 0
VSN 1395.2 2308.1 2083.9 655.7 883 704.2 294.3 547.3 1062.4 1809.3 2285.2
WMR 1219.2 1874.4 1590.4 655.7 883 704.2 294.3 547.3 1062.4 1809.3 2285.2
WSH 2184.8 2920.1 2386.1 1460.5 1771.1 1575.3 1130.4 1355.6 2678.4 2646.2 3093.8
YTN 1219.2 1874.4 1701.8 1195.9 1819.2 1201 876 576.5 1562.8 2121.4 2547.7
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Table A.5: Continued

Group 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
AMB 2422.2 10456.8 2262.9 2305 2092.5 1840.3 1356.5 1216.9 957.3 899.4 789.8
BCR 9591.7 36327.5 11940.7 11888.7 11531.8 14014.8 14126.5 12667.3 12079.7 8473.9 7252
BFS 2468.1 10688.9 2319.9 2353.9 2134.9 1886.6 1390.4 1252.6 986.3 927.2 818.6
BIL 2422.2 10456.8 2264.8 2309 2092.5 1840.3 1358.1 1217.9 958.8 902.6 789.8
BIV 4119.3 19048.5 2344.8 2821.1 2782.8 2444.7 1852.9 1870.1 1578.5 2008.9 1851.2
BMR 2422.2 10456.8 2264.8 2308.9 2092.5 1840.3 1363.3 1222.1 961.1 913.7 789.8
BSH 23350.7 101445.4 19778.6 19285 19879.2 18265.1 18457.3 19869.9 16827 17915.4 18178.9
BTN 2427.3 11716.9 2272.7 2317.4 2104.1 1848.6 1367.7 1228.7 977.1 914.4 802.5
CMB 4675.9 22640.4 6165.3 6000.5 6071.5 3860.4 5607 3990.3 7025.4 7828.5 8099
DSR 3060.6 12342.6 2871.4 2883.8 2682 2313.9 1830.2 1701.9 1432.1 1454.3 1228.1
FLT 2422.2 10456.8 2262.9 2305 2092.5 1840.3 1537.9 1411.1 1134.2 1001 948.6
JCK 4233 17082.8 4533.6 4719 4886.6 7352.3 10468.2 10470.2 5253.8 7688.8 7423.2
KMK 2422.2 10456.8 2262.9 2305 3493.6 3891.4 3714.7 3248.6 3191.2 2926.5 3085
LGS 8679.2 51992.8 10135.6 9925.1 9579 9920.7 6991.1 6387.5 6037 5652.5 5349.9
LOB 2896.8 13241.1 2801.7 2606.9 2511.3 2183.9 1823.1 1476.3 1208.2 1260.1 1184.7
LOG 0 0 0 0 0 0 0 0 0 0 0
LPL 7029.9 36502.5 7283.3 6504.1 7484.8 9491.1 7997.1 7602 7402.6 6334.1 6273.8
LRF 2422.2 10456.8 2262.9 2305 2092.5 1840.3 6399.5 6977.5 7056.3 7489.2 5403.8
LTN 2956.6 11539.5 2707 2691.4 2609.1 2431.8 2280.9 2210.3 1304.5 1678.2 1473.4
LUT 2482 10713.6 2332.1 2351.1 2137.3 1882.3 2067.4 3433.5 2902.1 2504 2865.7
MPL 3431 77238.4 6048.6 6414.4 5179.2 5632.6 4429.4 3737.6 3105 2715.1 2669.1
MUL 9233.6 37457.8 12004.8 12441.8 14258.6 13716.6 14189.7 12389.4 12137.6 13141.5 11231.4
ODF 7920.3 30116.2 8182.1 8689.9 8210.9 7911.2 8924.6 9212.9 7679.7 7683 7734.3
OSH 2887.3 12478.7 2652.2 2682.3 2487.7 2205.3 1736.5 1631.4 1310 1277.6 1176.2
OYS 2422.2 65833.1 2262.9 3097.8 3353.5 1840.3 5650.2 1216.9 979.1 899.4 789.8
PIN 2422.2 10456.8 2262.9 2305 2092.5 1840.3 1356.5 1216.9 957.3 899.4 789.8
POM 2422.2 10456.8 2262.9 2305 2092.5 1840.3 1934.3 1713.2 1432.7 1265 1078.3
PSH 3352.4 14500.7 3041.4 3059.6 2883 2570.3 2116.5 2045.9 1662.6 1655.7 1562.7
RAY 2468.1 10688.9 2319.9 2353.9 2134.9 1886.6 6444.3 6977 4697.6 3511.8 3189.1
RDR 2931.2 13695 3057.6 2885.1 2723.4 2756.5 2185.6 2215.7 1943 1973.1 1595.4
RGR 13913.2 44402.2 13215 12723.1 12213.4 9875.1 9884.4 9946.6 9503.6 10887.3 8679.3
RSN 7523.2 33762.9 8871.6 6778.9 6400.2 5998 5241 4355.9 4152.5 3435.3 3326.8
SAR 2913 241379.8 3165.6 4778 2400.9 2357.4 2270.9 4905.5 2201.1 1388.4 1128.2
SCI 2422.2 10456.8 2262.9 2305 2092.5 1840.3 2453.2 2857.1 2384.3 1449.2 1228.9
SCR 2583.7 11039.3 2480.9 2520.8 2305 2114.4 1644 1474.8 1207.8 1070 935.3
SDF 2422.2 10456.8 2262.9 2305 2092.5 1840.3 5792.6 4802.1 4247.7 3285.3 3460.6
SEA 2931.2 13695 3057.6 2885.1 6006.3 5595.1 5418.2 5473.4 5242.6 4903.1 3892.9
SHP 2422.2 10456.8 2262.9 2305 2092.5 1840.3 1356.5 1216.9 957.3 899.4 789.8
SMK 6489.1 25003.9 6817.9 6037.6 5552.5 6836.2 4696.7 4555.8 4750.2 3486.7 3196.6
SMS 2513.9 10921 2376.9 2402.8 2177.4 1932.9 1424.3 1288.3 1015.4 955 847.4
SNK 4323.3 15784.7 4087.7 4328.1 4193.5 4205.9 3676.8 3286.9 3286.1 3037.8 3578.5
SPL 2422.2 13911.8 2262.9 2319.5 2092.5 1840.3 2175.6 2815.4 2420.6 1953.6 1993.7
SQU 16202.4 55342.5 16441.3 17405.1 19015.1 27494.6 17379.2 16001.3 18262.8 21255.7 19388.9
SRF 2422.2 13911.8 2262.9 2319.5 2092.5 1840.3 1366.4 1265 1019.9 940.2 815.2
SSR 3060.6 12342.6 2871.4 2883.8 2654.7 2286.7 2122.3 1980.4 1728.7 1572.2 1413.2
SWD 2422.2 10456.8 2266.9 2310.1 2092.5 1840.3 1363 1222.8 964 911.5 789.8
TIP 5172.6 24383 5680.1 5239.3 4639.3 4617.9 3393.3 3358.8 2699.6 2567.7 2517.5
TUR 0 0 0 0 0 0 0 0 0 0 0
VSN 2422.2 10456.8 2262.9 2305 2092.5 1840.3 3282.4 2580.4 2457.8 2308.3 2743
WMR 2422.2 10456.8 2264.1 2307.1 2092.5 1840.3 1359.6 1217.7 958.9 907.8 789.8
WSH 3352.4 14500.7 3041.4 3059.6 2883 2570.3 2116.5 2045.9 1662.6 1655.7 1562.7
YTN 2860.7 119129.7 3100.1 3376.4 3091.4 2559.9 2325.4 2232.7 2668.8 2189.3 1880.7
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Table A.5: Continued

Group 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
AMB 636.8 719.5 704.6 701.7 585.2 557.5 469.5 411.1 545.2 374.6
BCR 7783.3 10443.3 11117.1 10740.1 10710.6 10504.8 9972.3 8151.7 11912.3 9660.8
BFS 664.1 744.9 732.7 734.7 606.6 576.6 488.4 432.9 571.5 391.3
BIL 636.8 721.5 706 702.9 586.3 559.4 471.2 412.2 547 375.3
BIV 1617.5 1714.1 1702.7 2239.5 2767 2503.1 2231.7 1756.6 1781.3 1829.4
BMR 636.8 738.4 726.7 717.8 601.9 576.6 490.2 425.5 570.5 392.9
BSH 15626.8 19686 15392 22584.3 16008.2 17272.9 15870.8 16863.4 20449.7 17503.4
BTN 651.1 736.6 719.9 716 598.2 569.3 482.4 426.9 559.4 392
CMB 5927 5725.8 7182.4 6901.5 6689.5 6565.2 3332.1 3678.1 7348.4 5041
DSR 1122.1 1095.2 1072 1198.9 1006.8 1128.4 1018.2 978.1 1097.8 760.5
FLT 875.4 891.9 887 879.8 789.7 701.6 579.7 455 648.8 465.7
JCK 7452 9149.1 8832.1 9227.9 9081.2 8871.9 8654.3 10438.8 13143 11021.9
KMK 3213.6 3099.9 3196.2 2910.1 2803.8 2543.9 2880 2426.5 2755 2208.2
LGS 4342 4042.8 3958.8 4529.9 4007.7 3606.7 2880.7 2738.3 3657.1 2676.8
LOB 1184.5 1103.2 1048.2 1070.9 813.5 854.9 686.6 604.5 935.6 621.7
LOG 0 0 0 0 0 0 0 0 0 0
LPL 6739 7196.1 7230.6 6925.2 5974.6 5882.2 6878.1 6004.9 7236.1 5375.6
LRF 4149.9 5208.2 6002.6 3087.9 3012.3 3786 4540.2 2681.5 2448 2449.2
LTN 1272 1429.4 1405.4 1323.4 1305 1088.6 1000.9 1042.9 1360.3 1069.8
LUT 2399.4 2705.4 2356.9 2661.8 2151.1 2452.8 2736.4 2058.4 2400.4 2232.5
MPL 1838.7 2274.5 2585.6 2355.1 2686.5 2236.1 1860.6 1319.7 1721.9 1761.5
MUL 9263.6 8749.4 8387.3 8299.4 6888.3 7647.8 6976.5 7848.9 8096.1 7063.1
ODF 6991.5 7361 6670.3 6469.3 7486.4 5417.4 5151 5403.5 5893.2 3894.9
OSH 969.9 1141 1031 1188 927.9 929 811.8 776.7 987.6 755.3
OYS 636.8 893.7 788.1 3604.3 2632.5 2121.5 1683.9 2307.9 2411.2 1903.6
PIN 636.8 719.5 704.6 701.7 585.2 557.5 469.5 411.1 545.2 374.6
POM 1166.3 1262.9 1081.1 1223.3 884.3 938.9 841.6 887.6 1028.7 749.7
PSH 1303 1562.5 1357.4 1674.2 1270.6 1300.4 1154 1142.3 1429.9 1135.9
RAY 2841.1 3069.1 3262.8 3711.3 3632.7 3558.5 2914.2 2898.9 3382.9 3665.1
RDR 1680.4 2122.9 2039.6 1950.5 1499 1234.5 1076.9 1055.2 1359.4 1030.5
RGR 9371.2 7481.5 7317.2 9652.5 8175.5 10834.3 10345.5 10617 9369.6 7319.5
RSN 3055.6 3220.2 3419.5 3938.6 3228.1 3471.7 3094.6 3351.9 4198.2 3145.2
SAR 793.7 945.4 848.9 914.3 734.1 669 511 479.4 596.2 411.2
SCI 1208.2 1114.1 1266.2 1161.7 962.8 756.6 570 519.9 680.1 480.4
SCR 797.7 938.5 939.1 927.7 813.2 781.5 683.5 585.4 801.2 583.7
SDF 3764.3 3664.2 3446.1 3546.5 2790.2 2285.9 2217.4 2495.2 3401.2 2371.6
SEA 4450.8 5158.9 5620.4 4717.1 4086 2646.8 3036.1 2954.1 3646.8 3012.5
SHP 636.8 719.5 704.6 701.7 585.2 557.5 469.5 411.1 545.2 374.6
SMK 3411.4 3961.8 3876.6 3922.4 2866.1 3268.6 3903.1 3330.4 4185.9 2815.7
SMS 691.4 770.3 760.7 767.7 628 595.7 507.3 454.7 597.7 407.9
SNK 4156.2 5109.3 4309.4 4794.7 4570.2 4712.8 4408.3 4528.1 4946.3 3531
SPL 1597.9 2215.4 2155.2 2751.4 2132.5 1334.3 1487.7 601.3 1409.3 1151.4
SQU 15171 14914.2 22549.6 10556.9 26657.6 19226.2 11681.6 24259.2 22463.5 26057.5
SRF 643.7 757.6 729.1 712.8 597.2 571.7 472.6 414.4 1074.5 1061.9
SSR 1294.3 1273 1322.4 1440 1231.5 1239.1 1070.8 1020.2 1088 800
SWD 636.8 728 719.1 713.1 595.1 570.8 481.9 416.8 565.3 385.8
TIP 2275.2 2244.1 2387.6 2681.7 1869 1702.4 1604.3 1719.2 2120 1374.3
TUR 0 0 0 0 0 0 0 0 0 0
VSN 2166.9 2143.8 2049.1 2445.6 2233.5 2481.7 1441.3 1377.8 1521.2 971.6
WMR 636.8 724.2 712.5 707.3 589.6 560.3 473.8 415.7 556.2 387.2
WSH 1303 1562.5 1357.4 1674.2 1270.6 1300.4 1154 1142.3 1429.9 1135.9
YTN 1869.9 2197.6 2021.9 1940.8 1709.4 1578.3 1576.6 1772.8 1763.2 1873.4
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Table A.6: Cuban Historical Commercial Landings by Atlantis Functional Group (tonnes)

Group 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
BCR 0 80.5 104.4 132.1 147.5 153.6 174.8 132.1 216.2 227 0 139.9
BFT 0 0 0 0 0 0 0 0 0 0 1810.3 0
BIO 1983 1356.9 1715.6 2130.5 2234.8 2327 2419.4 2339.5 2342.7 2297.8 645 1691.9
BIV 0 263.1 682.3 525.8 583.4 653.9 683.4 660.1 649.4 698.5 33.5 475.3
BMR 102.1 155.3 159.4 105.3 44.3 54.9 34.8 4 43.6 18.4 30.6 38
CMB 0 0 28.4 281.9 263.5 250.9 93 78.2 80.8 100.4 96 30.3
JCK 30 13 28 23 38 44 42 56 24 24 3.3 45
KMK 5.7 3.3 0.1 0.3 1.3 0.7 0.5 0.1 0.3 0.3 197 1.3
LGS 369 702 561 445 422 335 319 470 524 471 1242.2 122
LOB 1551.3 1575.3 1704.6 1596.8 1848.7 1985.3 1728.8 2059 1899.2 1744.3 77 1496.8
LOG 200.3 155.9 162.8 170.9 173.4 201.6 193.4 149.6 115.8 88.9 606.3 52.6
LPL 723.4 556.3 628.6 624 499.8 498.7 433.9 392.1 558.3 593.3 1810.3 501.3
LRF 1983 1356.9 1715.6 2130.5 2234.8 2327 2419.4 2339.5 2342.7 2297.8 22.1 1832.6
LTN 0 0 11.6 2.1 5.3 5.6 8.4 19.3 18.6 29.1 574.7 22.1
LUT 825.5 883.8 900.1 844.2 735.6 693.4 701.7 790.1 715.1 753.5 8 777.3
MPL 0 0 0 0 5 8 10 15 17 22 46.9 8
MUL 214.9 184.8 216.7 204.1 249.6 111.3 132.7 136.9 68.6 78.1 44.1 90.7
OBL 41.7 46.9 63.4 9.8 59.2 45.5 17.5 59.9 27.3 19.3 373.9 29.1
ODF 189.3 233.5 318.9 290.6 308.3 317 339.6 328 372.9 396.5 794.1 361.6
OYS 332.8 514.8 526.6 446.5 629.2 516.2 529.5 330.3 479 854.6 0 757.2
RAY 0 0 0 0 0 0 0 0 0 0 407.4 1.1
RGR 1025.2 824.6 734.3 578.2 724.5 635.3 669.9 726.6 766.2 903 431.2 320.3
RSN 373.5 341.6 367.2 433.7 382.2 505.1 429.1 594.3 491.8 483 0.4 52.2
SCR 119.3 12.1 28.5 26.3 25.8 23.2 17.8 15.2 12.6 5.1 3.3 0.4
SMK 5.7 3.3 0.1 0.3 1.3 0.7 0.5 0.1 0.3 0.3 1061.6 1.3
SPL 829.9 813.8 833 963.6 799.4 979.7 1058.1 795.2 1001.7 994 1810.3 1151.2
SRF 1983 1356.9 1715.6 2130.5 2234.8 2327 2419.4 2339.5 2342.7 2297.8 3725.9 1691.9
SSR 4038.1 2886.2 3702.8 4504.1 4646.2 4911.2 5090.4 4897 4843.3 4786.3 20 3478.9
SWD 134.9 138.7 53.6 44.7 28.8 33.1 48.3 57.1 47.4 23.6 399.4 16.2
TUR 350.6 416.3 414.4 407.5 338.7 541.5 421.3 373.1 324.3 343.7 2.1 249.2
WMR 74.2 40.6 15.8 39.2 53.6 75.6 67.2 21.7 8.4 7.7 18.6 3.5
YTN 241.2 699 526.1 277.6 888.3 667.1 728.4 371.7 34.3 31.9 0 6.3
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Table A.6: Continued

Group 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
BCR 166.2 74.9 122.6 108.6 131 102.8 155.5 82.6 85.3 77.1 59.9 113.9
BFT 0 0 0 0 0 0 0 0 0 0 25.9 3.9
BIO 1639.4 1139.7 1492.6 1286.9 969.2 1209.5 962.5 1426.4 1587.3 773.9 351.5 723.9
BIV 475.3 499.6 573.1 703 686.3 638 899.6 753.9 956.1 233.6 138.4 107
BMR 40.4 20.6 11.7 25.4 12.9 15.9 3.6 11.4 16.5 16.8 10.2 0.9
CMB 19.9 33.6 22.5 28.8 313.3 460.9 181.2 305.9 429.2 432.5 367.9 137.3
JCK 36 19 61 36.9 37.4 25.1 53.5 17.9 274.1 229 19.3 17.7
KMK 0.2 1.3 0.1 1.1 1.2 0.9 0.5 0.5 0.4 0.4 0.5 0.4
LGS 142 74 88 120 123.9 167.8 270.1 250.3 199.1 210.7 206.1 107.7
LOB 1412.4 1266 1460.6 1426.3 1423.2 1413.6 1488.2 1567 1225.1 1115.6 1201.9 792.2
LOG 40.1 30.1 14.4 6.9 6.3 4.4 3.1 3.1 5.6 4.4 5 5
LPL 514.2 167.3 360 289.4 351.3 462.7 397.7 482.5 369.9 310.4 320.5 364.6
LRF 1720.6 1205.2 1564 1356.2 1010.5 1243.4 975.5 1430.9 1593.3 779.8 355.4 725.3
LTN 11.6 4.6 5.3 9.5 8.1 6 3.2 1.1 0.7 0.4 1.1 1.8
LUT 494.9 384 475.4 506 767.7 590.4 543.8 413.9 464.9 518 570.3 458.9
MPL 8 8 8 9.2 7.1 5.6 5 4.2 4.5 4.6 3.6 3.3
MUL 50.4 55.3 46.9 37.8 32.6 55.7 42.7 37.8 41.7 39.9 43.8 27
OBL 24.5 14.7 16.1 11.6 13 14 9.8 68.6 72.8 23.8 11.2 6.3
ODF 295.4 232.7 318.8 358.5 306.6 264.5 214.4 209.3 219.1 199.9 196.5 265.5
OYS 564.2 440.6 607.7 695.6 696.7 742.1 0 0 0 0 0 0
RAY 0 4.2 0 1.8 334.3 475.3 466.9 473.2 417.6 391.7 447.3 465.5
RGR 150.2 119.4 104.3 73.9 94.2 68.3 24.2 38.5 59.9 31.9 30.1 36.1
RSN 211.4 166.6 218.1 283.2 350.7 318.2 282.5 267.1 241.2 270.6 309.8 345.1
SCR 1 0.4 0.3 0.7 4.1 1.3 5.1 7.6 7.9 11.1 7 7.3
SMK 0.2 1.3 0.1 1.1 1.2 0.9 0.5 0.5 0.4 0.4 0.5 0.4
SPL 792.4 640.2 873.6 1067.5 1073.8 996.5 677.3 882.7 1079.4 1206.1 806.8 860.7
SRF 1639.4 1139.7 1492.6 1286.9 969.2 1209.5 962.5 1426.4 1587.3 773.9 351.5 723.9
SSR 3399.4 2357.1 3027.2 2623.8 2015 2469.5 1970.4 2882.5 3211.1 1566.4 734.9 1476.1
SWD 7.5 2.4 3 4.5 2.1 3 3 1.5 3.3 0.9 3 0.9
TUR 289.8 154.6 102 49.5 35.7 23.2 22.5 12.5 17.5 10 14.4 10
WMR 3.5 0 0 0 0 0 0 0 0 0 0 0
YTN 3.9 0.4 0 0 0 0 0 11.9 99.4 54.6 22.8 24.9
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Table A.6: Continued

Group 2004 2005 2006 2007 2008 2009 2010 2011
BCR 62.8 32.9 51 48.2 49.6 44.7 50.4 58.3
BFT 6.3 9.5 6.7 0 0 0 0 0
BIO 576.8 576.5 580.9 618 502.2 569.2 280.8 293.7
BIV 163.5 148.7 138 142.1 35.1 109.2 112.2 69
BMR 1.2 2.1 2.1 0.6 1.2 1.8 0.9 1.8
CMB 203.7 237.6 120.3 211.8 148 197.1 186.7 181.6
JCK 7.9 7.3 5.1 7.7 6.5 10.8 4.4 6.3
KMK 0.2 0.2 0.3 0.3 0.4 0.4 0.3 0.4
LGS 50.3 48.4 78.1 78.7 79.2 77.6 54.4 53.9
LOB 1137.3 891.5 669.7 761 902.1 647.2 712.5 769.1
LOG 3.8 4.4 1.9 1.9 0 0 0 0
LPL 373.5 369.5 287 244.5 241.9 305.1 209.8 265.2
LRF 577.9 577.9 581.2 618.4 502.2 569.2 280.8 293.7
LTN 2.8 2.8 1.1 1.4 2.5 1.4 4.9 8.1
LUT 251.7 159.4 192.3 212.2 233.1 227.7 223.5 335.2
MPL 3 3.2 2.9 3 3.6 4.5 5.5 5
MUL 16.5 14 20 18.2 21 37.8 87.2 85.4
OBL 17.5 25.2 16.5 19.6 6.7 6.7 9.1 20.7
ODF 247.6 196.1 189.6 183 137 150.6 155.8 184.9
OYS 0 0 0 0 0 0 0 0
RAY 497.4 536.6 534.5 648.9 674.1 709.5 559.7 614.6
RGR 19.6 0 0 0 0 0 0 0
RSN 219.5 248.2 223.7 269.5 265.7 322.4 296.8 263.2
SCR 19.3 16.6 11.2 13.9 13.1 0 0 0
SMK 0.2 0.2 0.3 0.3 0.4 0.4 0.3 0.4
SPL 871.9 655.2 944.7 781.6 876.8 984.9 912.5 881.3
SRF 576.8 576.5 580.9 618 502.2 569.2 280.8 293.7
SSR 1177.3 1163.2 1176.2 1245.3 1012.9 1149.4 567.7 595.2
SWD 0.9 0.9 0.6 0.3 0 0 0 0.3
TUR 5 8.1 6.9 1.3 0 0 0 0
WMR 0 0 0 0 0 0 0 0
YTN 6.7 6.7 6.7 12.6 0.7 0.7 2.8 0.7
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Table A.7: Seasonal Distribution of Atlantis Functional Group Harvested by United States
Commercial Fleets

Group Winter (Jan.-Mar.) Spring (Apr.-Jun.) Summer (Jul.-Sep.) Fall (Oct. - Dec.)
GAG 0.2837 0.2954 0.1858 0.2351
RGR 0.2042 0.2799 0.2833 0.2325
SCM 0.2396 0.29 0.2452 0.2252
SSR 0.2538 0.3272 0.1991 0.22
DSR 0.3054 0.3329 0.1742 0.1875
RSN 0.4027 0.2362 0.1471 0.214
VSN 0.1853 0.3173 0.2728 0.2246
LUT 0.1997 0.3384 0.2637 0.1982
BIO 0.5082 0.088 0.0887 0.315
LRF 0.192 0.3119 0.3232 0.173
SRF 0.2735 0.3429 0.1905 0.1931
BDR 0.3265 0.2044 0.2224 0.2468
RDR 0.3433 0.0972 0.0937 0.4658
SEA 0.3625 0.1934 0.1654 0.2787
SCI 0.1247 0.3797 0.3344 0.1611
LDY 0.2833 0.2301 0.1699 0.3167
MUL 0.1496 0.0993 0.1345 0.6166
POM 0.2145 0.1855 0.3386 0.2614
SHP 0.5021 0.1957 0.0761 0.2261
SNK 0.25 0.25 0.25 0.25
FLT 0.0793 0.2154 0.2564 0.4489
ODF 0.1954 0.3063 0.2756 0.2227
SDF 0.1309 0.4605 0.2993 0.1093
YTN 0.2107 0.2809 0.306 0.2024
BTN 0.3786 0.5336 0.0562 0.0317
LTN 0.0867 0.3047 0.4285 0.1801
OTN 0.25 0.25 0.25 0.25
SWD 0.3654 0.2216 0.1881 0.2249
WMR 0.0515 0.2434 0.5943 0.1108
BMR 0.0662 0.2946 0.5315 0.1077
BIL 0.2209 0.2683 0.3274 0.1834
AMB 0.3093 0.2938 0.2472 0.1497
JCK 0.1049 0.4795 0.2655 0.1501
KMK 0.4039 0.031 0.3902 0.1749
SMK 0.4086 0.2946 0.1166 0.1802
SAR 0.0042 0.5258 0.3699 0.1
LPL 0.1249 0.3599 0.4028 0.1124
DWF 0.25 0.25 0.25 0.25
MEN 0.0002 0.3833 0.5244 0.092
PIN 0.2709 0.2936 0.2526 0.1829
MPL 0.2789 0.4624 0.1125 0.1463
SPL 0.3551 0.301 0.1431 0.2008
TIP 0.3479 0.1551 0.3919 0.1051
BEN 0.25 0.25 0.25 0.25
LGS 0.3661 0.1752 0.3579 0.1008
FIL 0.25 0.25 0.25 0.25
SMS 0.25 0.25 0.25 0.25
RAY 0.3947 0.3293 0.2436 0.0324
BSH 0.0414 0.4218 0.3999 0.1369
WSH 0.0701 0.141 0.3328 0.4561
PSH 0.3107 0.3364 0.1165 0.2364
OSH 0.2156 0.1519 0.1686 0.4639
DBR 0.25 0.25 0.25 0.25
SBR 0.25 0.25 0.25 0.25
MAN 0.25 0.25 0.25 0.25
MYS 0.25 0.25 0.25 0.25
DOL 0.25 0.25 0.25 0.25
DDO 0.25 0.25 0.25 0.25
LOG 0.25 0.25 0.25 0.25
KMP 0.25 0.25 0.25 0.25
TUR 0.25 0.25 0.25 0.25
BCR 0.1369 0.2992 0.3252 0.2387
SCR 0.3436 0.1124 0.003 0.541
LOB 0.1283 0.009 0.4946 0.368
COR 0.25 0.25 0.25 0.25
CCA 0.25 0.25 0.25 0.25
OCT 0.25 0.25 0.25 0.25
SPG 0.2086 0.3385 0.2719 0.1811
CMB 0.25 0.25 0.25 0.25
INF 0.25 0.25 0.25 0.25
ECH 0.25 0.25 0.25 0.25
OYS 0.2872 0.2405 0.1926 0.2798
BIV 0.2593 0.2247 0.3167 0.1993
SES 0.25 0.25 0.25 0.25
EPI 0.25 0.25 0.25 0.25
GRS 0.25 0.25 0.25 0.25
ALG 0.25 0.25 0.25 0.25
MPB 0.25 0.25 0.25 0.25
LPP 0.25 0.25 0.25 0.25
SPP 0.25 0.25 0.25 0.25
DIN 0.25 0.25 0.25 0.25
PRO 0.25 0.25 0.25 0.25
JEL 0.25 0.25 0.25 0.25
SQU 0.1666 0.2854 0.3481 0.1998
LZP 0.25 0.25 0.25 0.25
SZP 0.25 0.25 0.25 0.25
PB 0.25 0.25 0.25 0.25
BB 0.25 0.25 0.25 0.25
DC 0.25 0.25 0.25 0.25
DL 0.25 0.25 0.25 0.25
DR 0.25 0.25 0.25 0.25
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Table A.8: Seasonal Distribution of Atlantis Functional Group Harvested by United States
Recreational Fleets

Group Winter (Jan.-Mar.) Spring (Apr.-Jun.) Summer (Jul.-Sep.) Fall (Oct. - Dec.)
GAG 0.1878 0.2831 0.2292 0.2999
RGR 0.129 0.2683 0.3897 0.2131
SCM 0.0815 0.3257 0.3474 0.2454
SSR 0.2875 0.3417 0.1894 0.1814
DSR 0.3065 0.2758 0.1726 0.2452
RSN 0.0891 0.3531 0.3759 0.1819
VSN 0.0978 0.3585 0.3726 0.1711
LUT 0.3385 0.2286 0.2152 0.2177
BIO 0.2721 0.2862 0.2537 0.1881
LRF 0.1094 0.2608 0.3634 0.2664
SRF 0.105 0.2384 0.3436 0.3131
BDR 0.2306 0.2302 0.2246 0.3147
RDR 0.1071 0.2139 0.3966 0.2824
SEA 0.1292 0.2537 0.3788 0.2383
SCI 0.0546 0.3032 0.4085 0.2337
LDY 0.0927 0.3571 0.3625 0.1876
MUL 0.1629 0.2763 0.2735 0.2873
POM 0.1447 0.2374 0.3026 0.3152
SHP 0.4475 0.2627 0.0827 0.2071
SNK 0.1127 0.298 0.2614 0.3279
FLT 0.0826 0.3033 0.394 0.2201
ODF 0.3448 0.3462 0.1342 0.1748
SDF 0.0872 0.303 0.3761 0.2337
YTN 0.1579 0.2273 0.4593 0.1555
BTN 0.1111 0.4444 0.2222 0.2222
LTN 0.1081 0.3017 0.4262 0.164
OTN 0.23 0.27 0.35 0.15
SWD 0.2 0 0.7 0.1
WMR 0 0.25 0.6664 0.0836
BMR 0 0.5264 0.35 0.1236
BIL 0.2457 0.2038 0.2114 0.3392
AMB 0.1577 0.3881 0.2762 0.1779
JCK 0.1938 0.2674 0.2741 0.2647
KMK 0.1477 0.2845 0.3661 0.2017
SMK 0.1108 0.328 0.3567 0.2044
SAR 0.0711 0.3268 0.3104 0.2917
LPL 0.2553 0.3537 0.2119 0.1791
DWF 0.0385 0.2645 0.5021 0.1949
MEN 0.0193 0.3437 0.4506 0.1864
PIN 0.0916 0.2999 0.3846 0.2239
MPL 0.0602 0.4461 0.2833 0.2105
SPL 0.213 0.2319 0.2276 0.3275
TIP 0.0405 0.3909 0.4526 0.1159
BEN 0.5 0.5 0 0
LGS 0.1308 0.2192 0.4067 0.2433
FIL 0.25 0.25 0.25 0.25
SMS 0.875 0.125 0 0
RAY 0.1577 0.2999 0.2839 0.2585
BSH 0.25 0.25 0.25 0.25
WSH 0.25 0.25 0.25 0.25
PSH 0.25 0.25 0.25 0.25
OSH 0.25 0.25 0.25 0.25
DBR 0.25 0.25 0.25 0.25
SBR 0.25 0.25 0.25 0.25
MAN 0.25 0.25 0.25 0.25
MYS 0.25 0.25 0.25 0.25
DOL 0.25 0.25 0.25 0.25
DDO 0.25 0.25 0.25 0.25
LOG 0.25 0.25 0.25 0.25
KMP 0.25 0.25 0.25 0.25
TUR 0.25 0.25 0.25 0.25
BCR 0.25 0.25 0.25 0.25
SCR 0.25 0.25 0.25 0.25
LOB 0.1283 0.009 0.4946 0.368
COR 0.25 0.25 0.25 0.25
CCA 0.25 0.25 0.25 0.25
OCT 0.25 0.25 0.25 0.25
SPG 0.25 0.25 0.25 0.25
CMB 0.25 0.25 0.25 0.25
INF 0.25 0.25 0.25 0.25
ECH 0.25 0.25 0.25 0.25
OYS 0.25 0.25 0.25 0.25
BIV 0.25 0.25 0.25 0.25
SES 0.25 0.25 0.25 0.25
EPI 0.25 0.25 0.25 0.25
GRS 0.25 0.25 0.25 0.25
ALG 0.25 0.25 0.25 0.25
MPB 0.25 0.25 0.25 0.25
LPP 0.25 0.25 0.25 0.25
SPP 0.25 0.25 0.25 0.25
DIN 0.25 0.25 0.25 0.25
PRO 0.25 0.25 0.25 0.25
JEL 0.25 0.25 0.25 0.25
SQU 0.25 0.25 0.25 0.25
LZP 0.25 0.25 0.25 0.25
SZP 0.25 0.25 0.25 0.25
PB 0.25 0.25 0.25 0.25
BB 0.25 0.25 0.25 0.25
DC 0.25 0.25 0.25 0.25
DL 0.25 0.25 0.25 0.25
DR 0.25 0.25 0.25 0.25
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Table A.9: Seasonal Distribution of Atlantis Functional Group Harvested by Mexican Com-
mercial Fleets

Group Winter (Jan.-Mar.) Spring (Apr.-Jun.) Summer (Jul.-Sep.) Fall (Oct. - Dec.)
GAG 0.25 0.25 0.25 0.25
RGR 0.2416 0.3179 0.2554 0.1852
SCM 0.25 0.25 0.25 0.25
SSR 0.2503 0.304 0.2499 0.1958
DSR 0.2367 0.3119 0.2687 0.1827
RSN 0.2943 0.2426 0.2109 0.2522
VSN 0.2292 0.2505 0.2831 0.2373
LUT 0.3093 0.241 0.2438 0.2059
BIO 0.25 0.25 0.25 0.25
LRF 0.2603 0.2477 0.2665 0.2255
SRF 0.8907 0.0782 0.0292 0.0019
BDR 0.25 0.25 0.25 0.25
RDR 0.396 0.2285 0.1357 0.2398
SEA 0.3624 0.2137 0.1756 0.2484
SCI 0.3231 0.2239 0.215 0.2379
LDY 0.25 0.25 0.25 0.25
MUL 0.2665 0.1746 0.2319 0.3269
POM 0.3561 0.2697 0.1863 0.188
SHP 0.25 0.25 0.25 0.25
SNK 0.2645 0.258 0.2431 0.2344
FLT 0.2384 0.1983 0.1427 0.4206
ODF 0.2306 0.2558 0.2648 0.2488
SDF 0.3932 0.2937 0.1585 0.1546
YTN 0.1904 0.275 0.2991 0.2356
BTN 0.7164 0.2027 0.0032 0.0777
LTN 0.2825 0.2657 0.2301 0.2217
OTN 0.1207 0.1706 0.3159 0.3929
SWD 0.2286 0.2019 0.2351 0.3344
WMR 0.2353 0.1759 0.2716 0.3172
BMR 0.1843 0.2385 0.3258 0.2514
BIL 0.0331 0.6081 0.2894 0.0694
AMB 0.25 0.25 0.25 0.25
JCK 0.2794 0.2916 0.2069 0.222
KMK 0.3421 0.2728 0.2133 0.1718
SMK 0.3753 0.1318 0.1321 0.3608
SAR 0.2559 0.2359 0.3233 0.1849
LPL 0.3519 0.1992 0.1737 0.2752
DWF 0.25 0.25 0.25 0.25
MEN 0.25 0.25 0.25 0.25
PIN 0.25 0.25 0.25 0.25
MPL 0.2948 0.2832 0.2194 0.2026
SPL 0.685 0.0956 0.042 0.1775
TIP 0.2752 0.2823 0.1807 0.2618
BEN 0.2752 0.2823 0.1807 0.2618
LGS 0.2924 0.2735 0.2054 0.2287
FIL 0.25 0.25 0.25 0.25
SMS 0.2752 0.2823 0.1807 0.2618
RAY 0.2855 0.2503 0.2382 0.226
BSH 0.1893 0.2428 0.264 0.304
WSH 0.1893 0.2428 0.264 0.304
PSH 0.1893 0.2428 0.264 0.304
OSH 0.1893 0.2428 0.264 0.304
DBR 0.25 0.25 0.25 0.25
SBR 0.25 0.25 0.25 0.25
MAN 0.25 0.25 0.25 0.25
MYS 0.25 0.25 0.25 0.25
DOL 0.25 0.25 0.25 0.25
DDO 0.25 0.25 0.25 0.25
LOG 0.25 0.25 0.25 0.25
KMP 0.25 0.25 0.25 0.25
TUR 0.25 0.25 0.25 0.25
BCR 0.2568 0.2567 0.237 0.2496
SCR 0.2568 0.2567 0.237 0.2496
LOB 0.1958 0.2816 0.3932 0.1294
COR 0.25 0.25 0.25 0.25
CCA 0.25 0.25 0.25 0.25
OCT 0.25 0.25 0.25 0.25
SPG 0.25 0.25 0.25 0.25
CMB 0.09 0.5917 0.302 0.0163
INF 0.25 0.25 0.25 0.25
ECH 0.25 0.25 0.25 0.25
OYS 0.1985 0.2176 0.2813 0.3026
BIV 0.2522 0.238 0.2324 0.2774
SES 0.25 0.25 0.25 0.25
EPI 0.25 0.25 0.25 0.25
GRS 0.25 0.25 0.25 0.25
ALG 0.25 0.25 0.25 0.25
MPB 0.25 0.25 0.25 0.25
LPP 0.25 0.25 0.25 0.25
SPP 0.25 0.25 0.25 0.25
DIN 0.25 0.25 0.25 0.25
PRO 0.25 0.25 0.25 0.25
JEL 0.25 0.25 0.25 0.25
SQU 0.0281 0.0264 0.3757 0.5698
LZP 0.25 0.25 0.25 0.25
SZP 0.25 0.25 0.25 0.25
PB 0.25 0.25 0.25 0.25
BB 0.25 0.25 0.25 0.25
DC 0.25 0.25 0.25 0.25
DL 0.25 0.25 0.25 0.25
DR 0.25 0.25 0.25 0.25
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Table A.10: Proportion of Functional Group Landings Across U.S. Commercial Atlantis
Fleets.

Group GillnetEst TwlShpEst OytEst PotCrbEst TwlShpShf PotCrbShf PotLbtShf HLReefShf LLReefShf
GAG 0.672 0.244
RGR 0 0.991
SCM 0.48 0.507
SSR 0.01 0.001 0.525 0.281
DSR 0.013 0.373 0.121 0.493
RSN 0.961 0.033
VSN 0.997 0.002
LUT 0 0.003 0.001 0.919 0.065
BIO
LRF 0.002 0.015 0.004 0.012 0.007 0.326 0.042
SRF 0.001 0.282 0.692
BDR 0.025 0.019 0.015 0.066 0.059 0.791
RDR 1
SEA 0.095 0.003 0.091 0.783
SCI 0.124 0.068 0.001 0.284 0.371
LDY 0.688 0.042
MUL 0.177 0 0 0
POM 0.234 0.554
SHP 0.078 0.134 0.002 0.176 0.405 0.037
SNK
FLT 0.203 0.254 0.017 0.069 0.016 0.041 0.039
ODF 0.005 0.007 0.241 0.001 0.711 0.031
SDF 1
YTN 0.012
BTN
LTN 0.087 0.913
SWD 0.035
AMB 0.961 0.014
JCK 0.048 0 0.012 0.645 0.015
KMK 0.792
SMK 0.81 0 0.101
SAR 0.088
LPL 0.19 0.036 0.398 0.015
DWF
MEN 0 0
PIN 0.588 0.27
MPL 0.001 0.311
SPL 0
TIP 0.919
LGS 0.34 0.001 0 0.258 0.037
RAY 1
BSH 0.193 0.807
WSH 0.298 0.701
PSH 0.002 0.998
OSH 0.311 0.622 0
BCR 0.002 0.997 0 0 0 0
SCR 0.984 0.016
LOB 0 0 0.966
SPG
OYS 0.967
BIV 0.003 0.003 0.002 0.001 0.937 0.037 0.004 0 0
SQU 0.266 0.115 0.429 0.14 0.049
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Table A.10: Continued

Group SeineMenShf LLShkShf LLPelgc RoyalRed OtherUS
GAG 0.084
RGR 0.009
SCM 0.013
SSR 0.183
DSR 0
RSN 0.007
VSN 0.001
LUT 0.013
BIO
LRF 0.591
SRF 0.003 0.021
BDR 0.02 0.004
RDR
SEA 0.028
SCI 0.151
LDY 0.27
MUL 0.006 0.816
POM 0.212
SHP 0 0.168
SNK
FLT 0.018 0.343
ODF 0.005
SDF
YTN 0.988
BTN 1
LTN
SWD 0.965
AMB 0.025
JCK 0.28
KMK 0.208
SMK 0.002 0.061 0.027
SAR 0.912
LPL 0.016 0.338 0.008
DWF
MEN 1 0
PIN 0.142
MPL 0.003 0.685
SPL 1
TIP 0.081
LGS 0 0.29 0.072 0.002
RAY
BSH 0
WSH 0
PSH
OSH 0.067 0
BCR
SCR
LOB 0.033
SPG 1
OYS 0.033
BIV 0 0.013
SQU 0.001
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Table A.11: Distribution of Mexican Commercial Landings Amongst Atlantis Fleets.

Group TwlShpMX LLReefMX LLShkMX GillnetMackMX OctpsMX MixedMX
RGR 0.500 0.500
SSR 0.500 0.500
DSR 1.000
RSN 0.500 0.500
VSN 0.500 0.500
LUT 0.500 0.500
LRF 1.000
SRF 1.000
RDR 1.000
SEA 1.000
SCI 1.000
LDY 1.000
MUL 0.500 0.500
POM 1.000
SHP 0.333 0.333 0.330
SNK 1.000
FLT 0.333 0.333 0.333
ODF 1.000
SDF 1.000
YTN 0.500 0.500
BTN 0.500 0.500
LTN 0.500 0.500
OTN 0.500 0.500
SWD 0.500 0.500
WMR 0.500 0.500
BMR 0.500 0.500
BIL 0.500 0.500
AMB 0.500 0.500
JCK 0.500 0.500
KMK 0.500 0.500
SMK 0.500 0.500
SAR 1.000
LPL 1.000
PIN 1.000
MPL 1.000
SPL 1.000
TIP 1.000
BEN 0.333 0.333 0.333
LGS 0.500 0.500
FIL 1.000
SMS 0.250 0.250 0.250 0.250
RAY 0.333 0.333 0.333
BSH 1.000
WSH 0.500 0.500
PSH 1.000
OSH 0.500 0.500
BCR 1.000
SCR 1.000
LOB 1.000
OCT 1.000
CMB 0.500 0.500
OYS 1.000
BIV 1.000
SQU 0.500 0.500
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A.6 Additional Results for Section 2.3.2

(a) (b)

(c) (d)

(e)

Figure A.17: Species Composition Time Series of United States Commercial Landings by
Overfished Status. Legend shows only the eight most common species.
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(a) (b)

(c) (d)

(e)

Figure A.18: Species Composition Time Series of United States Commercial Landings by
Overfished Status. Legend shows only the eight most common species.
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(a) (b)

(c) (d)

Figure A.19: Species Composition Time Series of United States Species-Specific Total
Commercial Data (excluding menhaden). Data used to create these plots were also used
to calculate U.S. commercial landings seasonal indicators. Species compositions are shown
for winter, Jan. - Mar. (a), spring, Apr. - Jun. (b), summer, Jul. - Sep. (c), and fall, Oct.
- Dec. (d). Legend shows only the seven most common species.
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(a) (b)

(c) (d)

(e) (f)

Figure A.20: Species Composition Time Series of Seasonal United States Species-Specific
Recreational Landings. Data used to create these plots were also used to calculate U.S.
recreational landings seasonal indicators. Species compositions are shown for wave 1, Jan.
- Feb. (a), wave 2, Mar. - Apr. (b), wave 3, May. - Jun. (c), wave 4, Jul. - Aug. (d), wave
5, Sep. - Oct. (e), and wave 6, Nov. - Dec. (f). Legend shows only the seven most
common species.
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(a) Alabama (b) Florida

(c) Louisiana (d) Mississippi

(e) Texas

Figure A.21: Species Composition Time Series of United States Species-Specific
Commercial Landings by State. Legend shows only the seven most common species.
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(a) Alabama (b) Florida

(c) Louisiana (d) Mississippi

(e) Texas

Figure A.22: Species Composition Time Series of United States Species-Specific
Recreational Landings by State. Legend shows only the seven most common species.
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A.6.1 Landings Mean Trophic Level Sensitivity Analysis

For commercial and recreational data, the trends in landings mean trophic level

from both species-specific data and functional group-specific data are within the

trends computed for the trophic level sensitivity analysis (Figure A.23a, A.23b). The

sensitivity analysis suggests that the computation of landings mean trophic level is

sensitive to trophic level. Thus, the aggregation into functional groups, and the aver-

aging of species-specific trophic levels, could be causing the slight difference between

functional group-specific and species-specific landings mean trophic level trends. The

trends computed for the trophic level sensitivity analysis are wider for recreational

data than commercial data because the trophic level standard errors considered here

were only for some fish groups, and commercial landings have considerable amounts

of invertebrate landings.

The computation of landings mean trophic level appears to be particularly sens-

itive to trophic level, thus the aggregation of data into functional groups, and the

averaging of species-specific trophic levels, is likely having some impact on the value

computed for landings mean trophic level. However, the difference observed here is

small enough to be considered negligible.

The results from the sensitivity analysis indicating the computation of landings

mean trophic level to be particularly sensitive to trophic level is not surprising con-

sidering that an organism’s trophic level is not a constant value. Since an organism’s

trophic level is governed by the prey consumed, the trophic level of any one species

can vary spatially, temporally, and as the organism ages (e.g., Jennings et al., 1997;

Hussey et al., 2011; Yurkowski et al., 2016). A full sensitivity analysis on landings
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mean trophic level would be more informative for EBFM concerning the indicators

robustness at various levels of species aggregation. Such an analysis should consider

trophic level standard errors from laboratory studies, but if this information is not

found in the literature than estimating trophic level standard errors may be necessary

(e.g., Pauly and Christensen, 1995).

(a) U.S Commercial (b) U.S Recreational

Figure A.23: Panels a and b show trends from the annual summaries of species-specific
data (solid line), functional group-specific data (dashed line), and functional group-specific
data with trophic level of multi-species functional groups being the average plus/minus
the standard error across the multi-species functional groups (dotted lines).



APPENDIX B

Detailed Methodology and Additional
Results for Chapter 3

B.1 Catch Data for Model Fitting

The Southeast Fisheries Science Center (SEFSC) conducts an annual bottom

longline survey within the Gulf of Mexico and western Atlantic Ocean. Commercial-

type longline gear is utilized so analyses based of this dataset can be related back to

the commercial longline fisheries within the Gulf of Mexico. The mainline is suspen-

ded by two radar reflector high-flyers attached at each end, and held stationary with

5 kg weights located at the start, middle, and end of the mainline. The mainline con-

sists of 100 gangions; each one is approximately 3.6 m in length and 18.3 m apart from

one another. Gangions consist of 3 mm diameter monofilament line with #15 circle

hook. Each hook is baited with atlantic mackerel (Scomber scombrus). Longline gear

soaks for one hour after the set is complete. During the haul in organisms retained are

processed immediately. Processing includes, but is not limited to, identifying species

and recording length, weight, and sex. While smaller organisms (e.g. Rhizoprionodon

terraenovae) are handled by hand, larger organisms (e.g. Galeocerdo cuvier) are held

in a landing sling to facilitate processing. Organisms of concern (e.g., Sphyrna lewini)

209
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are also tagged. This survey operates along the continental shelf in depths between

9 - 366 meters, so Gulf-wide catch of pelagic species can not be represented by this

dataset alone.

The Pelagic Observer Program, also managed by the SEFSC, provides longline

catch and effort data within the Gulf of Mexico between 200m depth and the ex-

clusive economic zone (EEZ). Since 1992, observers have monitored the mobile U.S.

pelagic longline fleet operating in the western Atlantic Ocean. Pelagic longline gear

consists of a mainline suspended mid-depth by a series of high-flyers. Longline sets

can extend from 10 to 40 miles, fishing 200-1000 baited hooks spaced approximately

100 meters apart. Highly migratory species Xiphias gladius, Thunnus albacares, or

Thunnus obsess are often the primary target. Harvesting methodology, area, and sea-

son changes based on the targeted species. For instance, pelagic longliners targeting

X. gladius set hooks during the night while those targeting tunas set hooks during

the day. Information retained by observers includes species, date, time, and location.

B.2 Supplementing Environmental Variables into

Catch Datasets

Sea surface temperature is one of the few environmental variables monitored in

both longline catch datasets. It is measured at multiple points during the setting and

hauling of longline gear, so the mean of the reported measurements was used as final

estimate of sea surface temperature for each catch record. Approximately 25% of the

bottom longline records and 5% of the pelagic longline records were missing estimates

of sea surface temperature. To retain these records for statistical analysis, estimates

of sea surface temperature were generated by using Interpolate PO.DAAC MODIS
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L3 SST at Points tool from the Marine Geospatial Ecology Tools (MGET) toolbox

in ArcGIS, which extracts estimates of sea surface temperature from the Moderate

Resolution Imaging Spectroradiometer (MODIS) dataset. The tool was set to draw

daytime sea surface temperature values from the aqua satellite using a linear inter-

polation method. Different combinations of spatial resolution (4km grid or 9km grid)

and temporal resolution (daily, 8 day, monthly) were used because a single combin-

ation could not extract estimates of sea surface temperature for all of the necessary

catch records. This is likely due to the patchiness of MODIS data, due to cloud cover.

Combinations with fine scale spatial and temporal resolutions were attempted first

(4km, daily), followed by combinations with reduced temporal resolution. Then, the

combination with reduced spatial resolution and fine scale temporal resolution (9km,

daily). Again, this was followed by combinations with reduced temporal resolution.

If a catch record was still missing an estimate of sea surface temperature, then a

value was drawn from another catch record in the corresponding longline catch data-

set. The chosen catch record was one with a similar harvest date and location as the

record missing sea surface temperature.

Altimetry data was collected from the Archiving, Validation and Interpretation

of Satellite Oceanographic (AVISO) dataset. AVISO gathers raw data from various

satellite sources which are individually processed into estimates of altimetry then

merged as described by Ducet et al. (2000). The resulting altimetry data are provided

in 7-day increments, implying that measurements may have been taken up to 3 days

before or after the date displayed in the dataset. Data are mapped to an equal angle

grid 0.25 degrees latitude by 0.25 degrees longitude. Estimates of altimetry for catch

records in the longline catch datasets were calculated as the mean of the four AVISO
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data points nearest to the catch location and corresponded to the date the catch

occurred.

The routine for calculating an estimate of the minimum distance between a catch

event and a frontal edge is dependent on work by Cayula and Cornillon (1992).

Cayula and Cornillon presented an algorithm for detecting fronts in satellite-derived

sea surface temperature fields. After the initial processing of the data input, there

are three different stages focusing on the detection and removal of clouds (since they

can cause erroneous edge detection). Next, the algorithm detects and verifies an edge

(i.e., front) at the window level using a histogram analysis and cohesion algorithm,

respectively. Then, the front is detected and verified at a local level using contour

following. Lastly, the fronts are extracted. The MGET toolbox contains a tool that

uses the algorithm presented by Cayula and Cornillon (1992) for the detection and

extraction of fronts, call the Cayula-Cornillon Fronts in ArcGIS Raster MGET tool.

Preliminary work executing this tool with sea surface temperature fields produced

patchy and fragmented front profiles (Figure B.1a). Sea surface temperature fields

collected from the Gulf of Mexico can have weak gradients (Legeckis, 1978) which

make it difficult for the Cayula and Cornillon algorithm to detect a front. The

dynamics of the Gulf of Mexico are mostly driven by the physical oceanography, which

relates directly to altimetry. Executing the Cayula-Cornillon Fronts in ArcGIS Raster

MGET tool with altimetry profiles produces smoother front profiles (Figure B.1b).

Altimetry needed to be magnified to be on a similar scale as sea surface temperature,

and a factor of 1000 produced the cleanest images.
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B.3 Other Important Model Descriptors

Preliminary investigations selecting model descriptors identified variables capable

of improving the fit of some models. Table B.1 highlights these results. Variables were

used individually to fit generalized additive models with the bottom longline survey

data. Some of these variables were not used as model descriptors primarily due to

the lack of data available to make Gulf-wide data fishnets for model predictions.

B.3.1 Beam Transmission

Preliminary results showed beam transmission to be a statistically important

descriptor for shark-based functional groups. Beam transmission (%), a measure-

ment of the penetration of light through the water column, may influence the local

density of an organism (e.g., fish residing in murky waters to evade predators), or it

may relate to catchability (e.g., fish are more/less likely to strike a baited hook in wa-

ters with more/less light). However, beam transmission depends on many dynamic

environmental processes (e.g., cloud cover, sediment, pollution, etc), thus develop-

ing seasonal, Gulf-wide estimates of beam transmission for model predictions would

be inappropriate. However, CPUE modeling over a smaller temporal range should

consider beam transmission as a descriptor.

B.3.2 Density

Sea bottom density was a statistically important descriptor for shark-based func-

tional groups, however a dataset containing estimates of sea bottom density across

the Gulf could not be found. Considering the amount of deviance explained, it could

prove to be useful to include this variable into future modeling efforts. Especially if
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at a smaller spatial and temporal scale allowing for the possibility of collecting data

for model predictions.

B.3.3 Latitude and Longitude

The incorporation of latitude and longitude as model descriptors helped fitted

models explain more deviance. Latitude and longitude were not considered as model

descriptors because preliminary predictions showed an obvious bias in the regions

outside of the spatial range of the catch datasets (i.e., catch rates showed a unnaturally

strong north-south gradient). If predictions efforts were restricted to the northern

Gulf of Mexico than latitude and longitude should be considered as potential model

descriptors to improve model fits. Geospatial models could also be considered.

B.3.4 Daytime

Daytime, a binomial factor indicating day or night, did not explain much model

deviance when fitting bottom longline survey data. However, daytime would likely

impact models fit with pelagic longline observer data since hooks are set differently

during the day versus night due to the change in target organism. To see how daytime

may influence model predictions, models presented in the chapter were re-fitted with

daytime as a descriptor (spline basis dimensions were set to three and not adjusted,

thus the prediction profiles without daytime in the fitted model were similar to the

night time predictions). These fitted models were than predicted across the same

fishnet grids, once with daytime identified as day and again with daytime identified

as night (day and night measurements of other model descriptors are not available).

The coastal models (fit with bottom longline data) did not show any major differences
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between day and night prediction profiles, however some functional group with pelagic

models had noticeable differences between day and night prediction profiles (examples

in Figure B.3). The discussion in the chapter on large sharks is not significantly

impacted by not including daytime into models, but some functional groups should

have daytime incorporated into future modeling efforts (e.g., swordfish, and white

marlin).

B.4 Selecting the Error Structure of Models fit-

ting Zero-Truncated Data

Although the longline datasets record catch as counts (which is commonly modeled

with the poisson distribution) catch rates (CPUE) in this study are continuous, which

are commonly modeled with the log-normal and gamma distributions. First, we

wanted to assess the validity for assuming a log-normal or gamma error structure

(Maunder and Punt, 2004). Dong and Restrepo (1996) and Punt et al. (2000) dis-

cussed evaluating assumed error structure by comparing catch rate average and vari-

ance. A relationship where the variance in catch rate is proportional to the square of

the average catch rate suggests the log-normal or gamma distribution. The functional

group-specific average catch rate and variance in catch rate for each unique date are

shown in Figure B.2, and functional group-specific catch data support the use of

either the log-normal or gamma distribution for the CPUE data error structure.

Myers and Pepin (1990) found lognormal-based estimators to be very sensitive to

violations of model assumptions, which can lead to biases as well as reduced efficiency,

and they encouraged assuming a log-normal distribution only in situations when re-

peated samples from the same population consistently showed the distribution to be
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log-normal. If a random variable follows a log-normal distribution, than the nat-

ural log of the random variable will follow a normal distribution. Log-transforming

functional group-specific catch rates for both longline datasets (Figure B.4) fails to

normalize catch rates for a majority of functional groups. Thus, the data are not

lognormal. Other studies have achieved comparable, if not improved, model fits us-

ing the gamma distribution rather than the lognormal (Punt et al., 2000; Dick, 2004;

Ortiz and Arocha, 2004).

The statistical software R has three link functions associated to the gamma dis-

tribution:identity, inverse, and log. Functional group-specific catch profiles (for both

the bottom longline survey and the pelagic longline observer data) were used to fit

GAMs for each of the three link functions. The generic setup of the statistical model

was as follows:

ηZ = s(SSH, k = 3)+s(WD, k = 3)+f(y)+s(SST, k = 3)+s(MDF, k = 3) (B.1)

where ηZ is the abundance index, SSH is altimetry [m], WD is bottom depth [m],

y is year, SST is sea surface temperature [◦C], MDF is minimum distance from a

front [m], s() indicates a smooth function, k indicates a smoother’s basis dimension,

and f() indicates a factor. All basis dimensions were set to three, the default value.

Table B.2 displays the GCV and deviance explained for all of the model fits. Often,

the best fit corresponds to models that used the inverse link function. This makes

sense since the inverse link corresponds to the zero inflated nature of the cate rate

data. Thus, this study assumes a gamma error structure with inverse link function

for GAMs fitted with zero-truncated data.
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B.5 Verification of Routine Setting Smoother Basis

Dimension

Fit statistics for models fitted with training datasets for cross validation were

recorded before and after to application of the basis dimension setting routine (Table

B.3). Basis dimensions for smoothers in binomial data models were often unchanged

after the application of the basis dimension setting routine, thus fit statistics didn’t

improve. However, basis dimensions for smoothers in zero-truncated data models

were often increased thus improving model fits.

B.6 Forward Model Selection

During the forward model selection process for determining the order of model

descriptors, a correlation analysis was conducted to determine if the environmental

variable selected to be a model descriptor was highly correlated with selected model

descriptors. A variable highly correlated with model descriptors (i.e., producing a

correlation coefficient greater than 0.80) was not used as a model descriptor. Correl-

ation coefficients for environmental variables considered for models fit with pelagic

longline observer data (i.e., year, season, sea surface temperature, altimetry, and min-

imum distance from a front) are summarized in Table B.4. None of the variables were

highly correlated, thus all of the considered variables were used as model descriptors

for both parts of the delta framework.

Models fit with bottom longline survey data had a variety of environmental vari-

ables applicable as model descriptors, making overparameterization a concern, so the

forward model selection process stopped (i.e., model descriptors were no longer ad-
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ded) once the deviance explained from model fits were not improved by more than 5%.

The forward model selection process is presented for large pelagic fish (Table B.5),

large sharks (Table B.6), skates and rays (Table B.7), and blacktip sharks (Table B.8).

These tables also display correlation coefficients between environmental variables and

model descriptors. If a model gains the most improvement from an environmental

variable that is highly correlated to current model descriptors, than the variable

providing the next best fit is considered for incorporation as a model descriptor in-

stead. For example, consider the forward model selection results for the large pelagic

fish zero-truncated data model (Table B.5). During the third iteration it is apparent

that adding sea surface oxygen saturation to the model do+ ssh produced the most

improved model (57.6% to 64.9% deviance explained). Although sea surface oxygen

saturation and altimetry are not highly correlated (0.138 correlation coefficient), the

previous iteration revealed that sea surface dissolved oxygen and sea surface oxygen

saturation are highly correlated (0.814 correlation coefficient). Thus, year was added

as a model descriptor since it provided the second-best improvement to the model’s

fit (62.3% deviance explained) and is not correlated with any of the the current model

descriptors (0.034 correlation coefficient with sea surface dissolved oxygen and 0.468

correlation coefficient with altimetry).

B.7 Cross Validation Results

Cross validation results for all fitted delta models are displayed in Figure B.5.
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B.8 Developing Seasonal Fishnet Grids for Model

Predictions

The development of seasonal, spatial biomass distribution profiles for each func-

tional group was dependent on using the fitted GAMs to predict across grids of data

representing hypothetical values of model descriptors. These grids were developed in

ArcGIS. First, a 0.1◦ latitude by 0.1◦ longitude grid of geographic coordinates span-

ning the entire Gulf of Mexico was created using the Fishnet tool. Four versions of

the grid were generated, one for each season. Next, coordinates within the grids were

assigned estimates of all model descriptors.

B.8.1 Environmental Data

To assign estimates of model descriptors to fishnets, environmental point data

files needed to be converted to rasters. Bathymetry data, a polyline file, was first

converted to a point file using the Feature to Point tool. Also, NCEI data (Table

3.1) was clipped to only contain points within the marine environment (i.e., removed

the points representing Lake Okeechobee). Lastly, AVISO point data was split into

seasonal datasets using the Select tool. Interpolation of point files to raster files was

accomplished using the Kriging tool (all attributes remained set to default values).

Rasters representing Gulf-wide seasonal averages were created for bathymetry (Figure

B.6; assumed to not change seasonally), altimetry (Figure B.7), sea surface temperat-

ure (Figure B.8), sea bottom temperature (Figure B.9), sea bottom oxygen saturation

(Figure B.10), sea surface dissolved oxygen (Figure B.11), sea bottom dissolved oxy-

gen (Figure B.12), sea surface salinity (Figure B.13), and sea bottom salinity (Figure

B.14).
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Assigning values of environmental descriptors to seasonal Gulf-wide fishnet grids

was done with the Extract Values to Points tool (set to bilinear interpolation). First,

points in the Gulf-wide fishnet were assigned estimates of bathymetry. This allows the

division of the Gulf-wide fishnet along the 250m isobath - creating coastal and pelagic

seasonal fishnets. Seasonal, environmental data were then assigned to appropriate

fishnets.

B.8.2 Minimum Distance From a Front

Fishnet grids were assigned estimates of minimum distance from a front using the

routine described in Figure 3.2. The seasonal front polyline files created by seasonal

AVISO averages (the point files) for calculating minimum distance from a front are

shown in Figure B.15.

B.9 Gulf-wide Abundance Distribution Profiles

Seasonal, spatial abundance distribution profiles spanning the entire Gulf of Mex-

ico were developed for each functional group based on predicted abundance indices

generated by the fitted statistical models. First, grids describing hypothetical sea-

sonal conditions in the Gulf of Mexico were developed (see B.8). Fitted models were

used to predict across fishnet grids to create seasonal, spatial distribution profiles.

Seasonal, Gulf-wide biomass distribution profiles were developed to improve the

spatial representation of pelagic functional groups in the Gulf of Mexico Atlantis

model. These profiles were developed for each functional group by 1) averaging the

spatial catch rate profiles across overlapping polygons in the Gulf of Mexico Atlantis

map, 2) extrapolating average catch rates for the remaining Gulf of Mexico polygon
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map, then 3) calculating the proportion of catch rates in each polygon. Statistical

software R was used to calculate the median catch rate for polygons overlapping the

seasonal, spatial profiles of catch rates for each functional group. Median was used

to prevent extreme catch rate predictions from having too much of an influence on

the computed average. Two different methodologies were executed for extrapolating

average catch rates across the remaining Atlantis polygon map.

Functional groups large pelagic fish, skates and rays, and large sharks were caught

in both the survey and observer longline datasets, thus have GAMs for predicting

across both pelagic and coastal areas in the Gulf of Mexico. Model predictions for

large sharks are shown in the main paper, and the model predictions for large pelagic

fish and skates and rays can be seen in Figure B.16 and Figure B.18, respectively.

Due to the difference in bottom longline and pelagic longline functional group catch-

ability, the coastal and pelagic profiles must be converted to a common scale before

they can be combined. Statistical models were developed to standardize the two

longline datasets. Data used to fit these models contained both bottom and pelagic

longline catch, but only data from similar spatial and temporal ranges where the two

datasets overlapped. ArcGIS was used to create this data subset by selecting all

the longline catch events that occurred in off the coast of Louisiana, an area where

the two longline datasets intersect (Figure 3.1). Species from the large pelagic fish

functional group were not retained in both of the longline datasets throughout the

data subset, so another method had to be taken for extrapolating the average catch

rates across the remaining Atlantis polygon map. The setup of the statistical model

solving for the abundance index (ηZ) was similar to Equation 3.1. The numerical

descriptors include bottom depth [m], sea surface temperature [◦C], altimetry [m[,
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and minimum distance from a front [m]. The categorical descriptors include year

(2005-2010), season (1-4), and longline type (bottom or pelagic). Forward model se-

lection was conducted to determine the best model for ηZ , for both functional groups

(Table B.9). A standardization factor was calculated for average catch rates in pelagic

polygons by dividing the median fitted CPUE of pelagic data by the median fitted

CPUE of survey data. For large sharks the pelagic catch rate standardization factor

is 0.522, and for skates and rays it is 0.061. Average catch rates for pelagic polygons

were standardized by dividing the value by the standardization factor, thus allowing

the pelagic and coastal profiles to be merged. The calculated standardization factors

were used for all of the functional group’s seasonal profiles.

For the remaining functional groups general assumptions were made for extrapol-

ating estimates of the average catch rate to the remaining polygons. Online sources

Fishbase (Froese and Pauly, 2016) and GulfBase (Moretzsohn et al., 2016), specific-

ally the the Biodiversity of the Gulf of Mexico Database (Moretzsohn et al., 2011),

were used to help gather information concerning species spatial distribution.

• BIL (other billfish) - extrapolate across coastal polygons

Model predictions can be seen in Figure B.20. Catch in this group is primarily

sailfish (Istiophorus albicans, but some identify I. platypterus as a world-wide

species). Sailfish are known to be oceanic, spending much of the time oceanic

environments (Riede, 2004). Kerstetter et al. (2010) used satellite tag data to

discuss vertical and die distributions, but did not address Gulf-wide horizontal

movements. To keep assumption general, polygons with depths defined as 10,

20, or 50 m were assigned a average catch rate of zero, and polygons with depths
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defined as 200 m were assigned an average catch rate equal to the medium of

all the catch rates calculated when averaging across polygons. This was done

for each seasonal profile.

• BMR (blue marlin) - extrapolate across coastal polygons

Model predictions can be seen in Figure B.21. Comparing the results presented

by Kraus et al. (2011) to polygons defined for the Gulf of Mexico Atlantis

model, polygons with depths defined as 10, 20, or 50 m were assigned a average

catch rate of zero, and polygons with depths defined as 200 m were assigned the

smallest medium catch rate calculated when averaging across polygons. This

was done for each seasonal profile.

• BTN (bluefin tuna) - extrapolate across coastal polygons

Model predictions can be seen in Figure B.22. Considering results presented by

Teo et al. (2007) polygons with depths defined as 10 or 20 m were assigned a

average catch rate of zero, and polygons with depths defined as 50 or 200 m

were assigned the smallest medium catch rate calculated when averaging across

polygons. This was done for each seasonal profile. Bluefin tuna catch during the

months of season 3 (Jul. - Sep.) are not present in the longline observer dataset,

thus a catch rate profile could not be computed for this season. According to

work by Block et al. (2005) bluefin tuna are found within Gulf of Mexico waters

during this time. To develop a season 3 stock distribution profile for the Gulf of

Mexico Atlantis model, the distribution of bluefin tuna were evenly distributed

across polygons overlapping adult bluefin tuna hotspots reported by Block et al..
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• DWF (deep water fish) - extrapolate across coastal polygons

Model predictions can be seen in Figure B.23. Catch in this group consist of

various species, many of the Cubiceps genus. Many of the DWF species are

not coastal but rather oceanic (e.g.,Cubiceps capensis (Riede, 2004)) and/or

bathypelagic (e.g., Cubiceps pauciradiatus (Cervigón, 1994), Trachipterus arc-

ticus (Muus et al., 1999)). Many of these species are concentrated around the

slope Moretzsohn et al. (2011). All coastal polygons were assigned the smallest

medium catch rate calculated when averaging across polygons (this was done

for each seasonal profile). This aims to satisfy both observations: i) distributing

DWF along the continental shelf, and ii) putting a slight emphasis on the slope,

since GAMs estimates small catch rates for deep, oceanic polygons.

• FIL (filter feeding sharks) - extrapolate across coastal polygons

Model predictions can be seen in Figure B.24. Catch in this group consist of

mantas (of the family Mobulidae). Many of these species are epipelagic, cen-

tering around the slope Moretzsohn et al. (2011). All coastal polygons were

assigned an average catch rate equal to the medium of all the catch rates calcu-

lated when averaging across polygons (this was done for each seasonal profile).

This encourages a strong emphasis on the slope since the GAM predicts small

catch rates for deep, oceanic polygons.

• LPL (large pelagic fish) - extrapolate across coastal polygons

LPL species are retained in the bottom longline survey but after i) studying

these catch records and ii) considering the coastal GAM predictions, the coastal

model for LPL was not considered. The catch rate spatial profiles indicate a
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strong seasonal flux, which we know is not part of the life histories of species

in the LPL functional group. This flux is likely influenced by the fact that

the survey operates primarily during summer and fall months. This signal

is easier for the LPL model to pick up since there are very few instances of

LPL species being caught in the bottom longline survey (barely enough to fit

a statistical model). LPL catch records mostly consist of Remora sp. and

Sphyraena barracuda, neither of which are benthic species. Thus, LPL catch

records are likely incidental catch occurring when hooks are being set/hauled

(i.e., traversing through the water column). Although it is clear that LPL

species are within Gulf of Mexico coastal waters, the bottom longline survey

is an inappropriate dataset for extrapolating information regarding the coastal

distribution. Species identified in both longline catch datasets are known to use

coastal waters (e.g., Remora remora (Fricke et al., 2011), Sphyraena barracuda

(de Sylva, 1990), Pomatomus saltatrix (Claro, 1994)). All coastal polygons

were assigned an average catch rate equal to the medium of all the catch rates

calculated when averaging across polygons. This was done for each seasonal

profile.

• MPL (medium pelagic fish) - extrapolate across coastal polygons

Model predictions can be seen in Figure B.25. Catch in this group consist of

various species (e.g., Brama sp. and Megalops atlanticus). Many of these species

have been found in coastal waters (e.g., Brama brama (May and Maxwell, 1986),

Megalops atlanticus (Whitehead and Vergara, 1978)). For each seasonal profile,

when calculating the median catch rate within polygons the median of those
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catch rates was also calculated. The median catch rate, for each season, were

assigned to all coastal polygons as the average catch rate.

• SMK (spanish mackerel) - extrapolate across coastal polygons

Model predictions can be seen in Figure B.26. Two species dominate this

catch: Lepidocybium flavobrunneum and Ruvettus pretiosus. Both species are

benthopelagic and oceanic (Riede, 2004), as well as occupying the slope (Na-

kamura and Parin, 1993; Nakamura, 1995). Thus, polygons with depths defined

as 10, 20, or 50 m were assigned a average catch rate of zero, and polygons with

depths defined as 200 m were assigned an average catch rate equal to the me-

dium of all the catch rates calculated when averaging across polygons. This was

done for each seasonal profile. Using the medium of catch rates will encourage

a slight concentration of the functional group around the slope.

• SMS (small sharks) - extrapolate across coastal polygons

Model predictions can be seen in Figure B.27. Some SMS species use the entire

coast (Isistius brasiliensis (Kiraly et al., 2003)), and some are usually meso-

and/or bathypelagic (e.g. Zameus squamulosus (Kiraly et al., 2003), Somniosus

microcephalus (Muus et al., 1999; Moretzsohn et al., 2011), Squalus acanthias

(Cox and Francis, 1997; Compagno, 2002)). Thus, polygons with depths defined

as 10, 20, or 50 m were assigned an average catch rate of zero, and polygons

with depths defined as 200 m were assigned an average catch rate equal to the

medium of all the catch rates calculated when averaging across polygons. This

was done for each seasonal profile.
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• SWD (swordfish) - extrapolate across coastal polygons

Model predictions can be seen in Figure B.28. There is limited information

discussing the horizontal distribution of swordfish, especially within the Gulf of

Mexico. Dewar et al. (2011) presented data collected from swordfish tagged with

PSAT tags, but the relatively low sample size and short deployment durations

limit the utility for examining migratory patterns or stock structure. Nakamura

(1985) generalizes that the stock is mostly pelagic with some instances of being

in coastal habitats. Polygons with depths defined as 10, 20, or 50 m were

assigned a average catch rate of zero, and polygons with depths defined as 200

m were assigned an average catch rate equal to the medium of all the catch rates

calculated when averaging across polygons. This was done for each seasonal

profile.

• TIP (blacktip sharks) - extrapolate across pelagic polygons

Model predictions can be seen in Figure B.29. Blacktip sharks are primarily

coastal, rarely moving through deep, oceanic waters (Compagno, 1984). All

pelagic polygons were assigned an average catch rate equal to zero.

• TUR (other turtles) - extrapolate across coastal polygons

Model predictions can be seen in Figure B.30. The TUR species identified in the

catch records are known to be coastal (e.g., Chelonia mydas, Dermochelys cori-

acea, Eretmochelys imbricata (Moretzsohn et al., 2011)). All coastal polygons

were assigned an average catch rate equal to the medium of all the catch rates

calculated when averaging across polygons. This was done for each seasonal

profile.



228

• WMR (white marlin) - extrapolate across coastal polygons

Model predictions can be seen in Figure B.31. White marlin generally prefer

water deeper than 100 m (ICCAT, 2012). Polygons with depths defined as 10,

20, or 50 m were assigned a average catch rate of zero, and polygons with depths

defined as 200 m were assigned the smallest medium catch rate calculated when

averaging across polygons. This was done for each seasonal profile.

• YTN (yellowfin tuna) - extrapolate across coastal polygons

Model predictions can be seen in Figure B.32. Yellowfin tuna are known to

be oceanic, spending much of the time oceanic environments (Riede, 2004).

Polygons with depths defined as 10, 20, or 50 m were assigned a average catch

rate of zero, and polygons with depths defined as 200 m were assigned an average

catch rate equal to the medium of all the catch rates calculated when averaging

across polygons. This was done for each seasonal profile.

B.10 Spatial Predications from Updated Pelagic

Models: Large Sharks

Forward selection of pelagic models was originally done with training datasets

for cross validation. This should have been done with the entire dataset (data for

forecasting fitting). Forward selection of pelagic models was done with data for

forecasting fitting, and these models were used to compute predictions. While for

many functional groups predictions were the similar as those from pelagic models

selected from training data, predictions for large sharks were quite different (Figure

B.33). This is because the pelagic delta model selected with data for forecasting fitting
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(Eqn. B.2) selected bottom depth as the variable providing the most improvement to

AIC, so bottom depth was the first descriptor to have the basis dimension adjusted.

This resulted in a smoothing spline for bottom depth to be more ’wiggly’ than the

smoothing spline reported in the chapter (Figure B.33). Predictions for large sharks

presented in the chapter seem to make more ecological sense than predictions for

large sharks from the model selected with data for forecasting fitting, and thus were

selected to be used to parameterize the Gulf of Mexico Atlantis model. This is likely

due to the smoothing spline for bottom depth being excessively ’wiggly’ from the

model selected with data for forecasting fitting. This highlights the limitations of

using an automated routine for basis dimension setting.

g(ηB) = s(BD, 9) + f(yr) + f(sn) + s(MDF, 3) + s(SSH, 3) (B.2)

g(ηZ) = s(BD, 21) + f(yr) + f(sn) + s(SST, 9) + s(SSH, 25) + s(MDF, 18)
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Table B.1: The deviance explained when bottom longline data was fit individually with the
environmental and temporal variables considered to be model descriptors. Variables include
year, daytime, latitude (LAT.DEG.N), longitude (LON.DEG.W), sea bottom depth (WA-
TER.DEPTH), sea surface temperature (SST), sea surface height (SSH), minimum distance
from a front (NEAR.DIST), beam transmission (XMISS), dissolved oxygen (OXY.MG),
oxygen saturation (OXSAT), density, salinity, and some of these variables measured from
the sea bottom (indicated by CTD.BT).

Bernoulli Models Gamma models
LGS TIP RAY LPL LGS TIP RAY LPL

YEAR 0.0268 0.0076 0.0162 0.0044 0.0408 0.1094 0.0628 0.1857
DAYTIME 3.13E-07 0.0018 0.0028 0.0005 0.0002 0.0181 4.14E-05 0.0134
LAT.DEG.N 0.0140 0.0138 0.0217 0.0714 0.0249 0.1422 0.0762 0.1592
LON.DEG.W 0.0099 0.0420 0.0779 0.0752 0.1532 0.2369 0.1930 0.0594
WATER.DEPTH 0.4486 0.3026 0.1032 0.0780 0.1224 0.1710 0.1659 0.0710
SST 0.0071 0.0332 0.0068 0.0441 0.0425 0.0742 0.1202 0.0420
SSH 5.62E-08 0.0274 0.0213 0.0179 0.1253 0.1111 0.0184 0.1036
NEAR.DIST 0.0120 0.0441 0.0249 0.0344 0.0012 0.0392 0.0306 4.82E-07
XMISS 0.0118 0.1820 0.0017 0.0326 0.0093 0.0636 0.0226 1.91E-06
OXY.MG 0.0031 0.0156 0.0042 0.0592 5.91E-08 0.0470 8.76E-07 0.3034
OXSAT 0.0034 0.0123 0.0086 0.0471 0.0002 0.0881 2.82E-07 0.1401
DENSITY 3.74E-07 0.0995 8.84E-08 0.0409 0.0276 0.2174 0.0267 0.0573
SALINITY 0.0047 0.1009 7.03E-07 0.0097 0.0373 0.2418 0.0386 0.0556
CTD.BT.Temp 0.4260 0.2431 0.1104 0.0529 0.1609 0.1714 0.2169 2.23E-06
CTD.BT.XMISS 0.0048 0.1612 0.0071 0.0593 0.2034 0.3179 0.2226 0.0759
CTD.BT.OXY.MG 0.0807 0.0334 0.0349 0.0725 0.0488 0.0683 0.0704 0.0547
CTD.BT.OXSAT 0.1778 0.0578 0.0579 0.0894 0.0335 0.0592 0.0926 0.1108
CTD.BT.DENSITY 0.4683 0.2546 0.0864 0.0247 0.0704 0.3057 0.1429 4.57E-06
CTD.BT.SAL 0.0126 0.0716 0.0223 0.0046 1.47E-07 0.3142 0.1141 0.0251
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Table B.2: Comparing Statistical Fits of Gamma Link Functions. The three gamma link
functions (identity, inverse, and log) are being compared with the fit statistics generalized
cross validation (GCV) and deviance explained. Bolded values indicated the best fit. The
results for starred functional groups are derived from bottom longline survey data, and all
other results are derived from pelagic longline observer data.

Functional Group Fit Statistic Identity Inverse Log

BIL (other billfish)
GCV 0.428 0.394 0.406

Deviance Explained 0.244 0.304 0.284

BMR (blue marlin)
GCV 0.337 0.327 0.334

Deviance Explained 0.188 0.215 0.194

BTN (bluefin tuna)
GCV 0.357 0.359 0.358

Deviance Explained 0.076 0.072 0.074

DWF (deep water fish)
GCV 0.068 0.062 0.065

Deviance Explained 0.386 0.436 0.412

FIL (filter feeding sharks)
GCV 0.161 0.147 0.156

Deviance Explained 0.213 0.296 0.243

LGS (large sharks)
GCV 0.790 0.626 0.594

Deviance Explained 0.536 0.633 0.652

LGS (large sharks)?
GCV 0.998 0.916 0.968

Deviance Explained 0.190 0.259 0.216

LPL (large pelagic fish)
GCV 0.993 0.966 0.966

Deviance Explained 0.212 0.234 0.234

LPL (large pelagic fish)?
GCV 0.206 0.189 0.200

Deviance Explained 0.270 0.366 0.309

MPL (medium pelagic fish)
GCV 0.252 0.251 0.252

Deviance Explained 0.048 0.056 0.052

RAY (skates and rays)
GCV 0.499 0.485 0.490

Deviance Explained 0.139 0.164 0.154

RAY (skates and rays)?
GCV 0.823 0.692 0.751

Deviance Explained 0.290 0.412 0.353

SMK (spanish mackerel)
GCV 0.661 0.659 0.660

Deviance Explained 0.064 0.068 0.067

SMS (small sharks)
GCV 0.474 0.398 0.424

Deviance Explained 0.405 0.503 0.469

SWD (swordfish)
GCV 0.738 0.662 0.665

Deviance Explained 0.349 0.417 0.413

TIP (blacktip sharks)?
GCV 0.696 0.685 0.683

Deviance Explained 0.159 0.169 0.174

TUR (other turtles)
GCV 0.208 0.138 0.169

Deviance Explained 0.511 0.673 0.601

WMR (white marlin)
GCV 0.303 0.293 0.299

Deviance Explained 0.187 0.218 0.202

YTN (yellowfin tuna)
GCV 0.669 0.663 0.665

Deviance Explained 0.104 0.112 0.108



232

Table B.3: Evaluating Basis Dimension Estimation Routine. This table displays the de-
viance explained for functional group-specific GAMs before and after the execution of the
basis dimension estimation routine. Results for starred functional groups are derived from
bottom longline survey data, and all other results are derived from pelagic longline ob-
server data. All results come from models fit with training datasets developed for the cross
validation.

Functional Binomial Data Model Zero-Truncated Data Model
Group Pre-Routine Post-Routine Pre-Routine Post-Routine

other billfish 0.305 0.305 0.277 0.352
blue marlin 0.207 0.207 0.192 0.245
bluefin tuna 0.431 0.431 0.088 0.088
deep water fish 0.117 0.117 0.671 0.671
filter feeding sharks 0.088 0.088 0.446 0.446
large sharks 0.197 0.197 0.648 0.702
large sharks? 0.474 0.603 0.302 0.382
large pelagic fish 0.150 0.150 0.227 0.321
large pelagic fish? 0.474 0.485 0.445 0.467
medium pelagic fish 0.101 0.101 0.179 0.179
skates and rays 0.221 0.221 0.359 0.399
skates and rays? 0.165 0.264 0.294 0.582
spanish mackerel 0.105 0.136 0.152 0.221
small sharks 0.225 0.225 0.520 0.604
swordfish 0.238 0.261 0.413 0.479
blacktip sharks 0.227 0.676 0.628 0.628
other turtles 0.085 0.085 0.724 0.724
white marlin 0.212 0.228 0.216 0.216
yellowfin tuna 0.310 0.310 0.119 0.138
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Table B.4: Summary of Correlations Among Environmental Variables for Models Fit with
Pelagic Longline Observer Data. Presented are the correlation coefficients for both com-
ponents of the Delta framework: models fit with binomial data and models fit with zero-
truncated data. Model descriptors include year, season, sea surface temperature (SST),
altimetry (SSH), bottom depth (BD), and minimum distance from a front (MDF). Func-
tional group-specific binomial data models produce the same correlation matrix since models
are fitted with the entire longline set data, but zero-truncated data models produce different
correlation matrices since fitted datasets only include functional group-specific catch events.
The correlation matrices are summarized here with the table below displaying the average,
minimum, and maximum.

Binomial Data Models
Descriptors year season SST SSH BD MDF
year - - - - - -
season -0.14 - - - - -
SST -0.16 0.51 - - - -
SSH -0.10 0.29 0.37 - - -
BD 0.08 0.03 0.12 -0.08 - -
MDF 0.20 0.03 0.00 -0.09 -0.02 -

Zero-Truncated Data Models
Descriptors year season SST SSH BD MDF
year - - - - - -
season -0.13(-0.25 - 0.06) - - - - -
SST -0.14(-0.23 - -0.02) 0.44(0.2 - 0.53) - - - -
SSH -0.06(-0.16 - 0.14) 0.27(0.08 - 0.44) 0.35(0.09 - 0.56) - - -
BD 0.08(0 - 0.18) 0.01(-0.15 - 0.08) 0.1(-0.17 - 0.29) -0.07(-0.23 - 0.16) - -
MDF 0.18(-0.15 - 0.26) -0.01(-0.1 - 0.05) -0.02(-0.16 - 0.12) -0.1(-0.35 - 0.11) 0.01(-0.12 - 0.17) -
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Table B.5: Forward model selection results for GAMs fitted with large pelagic fish bottom
longline survey data. Model descriptors included year, bottom depth, sea surface tem-
perature (sst), sea bottom temperature (sbt), altimetry (ssh), minimum distance from a
front (mdf), sea surface dissolved oxygen (do), sea bottom dissolved oxygen (sbdo), sea
surface oxygen saturation (oxsat), sea bottom oxygen saturation (sboxsat), sea surface sa-
linity (salinity), and sea bottom salinity (sbsalinity). Forward model selection ceased when
descriptors failed to improve the deviance explained (d) more than 5%. The displayed cor-
relation coefficient (c) is calculated based on the last two model descriptors. Bold-faced
indicates selected models.

Binomial Data Model d c Zero-Truncated Data Model d c
year 0.004 - year 0.200 -

depth 0.086 - depth 0.140 -
sst 0.032 - sst 0.059 -
ssh 0.021 - ssh 0.180 -

mdf 0.027 - mdf 2.7E-7 -
do 0.042 - do 0.332 -

oxsat 0.032 - oxsat 0.164 -
salinity 0.011 - salinity 0.052 -

sbt 0.070 - sbt 0.040 -
sbdo 0.080 - sbdo 0.063 -

sboxsat 0.106 - sboxsat 0.158 -
sbsalinity 1.4E-6 - sbsalinity 0.058 -

sboxsat + year 0.112 -0.187 do + year 0.466 0.034
sboxsat + depth 0.124 -0.500 do + depth 0.348 -0.168
sboxsat + sst 0.144 -0.263 do + sst 0.332 -0.306

sboxsat + ssh 0.114 -0.301 do + ssh 0.576 0.262
sboxsat + mdf 0.122 0.454 do + mdf 0.332 -0.083

sboxsat + do 0.131 0.433 do + oxsat 0.379 0.814
sboxsat + oxsat 0.121 0.433 do + salinity 0.453 -0.254

sboxsat + salinity 0.122 0.192 do + sbt 0.332 0.305
sboxsat + sbt 0.131 0.529 do + sbdo 0.351 -0.135

sboxsat + sbdo 0.148 0.965 do + sboxsat 0.391 0.008
sboxsat + sbsalinity 0.106 -0.037 do + sbsalinity 0.332 -0.362

sboxsat + sst + year 0.147 0.133 do + ssh + year 0.623 0.468
sboxsat + sst + depth 0.144 -0.033 do + ssh + depth 0.576 -0.132

sboxsat + sst + ssh 0.144 -0.019 do + ssh + sst 0.576 -0.116
sboxsat + sst + mdf 0.154 -0.226 do + ssh + mdf 0.576 -0.096

sboxsat + sst + do 0.172 -0.511 do + ssh + oxsat 0.649 0.138
sboxsat + sst + oxsat 0.157 -0.404 do + ssh + salinity 0.576 0.200

sboxsat + sst + salinity 0.146 0.300 do + ssh + sbt 0.576 0.242
sboxsat + sst + sbt 0.156 0.048 do + ssh + sbdo 0.597 0.297

sboxsat + sst + sbdo 0.159 -0.328 do + ssh + sboxsat 0.617 0.326
sboxsat + sst + sbsalinity 0.144 0.216 do + ssh + sbsalinity 0.576 0.017
sboxsat + sst + do + year 0.177 -0.443 do + ssh + year + depth 0.626 -0.389

sboxsat + sst + do + depth 0.189 0.031 do + ssh + year + sst 0.623 -0.351
sboxsat + sst + do + ssh 0.174 -0.194 do + ssh + year + mdf 0.623 -0.075

sboxsat + sst + do + mdf 0.183 0.361 do + ssh + year + salinity 0.628 0.070
sboxsat + sst + do + oxsat 0.180 0.990 do + ssh + year + sbt 0.623 0.397

sboxsat + sst + do + salinity 0.177 0.094 do + ssh + year + sbdo 0.640 0.416
sboxsat + sst + do + sbt 0.182 -0.056 do + ssh + year + sboxsat 0.659 0.462

sboxsat + sst + do + sbdo 0.175 0.533 do + ssh + year + sbsalinity 0.623 -0.089
sboxsat + sst + do + sbsalinity 0.172 -0.105

sboxsat + sst + do + depth + year 0.177 -0.021
sboxsat + sst + do + depth + ssh 0.189 0.111

sboxsat + sst + do + depth + mdf 0.202 -0.210
sboxsat + sst + do + depth + oxsat 0.197 0.033

sboxsat + sst + do + depth + salinity 0.177 0.071
sboxsat + sst + do + depth + sbt 0.189 -0.878

sboxsat + sst + do + depth + sbdo 0.197 -0.314
sboxsat + sst + do + depth + sbsalinity 0.203 0.049
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Table B.6: Forward model selection results for GAMs fitted with large sharks bottom
longline survey data. Model descriptors considered include year, bottom depth, sea surface
temperature (sst), sea bottom temperature (sbt), altimetry (ssh), minimum distance from
a front (mdf), sea surface dissolved oxygen (do), sea bottom dissolved oxygen (sbdo), sea
surface oxygen saturation (oxsat), sea bottom oxygen saturation (sboxsat), sea surface
salinity (salinity), and sea bottom salinity (sbsalinity). Forward model selection ceased
when descriptors failed to improve the deviance explained (d) more than 5%. The displayed
correlation coefficient (c) is calculated based on the last two model descriptors. Bold-faced
indicates selected models.

Binomial Data Model d c Zero-Truncated Data Model d c
year 0.008 - year 0.037 -

depth 0.505 - depth 0.144 -
sst 0.007 - sst 0.070 -
ssh 0.017 - ssh 0.146 -

mdf 0.031 - mdf 0.004 -
do 0.010 - do 0.002 -

oxsat 0.008 - oxsat 0.004 -
salinity 0.006 - salinity 0.037 -

sbt 0.454 - sbt 0.168 -
sbdo 0.201 - sbdo 0.050 -

sboxsat 0.198 - sboxsat 0.036 -
sbsalinity 0.232 - sbsalinity 1.9E-7 -

sbt + year 0.205 0.030
sbt + depth 0.190 -0.837

sbt + sst 0.223 0.030
sbt + ssh 0.291 -0.050
sbt + mdf 0.176 0.193

sbt + do 0.183 -0.016
sbt + oxsat 0.183 -0.016

sbt + salinity 0.208 -0.078
sbt + sbdo 0.244 0.235

sbt + sboxsat 0.237 0.427
sbt + sbsalinity 0.168 -0.382

sbt + ssh + year 0.321 0.288
sbt + ssh + depth 0.328 0.115

sbt + ssh + sst 0.310 -0.044
sbt + ssh + mdf 0.299 -0.241

sbt + ssh + do 0.297 -0.147
sbt + ssh + oxsat 0.297 -0.177

sbt + ssh + salinity 0.297 -0.338
sbt + ssh + sbdo 0.314 -0.389

sbt + ssh + sboxsat 0.312 -0.377
sbt + ssh + sbsalinity 0.293 -0.164
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Table B.7: Forward model selection results for GAMs fitted with skates and rays bottom
longline survey data. Model descriptors considered include year, bottom depth, sea surface
temperature (sst), sea bottom temperature (sbt), altimetry (ssh), minimum distance from
a front (mdf), sea surface dissolved oxygen (do), sea bottom dissolved oxygen (sbdo), sea
surface oxygen saturation (oxsat), sea bottom oxygen saturation (sboxsat), sea surface
salinity (salinity), and sea bottom salinity (sbsalinity). Forward model selection ceased
when descriptors failed to improve the deviance explained (d) more than 5%. The displayed
correlation coefficient (c) is calculated based on the last two model descriptors. Bold-faced
indicates selected models.

Binomial Data Model d c Zero-Truncated Data Model d c
year 0.006 - year 0.025 -

depth 0.127 - depth 0.155 -
sst 1.5E-7 - sst 0.101 -
ssh 0.015 - ssh 3.E-6 -

mdf 0.027 - mdf 0.015 -
do 0.003 - do 0.003 -

oxsat 0.005 - oxsat 1.2E-6 -
salinity 2.5E-7 - salinity 0.034 -

sbt 0.126 - sbt 0.210 -
sbdo 0.090 - sbdo 0.056 -

sboxsat 0.110 - sboxsat 0.098 -
sbsalinity 0.022 - sbsalinity 0.092 -

depth + year 0.131 0.243 sbt + year 0.250 -0.024
depth + sst 0.134 0.244 sbt + depth 0.231 -0.830
depth + ssh 0.132 0.239 sbt + sst 0.328 0.062

depth + mdf 0.132 -0.259 sbt + ssh 0.210 0.043
depth + do 0.129 0.031 sbt + mdf 0.210 0.089

depth + oxsat 0.132 0.032 sbt + do 0.229 -0.009
depth + salinity 0.137 0.071 sbt + oxsat 0.216 -0.004

depth + sbt 0.142 -0.877 sbt + salinity 0.325 -0.045
depth + sbdo 0.146 -0.314 sbt + sbdo 0.237 0.277

depth + sboxsat 0.150 -0.500 sbt + sboxsat 0.221 0.508
depth + sbsalinity 0.127 0.049 sbt + sbsalinity 0.210 -0.021

sbt + sst + year 0.342 0.339
sbt + sst + depth 0.337 -0.011

sbt + sst + ssh 0.328 0.245
sbt + sst + mdf 0.328 -0.136

sbt + sst + do 0.336 -0.468
sbt + sst + oxsat 0.331 -0.369

sbt + sst + salinity 0.418 0.144
sbt + sst + sbdo 0.329 -0.302

sbt + sst + sboxsat 0.329 -0.252
sbt + sst + sbsalinity 0.328 0.241
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Table B.8: Forward model selection results for GAMs fitted with blacktip sharks bottom
longline survey data. Model descriptors considered include year, bottom depth, sea surface
temperature (sst), sea bottom temperature (sbt), altimetry (ssh), minimum distance from
a front (mdf), sea surface dissolved oxygen (do), sea bottom dissolved oxygen (sbdo), sea
surface oxygen saturation (oxsat), sea bottom oxygen saturation (sboxsat), sea surface
salinity (salinity), and sea bottom salinity (sbsalinity). Forward model selection ceased
when descriptors failed to improve the deviance explained (d) more than 5%. The displayed
correlation coefficient (c) is calculated based on the last two model descriptors. Bold-faced
indicates selected models.

Binomial Data Model d c Zero-Truncated Data Model d c
year 0.007 - year 0.106 -

depth 0.307 - depth 0.181 -
sst 0.033 - sst 0.141 -
ssh 0.027 - ssh 0.130 -

mdf 0.048 - mdf 0.027 -
do 0.017 - do 0.088 -

oxsat 0.010 - oxsat 0.100 -
salinity 0.115 - salinity 0.246 -

sbt 0.245 - sbt 0.211 -
sbdo 0.023 - sbdo 0.172 -

sboxsat 0.034 - sboxsat 0.164 -
sbsalinity 0.066 - sbsalinity 0.345 -

depth + year 0.315 0.243 sbsalinity + year 0.380 0.075
depth + sst 0.320 0.244 sbsalinity + depth 0.388 0.381
depth + ssh 0.357 0.239 sbsalinity + sst 0.382 0.191

depth + mdf 0.319 -0.259 sbsalinity + ssh 0.351 -0.287
depth + do 0.325 0.031 sbsalinity + mdf 0.356 -0.123

depth + oxsat 0.323 0.032 sbsalinity + do 0.367 -0.050
depth + salinity 0.364 0.071 sbsalinity + oxsat 0.370 0.013

depth + sbt 0.313 -0.877 sbsalinity + salinity 0.365 0.584
depth + sbdo 0.344 -0.314 sbsalinity + sbt 0.394 -0.225

depth + sboxsat 0.345 -0.500 sbsalinity + sbdo 0.403 0.059
depth + sbsalinity 0.324 0.049 sbsalinity + sboxsat 0.398 0.062

depth + salinity + year 0.375 0.029 sbsalinity + sbdo + year 0.422 -0.457
depth + salinity + sst 0.378 0.298 sbsalinity + sbdo + depth 0.475 -0.060

depth + salinity + ssh 0.395 -0.179 sbsalinity + sbdo + sst 0.410 -0.424
depth + salinity + mdf 0.380 0.056 sbsalinity + sbdo + ssh 0.403 -0.528

depth + salinity + do 0.373 0.094 sbsalinity + sbdo + mdf 0.403 0.506
depth + salinity + oxsat 0.372 0.164 sbsalinity + sbdo + do 0.406 0.594

depth + salinity + sbt 0.367 -0.100 sbsalinity + sbdo + oxsat 0.407 0.615
depth + salinity + sbdo 0.384 0.237 sbsalinity + sbdo + salinity 0.406 0.397

depth + salinity + sboxsat 0.387 0.192 sbsalinity + sbdo + sbt 0.470 -0.043
depth + salinity + sbsalinity 0.373 0.407 sbsalinity + sbdo + sboxsat 0.458 0.992

depth + salinity + ssh + year 0.407 0.374
depth + salinity + ssh + sst 0.410 -0.018

depth + salinity + ssh + mdf 0.409 -0.254
depth + salinity + ssh + do 0.405 -0.194

depth + salinity + ssh + oxsat 0.404 -0.220
depth + salinity + ssh + sbt 0.400 -0.029

depth + salinity + ssh + sbdo 0.413 -0.329
depth + salinity + ssh + sboxsat 0.415 -0.301

depth + salinity + ssh + sbsalinity 0.406 -0.121



238

Table B.9: Forward Model Selection results for GAMs solving for catch-per-unit-effort to
be used to standardize coastal and pelagic predictions of large sharks (left) and skates
and rays (right). Model descriptors considered include year, season, longline type (title),
bottom depth, sea surface temperature (sst), altimetry (ssh), and minimum distance from
a front (mdf). Descriptors were selected based on model deviance explained (d). Forward
model selection ceased when descriptors provided no improvement to model fits. Bold-faced
indicates selected models.

large sharks d skates and rays d
year 0.199 year 0.187

season 0.25 season 0.303
title 0.212 title 0.235

depth 0.377 depth 0.192
sst 0.167 sst 0.221
ssh 0.252 ssh 0.011

mdf 3.23E-7 mdf 0.209
depth + year 0.518 season + year 0.451
depth + season 0.46 season + title 0.31

depth + title 0.451 season + depth 0.447
depth + sst 0.444 season + sst 0.349
depth + ssh 0.456 season + ssh 0.303

depth + mdf 0.377 season + mdf 0.472
depth + year + season 0.57 season + mdf + year 0.602

depth + year + title 0.55 season + mdf + title 0.475
depth + year + sst 0.542 season + mdf + depth 0.534
depth + year + ssh 0.553 season + mdf + sst 0.472

depth + year + mdf 0.537 season + mdf + ssh 0.482
depth + year + season + title 0.57 season + mdf + year + title 0.611

depth + year + season + sst 0.57 season + mdf + year + depth 0.603
depth + year + season + ssh 0.57 season + mdf + year + sst 0.602

depth + year + season + mdf 0.588 season + mdf + year + ssh 0.602
depth + year + season + mdf + title 0.589

depth + year + season + mdf + sst 0.597
depth + year + season + mdf + ssh 0.588

depth + year + season + mdf + sst + title 0.598
depth + year + season + mdf + sst + ssh 0.597
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(a) (b)

Figure B.1: Fronts, indicated by blue lines, produced by the Cayula-Cornillon Fronts in
ArcGIS Raster MGET tool in ArcGIS. Panel (a) displays the results produced when 2006
sea surface temperature data from January, February, and March (season 1) are processed.
Panel (b) displays the results produced with 2006 altimetry data from season 1, scaled by
1000, are processed.
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(a) large sharks (b) large pelagic fish (c) skates and rays (d) blacktip sharks

(e) other billfish (f) blue marlin (g) bluefin tuna (h) deep water fish (i) filter feeding sharks

(j) large sharks (k) large pelagic fish (l) medium pelagic fish(m) skates and rays (n) spanish mackerel

(o) small sharks (p) swordfish (q) other turtles (r) white marlin (s) yellowfin tuna

Figure B.2: The variance in catch rate is plotted against the mean catch rate. Panels (a) -
(d) are derived from bottom longline survey data and panels (e) - (s) are derived from
pelagic longline observer data. For all images the black line displays the square of the
average catch rate curve.
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Figure B.3: The large sharks seasonal predictions for day (a - d) are similar to the
predictions for night (e - h). The swordfish seasonal predictions for day (i - l) are slightly
different than the corresponding predictions for night (m - p). Columns correspond to
seasons.
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(a) large sharks (b) large pelagic fish (c) skates and rays (d) blacktip sharks

(e) other billfish (f) blue marlin (g) bluefin tuna (h) deep water fish (i) filter feeding sharks

(j) large sharks (k) large pelagic fish (l) medium pelagic fish(m) skates and rays (n) spanish mackerel

(o) small sharks (p) swordfish (q) other turtles (r) white marlin (s) yellowfin tuna

Figure B.4: The distribution plots of normal-scale catch rates (black lines; corresponding
to the primary axis) and log-transformed catch rates (grey lines; corresponding to the
secondary axis). Panels (a) - (d) are derived from bottom longline survey data while
panels (e) - (s) are derived from pelagic longline observer data.
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(a) large sharks (b) large pelagic fish (c) skates and rays (d) blacktip shark

(e) other billfish (f) blue marlin (g) bluefin tuna (h) deepwater fish (i) filter feeding sharks

(j) large sharks (k) large pelagic fish (l) medium pelagic fish(m) skates and rays (n) spanish mackerel

(o) small sharks (p) swordfish (q) other turtles (r) white marlin (s) yellowfin tuna

Figure B.5: Observed catch rates against predicted catch rates for coastal models (a - d),
and pelagic models (e - s). Solid lines indicate the fitted linear regression and the dashed
line indicates the 1:1 line. The plot title states the intercept, slope, and adjusted r-square
value.
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Figure B.6: Bathymetry [m] estimates across the Gulf of Mexico. The raster was
developed in ArcGIS by processing bathymetry data (Table 3.1) with the Kriging tool
(default settings).
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(a) (b)

(c) (d)

Figure B.7: Seasonal average estimates of sea surface height [m] across the Gulf of Mexico
during the winter (a), spring (b), summer (c), and fall (d). Rasters were created in
ArcGIS by processing seasonal sea surface height data (Table 3.1) with the Kriging tool
(default settings).
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(a) (b)

(c) (d)

Figure B.8: Seasonal average estimates of sea surface temperature [C◦] across the Gulf of
Mexico during the winter (a), spring (b), summer (c), and fall (d). Rasters were created in
ArcGIS by processing seasonal sea surface temperature data (Table 3.1) with the Kriging
tool (default settings).
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(a) (b)

(c) (d)

Figure B.9: Seasonal average estimates of sea bottom temperature [C◦] across the Gulf of
Mexico during the winter (a), spring (b), summer (c), and fall (d). Rasters were created in
ArcGIS by processing seasonal sea bottom temperature data (Table 3.1) with the Kriging
tool (default settings).
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(a) (b)

(c) (d)

Figure B.10: Seasonal average estimates of sea bottom oxygen saturation [%] across the
Gulf of Mexico during the winter (a), spring (b), summer (c), and fall (d). Rasters were
created in ArcGIS by processing seasonal sea bottom oxygen saturation data (Table 3.1)
with the Kriging tool (default settings).
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(a) (b)

(c) (d)

Figure B.11: Seasonal average estimates of sea surface dissolved oxygen [ml/l] across the
Gulf of Mexico during the winter (a), spring (b), summer (c), and fall (d). Rasters were
created in ArcGIS by processing seasonal sea surface dissolved oxygen data (Table 3.1)
with the Kriging tool (default settings).
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(a) (b)

(c) (d)

Figure B.12: Seasonal average estimates of the sea bottom dissolved oxygen [ml/l] across
the Gulf of Mexico during the winter (a), spring (b), summer (c), and fall (d). Rasters
were created in ArcGIS by processing seasonal sea bottom dissolved oxygen data (Table
3.1) with the Kriging tool (default settings).
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(a) (b)

(c) (d)

Figure B.13: Seasonal average estimates of sea surface salinity [pss] the Gulf of Mexico
during the winter (a), spring (b), summer (c), and fall (d). Rasters were created in
ArcGIS by processing seasonal sea surface salinity data (Table 3.1) with the Kriging tool
(default settings).
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(a) (b)

(c) (d)

Figure B.14: Seasonal average estimates of sea bottom salinity [pss] the Gulf of Mexico
during the winter (a), spring (b), summer (c), and fall (d). Rasters were created in
ArcGIS by processing seasonal sea bottom salinity data (Table 3.1) with the Kriging tool
(default settings).
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(a) (b)

(c) (d)

Figure B.15: Seasonal estimates of the average front locations within the Gulf of Mexico
during the winter (a), spring (b), summer (c), and fall (d). Front polyline files were
created by processing AVISO point data, separated by season, by the routine described in
Figure 3.2 for calculating minimum distance from a front.
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Figure B.16: Catch rates of large pelagic fish predicted by GAMs fitted with bottom longline
survey data (a - d), and GAMs fitted with pelagic longline observer data (e - h). Columns
correspond to season.
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Figure B.17: Standard error of seasonal predictions from the large pelagic fish coastal
logistic model (a - d), coastal Gamma model (e - h), pelagic logistic model (i - l), and
pelagic Gamma model (m - p). Columns correspond to season.
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Figure B.18: Catch rates of skates and rays predicted by GAMs fitted with bottom longline
survey data (a - d), and GAMs fitted with pelagic longline observer data (e - h). Columns
correspond to season.
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Figure B.19: Standard error of seasonal predictions from the skates and rays coastal logistic
model (a - d), coastal Gamma model (e - h), pelagic logistic model (i - l), and pelagic Gamma
model (m - p). Columns correspond to season.
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Figure B.20: Catch rates of other billfish predicted by GAMs fitted with pelagic longline
observer data (a - d), standard error of seasonal predictions from the logistic model (e -
h), and standard error of seasonal predictions from the Gamma model (i - l). Columns
correspond to season.
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Figure B.21: Catch rates of blue marlin predicted by GAMs fitted with pelagic longline
observer data (a - d), standard error of seasonal predictions from the logistic model (e -
h), and standard error of seasonal predictions from the Gamma model (i - l). Columns
correspond to season.
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Figure B.22: Catch rates of bluefin tuna predicted by GAMs fitted with pelagic longline
observer data (a - c), standard error of seasonal predictions from the logistic model (d -
f), and standard error of seasonal predictions from the Gamma model (g - i). Columns
correspond to season (1, 2, and 4).
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Figure B.23: Catch rates of deep water fish predicted by GAMs fitted with pelagic longline
observer data (a - d), standard error of seasonal predictions from the logistic model (e -
h), and standard error of seasonal predictions from the Gamma model (i - l). Columns
correspond to season.
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Figure B.24: Catch rates of filter feeding sharks predicted by GAMs fitted with pelagic
longline observer data (a - d), standard error of seasonal predictions from the logistic model
(e - h), and standard error of seasonal predictions from the Gamma model (i - l). Columns
correspond to season.
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Figure B.25: Catch rates of medium pelagic fish predicted by GAMs fitted with pelagic
longline observer data (a - d), standard error of seasonal predictions from the logistic model
(e - h), and standard error of seasonal predictions from the Gamma model (i - l). Columns
correspond to season.
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Figure B.26: Catch rates of spanish mackerel predicted by GAMs fitted with pelagic longline
observer data (a - d), standard error of seasonal predictions from the logistic model (e -
h), and standard error of seasonal predictions from the Gamma model (i - l). Columns
correspond to season.
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Figure B.27: Catch rates of small sharks predicted by GAMs fitted with pelagic longline
observer data (a - d), standard error of seasonal predictions from the logistic model (e -
h), and standard error of seasonal predictions from the Gamma model (i - l). Columns
correspond to season.
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Figure B.28: Catch rates of swordfish predicted by GAMs fitted with pelagic longline ob-
server data (a - d), standard error of seasonal predictions from the logistic model (e - h), and
standard error of seasonal predictions from the Gamma model (i - l). Columns correspond
to season.
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Figure B.29: Catch rates of blacktip sharks predicted by GAMs fitted with bottom longline
survey data (a - d), standard error of seasonal predictions from the logistic model (e - h), and
standard error of seasonal predictions from the Gamma model (i - l). Columns correspond
to season.



268

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

(a)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

(b)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

(c)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

(d)

0.000

0.002

0.004

0.006

0.008

0.010

(e)

0.000

0.002

0.004

0.006

0.008

0.010

(f)

0.000

0.002

0.004

0.006

0.008

0.010

(g)

0.000

0.002

0.004

0.006

0.008

0.010

(h)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

(i)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

(j)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

(k)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

(l)

Figure B.30: Catch rates of other turtles predicted by GAMs fitted with pelagic longline
observer data (a - d), standard error of seasonal predictions from the logistic model (e -
h), and standard error of seasonal predictions from the Gamma model (i - l). Columns
correspond to season.
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Figure B.31: Catch rates of white marlin predicted by GAMs fitted with pelagic longline
observer data (a - d), standard error of seasonal predictions from the logistic model (e -
h), and standard error of seasonal predictions from the Gamma model (i - l). Columns
correspond to season.
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Figure B.32: Catch rates of yellowfin tuna predicted by GAMs fitted with pelagic longline
observer data (a - d), standard error of seasonal predictions from the logistic model (e -
h), and standard error of seasonal predictions from the Gamma model (i - l). Columns
correspond to season.
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Figure B.33: Panels a - d show the pelagic predictions of large sharks as presented in the
chapter, from the model selected with training data for cross validation. Panels e - h show
the pelagic predictions of large sharks from the model selected with data for forecast
fitting. Panel i shows the smoothing spline of bottom depth for the large sharks Gamma
pelagic model presented in the chapter, from the model selected with training data for
cross validation. Panel j shows the smoothing spline of bottom depth for the large sharks
Gamma pelagic model selected with data for forecast fitting.



APPENDIX C

Additional Methodology and Results for
Chapter 4

C.1 Exploratory Calibration

C.1.1 Bluefin Tuna

Re-parameterization of the bluefin tuna functional group was explored in the at-

tempt to improve diagnostics. Specifically, diet parameters, and migration parameters

were adjusted. However, no investigated re-parameterizations meaningfully improved

bluefin tuna diagnostics. For example, I attempted to adjust the migration paramet-

ers to i) reflect time frames described by Block et al. (2005) and Teo et al. (2007), and

ii) have a longer transition period into/out of the modeling domain. Adjustments are

summarized in Table C.1. These adjustments caused a sudden collapse in the bluefin

tuna stock (Figure C.1), which could not be mitigated before the start of this study.

Thus, the study was conducted with the original bluefin tuna parameterization of diet

and migration.
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C.2 Additional Methods

C.2.1 Biology Input File

C.2.1.1 Vertical Distribution of Little Tunny

Vectors describing the vertical distribution identify the proportion of functional

groups in each depth layer. The first position of the vector identifies the sea floor. The

last position of the vector identifies the sea surface. Starting from the last position in

the vector and moving forward identifies descending depths. The original nighttime

vertical distribution for little tunny (juveniles) put all corresponding biomass in the

layer closest to the bottom:

VERTnight LTN1 6 1 0.0 0.0 0.0 0.0 0.0

I adjusted it to match the nighttime distribution of juveniles of other tuna groups,

putting organisms near the sea surface:

VERTnight LTN1 6 0.0 0.0 0.0 0.0 0.1 0.9

C.2.1.2 Density and Nitrogen Diagnostics

The version of GoMAM I received had poor diagnostics for both the blue marlin

(BMR) and white marlin (WMR) functional groups (Figure C.2). First, both func-

tional groups were quickly collapsing (Figure C.2a,b), Second, adults were losing

residual nitrogen (similar to starving), especially WMR (Figure C.2e,f). Lastly,

adults were losing structural nitrogen (similar to shrinking), especially WMR (Figure

C.2g,h). Since these two functional groups were of focus species for the study it was

imperative to improve their diagnostics. Edits were made to the biological input file
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following suggestions provided by the Atlantis modeling community (http://atlantis.c-

mar.csiro.au/).

C.2.1.2.1 White Marlin: Diagnostic plots suggested that WMR could be starving

and information from the Atlantis wiki suggested, based on the diagnostics, to alter

the predator-prey relationship parameter (pprey). This included minor adjustments

to slightly expand their prey groups (Llopiz and Cowen, 2008) and allow increased

consumption. Table C.2 shows the original matrix and the one used for this study.

Updated diagnostic plots are shown in Figure C.3.

C.2.1.2.2 Blue Marlin: Diagnostic plots suggested that BMR could be starving

and information from the Atlantis wiki suggested, based on the diagnostics, to al-

ter the predator-prey relationship parameter (pprey). Many attempts were made

adjusting pprey parameters with no success in improving diagnostics. Based on in-

formation from the Atlantis wiki, the next attempt at improving BMR diagnostics

involved adjusting Beverton Holt alpha parameters (BHalpha). The BHalpha for

BMR was 3700, but other billfish functional groups had much higher settings: WMR

had 150000 and BIL had 78000 (Ainsworth et al., 2015). BHalpha BMR was iterat-

ively adjusted until density of younger individuals improved. The value used for this

study is 18500. Diagnostics for size at age specifically residual nitrogen (RN) were not

stabilized. Information from the Atlantis wiki suggested to alter initial conditions for

residual nitrogen (KWRR). The original value was 607435.91533 (Ainsworth et al.,

2015), which was iteratively adjusted until diagnostics had improved stabilization.

The value used is 400000.0. Although BMR are still not stable, I stopped calibrating
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the model here since BMR were no longer collapsing and size at age improved. The

updated diagnostic plots are shown in Figure C.3

C.2.2 Harvest Input File

The version of GoMAM I used simulated harvest using a matrix describing con-

stant, daily fishing mortalities, which was developed using historical landings data

described in Chapter 2 of this dissertation (Perryman et al., 2015). However, 2010

landings (Table C.3). This occured because first, simulated fishing mortality rates

were computed under the assumption that functional groups are within the modeling

domain the entire 365 days (i.e., no migration). Thus, migrating groups are not being

fished as hard as they likely are being fished in reality. Second, simulated fishing mor-

tality rates were computed under the assumption that fleets fished the entire modeling

domain (i.e., no regional spatial restrictions). Thus, fleets are not harvesting regional

areas hard enough since they are fishing all across the spatial domain. Values in the

fishing mortality matrix were updated for this study.

First, 2010 bycatch data (National Marine Fisheries Service, 2013) was collected

and included into the 2010 landings data reported in Chapter 2 of this dissertation.

Then, values for the fishing mortality matrix were iteratively adjusted until 2010

simulated catches were similar to 2010 landings data. The resulting matrix of fishing

mortalities is presented in Table C.4.

C.2.3 Additions to Fishery Closure Forcing Files

Forcing files simulating fishery spatial closures were updated to include Spring

Closure, the seasonal pelagic longline spatial closure off the Louisiana coast, as well
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as the Deepwater Horizon (DWH) emergency fishery closures. The DWH emergency

closure drastically changed in spatial coverage in short periods of time. To provide a

detailed representation of the DWH closure, alterations were treated as short-lived,

individual fishery closures. Shapefiles describing all of the spatial boundaries of the

DWH emergency closure were provided by National Centers for Environmental In-

formation (2015). The Intersect tool in ArcGIS was used to compute the proportions

of the the GoMAM polygons overlapping spatial closures.

Table C.1: Example of alterations made to bluefin tuna migration parameters, with rep(a, n)
indicating a vector of n elements of a.

Parameter jBTN Migrate Time
Original 135
Attempted 180
Parameter BTN Migrate Time
Original 364
Attempted 182
Parameter jBTN Migrate Return
Original 340
Attempted 32
Parameter BTN Migrate Return
Original 0
Attempted 32
Parameter jBTN Migrate Period
Original 60
Attempted 90
Parameter BTN Migrate Period
Original 1
Attempted 90
Parameter MigIOBox BTNad 66
Original rep(0, 66)
Attempted rep(1, 66)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure C.1: Diagnostic plots commonly referred to when calibrating an Atlantis model
include biomass, density, residual nitrogen (i.e., meat, fat), and structural nitrogen (i.e.,
bone). This figure bluefin tuna diagnostic plots from the original parameterization (a-d),
and from the attempted calibration described in Section C.1.1 (e-h). Images with a solid,
black line indicate trends for the entire population, while multi-colored lines indicate
trends for each of the 10 cohorts (colors are a gradient, with red indicating cohort 1 and
blue indicating cohort 10).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure C.2: Diagnostic plots commonly referred to when calibrating an Atlantis model
include biomass, density, residual nitrogen (i.e., meat, fat), and structural nitrogen (i.e.,
bone). This figure displays these diagnostic plots for white marlin and blue marlin
functional groups for the original version of the Gulf of Mexico Atlantis Model provided
for this study. Images with a solid, black line indicate trends for the entire population,
while multi-colored lines indicate trends for each of the 10 cohorts (colors are a gradient,
with red indicating cohort 1 and blue indicating cohort 10).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure C.3: Diagnostic plots commonly referred to when calibrating an Atlantis model
include biomass, density, residual nitrogen (i.e., meat, fat), and structural nitrogen (i.e.,
bone). This figure displays these diagnostic plots for white marlin and blue marlin
functional groups for the edited version of the Gulf of Mexico Atlantis Model provided for
this study. Images with a solid, black line indicate trends for the entire population, while
multi-colored lines indicate trends for each of the 10 cohorts (colors are a gradient, with
red indicating cohort 1 and blue indicating cohort 10).
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Table C.3: Comparing Simulated Catch to Landings Data, 2010 - 2011. This data does not
include bycatch data.

Catch [Data] Catch [Model]

Functional Group 2010 2011 2010 2011
GAG 869.2541834 424.2282683 2717.601963 135.328075
RGR 11290.65301 10121.77972 10355.35638 855.230868
SCM 106.6226963 94.49047107 430.10957 60.083291
SSR 1792.514163 1661.260256 11435.88161 7621.159696
DSR 1868.696426 2198.741464 7934.120677 2910.945576
RSN 7834.709603 7485.57075 28111.75431 1718.446258
VSN 2592.430015 2665.645146 11271.09206 960.105507
LUT 13720.23186 9735.783046 82790.55164 34117.61985
BIO 281.4140106 293.7197801 178.205865 233.031601
LRF 2977.391752 3064.836201 9059.557854 3023.253913
SRF 4409.45074 2589.645167 23461.92162 14362.26674
BDR 3389.852953 3716.062303 2410.786693 823.796106
RDR 8248.862435 8994.278344 6978.791807 765.494759
SEA 5541.172513 6454.721288 14497.18305 10304.0511
SCI 1102.736522 1206.850755 23742.39079 31925.21771
LDY 812.1860073 566.0487624 13743.51592 8662.761084
MUL 12768.28809 14392.26876 29209.08988 18324.90213
POM 1104.983016 793.9470391 11626.27994 8623.964201
SHP 2762.648313 4226.622449 43213.71453 14866.45148
SNK 4946.304571 3530.981242 24134.13372 18626.22111
FLT 1008.066502 1158.880923 22315.96577 22307.55464
ODF 77240.27515 145173.1183 56759.784 23882.56042
SDF 3439.940771 2463.022424 11064.00351 29419.49274
YTN 2086.957513 2950.324009 3219.066524 1085.615481
BTN 578.271376 393.0733991 521.231866 27.01504
LTN 1823.500762 1303.117893 11301.83941 4189.151629
OTN 0 0 0 0
SWD 763.6312954 713.6085877 35572.25075 1784.454045
WMR 556.2137959 387.2352518 2613.00091 702.026704
BMR 573.5365847 398.9554236 5902.384574 610.744249
BIL 556.0498356 395.9402602 2110.671917 290.050668
AMB 1672.649993 1191.170086 1315.285888 107.521184
JCK 21037.69288 14666.34909 5635.362462 2791.627347
KMK 4667.319921 4272.613195 16345.66585 906.667556
SMK 6597.037188 5420.938599 8862.800034 2253.458296
SAR 1505.724651 416.941936 42940.34878 84499.3485
LPL 16361.29752 23943.53414 22701.33933 24977.71248
DWF 0 0 0 0
MEN 438694.0209 623487.1235 337037.1668 253451.2215
PIN 1600.016487 1157.607798 25572.70535 17976.11752
MPL 1886.170133 1932.425816 18682.85154 14242.08553
SPL 4295.263388 3764.48995 109872.9597 129306.907
TIP 2352.602061 1677.982504 3747.665649 4264.491933
BEN 571.476492 391.2722242 8287.027566 9297.838878
LGS 7682.870588 3917.657732 55627.02485 40864.83637
FIL 0 0 0 0
SMS 597.7221394 407.9341713 12291.96878 9877.290105
RAY 3945.50903 4292.319974 42096.43535 32712.62274
BSH 54358.80095 71836.5773 208778.7873 38726.54188
WSH 43483.0138 42841.01804 91288.34858 41194.00024
PSH 5969.19728 4981.224216 11606.95687 4051.569203
OSH 1994.476757 2501.451361 98439.45989 16744.92404
DBR 0 0 0 0
SBR 0 0 0 0
MAN 0 0 0 0
MYS 0 0 0 0
DOL 0 0 0 0
DDO 0 0 0 0
LOG 0 0 0 0
KMP 0 0 0 0
TUR 0 0 0 0
BCR 30657.36079 35183.043 230943.2357 318.445866
SCR 3120.00048 3096.57996 150953.5078 12841.43481
LOB 4618.402816 4401.223353 74373.41795 1655.435612
SPG 100.8752321 46.65601953
CMB 7535.127658 5222.56307 233252.7871 48234.29739
OYS 9610.124849 10343.27108 221967.8541 204935.8659
BIV 1964.155394 1974.751522 129823.2984 130481.7972
SES 0 0 0 0
SQU 22502.49823 26117.92085 2753883.016 264619.8827
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Table C.4: Updated Fishing Mortality Matrix for Gulf of Mexico Atlantis Model.

SprtEst GillnetEst TwlShpEst OytEst PotCrbEst SprtShf TwlShpShf PotCrbShf
mFC GAG 0 0 0 0 0 9.58E-04 0 0
mFC RGR 0 0 0 0 0 1.28E-02 0 1.53E-05
mFC SCM 0 0 0 0 0 2.69E-04 0 0
mFC SSR 0 0 0 0 0 1.23E-05 0 1.44E-06
mFC DSR 0 0 0 0 6.86E-06 6.96E-04 0 1.97E-04
mFC RSN 0 0 0 0 0 3.92E-04 5.12E-05 0
mFC VSN 0 0 0 0 0 1.94E-04 2.61E-05 0
mFC LUT 0 1.01E-09 0 0 0 5.54E-04 1.68E-05 2.55E-07
mFC BIO 0 0 0 0 0 0 0 0
mFC LRF 0 3.34E-07 2.30E-06 0 0 1.88E-04 6.00E-07 1.81E-06
mFC SRF 0 3.87E-07 0 0 0 3.04E-04 3.07E-06 0
mFC BDR 1.009228641 4.67E-02 3.48E-02 0 2.68E-02 0 0.306036876 0
mFC RDR 2.125756414 0 0.183536107 0 0 0 0 0
mFC SEA 3.30E-03 2.21E-05 1.30E-02 0 0 0 2.11E-05 0
mFC SCI 2.43E-05 1.39E-05 1.57E-03 0 7.63E-08 0 1.59E-03 0
mFC LDY 6.40E-05 1.21E-04 0 0 0 0 0 0
mFC MUL 2.03E-04 2.95E-04 0 0 9.55E-08 0 3.19E-07 0
mFC POM 6.03E-06 4.24E-06 0 0 0 0 0 0
mFC SHP 2.63E-04 3.51E-06 6.00E-06 0 1.08E-07 0 7.89E-06 0
mFC SNK 5.27E-09 0 0 0 0 0 0 0
mFC FLT 0 1.82E-05 8.48E-05 0 1.51E-06 3.26E-05 6.15E-06 1.41E-06
mFC ODF 0 1.24E-04 6.81E-02 0 1.80E-04 2.688466653 6.81E-02 6.57E-03
mFC SDF 0 0 1.09E-04 0 0 2.81E-08 0 0
mFC YTN 0 0 0 0 0 1.42E-03 0 0
mFC BTN 0 0 0 0 0 0 0 0
mFC LTN 0 1.79E-06 0 0 0 1.53E-04 0 0
mFC OTN 0 0 0 0 0 0 0 0
mFC SWD 0 0 0 0 0 2.96E-06 0 0
mFC WMR 0 0 0 0 0 0 0 0
mFC BMR 0 0 0 0 0 9.63E-06 0 0
mFC BIL 0 0 0 0 0 0 0 0
mFC AMB 0 0 0 0 0 0.991878998 0 0
mFC JCK 0 1.93E-02 0 0 9.10E-05 1.757864834 0 4.74E-03
mFC KMK 0 0 0 0 0 4.70E-04 8.78E-06 0
mFC SMK 0 1.36E-03 6.29E-04 0 0 4.95E-03 0 0
mFC SAR 0 0 0 0 0 1.17E-07 0 0
mFC LPL 0 5.61E-05 1.06E-05 0 0 5.08E-03 0 0
mFC DWF 0 0 0 0 0 0 0 0
mFC MEN 0 2.26E-05 0 0 0 1.27E-05 0 0
mFC PIN 0 0 0 0 0 1.52E-04 0 1.35E-05
mFC MPL 0 0 0 0 5.51E-08 1.71E-07 0 0
mFC SPL 0 1.43E-08 0 0 0 5.01E-06 0 0
mFC TIP 0 0 0 0 0 6.27E-04 0 0
mFC BEN 0 0 0 0 0 0 0 0
mFC LGS 0 1.66E-05 2.39E-05 0 0 7.41E-05 2.39E-05 0
mFC FIL 0 0 0 0 0 0 0 0
mFC SMS 0 0 0 0 0 0 0 0
mFC RAY 1.18E-06 3.89E-07 0 0 0 0 0 0
mFC BSH 0 0 1.18E-04 0 0 0 4.92E-04 0
mFC WSH 0 0 1.11E-03 0 0 0 2.62E-03 0
mFC PSH 0 0 4.09E-06 0 0 0 2.44E-03 0
mFC OSH 0 0 2.85E-05 0 0 0 5.71E-05 1.23E-09
mFC DBR 0 0 0 0 0 0 0 0
mFC SBR 0 0 0 0 0 0 0 0
mFC MAN 0 0 0 0 0 0 0 0
mFC MYS 0 0 0 0 0 0 0 0
mFC DOL 0 0 0 0 0 0 0 0
mFC DDO 0 0 0 0 0 0 0 0
mFC LOG 0 0 0 0 0 0 4.30E-05 0
mFC KMP 0 0 0 0 0 0 4.13E-06 0
mFC TUR 0 0 0 0 0 0 5.98E-07 0
mFC BCR 0 0 9.91E-07 0 4.79E-04 0 1.00E-07 1.48E-07
mFC SCR 0 0 0 0 6.01E-05 0 0 0
mFC LOB 0 0 0 0 6.57E-08 5.67E-05 7.16E-09 0
mFC COR 0 0 0 0 0 0 0 0
mFC CCA 0 0 0 0 0 0 0 0
mFC OCT 0 0 0 0 0 0 0 0
mFC SPG 0 0 0 0 0 0 0 0
mFC CMB 0 0 0 0 0 0 0 0
mFC INF 0 0 0 0 0 0 0 0
mFC ECH 0 0 0 0 0 0 0 0
mFC OYS 0 0 0 2.12E-06 0 0 0 0
mFC BIV 0 2.31E-10 2.00E-10 1.62E-10 5.51E-11 0 7.20E-08 2.84E-09
mFC SES 0 0 0 0 0 0 0 0
mFC EPI 0 0 0 0 0 0 0 0
mFC GRS 0 0 0 0 0 0 0 0
mFC ALG 0 0 0 0 0 0 0 0
mFC MPB 0 0 0 0 0 0 0 0
mFC LPP 0 0 0 0 0 0 0 0
mFC SPP 0 0 0 0 0 0 0 0
mFC DIN 0 0 0 0 0 0 0 0
mFC PRO 0 0 0 0 0 0 0 0
mFC JEL 0 0 0 0 0 0 0 0
mFC SQU 0 0 7.80E-09 0 3.36E-09 0 1.26E-08 4.10E-09
mFC LZP 0 0 0 0 0 0 0 0
mFC SZP 0 0 0 0 0 0 0 0
mFC PB 0 0 0 0 0 0 0 0
mFC BB 0 0 0 0 0 0 0 0
mFC DC 0 0 0 0 0 0 0 0
mFC DL 0 0 0 0 0 0 0 0
mFC DR 0 0 0 0 0 0 0 0
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Table C.4: (Continued)

PotLbtShf HLReefShf LLReefShf SeineMenShf LLShkShf LLPelgc RoyalRed OtherUS
mFC GAG 0 3.95E-04 1.44E-04 0 0 0 0 4.93E-05
mFC RGR 0 0 0.109742601 0 0 0 0 1.00E-03
mFC SCM 0 3.55E-04 3.74E-04 0 0 0 0 9.94E-06
mFC SSR 1.56E-07 7.56E-05 4.04E-05 0 0 0 0 2.63E-05
mFC DSR 0 6.43E-05 2.61E-04 0 0 0 0 5.41E-08
mFC RSN 0 3.72E-04 1.26E-05 0 0 0 0 2.57E-06
mFC VSN 0 8.87E-04 1.55E-06 0 0 0 0 6.96E-07
mFC LUT 1.03E-07 9.22E-05 6.54E-06 0 0 0 0 1.26E-06
mFC BIO 0 0 0 0 0 0 0 0
mFC LRF 1.10E-06 4.94E-05 6.37E-06 0 0 0 0 8.93E-05
mFC SRF 0 9.27E-05 2.28E-04 0 0 1.13E-06 0 6.98E-06
mFC BDR 0 0.109658285 1.459713061 0 0 3.76E-02 0 8.17E-03
mFC RDR 0 4.88E-03 0 0 0 0 0 0
mFC SEA 0 1.81E-04 0 0 0 0 0 6.46E-06
mFC SCI 0 4.16E-05 0 0 0 0 0 1.69E-05
mFC LDY 0 7.46E-06 0 0 0 0 0 4.75E-05
mFC MUL 0 4.98E-07 0 9.37E-06 0 0 0 1.36E-03
mFC POM 0 1.00E-05 0 0 0 0 0 3.84E-06
mFC SHP 0 1.82E-05 1.67E-06 1.10E-08 0 0 0 7.52E-06
mFC SNK 0 0 0 0 0 0 0 0
mFC FLT 0 3.67E-06 3.54E-06 0 0 1.58E-06 0 3.08E-05
mFC ODF 1.79E-05 0.01939481 8.53E-04 0 0 0 0 1.30E-04
mFC SDF 0 0 0 0 0 0 0 0
mFC YTN 0 2.75E-05 0 0 0 2.27E-03 0 0
mFC BTN 0 0 0 0 0 9.36E-03 0 0
mFC LTN 0 1.88E-05 0 0 0 0 0 0
mFC OTN 0 0 0 0 0 8.50E-05 0 0
mFC SWD 0 4.68E-06 0 0 0 1.83E-04 0 0
mFC WMR 0 0 0 0 0 3.53E-05 0 0
mFC BMR 0 0 0 0 0 4.74E-05 0 0
mFC BIL 0 0 0 0 0 1.82E-05 0 0
mFC AMB 0 0.85650951 1.26E-02 0 0 0 0 2.19E-02
mFC JCK 0 0.261193261 6.24E-03 0 0 0 0 0.11331893
mFC KMK 0 5.26E-04 0 0 0 1.38E-04 0 0
mFC SMK 0 1.69E-04 0 3.16E-06 0 1.02E-04 0 4.50E-05
mFC SAR 0 1.42E-07 0 0 0 0 0 1.47E-06
mFC LPL 0 1.18E-04 4.50E-06 4.61E-06 0 9.99E-05 0 2.24E-06
mFC DWF 0 0 0 0 0 0 0 0
mFC MEN 0 1.22E-08 0 0.10065426 0 0 0 1.93E-05
mFC PIN 0 6.20E-06 0 0 0 0 0 3.25E-06
mFC MPL 0 1.97E-05 0 0 0 1.75E-07 0 4.33E-05
mFC SPL 0 0 0 0 0 0 0 4.72E-05
mFC TIP 0 1.76E-03 0 0 1.55E-04 0 0 0
mFC BEN 0 0 0 0 0 0 0 0
mFC LGS 0 1.26E-05 1.81E-06 1.50E-08 1.42E-05 1.31E-05 0 7.73E-08
mFC FIL 0 0 0 0 0 0 0 0
mFC SMS 0 0 0 0 0 0 0 0
mFC RAY 0 0 0 0 0 0 0 0
mFC BSH 0 0 0 0 0 0 0 2.06E-07
mFC WSH 0 0 0 0 0 0 0 1.12E-06
mFC PSH 0 0 0 0 0 0 0 0
mFC OSH 0 0 0 0 0 0 6.17E-06 3.85E-09
mFC DBR 0 0 0 0 0 0 0 0
mFC SBR 0 0 0 0 0 0 0 0
mFC MAN 0 0 0 0 0 0 0 0
mFC MYS 0 0 0 0 0 0 0 0
mFC DOL 0 0 0 0 0 0 0 0
mFC DDO 0 0 0 0 0 0 0 0
mFC LOG 0 0 0 0 0 7.93E-06 0 0
mFC KMP 0 0 0 0 0 0 0 0
mFC TUR 0 0 0 0 0 9.89E-06 0 0
mFC BCR 0 2.25E-09 1.21E-07 0 0 0 0 0
mFC SCR 9.71E-07 0 0 0 0 0 0 0
mFC LOB 2.33E-04 0 0 0 0 0 0 8.07E-06
mFC COR 0 0 0 0 0 0 0 0
mFC CCA 0 0 0 0 0 0 0 0
mFC OCT 0 0 0 0 0 0 0 0
mFC SPG 0 0 0 0 0 0 0 0
mFC CMB 0 0 0 0 0 0 0 0
mFC INF 0 0 0 0 0 0 0 0
mFC ECH 0 0 0 0 0 0 0 0
mFC OYS 0 0 0 0 0 0 0 7.16E-08
mFC BIV 3.25E-10 1.89E-11 3.09E-11 0 0 2.26E-11 0 9.91E-10
mFC SES 0 0 0 0 0 0 0 0
mFC EPI 0 0 0 0 0 0 0 0
mFC GRS 0 0 0 0 0 0 0 0
mFC ALG 0 0 0 0 0 0 0 0
mFC MPB 0 0 0 0 0 0 0 0
mFC LPP 0 0 0 0 0 0 0 0
mFC SPP 0 0 0 0 0 0 0 0
mFC DIN 0 0 0 0 0 0 0 0
mFC PRO 0 0 0 0 0 0 0 0
mFC JEL 0 0 0 0 0 0 0 0
mFC SQU 0 1.43E-09 0 0 0 0 0 3.66E-11
mFC LZP 0 0 0 0 0 0 0 0
mFC SZP 0 0 0 0 0 0 0 0
mFC PB 0 0 0 0 0 0 0 0
mFC BB 0 0 0 0 0 0 0 0
mFC DC 0 0 0 0 0 0 0 0
mFC DL 0 0 0 0 0 0 0 0
mFC DR 0 0 0 0 0 0 0 0
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Table C.4: (Continued)

TwlShpMX LLReefMX LLShkMX GillnetMackMX OctpsMX MixedMX MixedCB
mFC GAG 0 0 0 0 0 0 0
mFC RGR 0 0.161361716 0 0 0 0.161361716 0
mFC SCM 0 0 0 0 0 0 0
mFC SSR 0 2.35E-04 0 0 0 2.35E-04 3.49E-04
mFC DSR 0 6.48E-04 0 0 0 0 0
mFC RSN 0 4.81E-04 0 0 0 4.81E-04 6.35E-05
mFC VSN 0 3.11E-04 0 0 0 3.11E-04 0
mFC LUT 0 1.25E-04 0 0 0 1.25E-04 3.23E-05
mFC BIO 0 0 0 0 0 0 1.32E-02
mFC LRF 0 0 0 0 0 2.58E-03 3.09E-04
mFC SRF 0 0 0 0 0 5.44E-04 1.51E-04
mFC BDR 0 0 0 0 0 0 0
mFC RDR 0 0 0 0 0 0.275696236 0
mFC SEA 0 0 0 0 0 3.09E-03 0
mFC SCI 0 0 0 0 0 9.02E-05 0
mFC LDY 0 0 0 0 0 0 0
mFC MUL 0 0 0 9.08E-04 0 9.08E-04 2.20E-05
mFC POM 0 0 0 0 0 4.09E-04 0
mFC SHP 9.97E-06 0 0 9.97E-06 0 9.97E-06 0
mFC SNK 0 0 0 0 0 2.04E-03 0
mFC FLT 2.74E-05 0 0 2.74E-05 0 2.74E-05 0
mFC ODF 0 0 0 0 0 7.50E-02 3.56E-03
mFC SDF 0 0 0 0 0 2.84E-03 0
mFC YTN 0 0 3.19E-03 0 0 3.19E-03 2.39E-06
mFC BTN 0 0 1.74E-02 0 0 1.74E-02 0
mFC LTN 0 0 4.11E-04 0 0 4.11E-04 6.19E-06
mFC OTN 0 0 0 0 0 0 0
mFC SWD 0 0 8.07E-05 0 0 8.07E-05 1.25E-07
mFC WMR 0 0 6.64E-04 0 0 6.64E-04 0
mFC BMR 0 0 4.45E-04 0 0 4.45E-04 4.06E-06
mFC BIL 0 0 1.16E-03 0 0 1.16E-03 1.28E-04
mFC AMB 0 0 0.431905909 0 0 0.431905909 0
mFC JCK 0 0 3.276053863 0 0 3.276053863 3.76E-03
mFC KMK 0 0 6.07E-04 6.07E-04 0 0 2.10E-07
mFC SMK 0 0 3.58E-03 3.58E-03 0 0 9.73E-07
mFC SAR 0 0 0 0 0 1.24E-04 0
mFC LPL 0 0 0 1.58E-03 0 0 7.78E-05
mFC DWF 0 0 0 0 0 0 0
mFC MEN 0 0 0 0 0 0 0
mFC PIN 0 0 0 0 0 8.35E-05 0
mFC MPL 0 0 0 0 0 6.72E-04 1.91E-06
mFC SPL 0 0 0 0 0 3.47E-05 2.66E-05
mFC TIP 0 0 1.15E-02 0 0 0 0
mFC BEN 2.73E-06 0 2.73E-06 0 0 2.73E-06 0
mFC LGS 0 0 1.39E-04 0 0 1.39E-04 5.58E-06
mFC FIL 0 0 0 0 0 0 0
mFC SMS 1.28E-05 0 1.28E-05 1.28E-05 0 1.28E-05 0
mFC RAY 1.51E-04 0 1.51E-04 0 0 1.51E-04 7.60E-05
mFC BSH 1.96E-04 0 0 0 0 0 0
mFC WSH 5.08E-05 0 0 0 0 5.08E-05 0
mFC PSH 7.22E-04 0 0 0 0 0 0
mFC OSH 1.98E-05 0 0 0 0 1.98E-05 0
mFC DBR 0 0 0 0 0 0 0
mFC SBR 0 0 0 0 0 0 0
mFC MAN 0 0 0 0 0 0 0
mFC MYS 0 0 0 0 0 0 0
mFC DOL 0 0 0 0 0 0 0
mFC DDO 0 0 0 0 0 0 0
mFC LOG 0 0 0 0 0 0 0
mFC KMP 0 0 0 0 0 0 0
mFC TUR 0 0 0 0 0 0 0
mFC BCR 0 0 0 0 0 1.82E-04 1.10E-06
mFC SCR 0 0 0 0 0 1.42E-05 0
mFC LOB 0 0 0 0 0 6.16E-05 7.62E-05
mFC COR 0 0 0 0 0 0 0
mFC CCA 0 0 0 0 0 0 0
mFC OCT 0 0 0 0 0 0 0
mFC SPG 0 0 0 0 0 0 0
mFC CMB 3.00E-05 0 0 0 0 3.00E-05 2.16E-06
mFC INF 0 0 0 0 0 0 0
mFC ECH 0 0 0 0 0 0 0
mFC OYS 0 0 0 0 0 4.94E-07 0
mFC BIV 0 0 0 0 0 1.84E-06 6.95E-08
mFC SES 0 0 0 0 0 0 0
mFC EPI 0 0 0 0 0 0 0
mFC GRS 0 0 0 0 0 0 0
mFC ALG 0 0 0 0 0 0 0
mFC MPB 0 0 0 0 0 0 0
mFC LPP 0 0 0 0 0 0 0
mFC SPP 0 0 0 0 0 0 0
mFC DIN 0 0 0 0 0 0 0
mFC PRO 0 0 0 0 0 0 0
mFC JEL 0 0 0 0 0 0 0
mFC SQU 1.26E-07 0 0 0 1.24E-05 1.26E-07 0
mFC LZP 0 0 0 0 0 0 0
mFC SZP 0 0 0 0 0 0 0
mFC PB 0 0 0 0 0 0 0
mFC BB 0 0 0 0 0 0 0
mFC DC 0 0 0 0 0 0 0
mFC DL 0 0 0 0 0 0 0
mFC DR 0 0 0 0 0 0 0
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C.3 Additional Results

Functional group-specific performance measures were also computed for functional

groups not identified in the main text, as well as functional group assemblages not

identified in the main text. This allowed some investigation into indirect impacts from

pelagic longline fisheries. There was a lot of information, and all of it could not be

discussed in the main text. Some examples of additional biomass and catch metrics

are presented in Table C.5, and addition results for average weight and proportion

mature metrics are presented in Table C.6.
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Gascuel, D., G. Merino, R. Döring, J. N. Druon, L. Goti, S. Guenette, C. Macher,
K. Soma, M. Travers-Trolet, and S. Mackinson. 2012. Towards the implementation
of an integrated ecosystem fleet-based management of European fisheries. Marine
Policy, 36(5):1022–1032.

Giattina, J. D. and D. T. Altsman. 1999. Gulf of Mexico program: partnership with
a purpose. In H. Kumpf, K. Steidinger, and K. Sherman, eds., The Gulf of Mexico
Large Marine Ecosystem: Assessment, Sustainability, and Management, pp. 3–13.
Blackwell Science.

Godø, O. R., A. Samuelsen, G. J. Macaulay, R. Patel, S. S. Hjøllo, J. Horne,
S. Kaartvedt, and J. A. Johannessen. 2012. Mesoscale eddies are oases for higher
trophic marine life. PLoS One, 7(1):e30161. doi:10.1371/journal.pone.0030161.

Goodyear, C. P. 1998. An analysis of the possible utility of time-area closures to
minimize billfish bycatch by US pelagic longlines. ICCAT Collective Volume of
Scientific Papers, 48(1):263–268.

Goodyear, C. P., J. Luo, E. D. Prince, J. P. Hoolihan, D. Snodgrass, E. S. Orbe-
sen, and J. E. Serafy. 2008. Vertical habitat use of Atlantic blue marlin Makaira
nigricans : interaction with pelagic longline gear. Marine Ecology Progress Series,
365:233–245.

Grace, M. and T. Henwood. 1997. Assessment of the distribution and abundance
of coastal sharks in the US Gulf of Mexico and eastern seaboard, 1995 and 1996.
Marine Fisheries Review, 59(4):23–32.

Grantham, H. S., E. T. Game, A. T. Lombard, A. J. Hobday, A. J. Richard-
son, L. E. Beckley, R. L. Pressey, J. A. Huggett, J. C. Coetzee, C. D. Van der
Lingen, et al. 2011. Accommodating dynamic oceanographic processes and
pelagic biodiversity in marine conservation planning. PLoS One, 6(2):e16552.
doi:10.1371/journal.pone.0016552.

Grantham, H. S., S. L. Petersen, and H. P. Possingham. 2008. Reducing bycatch
in the South African pelagic longline fishery: the utility of different approaches to
fisheries closures. Endangered Species Research, 5(2-3):291–299.

Gray, J. S. 1997. Marine biodiversity: patterns, threats and conservation needs.
Biodiversity & Conservation, 6(1):153–175.



303

Greiner, M., D. Pfeiffer, and R. Smith. 2000. Principles and practical application
of the receiver-operating characteristic analysis for diagnostic tests. Preventive
Veterinary Medicine, 45(1):23–41.

Grémillet, D., S. Lewis, L. Drapeau, C. D. van Der Lingen, J. A. Huggett, J. C.
Coetzee, H. M. Verheye, F. Daunt, S. Wanless, and P. G. Ryan. 2008. Spatial
match–mismatch in the Benguela upwelling zone: should we expect chlorophyll
and sea-surface temperature to predict marine predator distributions? Journal of
Applied Ecology, 45(2):610–621.

Griffiths, S. and G. Fay. 2015. Integrating recreational fisheries data into stock as-
sessment: implications for model performance and subsequent harvest strategies.
Fisheries Management and Ecology, 22(3):197–212.

Grüss, A. 2014. Modelling the impacts of marine protected areas for mobile exploited
fish populations and their fisheries: what we recently learnt and where we should
be going. Aquatic Living Resources, 27(3-4):107–133.

Grüss, A., E. A. Babcock, S. R. Sagarese, M. Drexler, D. D. Chagaris, C. H.
Ainsworth, B. Penta, and T. T. Sutton. 2016a. Improving the spatial allocation
of functional group biomasses in spatially-explicit ecosystem models: insights from
three Gulf of Mexico models. Bulletin of Marine Science, 92(4):000–000.

Grüss, A., M. Drexler, and C. H. Ainsworth. 2014. Using delta generalized addit-
ive models to produce distribution maps for spatially explicit ecosystem models.
Fisheries Research, 159:11–24.

Grüss, A., W. J. Harford, M. J. Schirripa, L. Velez, S. R. Sagarese, Y.-J. Shin,
and P. Verley. 2016b. Management strategy evaluation using the individual-based,
multispecies modeling approach OSMOSE. Ecological Modelling, 340:86–105.

Guidetti, P. 2007. Potential of marine reserves to cause community-wide changes
beyond their boundaries. Conservation Biology, 21(2):540–545.

Guisan, A., T. C. Edwards, and T. Hastie. 2002. Generalized linear and generalized
additive models in studies of species distributions: setting the scene. Ecological
Modelling, 157(2):89–100.

Guisan, A. and N. E. Zimmermann. 2000. Predictive habitat distribution models in
ecology. Ecological Modelling, 135(2):147–186.
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Moretzsohn, F., J. A. Sánchez Chávez, and J. Tunnell, Jr. 2016. GulfBase: Resource
Database for Gulf of Mexico Research. World Wide Web electronic publication.
http://www.gulfbase.org. Accessed: 12 September, 2016.

Morgan, A., P. W. Cooper, T. Curtis, and G. H. Burgess. 2009. Overview of the
US east coast bottom longline shark fishery, 1994–2003. Marine Fisheries Review,
71(1):23–38.

Morrissey, J. F. and S. H. Gruber. 1993. Habitat selection by juvenile lemon sharks,
Negaprion brevirostris. Environmental Biology of Fishes, 38(4):311–319.



313

Morzaria-Luna, H. N., C. H. Ainsworth, I. C. Kaplan, P. S. Levin, and E. A.
Fulton. 2013. Indirect effects of conservation policies on the coupled human-
natural ecosystem of the upper Gulf of California. PLoS One, 8(5):e64085.
doi:10.1371/journal.pone.0064085.

Muhling, B. A., J. T. Lamkin, and M. A. Roffer. 2010. Predicting the occurrence
of Atlantic bluefin tuna (Thunnus thynnus) larvae in the northern Gulf of Mex-
ico: building a classification model from archival data. Fisheries Oceanography,
19(6):526–539.

Muhling, B. A., S.-K. Lee, J. T. Lamkin, and Y. Liu. 2011. Predicting the effects of
climate change on bluefin tuna (Thunnus thynnus) spawning habitat in the Gulf
of Mexico. ICES Journal of Marine Science, 68(6):1051–1062.

Muhling, B. A., Y. Liu, S. Lee, J. T. Lamkin, E. Malca, J. Llopiz, G. W. J. Ingram,
J. M. Quattro, J. F. Walter, D. K, M. A. Roffer, and F. Muller-Karger. 2014. Past,
ongoing and future research on climate change impacts on tuna and billfishes in the
western atlantic. ICCAT Collected Volume of Scientific Papers, 71(4):1716–1727.

Mullin, K. D. and H. L. J. 1999. Marine mammals of the northern Gulf of Mexico. In
H. Kumpf, K. Steidinger, and K. Sherman, eds., The Gulf of Mexico Large Marine
Ecosystem: Assessment, Sustainability, and Management, pp. 269 – 277. Blackwell
Science.

Musick, J., S. Berkeley, G. Cailliet, M. Camhi, G. Huntsman, M. Nammack, and
M. Warren Jr. 2000a. Protection of marine fish stocks at risk of extinction. AFS
policy statement. Fisheries, 25(3):6–8.

Musick, J., G. Burgess, G. Cailliet, M. Camhi, and S. Fordham. 2000b. Management
of sharks and their relatives (Elasmobranchii). Fisheries, 25(3):9–13.

Muus, B. J., J. G. Nielsen, P. Dahlstrøm, and B. O. Nyström. 1999. Sea fish. Scand-
inavian Fishing Year Book.

Myers, R. A., J. K. Baum, T. D. Shepherd, S. P. Powers, and C. H. Peterson. 2007.
Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science,
315(5820):1846–1850.

Myers, R. A. and P. Pepin. 1990. The robustness of lognormal-based estimators of
abundance. Biometrics, 46(4):1185–1192.

Myers, R. A. and B. Worm. 2003. Rapid worldwide depletion of predatory fish com-
munities. Nature, 423(6937):280–283.

Myers, R. A. and B. Worm. 2005. Extinction, survival or recovery of large predat-
ory fishes. Philosophical Transactions of the Royal Society B: Biological Sciences,
360(1453):13–20.



314

Nakamura, I. 1985. FAO fisheries catalogue vol. 5. billfishes of the world: An an-
notated and illustrated catalogue of marlins, sailfishes, spearfishes and swordfishes
known to date. Food and Agriculture Organization, 125(5):65.

Nakamura, I. 1995. Gempylidae. escolares. In W. Fischer, F. Krupp, W. Schneider,
C. Sommer, K. E. Carpenter, and V. Niem, eds., Guia FAO para Identificatión de
Especies para lo Fines de la Pesca. Pacifico Centro-Oriental, vol. 3, pp. 1106–1113.
FAO, Rome.

Nakamura, I. and N. V. Parin. 1993. FAO species catalogue. vol. 15: snake mackerels
and cutlassfishes of the world (families Gempylidae and Trichiuridae). an annotated
and illustrated catalogue of the snake mackerels, snoeks, escolars, gemfishes, sack-
fishes, domine, oilfish, cutlassfishes, scabbardfishes, hairtails and frostfishes known
to date. Food and Agriculture Organization, 125(15):136.

National Centers for Environmental Information. 2015. Fisheries Closures: Deepwater
Horizion Support. National Oceanic and Atmospheric Administration. URL https:

//www.nodc.noaa.gov/deepwaterhorizon/fisheries\_closures.html.

National Marine Fisheries Service. 1998. Annual Report to Congress on the Status of
U.S. Fisheries 1997. U.S. Dept.Commerce, NOAA, Natl. Mar. Fish. Serv., Silver
Spring, MD, 29 p.

National Marine Fisheries Service. 1999. Annual Report to Congress on the Status of
U.S. Fisheries 1998. U.S. Dept.Commerce, NOAA, Natl. Mar. Fish. Serv., Silver
Spring, MD, 94 p.

National Marine Fisheries Service. 2000. Annual Report to Congress on the Status of
U.S. Fisheries 1999. U.S. Dept.Commerce, NOAA, Natl. Mar. Fish. Serv., Silver
Spring, MD, 104 p.

National Marine Fisheries Service. 2001. Annual Report to Congress on the Status of
U.S. Fisheries 2000. U.S. Dept.Commerce, NOAA, Natl. Mar. Fish. Serv., Silver
Spring, MD, 122 p.

National Marine Fisheries Service. 2002. Annual Report to Congress on the Status of
U.S. Fisheries 2001. U.S. Dept.Commerce, NOAA, Natl. Mar. Fish. Serv., Silver
Spring, MD, 142 p.

National Marine Fisheries Service. 2003. Annual Report to Congress on the Status of
U.S. Fisheries 2002. U.S. Dept.Commerce, NOAA, Natl. Mar. Fish. Serv., Silver
Spring, MD, 156 p.

National Marine Fisheries Service. 2004. Annual Report to Congress on the Status of
U.S. Fisheries 2003. U.S. Dept.Commerce, NOAA, Natl. Mar. Fish. Serv., Silver
Spring, MD, 24 p.



315

National Marine Fisheries Service. 2005. Annual Report to Congress on the Status of
U.S. Fisheries 2004. U.S. Dept.Commerce, NOAA, Natl. Mar. Fish. Serv., Silver
Spring, MD, 20 p.

National Marine Fisheries Service. 2006. Annual Report to Congress on the Status of
U.S. Fisheries 2005. U.S. Dept.Commerce, NOAA, Natl. Mar. Fish. Serv., Silver
Spring, MD, 20 p.

National Marine Fisheries Service. 2007. Annual Report to Congress on the Status of
U.S. Fisheries 2006. U.S. Dept.Commerce, NOAA, Natl. Mar. Fish. Serv., Silver
Spring, MD, 28 p.

National Marine Fisheries Service. 2008. Annual Report to Congress on the Status of
U.S. Fisheries 2007. U.S. Dept.Commerce, NOAA, Natl. Mar. Fish. Serv., Silver
Spring, MD, 23 p.

National Marine Fisheries Service. 2009. Annual Report to Congress on the Status of
U.S. Fisheries 2008. U.S. Dept.Commerce, NOAA, Natl. Mar. Fish. Serv., Silver
Spring, MD, 23 p.

National Marine Fisheries Service. 2010. Annual Report to Congress on the Status of
U.S. Fisheries 2009. U.S. Dept.Commerce, NOAA, Natl. Mar. Fish. Serv., Silver
Spring, MD, 20 p.

National Marine Fisheries Service. 2011. Annual Report to Congress on the Status of
U.S. Fisheries 2010. U.S. Dept.Commerce, NOAA, Natl. Mar. Fish. Serv., Silver
Spring, MD, 21 p.

National Marine Fisheries Service. 2012. Annual Report to Congress on the Status of
U.S. Fisheries 2011. U.S. Dept.Commerce, NOAA, Natl. Mar. Fish. Serv., Silver
Spring, MD, 20 p.

National Marine Fisheries Service. 2013. U. S. National Bycatch Report First Edition
Update 1. Benaka, L. R., and C. Rilling, and E. E. Seney, and H. Winarsoo, eds.
U. S. Dep. Commer. 56 pp.

National Oceanic and Atmospheric Administration. 2012a. Fisheries Office of Science
and Technology. Commercial Fisheries Statistics. World Wide Web electronic pub-
lication. http://www.st.nmfs.noaa.gov/commercial-fisheries/. Accessed: 16
May 2012.

National Oceanic and Atmospheric Administration. 2012b. Fisheries Office of Science
and Technology. Recreational Fisheries Statistics Queries. World Wide Web elec-
tronic publication. http://www.st.nmfs.noaa.gov/recreational-fisheries/

data-and-documentation/queries/index. Accessed: 16 May 2012.



316

National Oceanic and Atmospheric Administration. 2014a. Fisheries Office of Science
and Technology. Marine Recreational Information Program. World Wide Web elec-
tronic publication. http://www.st.nmfs.noaa.gov/recreational-fisheries/

MRIP/index.

National Oceanic and Atmospheric Administration. 2014b. Recreational Billfish Sur-
vey. World Wide Web electronic publication. http://www.sefsc.noaa.gov/rbs/.

National Oceanic and Atmospheric Administration. 2016a. Atlantic HMS Fishery
Management Plans and Amendments. URL http://www.nmfs.noaa.gov/sfa/

hms/documents/fmp/index.html.

National Oceanic and Atmospheric Administration. 2016b. Fisheries Office of Science
and Technology. Commercial Fisheries Statistics. Landings Background Informa-
tion. World Wide Web electronic publication. https://www.st.nmfs.noaa.gov/
commercial-fisheries/commercial-landings/landings-background/index.
Accessed: 21 October 2016.

National Oceanic and Atmospheric Administration. 2016c. NOAA Fisheries Re-
minds Pelagic Longline Fishermen that Spring Gulf of Mexico Gear Restricted
Areas are in Effect from April 1 through May 31. World Wide Web electronic
publication. http://www.nmfs.noaa.gov/sfa/hms/news/news_list/2016/3/a7_
spring_gom_gra_reminder_032316.html. Accessed: 1 April 2016.

Norse, E. A. 1993. Global marine biological diversity: a strategy for building conser-
vation into decision making. Island Press.

Norton, C., I. N. Sarkar, and P. Leary. 2013. Universal Biological Indexer and Or-
ganizer (uBio). The Marine Biological Laboratory, Woods Hole Oceanographic
Institution. World Wide Web electronic publication. http://www.ubio.org/. Ac-
cessed: 22 January 2013.

Nugent, I. and L. Cantral. 2005. Charting a course toward ecosystem-based manage-
ment in the Gulf of Mexico. Duke Environmental Law & Policy Forum, 16:267–292.

Oey, L.-Y., T. Ezer, and H.-C. Lee. 2005. Loop Current, rings and related circula-
tion in the Gulf of Mexico: a review of numerical models and future challenges.
In W. Sturges and A. Lugo-Fernandez, eds., Circulation in the Gulf of Mexico:
Observations and Models, pp. 31–56. American Geophysical Union.

O’Hop, J. and B. Sauls. 2012. Index of Abundance for Pre-Fishery Recruit Red
Snapper from Florida Headboat Observer Data. SEDAR31-DW-09. SEDAR, North
Charleston, SC. 17 pp.



317

Olson, D. B., G. L. Hitchcock, A. J. Mariano, C. J. Ashjian, G. Peng, R. W. Nero,
and G. P. Podesta. 1994. Life on the edge: marine life and fronts. Oceanography,
7(2):52–60.

Ortega, L. A., M. R. Heupel, P. Van Beynen, and P. J. Motta. 2009. Movement
patterns and water quality preferences of juvenile bull sharks (Carcharhinus leucas)
in a Florida estuary. Environmental Biology of Fishes, 84(4):361–373.

Ortiz, M. and F. Arocha. 2004. Alternative error distribution models for standard-
ization of catch rates of non-target species from a pelagic longline fishery: billfish
species in the Venezuelan tuna longline fishery. Fisheries Research, 70(2):275–297.

Oxenford, H. A. and W. Hunte. 1999. Feeding habits of the dolphinfish (Coryphaena
hippurus) in the eastern Caribbean. Scientia Marina, 63(3-4):317–325.

Pacheco, J., D. W. Kerstetter, F. Hazin, H. Hazin, R. Segundo, J. Graves,
F. Carvalho, and P. Travassos. 2011. A comparison of circle hook and J hook
performance in a western equatorial Atlantic Ocean pelagic longline fishery. Fish-
eries Research, 107(1):39–45.

Paine, R. T. 1980. Food webs: linkage, interaction strength and community infra-
structure. Journal of Animal Ecology, 49(3):666–685.

Palomares, M. L. D. and D. Pauly, eds. 2016. SeaLifeBase. World Wide Web elec-
tronic publication. www.sealifebase.org, version (10/2016). Accessed: 12 Octo-
ber, 2016.

Parsons, G. R., E. R. Hoffmayer, and C. Taylor. 2005. Seasonal changes in the
distribution and relative abundance of the Atlantic sharpnose shark Rhizoprionodon
terraenovae in the north central Gulf of Mexico. Copeia, 2005(4):914–920.

Parsons, T. 1992. The removal of marine predators by fisheries and the impact of
trophic structure. Marine Pollution Bulletin, 25(1):51–53.

Pauly, D. 2007. The Sea Around Us Project: documenting and communicating global
fisheries impacts on marine ecosystems. AMBIO: a Journal of the Human Envir-
onment, 36(4):290–295.

Pauly, D. and V. Christensen. 1995. Primary production required to sustain global
fisheries. Nature, 374(6519):255–257.

Pauly, D., V. Christensen, J. Dalsgaard, R. Froese, and F. Torres. 1998. Fishing down
marine food webs. Science, 279(5352):860–863.

Pauly, D. and M.-L. Palomares. 2005. Fishing down marine food web: it is far more
pervasive than we thought. Bulletin of Marine Science, 76(2):197–212.



318

Pauly, D. and R. Watson. 2005. Background and interpretation of the marine trophic
indexas a measure of biodiversity. Philosophical Transactions of the Royal Society
of London B: Biological Sciences, 360(1454):415–423.

Pauly, D., R. Watson, and J. Alder. 2005. Global trends in world fisheries: impacts
on marine ecosystems and food security. Philosophical Transactions of the Royal
Society B: Biological Sciences, 360(1453):5–12.
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sarrollo Rural, Pesca y Alimentación (SAGARPA), México, D.F.
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sarrollo Rural, Pesca y Alimentación (SAGARPA), México, D.F.
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SAGARPA. 2009. Anuario Estad́ıstico de Acuacultura y Pesca 2009. Comisión
Nacional de Acuaultura y Pesca (CONAPESCA), Secretaŕıa de Agricultura,
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