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Pacific leatherback turtles (Dermochelys coriacea) are critically endangered, and declines
have been documented at multiple nesting sites throughout the Pacific. The western Pacific
leatherback forages in temperate and tropical waters of the Indo-Pacific region, and about
38e57% of summer-nesting females from the largest remaining nesting population in
Papua Barat (Indonesia) migrate to distant foraging grounds off the U.S. West Coast,
including neritic waters off central California. In this study, we examined the trend in
leatherback abundance off central California from 28 years of aerial survey data from
coast-wide and adaptive fine-scale surveys. We used a Bayesian hierarchical analysis
framework, including a process model of leatherback population density and an obser-
vation model relating leatherback observations to distance sampling methods. We also
used time-depth data from biologgers deployed on 21 foraging leatherback turtles in the
study area to account for detection biases associated with diving animals. Our results
indicate that leatherback abundance has declined at an annual rate of �5.6% (95% credible
interval �9.8% to �1.5%), without any marked changes in ocean conditions or prey avail-
ability. These results are similar to the nesting population trends of �5.9% and �6.1% per
year estimated at Indonesian index beaches, which comprise 75% of western Pacific
nesting activity. Combined, the declining trends underscore the need for coordinated in-
ternational conservation efforts and long-term population monitoring to avoid extirpation
of western Pacific leatherback turtles.
Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

Multi-decadal declines of endangered Pacific leatherback turtle populations (Dermochelys coriacea) have been docu-
mented at nesting sites in the eastern and western Pacific (Spotila et al., 2000; Sarti Martinez et al., 2007; Tapilatu et al., 2013;
Santidri�an-Tomillo et al., 2017; Martin et al., 2020), and a formerly large nesting population in Malaysia is now functionally
extinct (Chan and Liew 1996). The eastern Pacific population is predicted to virtually disappear by 2040 based on the current
rate of decline (Wallace et al., 2013a; The Laúd OPONetwork 2020), whereas the larger western Pacific population is projected
to decline 96% by 2040 (Tiwari et al., 2013). These population declines have primarily been attributed to fisheries bycatch,
direct harvest of leatherback eggs and meat, and degradation of nesting habitat from various causes (Wallace et al., 2011).

In the western Pacific, there is a single genetic metapopulation that originates frommultiple nesting sites located in Papua
New Guinea, Solomon Islands, Vanuatu, and Indonesia (Dutton et al., 2007), with 75% of nesting activity occurring at two
beaches (Jamursba Medi and Wermon) on the north coast of Bird’s Head Peninsula, West Papua, Indonesia (Tapilatu et al.,
2013). Nesting occurs year-round, with a July peak at Jamursba Medi, and peaks during July and January at Wermon
(Hitipeuw et al., 2007). Between 1984 and 2011, the number of nesting females at Jamursba Medi declined by 78.3%; a similar
62.8% decline was documented at Wermon between 2002 and 2011, with a combined annual trend of �5.9% (Tapilatu et al.,
2013). More recently, Martin et al. (2020) estimated an annual trend of �6.1% per year for this same population based on
2001e2017 nesting data, with a median estimated number of 790 nesting females (95% credible interval 666e942) during
2015e2017.

Satellite tracking of post-nesting western Pacific leatherback turtles revealed that this population has a complexmigratory
behavior. Foraging destinations vary by nesting season and include multiple large marine ecosystems in temperate and
tropical waters of the Pacific Ocean and Indo-Pacific region (Benson et al., 2011). Boreal summer (henceforth ‘summer’)
nesters forage in various regions of the northern hemisphere including the eastern North Pacific, the Kuroshio Extension and
North Pacific Transition Zone, and the South China, Sulu, and Sulawesi Seas. In contrast, boreal winter (‘winter’) nesters forage
in equatorial waters of Indonesia and temperate regions of the southern hemisphere, including the Tasman Sea and East
Australia Current Extension. The most distant foraging grounds are located in the eastern North Pacific adjacent to the West
Coast of North America (primarily California, Oregon, andWashington, USA), and are utilized by 38e57% of summer nesters in
Papua Barat (Benson et al., 2011; Seminoff et al., 2012; Lontoh 2014). Adult and sub-adult leatherbacks of both sexes forage in
these temperate habitats seasonally during summer and fall (Stinson 1984; Starbird et al., 1993; Benson et al., 2007a, 2011),
with documented site fidelity and an approximate female:male ratio of 3:1 (Benson et al., 2011; Seminoff et al., 2012;
Hetherington et al., 2019). The only foraging ground that has been monitored regularly is located in neritic waters off central
California (Peterson et al., 2006; Benson et al., 2007a). Female leatherback turtles from this foraging ground return to beaches
at Bird’s Head Peninsula, and to a lesser extent Solomon Islands, during the summer nesting season (Benson et al., 2011) every
2e6 years (Lontoh 2014), following one or more years at the foraging grounds. Male leatherback turtles also appear to have
similar movement patterns, either returning to the foraging grounds or migrating to the western Pacific during breeding
season (Benson et al., 2011).

Benson et al., 2007a estimated the abundance of foraging leatherbacks off California during 1990e2003 based on aerial
line-transect surveys within neritic waters. Annual abundance was variable (12e366 turtles) and linked to the strength of
upwelling in each year, indicating that the number of turtles, and the proportion of the overall western Pacific population,
vary based on ocean conditions and individual nesting cycles. Over time, however, the central California foraging ground can
serve as an index area to examine population trends, because this represents an important foraging destination for western
Pacific leatherbacks. Benson et al., 2007a did not identify a long-term population trend for the period 1990e2003, but aerial
surveys have continued off central California through 2017, providing a 28-year time series to re-examine the long-term
population trend. In this study, we assess the trend in abundance of foraging leatherbacks off central California for the
years 1990e2017 using a Bayesian hierarchical modeling framework (de Valpine and Hastings 2002; Royle and Dorazio 2008;
Moore and Barlow, 2011, 2013, 2014). This provides a unique opportunity to examine the population trend for both male and
female turtles at one of their foraging grounds, relative to trends documented for females at nesting beaches.
2. Methods

2.1. Field methods

Two sets of aerial line-transect data for neritic central California waters are included in this study. The first set was
established as part of a long-termmonitoring program for harbor porpoise, Phocoena phocoena, and follows a zig-zag pattern
between the coast and the 92-m (50-fathom) isobath (Forney et al. 1991, 2014), roughly within 30 km of the coast (Fig. 1A).
During these harbor porpoise aerial surveys (HPAS), leatherback turtles were recorded systematically along with harbor
porpoises and other cetaceans. As part of the porpoise monitoring program, the transects were replicated 4e7 times per year
between mid-August and mid-November during 9 years (1990, 1991, 1993, 1995, 1997, 1999, 2002, 2007, 2011; Forney et al.,
2014). During 13 additional years between 2000 and 2017, the same transects were flown once or twice annually as part of a
program to study leatherback turtles in waters off central California, roughly between Point Sur (36� 18.40N) and Point Arena
(38� 57.30N).
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Fig. 1. Aerial survey coverage (A) along harbor porpoise transects, 1990e2017 and (B) along adaptive fine-scale surveys that primarily covered waters from
Monterey Bay to San Francisco, 2000e2017. Blue lines show transects; red diamonds show leatherback sightings. Analysis strata are shown in alternating light
and medium gray shading in panel (A), with stratum/transect numbers shown alongside. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)

S.R. Benson, K.A. Forney, J.E. Moore et al. Global Ecology and Conservation 24 (2020) e01371
The second survey set was flown adaptively during summer and fall of 2000e2017 and was designed to provide sampling
in support of separate vessel-based leatherback tagging and capture operations (described in Benson et al., 2011). These fine-
scale (FINE) transects were oriented east-west and spaced every 1 min of latitude fromMonterey (36� 35.00N) to the Russian
River (38� 27.00N), extending from the coast to approximately the 100-m isobath except in Monterey Bay, where nearshore
portions of the deeper Monterey Canyon were included for simplicity (Fig. 1B). A subset of these transects, focusing on the
areas where leatherback turtles or their primary prey, brown sea nettles (Chrysaora fuscescens) were found, was flown one or
multiple times during the years 2000e2014, and 2016e2017. Survey protocols, aircraft, and many observers were identical to
those used during the first survey set.

Survey protocols followed those previously described by Benson et al., 2007a, and we provide a brief summary here. The
aerial survey team consisted of four people. Two observers searched on either side of the aircraft through bubble windows,
and one observer searched through a window in the belly of the aircraft to provide additional coverage directly on the
transect line. A data recorder logged survey effort, viewing condition information, and sighting details directly into a laptop
computer connected to a Global Positioning System (GPS). Declination angles to each sighting were measured using hand-
held Suunto clinometers to allow calculation of perpendicular distances to each sighting. Surveys were conducted when
viewing conditions for detecting leatherback turtles were good, with light winds (Beaufort sea states 0e3) and mostly when
skies were clear or partly cloudy (Benson et al., 2007a).

2.2. Estimation of availability bias, g(0)

For diving marine species, the accurate estimation of animal abundance and density from aerial surveys requires an
estimation of availability bias, or the proportion of time an animal is visible near the surface (g(0); Buckland et al., 2001). Dive
data from tagged animals have been used to estimate g(0), based on the proportion of time spent at or near the surface (e.g.,
Pollock et al., 2006; Benson et al., 2007a; Seminoff et al., 2014; Fuentes et al., 2015). Benson et al., 2007a presented a pre-
liminary estimate of g(0) based on three time-depth recorder (TDR) deployments on leatherback turtles off California. In our
study, we conducted 18 additional TDR deployments using the samemethods as Benson et al., 2007a, to improve the estimate
of this important line-transect parameter. The TDR tags were attached with a suction cup to the carapace of free-swimming
turtles with the aid of a pole (no capture or handling) as described in Benson et al., 2007a. The Starr-Oddi brand DST milli-TD
TDRs were programmed to record depth every 2e30 s, depending on deployment, at a resolution of 0.07m and an accuracy of
±0.6%. Tagged turtles were tracked for hours to days until the tag disengaged from the animal or was actively removed with
the pole. For estimation of g(0), only deployments of at least 30 minwere included, and any apparent dive response following
tag attachment was removed from the dive record before processing. Data were filtered to include only daylight hours
3
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between 08:30 and 17:30, when aerial surveys took place. To examine potential differences in time spent at or near the
surface by time of day, we divided the data into three 3-hr blocks (08:30e11:30, 11:30e14:30 and 14:30e17:30) and con-
ducted a Kolmogorov-Smirnoff test of the cumulative number of minutes spent by all turtles a) at the surface, b) within 1m of
the surface, when they would still be visible to aerial observers, or c) at 2þmdepth, when they would be too deep to be seen.
Zero-offset corrections (ZOC) were applied to each dive record to adjust for small baseline discrepancies that are common in
time-depth recorders (Hazel et al., 2009). Estimates of g(0) were derived from each dive record as the proportion of time each
turtle spent within 1 m of the surface (Benson et al., 2007a).
2.3. Analytical methods

We conducted a trend analysis of leatherback abundance using Bayesian hierarchical models in R (v. 3.5.1, R Core Team
2018) and OpenBUGS (v. 3.22). Our methods followed those initially described by Moore and Barlow (2014) and subse-
quently adapted by Forney et al. (2020) to assess harbor porpoise trends with the same aerial survey data used in this study.
Markov Chain Monte Carlo (MCMC) simulations were run with a process model for population growth and an observation
model based on the line-transect (Distance) sampling (Buckland et al., 2001). Two MCMC chains were run for 100,000 time
steps with a thinning rate of 10 to minimize autocorrelation and a 50,000 step burn-in. Model convergence was initially
ascertained visually, to ensure chains were stable and well-mixed for parameters of interest and resulting posterior distri-
butions were smooth. Convergence was also confirmed quantitatively using the R package coda by (a) testing for equality of
the means of the first and last parts of the Markov chain (Geweke 1992) and (b) calculating Gelman scores, which indicate
good convergence within the range of 1.00e1.05 (Gelman and Rubin 1992).

2.3.1. Process model
The process model describing population change was specified as a Markov process:

Nt ¼ Nt-1 � exp(r þ εt)
εt ~ Normal(0, s2

process)

where Nt is leatherback abundance at time t, r is the parameter for mean annual population growth rate, and εt is the process
error. The process error represents changes in abundance due to demographic andmovement processes, and is assumed to be
normally distributed on a log scale with a mean of zero and a process variation s2process. The long-term annual growth rate, l,
was estimated as the geometric mean of the individual realized annual growth estimates, lt:

lt ¼ N t / Nt-1
Leatherback density is Dt¼Nt/A, where A is the size of the study area (6842 km2); however, density varies spatially and our

survey coverage was biased towards higher density regions because we also sought to locate leatherbacks for telemetry
studies. To avoid bias in the resulting abundance estimates, we modeled stratum-specific density effects when linking the
process and observation models. Each HPAS transect line represented a separate along-shore stratum, with boundaries
located at the ends of each zig-zag line as shown in Fig. 1A. The fine-scale lines (Fig. 1B) were assigned to these strata based on
their respective locations.

Leatherback density in stratum i at time t is described by Di,t ¼ Dt � ci, where ci is a stratum-specific, time-independent
multiplier that accounts for persistent leatherback density differences (i.e., some strata consistently have better foraging
habitat than others, based on the interaction of coastal bays and headlands with local ocean processes; Graham et al., 2001).
Overdispersionwas included in the observation model using a Poisson-gamma distribution (see Section 2.3.2 below) to allow
for annual departures from this expectation. There were two important constraints when specifying Bayesian priors for the ci.
First, stratum-area weights were calculated as wi ¼ ai/A, where ai are the stratum area sizes in km2 (Supplemental Table S1),
and the sum of the ci�wi was constrained to be equal to 1. This ensures that the overall study area density equals the area-
weighted average of the individual stratum densities: Dt ¼ P

i

Ditai
A ¼ P

i
Dtciwi. Second, the ci for each stratum were con-

strained to be less than or equal to its respective 1/wi, because if any ci ¼ 1/wi, that would imply that all leatherbacks were
within this single stratum.

2.3.2. Observation model
The observation model linking the above process to the observed data followed distance sampling methods, with the

expected number of leatherbacks, E½ni;t � ¼ mi;t , described as:

E
�
ni;t
�¼ mi;t ¼2� Li;t � ESW � gð0Þ � Di;t

where Li,t are the lengths of the transect lines (km) surveyedwithin the strata, g(0) is the probability of detecting a leatherback
on the transect line, and ESW is the effective strip half-width (km). The effective strip half width (ESW) was estimated from
the combined leatherback sighting data using R version 3.5.1 (R Core Team 2018) and the package Distance 0.9.7, evaluating
both conventional and multi-covariate approaches to include potential weather covariates (e.g., sea state, glare). We
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evaluated detection functions based on Akaike’s Information Criterion (AIC; Akaike 1973), choosing the simplest model when
multiple approaches yielded similar AIC values (D AIC < 1). The resulting effective strip half-width, along with its standard
error, was included in the trend analysis as an informed prior with a normal distribution. The probability of detecting animals
on the transect line, g(0), was estimated from the TDR dive behavior data as the proportion of time a leatherback was within
1 m of the surface, following the methods of Benson et al., 2007a, and specified as a beta distribution in our model. The
observed number of leatherbacks ni,t, was assumed to follow a negative binomial distribution using a Poisson-gamma
specification with ni,t ~ Poisson(m i,t � ri,t), and ri,t ~ gamma(a, a).

2.3.3. Priors and estimation
We specified uniform priors for the process model as follows: initial leatherback population size, N0 ~ Uniform(0, 2000),

annual growth rate r ~ Uniform(-1, 1), and process variation sp ~ Uniform(0, 2). To conform to the constraints described above,
prior specifications for the ci were more complex:

c1 ~ uniform(0, 1/w1)

cie uniform

 
0;

1�Pi�1
j¼1cjwj

wi

!
; for i¼2;3; :::k� 1; where k is the number of strata

1�Pk�1c w

ck ¼ j¼1 j j

wk
For the observation model, ESW was specified based on the estimated detection function (see Results below):
ESW ~ Normal(0.2615, 0.097). The negative binomial overdispersion parameter, a, was specified as a ~ Uniform(1, 10).

2.4. Environmental data

To evaluate the estimated leatherback population trend in the context of coastal ocean processes that influence leath-
erback prey and habitat (e.g., the strength of upwelling), we obtained two habitat indices from NOAA’s California Current
Integrated Ecosystem Assessment website1: (1) the Northern Oscillation Index (NOI), which correlates with upwelling in-
tensity and zooplankton production, and which was previously linked to leatherback abundance (Benson et al., 2007a); and
(2) a 1990e2017 time-series of catch per unit effort (CPUE) for brown sea nettles off central California, derived from spring
trawl stations during NOAA’s Rockfish Recruitment and Ecosystem Assessment Surveys (Ralston et al., 2013).

3. Results

Survey coverage varied during the study period (Table 1), with HPAS transects dominating the early years (1990e2000),
and FINE transects contributing a much greater level of effort after 2000. Leatherback turtles were observed in 20 of the 22
years that had survey coverage, although sighting rates varied inter-annually. A total of 358 sightings were recorded, ranging
from zero to 43 animals per year. Some intra-annual sightings may represent re-sightings of the same individuals.

We conducted 18 TDR deployments during 2007e2013 to update the estimate of g(0) for abundance estimation. Combined
with the three 2005 deployments reported by Benson et al., 2007a, this resulted in a new estimate of g(0)¼ 0.607 (SE¼ 0.040)
(Table 2). The proportion of time tagged turtles spent at the surface, within 1 m, and at depths of at least 2 m was not
significantly different by time of day (p � 0.10) The simplest detection function that minimized AIC was the half-normal
without covariates, resulting in an estimate of ESW ¼ 261.5 m (SE ¼ 9.7) across all years. Truncation distances of
400e700mwere explored, and the best model fit was achievedwithout any data truncation, similar to previousmarine turtle
surveys (Benson et al., 2007a; Eguchi et al., 2018).

TheMCMC chains achieved convergence, as indicated by Gelman statistics within the recommended range of 1e1.05, non-
significant Geweke scores, and smooth posterior distributions, as shown in Fig. 2 for three key parameters: the realized
growth rate, l, the process error, s2process, and the overdispersion parameter, a. Posterior distributions for the stratum-specific
density multipliers, ci, were consistent with observed geographic patterns of leatherback density and variation therein
(Supplemental Figure S1); in particular, the greatest densities were in strata 20 and 21 (see Fig. 1A). The overall trend analysis
indicated a long-term decline in the abundance of leatherback turtles off central California (Fig. 3), with a median annual
growth rate (l-1) of �5.6% (95% credible interval �9.8% to �1.5%) between 1990 and 2017. The decline was not monotonic as
abundance varied across years, with peaks during years with positive or increasing Northern Oscillation Index values
(Fig. 4A). This is consistent with the findings of Benson et al., 2007a; however, the magnitude of these abundance peaks has
decreased over time (Fig. 4B and C). The most recent peak abundance of 106 leatherbacks during 2016 (95% credible interval:
51e221) was markedly less than the 1990 peak, when there were an estimated 298 leatherbacks (95% credible interval:
154e600). The relative abundance of the leatherback’s primary prey in this region also was variable throughout our study
1 https://www.integratedecosystemassessment.noaa.gov/regions/california-current-region/indicators/climate-and-ocean-drivers.html.
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Table 1
Summary of 1990e2017 aerial survey effort and leatherback sightings for both transect sets (harbor porpoise transects, Fig. 1A, and adaptive fine-scale
transects, Fig. 1B). Surveys were conducted from mid-August to mid-November in each year sampled.

Year Harbor porpoise transects Adaptive fine-scale transects All surveys combined

Survey effort (km) No. leatherbacks Survey effort (km) No. leatherbacks Survey effort (km) No. leatherbacks

1990 2316 28 0 0 2316 28
1991 909 1 0 0 909 1
1992 0 0 0 0 0 0
1993 2424 5 0 0 2424 5
1994 0 0 0 0 0 0
1995 1952 1 0 0 1952 1
1996 0 0 0 0 0 0
1997 2534 13 0 0 2534 13
1998 0 0 0 0 0 0
1999 1938 18 0 0 1938 18
2000 284 3 218 0 502 3
2001 1028 3 2813 6 3841 9
2002 2947 19 5220 20 8167 39
2003 1028 4 6222 39 7250 43
2004 301 0 9552 41 9853 41
2005 68 0 5966 25 6034 25
2006 584 2 3827 1 4411 3
2007 1526 7 3480 20 5006 27
2008 1065 5 1985 9 3050 14
2009 342 0 4487 8 4829 8
2010 290 0 1142 3 1432 3
2011 1244 0 2674 2 3918 2
2012 0 0 2011 0 2011 0
2013 238 1 3731 32 3969 33
2014 651 0 588 0 1239 0
2015 0 0 0 0 0 0
2016 1042 3 1322 31 2364 34
2017 385 0 1973 8 2358 8

Table 2
Summary of time-depth recorder (TDR) deployments and estimated mean proportion of time within 1 m of the surface, g(0). * indicates deployments that
were previously reported in Benson et al., 2007a.

Deployment
Date

Latitude
(N)

Longitude
(W)

Deployment
ID

Minutes for g(0) estimation Sampling Interval
(sec)

Percent of time within 1 m of surface

9/29/2005* 37.608 122.717 1 153 5 0.456
9/30/2005* 37.550 122.593 2 168 5 0.498
10/13/2005* 37.548 122.593 3 228 5 0.460
9/12/2007 37.568 122.670 4 213 10 0.877
9/13/2007 37.603 122.708 6 376 10 0.711
9/23/2007 37.235 122.501 7 226 30 0.386
9/24/2007 37.283 122.527 8 2574 30 0.507
9/26/2007 37.270 122.480 9 231 4 0.490
9/30/2007 37.549 122.700 11 44 2 0.656
9/4/2008 37.668 122.658 13 344 4 0.543
9/4/2008 37.618 122.620 14 205 4 0.837
10/13/2008 37.687 122.872 15 38 4 0.755
10/14/2008 37.684 122.771 16 49 4 0.426
10/14/2008 37.695 122.759 17 49 4 0.388
10/7/2010 36.792 121.924 18 41 2 0.287
10/14/2011 36.924 122.104 19 35 2 0.845
9/7/2013 36.855 121.863 20 54 2 0.905
9/7/2013 36.909 121.925 21 257 2 0.720
9/23/2013 37.575 122.833 24 107 2 0.752
9/27/2013 37.607 122.674 25 55 2 0.673
9/28/2013 37.603 122.563 27 818 20 0.576

Mean 0.607
S.E. 0.040
CV 0.065

S.R. Benson, K.A. Forney, J.E. Moore et al. Global Ecology and Conservation 24 (2020) e01371
period and revealed unexpected asynchrony, with a weak negative correlation (Pearson’s r ¼ �0.268). The two largest peaks
in brown sea nettle CPUE (1992 and 2010e2011) occurred during years with low leatherback abundance (Fig. 5). Conversely,
the three years with peak leatherback abundance (1990, 1999, 2016) had relatively low CPUE of brown sea nettles.
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Fig. 2. Posterior distributions for (A) the realized growth rate, l; (B) the process error SD, sprocess; (C) the overdispersion parameter, a.
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4. Discussion

4.1. Leatherback abundance patterns

The Bayesian hierarchical framework applied in this study combined data from relatively coarse, coast-wide surveys (HPAS
transects) with data from adaptive fine-scale surveys within areas of greatest leatherback occurrence. The resulting abun-
dance estimates are similar to previous estimates for 1990e2003 (Benson et al., 2007a), but the addition of adaptive transects
and the improved estimate of g(0) have allowed us to achieve robust annual abundance estimates for trend estimationwithin
a highly variable ecosystem.

Leatherback abundance off California varies inter-annually, because individual turtles spend almost two years migrating to
the nesting beaches and back, and subsequently return to the foraging grounds during one or more consecutive years.
Variable habitat conditions and within-season foraging success likely determine the number of foraging seasons each
7



Fig. 3. Estimated leatherback abundance off central California, 1990e2017 (black diamonds, with 90% credible intervals; see Supplemental Table S2), and summer
nest counts (gray line) at the largest remaining western Pacific nesting beach complex (Jamursba Medi, Birds Head Peninsula, Indonesia; from Tapilatu et al.,
2013) for comparison.

Fig. 4. Estimated leatherback abundance off central California, 1990e2017 (bars) relative to the average annual Northern Oscillation Index (black line), which was
previously correlated with abundance during 1990e2003 (blue bars; Benson et al., 2007a). Panel (A) shows 1990e2017 on a single common y-axis scale, while
panels (B) and (C) are scaled according to the range of abundances during 1990e2003 (blue) and 2004e2017 (orange), respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)

S.R. Benson, K.A. Forney, J.E. Moore et al. Global Ecology and Conservation 24 (2020) e01371
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Fig. 5. Estimated leatherback abundance off central California, 1990e2017 (gray bars) relative to brown sea nettle (Chrysaora fuscescens) catch per unit effort
(CPUE ¼ ln(catchþ1)) within in a standard 15-min trawl (black line) during NOAA’s Rockfish Recruitment and Ecosystem Assessment Surveys (Ralston et al.,
2013).
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individual leatherback requires to meet energetic demands for reproduction, growth and migration (Lutcavage and Lutz,
1986; Rivalan et al., 2005; Saba et al., 2007; Benson et al. 2007b, 2011; Jones et al., 2012; Avens et al., 2020). Thus, the
total number of leatherback turtles at California foraging grounds each year represents a subset of the entire California
foraging cohort, with the remaining individuals engaged in migration to or from the distant nesting beaches. Currently, there
are insufficient data to estimate what proportion of the total western Pacific leatherback population is foraging off central
California on an annual basis, nor how many unique individuals are in the California foraging cohort.

The apparent cyclical patterns within our abundance time series (peaking roughly every eight years; Fig. 3) may reflect the
above-described life-history patterns as well as variation in ocean productivity and forage conditions, although the magni-
tude of the peaks has declined. The results of our analysis indicate a long-term decline in the abundance of foraging central
California leatherbacks, at an estimated rate of �5.6% per year or a total of �80% from 1990 to 2017.

4.2. Habitat conditions

Habitat conditions in the study area do not appear to be responsible for the declining trend, becausewe found no evidence
of a deterioration of foraging habitat or prey abundance that might have caused a large-scale shift in leatherback use away
from central California waters. The NOI and brown sea nettle CPUE from trawl surveys were variable during 1990e2017;
however, neither indicated a systematic ecosystem change that might have influenced leatherbacks to become less abundant
in the study area. Positive NOI values correspondwith conditions favorable for upwelling along the California coast, leading to
increased zooplankton production (Schwing et al., 2002). During 1990e2003, leatherback turtle abundance off California
exhibited a positive relationship with the average annual NOI (Benson et al., 2007a). The NOI peaked in 2007, 2011, and 2013;
however, leatherback abundance did not show a corresponding increase. Brown sea nettles are the primary prey item for
leatherback turtles in neritic central California waters (Benson et al., 2007a; Hetherington et al., 2019). Data from trawl
surveys of brown sea nettles did not correlate well with leatherback abundance at an inter-annual scale. For example, brown
sea nettle CPUEwas high in 2010e2011 when leatherback abundancewas low. The poor correlation could be attributed to the
patchy distribution of brown sea nettles in the California Current Ecosystem (Graham et al., 2001; Suchman and Brodeur
2005), and/or a spatio-temporal mismatch between the spring brown sea nettle trawls and summer/fall leatherback sam-
pling. Despite the lack of within year correlation and high inter-annual variability, brown sea nettle trawl data did not show
any systematic, long-term reduction in prey availability that could explain the long-term decline of leatherbacks.

4.3. Comparison to nesting beach trends

The long-term trend in the annual number of foraging leatherback turtles off central California (�5.6%) is similar to
findings at the largest remaining nesting beach complex in the western Pacific, where most California leatherbacks originate
(Dutton et al., 2000; Benson et al., 2011). Tapilatu et al. (2013) estimated a�5.9% annual rate of decline during 1984e2011, and
Martin et al. (2020) estimated a �6.1% annual rate of decline during 2001e2017. At first glance, it might seem surprising that
the trend at a single foraging ground would closely mirror overall nesting beach trends, given that individual leatherback
turtles exhibit site fidelity to specific, diverse foraging grounds throughout the Indo-Pacific Basin (Seminoff et al., 2012;
Lontoh 2014) and anthropogenic threat levels vary geographically (e.g., Roe et al., 2014). However, hatchling dispersal studies
(Gaspar et al., 2012; Gaspar and Lalire, 2017) have shown that all foraging regions used by summer-nesting leatherback turtles
in the western Pacific are indeed directly linked to each other (and to the summer nesting beaches), because each cohort of
9
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hatchlings may disperse to any or all of the foraging grounds, effectively reshuffling the population each generation. Thus,
concordance between foraging-ground and nesting-beach trends is not unexpected, underscoring the critical danger of
extinction faced by this population throughout its Pacific range. Adverse impacts on leatherbacks in one region will e over
time e be felt across all regions.

4.4. Causes and potential solutions

Causes of the western Pacific leatherback population decline are multi-faceted, including fishery bycatch, harvesting of
eggs and adults, habitat degradation of nesting beaches leading to poor recruitment (Tiwari et al., 2013; Martin et al., 2020),
and potentially poorly understood effects of climate variability (Saba et al., 2008). Direct anthropogenic threats span many
nations and international waters throughout most of the Pacific and Indo-Pacific Basins, given the enormous range of this
leatherback population (Harrison et al., 2018). Programs to protect leatherbacks and enhance reproductive output at nesting
beaches have been successful in the Atlantic (Dutton et al., 2005) and are ongoing in thewestern Pacific (Pakiding et al., 2020),
but fishery bycatch remains a significant conservation challenge (Wallace et al., 2013b; Swimmer et al., 2017). Peatman and
Nicol (2020) provide annual rough estimates of 600e1900 leatherbacks caught incidentally during 2003e2018 within the
Western and Central Pacific Fishery Commission Convention Area, but caution that limited and uneven fishery monitoring
introduces substantial uncertainty.

Successful recovery of western Pacific leatherbacks will require Pacific-wide measures and multi-national coordination to
reduce impacts. Curtis et al. (2015) demonstrated a local Limit Reference Point (LLRP) approach for assessing regional levels of
sustainable impacts to leatherbacks; these LLRPs can provide regional mitigation targets for the implementation of coordi-
nated, Pacific-wide population stabilization or recovery efforts. Along the U.S. West Coast, the LLRP (i.e., the maximum
allowable mortality limit) that would allow recovery of this population (if human-caused mortality was similarly limited
throughout the population range) is 4.7 turtles per 5 years (approximately one per year). Within this region, leatherback
bycatch in the swordfish drift gillnet fishery was reduced dramatically by a seasonal fishery closure within the Pacific
Leatherback Conservation Area (PLCA) established in 2001. Prior to that time, 104 leatherbacks were estimated to have been
killed or injured in this fishery during 1990e2000, averaging 9.5 per year (Carretta et al., 2019). In contrast, the estimate for
2001e2017 was seven leatherbacks (averaging 0.4 per year), a 93% reduction. However, unmonitored set gillnet and fixed-
gear (pot or trap) fisheries continue to pose a risk of entanglement and death to leatherbacks at their foraging grounds
within waters of the U.S. West Coast Exclusive Economic Zone (EEZ) (National Marine Fisheries Service and U.S. Fish and
Wildlife Service, 2020).

Bycatch reduction efforts within and beyond U.S. waters can benefit from new technologies that have been implemented
or are being tested in some fisheries. For example, the requirement to use 16/0 circle hooks and dehooking devices to release
hooked turtles, along with several other measures, has reduced leatherback bycatch in the Hawaii-based shallow-set fishery
by 84% (Swimmer et al., 2017). If these practices were adopted Pacific-wide by longline fisheries from all nations, the col-
lective reduction in bycatch could make a substantial positive impact on leatherback turtle population trends (Gilman et al.,
2006). Other experimental techniques, such as deep-set buoy gear being tested off the U.S. West Coast, may also contribute to
leatherback recovery if these techniques are successful and economically feasible in other regions (Sepulveda et al., 2015).
Lastly, models and analyses that take into account ocean conditions, fishery distributions, and leatherback movement pat-
terns (e.g., Roe et al., 2014; Howell et al., 2015; Hazen et al., 2018) can inform fishery management decision-making and
increase our understanding of how the dynamic nature of the marine environment, particularly in a changing climate, may
affect bycatch risks to leatherback turtles.

5. Conclusion

This study presents the first evidence of a long-term decline in leatherback turtle abundance at a major foraging ground
along the U.S. West Coast. The estimated �5.6% annual rate of decline in the number of leatherbacks foraging off central
California between 1990 and 2017 corresponds to an overall decline of 80% during the 28-year period. Our updated analysis
provides an average estimate of 128 leatherbacks foraging off central California each year during the first half of our time
series, 1990e2003, similar to the Benson et al., 2007a estimate of 140 but slightly lower because of the updated estimate of
availability bias (g(0)). From 2004 to 2017, however, the average number of leatherbacks off central California dropped to 55
individuals, despite evidence from the NOI and sea nettle trawl samples that foraging conditions continued to be favorable.
These results highlight the value of long-term monitoring to establish population trends, particularly for species like
leatherbacks that have complex migration and life history characteristics. Our study’s findings underscore the urgent need to
increase leatherback conservation efforts throughout this population’s range to avoid a continued population decline and the
eventual extirpation of the western Pacific leatherback.
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