INTER-AMERICAN TROPICAL TUNA COMMISSION

SCIENTIFIC ADVISORY COMMITTEE

11TH MEETING

La Jolla, California (USA) 11-15 May 2020¹

DOCUMENT SAC-11-01a

STAFF ACTIVITIES AND RESEARCH PLAN

This document is an update of Document <u>IATTC-94-04</u>, which summarized the IATTC scientific staff's work plans for 2019-2023 and its current and planned research activities under the <u>Strategic Science Plan</u>. Projects proposed but pending funding are listed in Document <u>SAC-11-01 (Add.)</u>.

CONTENTS

Α.	Introduction	1
В.	Index of projects	3
C.	Assessments of tunas and other species carried out by the IATTC staff	5
D.	Work plans	8
	1. Work plan to improve stock assessments of tropical tunas	8
	2. Work plan for Management Strategy Evaluations (MSE)	11
	3. Work plan for the FAD fishery	13
	4. Work plan to Improve data collection and stock assessments for sharks	15
Ε.	Current and planned projects, by theme	17
	1. Data collection for scientific support of management	17
	2. Life-history studies for scientific support of management	25
	3. Sustainable fisheries	40
	4. Ecological impacts of fisheries: assessment and mitigation	60
	5. Interactions among the environment, the ecosystem, and fisheries	75
	6. Knowledge transfer and capacity building	90
	7. Scientific excellence	
F.	Publications	96
G.	Projects completed since previous report	101

A. INTRODUCTION

This document presents the staff's research and work plans, as well as brief summaries of the 47 research projects that are currently under way, or planned for the near future and funded under the 5-year <u>Strategic Science Plan</u> (2019-2023). The summaries include, for each project, background information, a work plan, and a progress report, as well as details of its relevance and purpose, external collaborators, duration, and deliverables; also, for existing projects, an update on activities since the previous year's report (the 'reporting period'; June 2019-September 2020 in this report).

The staff's research activities are no longer structured in accordance with the Commission's four research

¹ Postponed until a later date to be determined

programs², as they were prior to 2018. Instead, they are classified into the seven main areas of research, called *Themes*, of the Strategic Science Plan (SSP; <u>IATTC-93-06a</u>). In addition to better accommodating a strategic planning approach, this new structure is intended to foster stronger collaboration among the different programs (recommendation 17 of the <u>2016 IATTC Performance Review</u>), with researchers from different programs contributing to activities under a common *Theme*. The seven *Themes*, the strategic pillars of the SSP, are the following:

- 1. Data collection for scientific support of management
- 2. Life history studies for scientific support of management
- 3. Sustainable fisheries
- 4. Ecological impacts of fishing: assessment and mitigation
- 5. Interactions among the environment, ecosystem, and fisheries
- 6. Knowledge transfer and capacity building
- 7. Scientific excellence

Each *Theme* is divided into strategic *Goals*, and the principal tasks that will be carried out to achieve a particular goal within the SSP's five-year window are called *Targets* (IATTC-93-06a). The specific activities that the staff will carry out in order to fulfil those tasks are called *Projects*, which are in some cases grouped into *Work Plans* aimed at achieving a broad objective not limited to a particular *Theme* or *Goal*.

The general *Themes*, and the more specific *Goals*, reflect the staff's principal activities in carrying out the responsibilities it is assigned by the Commission, and form an integral part of the five-year SSP. The more focused *Targets*, and the concrete *Projects*, are generally of shorter duration, and operate on a biennial cycle. Whether any *Projects* are undertaken under a particular *Goal* or *Target* in any given period will depend on the staff's research priorities, the human, logistic, and financial resources available, and any specific instructions from the Commission.

A measure of the staff's activities is the presentation of its research and the resulting publications. Presentations and publications from 2019 are listed in <u>Section F</u>.

Improving data collection for Central American shark fisheries
Evaluate potential improvement of growth model for bigeye in the EPO based on
presumed annuli counts from otoliths of large fish
Workshop to evaluate differences in bigeye tuna age estimation methods and resulting
growth models utilized in current stock assessments by the IATTC and WCPFC
Revise trend estimation methods for purse-seine silky shark indices for the EPO
Design a survey for dolphins in the eastern tropical Pacific Ocean (ETP)
Evaluate potential reference points for dorado in the EPO
Evaluate the post-release survival of silky sharks captured by longline fishing vessels in the
equatorial EPO, using best handling practices
External review of bigeye tuna assessment
External review of yellowfin tuna assessment

Since the previous report to the Commission in 2019, the following projects have been completed; details in <u>Section G</u>.

Proposals for projects pending funding are listed in Document SAC-11-01 (Add.).

² Stock Assessment; Biology and Ecosystem; Data Collection and Database; Bycatch and International Dolphin Conservation Program (IDCP)

B. INDEX OF PROJECTS	
1. DATA COLLECTION FOR SCIENTIFIC SUPPORT OF MANAGEMENT	17
A.1.a: Routine activities of the Bycatch and IDCP Program	
A.3.a. Conversion of all remaining Visual Basic 6 (VB6) computer programs to Visual Basic Net	
(VB.net).	
A.3.b: Develop databases of biological and fisheries parameters to support Ecological Risk	
Assessment and ecosystem models	
C.4.b: Long-term sampling program for shark catches of artisanal fisheries in Central America:	
Phase 1	
D.2.a: Pilot study of electronic monitoring (EM) of the activities and catches of purse-seine	
vessels	
2. LIFE-HISTORY STUDIES FOR SCIENTIFIC SUPPORT OF MANAGEMENT	25
E.2.a: Investigate spatiotemporal variability in the age, growth, maturity, and fecundity of	
yellowfin tuna in the EPO	
E.3.a: Investigate geographic variation in the movements, behavior, and habitat utilization of	
yellowfin tuna in the EPO	
E.4.a: Multi-year tuna tagging study	
E.5.a: Evaluate the Pacific-wide population structure of bigeye and skipjack tunas, using genetic	
analyses	
E.5.b: Investigate the spawning ecology of captive yellowfin tuna, using genetic analyses	
F.2.a: Investigate the movements, behavior, and habitat utilization of silky sharks in the EPO	
G.1.a: Studies of pre-recruit survival and growth of yellowfin tuna, including expanding studies of	
early-juvenile life stages	
G.2.a: Develop comparative models of pre-recruit survival and reproductive patterns of Pacific	+
tunas	
G.3.a: Develop a larval growth index to forecast yellowfin recruitment	
3. SUSTAINABLE FISHERIES	40
H.1.a: Improve the bigeye tuna stock assessment	
H.1.b: Improve the yellowfin tuna stock assessment	
H.1.c: Investigate potential changes in the selectivity of the longline fleet resulting from changes	
in gear configuration	
H.1.d: Improve indices of abundance based on longline CPUE data	
H.1.e: Construct indices of abundance and composition data for longline fleets	
H.4.a: Conduct routine stock assessments of tropical tunas	+
H.6.a: Participate in assessments of shared species by the International Scientific Committee	+
(ISC)	
H.7.b: South Pacific swordfish assessment	+
	+
I.1.a: Conduct a Management Strategy Evaluation (MSE) for tropical tunas in the EPO	+
1.3.a: Evaluate potential reference points for dorado in the EPO	+
J.2.a: Quantify the relationship between vessel operational characteristics and fishing mortality	+
J.3.a: Developing alternative buoy-derived tuna biomass indexes	+
K.1.a: POSEIDON project	60
4. ECOLOGICAL IMPACTS OF FISHERIES: ASSESSMENT AND MITIGATION	60
L.1.a: Develop habitat models for bycatch species caught in the EPO to support ecological risk	
assessments (ERAs)	+
L.1.b: Develop a flexible spatially-explicit ERA approach for quantifying the cumulative impact of	

tuna fisheries on data-limited bycatch species in the EPO	
L.2.a: Develop and update Productivity-Susceptibility Analyses (PSAs) of tuna fisheries in the EPO	
M.1.b: Test sorting grids	
M.1.c: Acoustic discrimination to avoid purse seine catches of undersized yellowfin tuna	
M.2.b: Evaluate best handling practices for maximizing post-release survival of silky sharks in	
longline fisheries, and identification of silky shark pupping areas for bycatch mitigation	
M.5.a: Develop and test non-entangling and biodegradable FADs	
M.5.b: Reducing losses, and fostering recovery, of FADs in the purse-seine fishery in the EPO	
5. INTERACTIONS AMONG THE ENVIRONMENT, THE ECOSYSTEM, AND FISHERIES	75
N.1.a: Analyze EPO bycatch data to assess the influence of environmental drivers on catches and vulnerability	
N.1.b: Investigate the effects of wind-induced microturbulence on yellowfin larval survival	
N.2.a. Develop models of the effects of climate change on pre-recruit life stages of tropical tunas	
N.2.b: Supporting climate-ready and sustainable fisheries: using satellite data to conserve and	
manage life in the ocean and support sustainable fisheries under climate change	
O.1.b: Quantify spatial and ontogenetic variation in the feeding ecology of skipjack tuna in the	
eastern Pacific Ocean	
0.1.c: A review of methods to determine prey consumption rates, gastric evacuation and daily	
ration of pelagic fishes: a precursor to experimental estimation for key predators in the EPO	
O.2.a: Develop and implement analytical tools for understanding the trophic ecology of apex	
predators	
O.2.b: An updated ecosystem model of the tropical EPO for providing standardized ecological	
indicators for monitoring of ecosystem integrity	
6. KNOWLEDGE TRANSFER AND CAPACITY BUILDING	90
P.1.a: Fulfil requests for development of database and data processing applications for entities outside the IATTC	
P.1.b: Respond to requests for scientific analyses	
Q.1.a: Achotines Laboratory support of Yale University's Environmental Leadership Training Initiative (ELTI) in Panama	
R.1.b.: Development, communication and evaluation of management strategies (MSE) for	
tropical tuna fisheries in the EPO involving managers, industry, scientists and other stakeholders	
7. SCIENTIFIC EXCELLENCE	94
U.1.a: Long-term plan to strengthen research at the Achotines Laboratory	<u> </u>
X.1.a: Workshop to advance spatial stock assessments of bigeye tuna in the Pacific Ocean	
	LI

C. ASSESSMENTS OF TUNAS AND OTHER SPECIES CARRIED OUT BY THE IATTC STAFF

The staff's main responsibility is to analyze and assess the status of the stocks of tunas and tuna-like species in the EPO, and provide scientific advice to the Commission to aid in its management decisions regarding these stocks. It prepares regular assessments of the principal species of tropical tunas (bigeye, yellowfin, and skipjack), and more occasional evaluations of other species, such as silky shark and dorado, at the Commission's request. It also collaborates with the International Scientific Committee (ISC) for Tuna and Tuna-Like Species in assessments of North Pacific bluefin and North Pacific albacore tunas, and some billfish and shark species, and with other organizations, such as the SPC and WCPFC, and conducts dolphin assessments for the AIDCP.

Three types of stock assessments are carried out: 1) **benchmark assessments** (previously called "full" assessments), in which all the major assumptions are reviewed and improved; 2) **updated assessments**, in which new or updated data are analyzed, using the current assumptions; and 3) **exploratory assessments**, in which new assumptions are investigated, but are not used in the assessment on which the staff bases its management advice. In years in which exploratory assessments are conducted, management is based on updated assessments. Other less intensive methods, such as stock status indicators, are also used.

Stock assessment work during 2018-2020 focused primarily on delivering benchmark assessments of bigeye and yellowfin tunas in 2020, when Resolution <u>C-17-02</u> expires and new management measures for tropical tunas will be needed. The staff's workplan to improve the stock assessments for tropical tunas, which included external reviews of the assessments for bigeye and yellowfin, has now been successfully completed. New benchmark assessments are available for bigeye and yellowfin (<u>SAC-11-06</u>, <u>SAC-11-07</u>), both used for management advice in the context of a new risk analysis approach (<u>SAC-11 INF-F</u>, <u>SAC-11-08</u>). Stock status indicators are also available for the three tropical tuna species (<u>SAC-11-05</u>). During the following 3 years (2020-2023) which complete the 5-year cycle of the Strategic Science Plan (2018-2023), the staff will continue to improve the bigeye and yellowfin benchmark assessments, as well as the risk analysis approach. New benchmark assessments for bigeye, yellowfin and skipjack (conditional on multi-year tagging program), and an improved risk analysis will be available in 2023. Progress reports on the tropical tuna assessment and risk analysis work will be presented at the SAC in 2021 and 2022. Considering that a new benchmark assessment methodology is being constructed for skipjack based on tagging data, a review of potential methodologies for the skipjack assessment and an exploratory assessment will be presented in 2021 and 2022, respectively.

In 2021, the staff has scheduled a benchmark assessment for South Pacific albacore following recent requests by Members. IATTC and SPC scientists are planning to work collaboratively on this joint assessment considering that SPC has also scheduled the same assessment for 2021. SPC will also be conducting an assessment for southwest Pacific swordfish in 2021. Therefore, 2021 will be a good time for the staff to conduct its previously planned benchmark assessment for south EPO swordfish and take advantage of coordination with SPC (e.g. stock structure definitions). Similar to the previous <u>dorado assessment</u> by the staff, the south EPO swordfish assessment will be conducted in close collaborations with scientists from Members and Cooperative non-Members (e.g. Chile) interested on this fishery.

In 2022, an exploratory Pacific wide bigeye assessment will be conducted, also in collaboration with SPC. Although this work and collaboration has already initiated in 2020, the assessment is planned to be presented in 2022 (not 2021, as previously scheduled), so that the staff can finish the South Pacific albacore and south EPO swordfish collaborative work in 2021.

Species	SSP ref.	Last assessed	2018	2019	2020	2021	2022	2023
IATTC								
Yellowfin tuna	H.4.a	2018	Update	Indicators/ Update ³ / Exploratory/ Review	Benchmark	Indicators	Indicators, Exploratory assessment	Benchmark
Skipjack tuna	H.4.a	2004/2018 Indicators	Indicators	Indicators	Indicators	Indicators Review assessment methods	Indicators Exploratory Assessment	Indicators/ Tagging⁴
Bigeye tuna (EPO)	H.4.a	2017/2018 Indicators	Indicators/ Update⁵	Indicators/ Exploratory/ Review	Benchmark	Indicators	Indicators Exploratory assessment	Benchmark
Bigeye tuna (Pacific wide)	H.7.a	2016					Exploratory assessment	
Striped marlin	H.7	2010						
Swordfish (south EPO)	H.7.b	2011				Benchmark		
Sailfish	H.7	2013						
Black marlin.		Never						
Silky shark	H.7	2018 (EPO indicators/ Pacific-wide benchmark)	Indicators	Indicators	Indicators	Indicators	Indicators	Indicators/ Benchmark
Dorado	1.3.a	2016		Candidate RP and HCR				

³ The yellowfin update assessment was not originally planned for 2019, but was conducted for completeness

⁴ Conditional on multi-year tagging program

⁵ A bigeye update assessment was conducted, but was not considered reliable enough to use for management advice

Species	SSP	Last	2018	2019	2020	2021	2022	2023
COLLABORATIONS	ref.	assessed						
Pacific bluefin tuna	H.6.a	2016 benchmark/ 2018 update	Update	Projections	Benchmark	Projections	Update	Projections
North Pacific albacore tuna	H.6.a	2017			Benchmark			
South Pacific albacore tuna	H.7.c					Benchmark		
Blue marlin	H.7	2013 benchmark/ 2016 update				Benchmark		
North Blue shark	H.6.a	2017						
South Blue shark								
Shortfin mako shark	H.6.a	2018	Benchmark					
Swordfish (north Pacific)	H.7	2014					Benchmark	

D. WORK PLANS

Work Plans combine research activities from different parts of the SSP in order to achieve certain broad scientific objectives that span more than one *Theme* or *Goal*. The following summary work plans list the specific *Targets* and *Projects* that are included, the time frame for carrying each one out, and their status.

1. WORK PLAN TO IMPROVE STOCK ASSESSMENTS OF TROPICAL TUNAS

Assessing the status of the tropical tuna stocks is the scientific staff's main responsibility. The staff constantly seeks to improve both its conventional stock assessments of yellowfin and bigeye tunas and its stock status indicators for skipjack, and in 2018 identified some issues in the bigeye assessment that needed to be addressed.

In the past, the staff based its recommendation for the duration of the closure of the purse-seine fishery on the *F* multiplier, a parameter in the assessment model that relates fishing effort (*F*) to the maximum sustainable yield (MSY) of a stock. In 2018 the staff concluded that the results of its stock assessment of bigeye in the EPO were not reliable enough to be used as a basis for management advice to the Commission, and in 2019 extended this conclusion to its assessment of yellowfin (<u>IATTC-94-03</u>). The main problem with both assessments was that their results became overly sensitive to the inclusion of new data, in particular recent observations for the indices of relative abundance from the longline fishery (<u>SAC-09 INF B; SAC-10 INF-F</u>). These and other issues were addressed in the staff's workplan to improve the stock assessments for tropical tunas, which included a core set of projects developed specifically to address the issues identified in the assessments within the required time frame (<u>Table A</u>), as well as other projects that will contribute to improving the assessments in general, some of which extend beyond 2020. The workplan included external reviews of the assessments for <u>bigeye</u> and <u>yellowfin</u>, and has now been successfully completed. Neither external review singled out a particular model configuration as a replacement for the previous base case models, but both suggested a variety of alternatives for the staff to consider.

New benchmark assessments are available for bigeye and yellowfin (<u>SAC-11-06</u>, <u>SAC-11-07</u>). These assessments represent a fundamental change from the staff's previous 'best assessment' approach: they are the basis for a 'risk analysis', in which a variety of reference models are used to represent plausible alternative assumptions about the biology of the fish, the productivity of the stocks, and/or the operation of the fisheries, thus effectively incorporating assessment uncertainty into the management advice as it is formulated.

The new assessment framework offers the following advantages: 1) it explicitly incorporates the results of all reference models (*model uncertainty*) and the precision of each model's parameter estimates (*parameter uncertainty*) when computing the quantities for management interest; 2) it allows a probabilistic evaluation of whether the target and limit reference points specified in the IATTC harvest control rule for tropical tunas (<u>C-16-02</u>) have been exceeded; 3) it can be integrated into the <u>Management Strategy Evaluation (MSE) framework under development at IATTC</u> as a basis for developing operating models.

This new approach to formulating management advice for tropical tunas includes the following elements:

• Two **benchmark stock assessment reports**, for bigeye (<u>SAC-11-06</u>) and yellowfin (<u>SAC-11-07</u>), presenting the results from all reference models for each species (model fits, diagnostics, derived quantities and estimated parameters that define stock status);

- A risk analysis (<u>SAC-11-08</u>) specific for tropical tunas, using the methods described in <u>SAC-11 INF-F</u>, which assesses current stock status and quantifies the probability (risk) of exceeding target and limit reference points specified in the <u>IATTC harvest control rule</u>, as well as the expected consequences of alternative management measures in terms of closure days;
- Stock status indicators (SAC-11-05) for all three tropical tuna species (yellowfin, bigeye, and skipjack); and;
- The following **recommendations** by the staff for the conservation of tropical tunas, based on the above.

Main expected work plan deliverables (see individual project reports for details):

2018: Develop a <u>spatially-structured stock assessment for bigeye tuna</u> and other model <u>improvements</u>

2019: Exploratory bigeye and yellowfin assessments (Report to SAC-10; SAC-10 INF-F)

2020: Benchmark bigeye and yellowfin assessments (SAC-11-06, SAC-11-07)

2022: Exploratory Pacific-wide bigeye assessment

TABLE A. Timeline for tropical tuna work plan, 2017-2020.

2017	
Collaboration with Japanese scientists on identifying targeting changes	Report, SAC-09
2018	
February: CAPAM workshop on the development of spatiotemporal models of fishery CPUE data to derive indices of	<u>SAC-09-09</u>
relative abundance (Special Issue of Fisheries Research)	
Develop a spatially structured stock assessment for bigeye tuna and other model improvements	Project H.1.a
October: CAPAM workshop on spatial stock assessment models, focusing on bigeye tuna	Project X.1.a
2019	
January: Workshop on methodologies for estimating age of bigeye and yellowfin tunas from otoliths	Project E.2.b
February: Workshop to improve the longline indices of abundance of bigeye and yellowfin tunas in the EPO	Project H.1.d
March: 2 nd External review of the bigeye assessment (<u>report</u>)	Project T.1.a
May: SAC-10, exploratory bigeye and yellowfin assessments	SAC-10 <u>INF-F</u> , <u>INF-G</u>
Oct-Nov: Construct indices of abundance and composition data for longline fleets	Project H.1.e
Nov-Dec: 2 nd External review of yellowfin assessment	Project T.1.b
2020	
May: Benchmark bigeye and yellowfin assessments	SAC-11-06, SAC-11-07
May: Development of risk analysis methodology for management of tropical tuna fishery	<u>SAC-11-08</u>
July: New management recommendations to the Commission	<u>SAC-11-15</u> , IATTC
	annual meeting

TABLE B. Projects included in the tropical tuna work plan, 2017-2021. **Green**: completed; **blue**: funded; **red**: unfunded; **pink**: partially funded (funded components completed, other components pending). Text struck through indicates completed or terminated projects.

SSP	Target/Project	Timefran		ame &	status	IS	
ref.	Target, Project	2017	2018	2019	2020	2021	
1. MC	NITORING STOCK STATUS AND MANAGEMENT ADVICE						
H.4.a	Conduct routine stock assessments of tropical tunas and indicators						
J.2.a	Quantification of the relationship between vessel operational characteristics and fishing mortality						
2. ASS	SESSMENT RESEARCH						
H.1.a	Improve the bigeye tuna stock assessment						
H.1.b	Improve the yellowfin tuna stock assessment						
X.1.a	Workshop to advance spatial stock assessments of bigeye tuna in the Pacific Ocean						
X.1	CAPAM workshop on recruitment: theory, estimation, and application in stock assessment models						
E.2.b	Workshop to evaluate differences in bigeye tuna age estimation methods and resulting growth models						
	utilized in current stock assessments by the IATTC and WCPFC						
T.1.a	External review of bigeye tuna assessment						
T.1.b	External review of yellowfin tuna assessment						
X.1.c	CAPAM workshop on natural mortality						
H.7.a	Pacific-wide bigeye tuna exploratory assessment						
3. LIFE	E HISTORY DATA						
E.1.a	Evaluate potential improvement of growth model for bigeye in the EPO based on presumed annuli						
	counts from otoliths of large fish						
E.5.a	Evaluate the Pacific-wide population structure of bigeye and skipjack tunas, using genetic analyses						
4. CPL	JE						
X.1	CAPAM workshop on the development of spatiotemporal models of fishery CPUE data to derive indices						
	of relative abundance (Document <u>SAC-09-09</u>)						
H.1.c	Investigate potential changes in the selectivity of the longline fleet resulting from changes in gear						
	configuration						
H.1.d	Improve indices of abundance based on longline CPUE data			*			
H.1.e	Construct indices of abundance and composition data for longline fleets						
	N DATA SOURCES						
C.1.a	Exploring technologies for remote identification of FADs						
D.2.a	Pilot study of electronic monitoring of the activities and catches of purse-seine vessels**						
E.4.a	Multi-year tuna tagging study						
* • •	lly funded, we deden held in 2010 ** Decise to 2 a combined with D 2 avec CAC 10.12						

* Partially funded; workshop held in 2019 ** Project D.2.c combined with D.2.a; see SAC-10-12

2. WORK PLAN FOR MANAGEMENT STRATEGY EVALUATIONS (MSE)

The process of developing MSEs, a major objective of the IATTC and other organizations, consists of two parts. One is highly technical, and is carried out by scientific experts, but the other, which involves defining objectives, performance metrics, and candidate management strategies, requires input and participation of managers and other stakeholders. Those two parts should evolve in synergy. However, although the IATTC Performance Review, the Strategic Science Plan, and the SAC all endorsed improving knowledge-sharing, human-institutional capacity-building, and communication of scientific advice, there are currently no dedicated channels of communication specifically focusing on MSE within the IATTC. Stakeholder participation throughout the MSE process is central to its success, and will be facilitated by an understanding of the MSE process and its components, and by strengthening communication among scientists, managers, and other stakeholders. The proposed work plan combines support for the staff in the technical development of MSE for tropical tunas with a series of workshops for training and enhancing dialogue and communication among all interested parties regarding the MSE process for tropical tunas. The initial MSE work will continue to focus on bigeye tuna, and will move to the other species towards the end of the 5-year timeframe. The work will include improvements to the bigeye stock assessment model, which will be used as a basis for the operating model used in the MSE. The IATTC staff is also collaborating with other organizations, such as the ISC, in Pacific-wide MSEs for albacore and Pacific bluefin tunas.

Main expected deliverables (see individual project reports for details):

- **2018:** Improved bigeye assessment for use as spatial operating model (OM) Workshop on training, communication and evaluation of management strategies for tuna fisheries in the EPO
- 2019: SAC-10: Report improvements to bigeye model for its use as OM; work on alternative reference points and harvest control rules (HCRs) for dorado.

Introductory harvest strategies workshops for the Industry

Workshops for scientists-managers to elicit objectives, performance metrics, alternative HCRs

- **2020:** Workshops with managers and other stakeholders to show initial results and gather feedback, plus a technical workshop SAC-11: Report on revised MSE plan and preliminary results based on outcomes of workshops
- **2021:** Updated MSE results based on input from managers and stakeholders SAC-12: Report on revised MSE plan and preliminary results based on outcomes of workshops
- **2022:** Final MSE results based on revised input from managers and stakeholders SAC-13: Report on revised MSE plan and preliminary results based on outcomes of workshops
- **2023:** SAC-14: Report final results IATTC annual meeting: Recommend evaluated HCR/management procedure for bigeye for adoption; present plan for other tropical tunas

GREEN: COMPLETED; **BLUE:** FUNDED; **RED:** UNFUNDED

SSP	Target/Project			2019						_	23
ref.			1 2	12	1	2	1	2 1	1 2	1	2
	TAINABLE FISHERIES										
-	Test harvest strategies using Management Strategy Evaluation (MSE)										
I.1.	MSE for tropical tunas in the EPO: bigeye tuna										
I.1.a	1. Conduct an MSE for tropical tunas in the EPO							-			
	a. Improve the bigeye assessment for use as spatial OM								\perp	+	
	b. Run preliminary simulations with spatial OM										
	c. Technical meeting to agree on overall/revised MSE Plan by IATTC staff and collaborato	rs									
	2. Continue technical development of MSE, HCR, MP, outputs (with Project R.1.b)										
	a. Run preliminary MSE based on initial input from managers and stakeholders										
	b. Run final MSE based on revised input from managers and stakeholders										
	c. Propose evaluated HCR/MP to Commission for adoption, plan work for other tropical										
	tunas										
1.2.	Collaborate with ISC in Pacific-wide MSEs for albacore and Pacific bluefin tunas	ALB				*	*	* *	* *	*	*
	(*dependent on ISC scheduling)	PBF				*	*	* *	* *	*	*
1.3	Initiate MSE work to evaluate indicator-based harvest strategies for prioritized species and										
	species of specific interest										
I.3.a	Evaluate potential reference points for dorado in the EPO										
2. KNO	WLEDGE TRANSFER AND CAPACITY BUILDING										
Goal R	Improve communication of scientific advice										
R.1.	Improve communication of the staff's scientific work to CPCs										
R.1.a	Workshop on training, communication and evaluation of management strategies for tuna										
	fisheries in the EPO										
	a. Other MSE workshops for scientists-managers (to be planned)										
R.1.b	Technical development, communication and evaluation of MSEs for tropical tuna fisheries in t	the									
	EPO involving managers, scientists and other stakeholders										
R.2	Participate in global initiatives for the communication of science: t-RFMO MSE working group										
3. SCIE	NTIFIC EXCELLENCE										
Goal T	Implement external reviews of the staff's research										
T.1.	External review of bigeye assessment			-							
Т.2.	Publications in journals										

3. WORK PLAN FOR THE FAD FISHERY: IMPROVE DATA COLLECTION AND MANAGEMENT, AND MITIGATE ECOLOGICAL IMPACTS

The expansion of FAD fisheries worldwide poses several challenges for tuna RFMOs. First, with the expansion has come the need for improved data collection to provide better management advice on an ever-evolving fishery. Currently, much of the detailed data on the EPO FAD fishery is collected by observers aboard Class-6 vessels. However, new resolutions and technological advances offer the possibility of collecting additional detailed data on FAD-related activities, including information provided by fishing crews on FAD form <u>9/2018v2</u> (Resolution C-19-01), FAD buoy data to be provided to the IATTC staff under Resolution C-17-02 (plus several supplements recommended by the SAC and the Working Group on FADs), and the use of electronic monitoring to supplement data collected by on-board observers. Second, because the FAD fishery has different impacts on the ecosystem, in terms of marine pollution, bycatches of non-target species, and catches of juveniles of target species, than other components of the purse-seine fishery, there is an urgent need to develop and test conservation and management measures that will contribute to mitigating these effects, such as gear modifications and new FAD designs, among others.

The IATTC staff is currently working on numerous projects related to the FAD fishery, and has submitted proposals for funding to help fill remaining data and knowledge gaps; these are shown in the work plan below.

Main expected deliverables (see individual project reports for details):

2018: Reports summarizing current data gaps and potential improvements

2018-2021: Training workshops to expand and improve data collection

2020-2021: Pilot study on remote and electronic identification of FADs

Data-driven recommendations for the implementation of electronic monitoring in the purse-seine fleet Quantitative evaluation of the relationship between the FAD fishery, fishing mortality and its ecological impacts

2021: State-of-the-art data-collection procedures for the purse-seine fishery; improved data quality and reporting procedures New ecologically-friendly FAD designs, and guidelines for their implementation and use

SSP ref.	Target / Droject		tatus						
55P Tel.	Target/Project	2017	2018	2019	2020	2021			
1. DAT	. DATA								
Goal B:	Goal B: Identify and prioritize opportunities to improve data quality and expand data types and coverage								
B.2.	Expand on-board data collection to small purse seiners: train observers								
Goal C: F	Facilitate the improvement of data quality, coverage, and reporting by CPC data collection prog	rams							
C.1.	Purse-seine fleet: Improve data reporting and content (Resolutions 19-01 and 17-02; SAC and								
	WG-FADs recommendations)								
C.1.a	Exploring technologies for remote identification of FADs								
Goal D:	Investigate the use of new technologies to improve data quality								
D.2.a	Pilot study of electronic monitoring of the activities and catches of purse-seine vessels								

Green: completed; blue: funded; red: unfunded

SSP ref.	Target/Project	Timeframe & status								
SSP rei.		2017	2018	2019	2020	2021				
Goal Q:	Provide training opportunities for scientists and technicians of CPCs									
Q.3	Workshops for vessel crews, industry, and national authorities on requirements of C-19-01									
	and C-17-02 (WG-FADs Recommendation endorsed by SAC)									
2. COM	ISERVATION AND MANAGEMENT									
Goal J: I	mprove our understanding of the effects of the operational characteristics of the fishery on fish	ning mor	tality, sto	ock asses	ssments,	and				
manage	ment advice									
J.2.a	Quantification of the relationship between vessel operational characteristics and fishing									
	mortality									
J.3.a	Pilot study on developing alternative buoy-derived tuna biomass indices									
Goal M:	Mitigate the ecological impacts of tuna fisheries									
M.1.a	Evaluate the effect of the depth of non-entangling FADs on catches of tunas and bycatches of									
	other species in the purse-seine fishery									
M.1.b	Test sorting grids (with emphasis on reducing catches of juvenile bigeye)									
M.3.a	Estimate bycatch and discard rates at FADs, by species, and identify "hot spots"									
M.5.a	Develop and test non-entangling and biodegradable FADs									
M.5.b	Reducing losses, and fostering recovery, of FADs in the purse-seine fishery in the EPO									

4. WORK PLAN TO IMPROVE DATA COLLECTION AND STOCK ASSESSMENTS FOR SHARKS

Paragraph 1 of Resolution <u>C-16-05</u> on the management of shark species requires that "the IATTC scientific staff shall develop a workplan..., for completing full stock assessments for the silky shark ... and hammerhead sharks ..."

As the staff has noted previously, improving shark fishery data collection in the EPO is essential if conventional stock assessments and/or other indicators of stock status are to be developed for sharks. An attempt to assess the status of the silky shark in the EPO using conventional stock assessment models was severely handicapped by major uncertainties in the fishery data, and stock assessment work on hammerhead sharks is currently not possible due to the scarcity of data for this taxon. Without reliable catch and composition data and indices of abundance for all fisheries catching sharks in the EPO, any further attempts at such assessments are problematic. In this regard, the lack of funding for Project C.4.b (see IATTC-93-06c) is also problematic.

The staff developed a work plan to improve data collection and stock assessments for sharks, focused on all EPO fisheries that interact with silky and hammerhead sharks, and obtained funds from FAO-GEF to improve data collection for the coastal longline and gillnet fisheries, which have the greatest deficiencies and are estimated to take a large fraction of the shark catches. The staff is developing an experimental design for a long-term shark fishery sampling program in the EPO, for presentation to the SAC and the Commission in 2020, and hopes to deliver some form of stock assessments of silky and hammerhead sharks by the end of the SSP time frame in 2023. The type of assessment applied to each species will depend on the data available. In addition, the work plan involves bycatch mitigation activities aimed at reducing fishing mortality of sharks.

Main expected deliverables (see individual project reports for details):

2019: Proposal for long-term sampling program for shark catches by artisanal fisheries in Central America

2023: Assessments of silky and hammerhead sharks in the EPO

Green: completed; blue: funded; red: unfunded

SSP	Torget/Dreject	Timeframe 8				tus	
ref.	Target/Project	2018	2019	2020	2021	2022	2023
1. DAT	A						
Goal B:	Conduct a review of current IATTC/AIDCP data collection programs, identify and prioritize opportu	nities f	to impr	ove da	ita qua	lity an	d
expand	data types and coverage						
В.2.	Expand on-board data collection to small purse seiners						
Goal C:	Facilitate the improvement of data quality, coverage, and reporting by CPC data collection program	ns					
C.4	Artisanal fisheries (coastal developing CPCs)						
C.4.a	Improving data collection for Central American shark fisheries: develop sampling protocols for						
	catch and effort estimation (FAO-GEF ABNJ project)						
	a. Identify all unloading sites and obtain order-of-magnitude estimates of total catch and effort						
	b. Design and test sampling protocols for species and size composition sampling						
C.4.b	Long-term sampling program for shark catches of artisanal fisheries in Central America						

SSP	Townsh (Dwole of		Timeframe & status					
ref.	Target/Project	2018	2019	2020	2021	2022	2023	
Goal D:	Goal D: Investigate the use of new technologies to improve data quality							
D.2.a	Pilot study of electronic monitoring of the activities and catches of purse-seine vessels							
2. LIFE	HISTORY DATA							
F.2.a	Investigate the movements, behavior, and habitat utilization of silky sharks in the EPO							
3. MOI	NITORING POPULATION STATUS AND MANAGEMENT ADVICE							
Goal H:	Improve and implement stock assessments, based on the best available science							
H.5	Undertake the research necessary to develop and conduct data-limited assessments for							
	prioritized species (Assessments of silky and hammerhead sharks in the EPO)							
H.5.a	Revise trend estimation methods for purse-seine silky shark indices for the EPO							
Goal L:	Evaluate the ecological impacts of tuna fisheries							
L.1.a	Develop habitat models for bycatch species caught in the EPO to support ecological risk							
	assessments (ERAs)							
L.1.b	Develop a flexible spatially-explicit ERA approach for quantifying the cumulative impact of tuna						ĺ	
	fisheries on data-limited bycatch species in the EPO							
L.2.a	Develop and update Productivity-Susceptibility Analyses (PSAs) of tuna fisheries in the EPO							
Goal N:	Improve our understanding of the interactions among environmental drivers, climate, and fisherie	S						
N.1.a	Analyze EPO bycatch data to assess the influence of environmental drivers on catches and							
	vulnerability							
4. BYC/	ATCH MITIGATION							
Goal M	: Mitigate the ecological impacts of tuna fisheries							
M.1.a	Evaluate the effect of the depth of non-entangling FADs on catches of tunas and bycatches of							
	other species in the purse-seine fishery							
M.2.a	Evaluate the post-release survival of silky sharks captured by longline fishing vessels in the							
	equatorial EPO, using best handling practices					ļ		
M.2.b	Evaluate best handling practices for maximizing post-release survival of silky sharks in longline							
	fisheries, and identification of silky shark pupping areas for bycatch mitigation							
M.3.a	Estimate bycatch and discard rates at FADs, by species, and identify "hot spots"							

E. CURRENT AND PLANNED PROJECTS, BY THEME		
1. DATA COLLECT	ION FOR SCIENTIFIC SUPPORT OF MANAGEMENT	
PROJECT A.1.a: Da	atabase and Observer Data Collection Program Regular Activities	
THEME: Data collection		
GOAL: A. Databas	e maintenance, preservation, and access	
TARGET: A.1. Rout	tine tasks	
EXECUTION: Byca	tch and IDCP Program	
Objectives	Continue observer data collection program regular activities required by the Antigua Convention and the AIDCP	
Background	 The AIDCP requires that all trips by Class-6 purse-seine vessels (carrying capacity > 363 t) in the EPO carry an observer aboard; the IATTC observer program covers 50% of trips. 	
	 Observer records are the primary source of data on the purse-seine fishery. The Antigua Convention and various IATTC resolutions require that observers collect information on the tuna purse-seine fishery. 	
	 The Bycatch-IDCP program is instrumental in training observers from national programs and under agreements with other organizations. 	
Relevance for management	Observer data are a key element for stock assessments and recommendations by the IATTC scientific staff	
Duration	Continuous	
Workplan and	Continue to process new data. Seek opportunities to improve data collection and	
status	processing.	
External collaborators	Coordination with national and regional observer programs is essential and required.	
Deliverables	IATTC staff processed data from 523 observed trips initiated during 2019.	
	• Observer training, 2019: two courses, in Mexico (for the IATTC observer	
	program from May 27 to June 13) and Nauru (August 28 to Sep 3) (with WCPFC	
	program).	
	• Required alignment of dolphin safety panel in purse-seine net, 2019: two, one in Ecuador (August 25) and one in Mexico (January 20).	

PROJECT A.1.a: Routine activities of the Bycatch and IDCP Program

Reports/publications/presentations

Presentations for the AIDCP seminar were updated with new resolution requirements relevant to operators, and made available to the national programs.

rsion of all remaining Visual Basic 6 (VB6) computer programs to Visual Basic intenance, preservation, and access ize and automate data submissions ection and Database Program e-write in VB.net all Visual Basic (VB) version 6 computer programs still in use y the IATTC and supported national observer programs.
intenance, preservation, and access ize and automate data submissions ection and Database Program e-write in VB.net all Visual Basic (VB) version 6 computer programs still in use
intenance, preservation, and access ize and automate data submissions ection and Database Program e-write in VB.net all Visual Basic (VB) version 6 computer programs still in use
ize and automate data submissions ection and Database Program e-write in VB.net all Visual Basic (VB) version 6 computer programs still in use
ection and Database Program e-write in VB.net all Visual Basic (VB) version 6 computer programs still in use
e-write in VB.net all Visual Basic (VB) version 6 computer programs still in use
y the IATTC and supported national observer programs.
Vork with national programs to install and test in the local environments, and
rain national program staff.
ATTC staff developed customized data entry and editing programs using VB.
Aicrosoft has terminated support for VB6, so the development environment no
onger runs on current Microsoft operating systems.
he code must be re-written in a supported programming language.
ome point the compiled VB6 programs will cease to work, and data required
stock management would not be available.
ore years – planned completion in 2021
ate 2014: project initiated.
Narch 2020: conversion 75% complete.
pril-December: Continue conversion, prioritizing the most important computer
rograms.
ting staff are completing the project, rather than hiring outside programmers.
completion of conversion of all VB6 computer programs.
eplacement of all VB6 computer programs in IATTC and national programs
vith VB.net programs.
rovide technical support to national programs during transition.

PROJECT A.3.b: Develop databases of biological and fisheries parameters to support Ecological Risk		
Assessment and ecosystem models THEME: Data collection		
GOAL: A. Database maintenance, preservation, and access TARGET: A.3. Standardize and automate data submissions		
	Collection and Database Program, Biology and Ecosystem Program	
Objectives	Develop a comprehensive database of best-available biological and fisheries data	
Objectives	to provide key parameters for Ecological Risk Assessment (ERA) and ecosystem	
	models	
Background	The <u>Antigua Convention</u> requires the IATTC to ensure the sustainability of	
Dackground	target, associated, and dependent species affected by EPO tuna fisheries, and	
	the ecosystem to which they belong.	
	 ERA and ecosystem models, used by IATTC staff to assess the ecological impacts 	
	of tuna fisheries in the EPO, require information on biological, physiological and	
	trophodynamic characteristics of thousands of species in the EPO ecosystem.	
	 A database with the most up-to-date information for impacted species is 	
	required to expedite the initial parameterization, or updating, of future models.	
Relevance for		
	• The database will contain data needed for ERAs and ecosystem models, used to identify and prioritize data collection, mitigation, and/or management measures	
management		
	for vulnerable species.The databases could be shared with scientists of CPCs.	
Duration		
Duration	2018–2023	
Workplan and status	 Biological and ecological literature searches for species that have been desurported to interact with EBO types fickering 	
status	documented to interact with EPO tuna fisheries	
	Identify fishery-related susceptibility parameters for bycatch species	
	Update length-weight relationships and average weight by species to facilitate	
Cuto much	various staff activities and reporting (<i>e.g.</i> , Fishery Status Report).	
External	Scientists from CPCs interested in contributing to and/or using the databases	
collaborators	Compared analysis life bistomy and avagentibility data base with fishomy apprific	
Deliverables	Comprehensive life history and susceptibility database with fishery-specific	
	information that can be shared with IATTC CPCs for those wishing to develop ERAs for a particular region and/or fishery.	

PROJECT A.3.b: Develop databases of biological and fisheries parameters to support Ecological Risk
Assessment and ecosystem models
Updated: May 2020
Progress summary for the reporting period
• A temporary life-history database has been developed for all species reported to have interacted
with purse-seine and large-scale longline fisheries
• Values for fisheries-related susceptibility parameters have been obtained for about 30 of the 110
bycatch species that interact with EPO tuna fisheries.
 New task: update length-weight relationships and average weight of bycatch species to improve
various staff activities and reporting (e.g., Fishery Status Report).
Challenges and key lessons learnt
• The main challenge is sourcing datasets for rare/infrequently caught bycatch species with sufficient
sample sizes across a wide size spectrum
Reports/publications/presentations
 Four manuscripts that use these life-history and susceptibility data have been prepared for
submission to scientific journals or IATTC presentations:
• Griffiths, S.P., Kesner-Reyes, K., Garilao, C., Duffy, L.M., Román, M.H., 2018. Development of a
flexible ecological risk assessment (ERA) approach for quantifying the cumulative impacts of
fisheries on bycatch species in the eastern Pacific Ocean. 9th Meeting of the Scientific Advisory
Committee of the IATTC, 14-18 May 2018, La Jolla, California, USA. Document SAC-09-12.
• Griffiths, S.P., Lezama-Ochoa, N., Román, M.H., 2019. Moving towards quantitative ecological risk
assessment for data-limited tuna fishery bycatch: application of "EASI-Fish" to the spinetail devil
ray (Mobula mobular) in the eastern Pacific Ocean. 9th Meeting of the IATTC Working Group on
Bycatch, 11 May 2019, San Diego, California, USA. Document BYC-09-01.
• Griffiths, S.P., Kesner-Reyes, K., Garilao, C., Duffy, L.M., Román, M.H., 2019. Ecological Assessment
of the Sustainable Impacts of Fisheries (EASI-Fish): a flexible vulnerability assessment approach to
quantify the cumulative impacts of fishing in data-limited settings. Marine Ecology Progress Series
625, 89-113.
• Griffiths, S.P., Wallace, B., Swimmer, Y., Alfaro-Shigueto, J., Mangel, J.C., Oliveros-Ramos, R., 2020.
Vulnerability status and efficacy of potential conservation measures for the east Pacific leatherback
turtle (Dermochelys coriacea) stock using the EASI-Fish approach. 10th Meeting of the IATTC
Working Group on Bycatch, 10 September 2020, La Jolla, California, USA. Document BYC-10-01.
Comments:

-

	: Long-term sampling program for shark catches of artisanal fisheries in Central			
America: Phase 1				
	THEME: 1. Data collection			
-	GOAL: C. Improve quality and expand coverage of data-collection programs TARGET: C.4. Artisanal longline fleet			
	-			
	cock Assessment Program			
Objectives	Conduct Phase 1 (1 st year) of a long-term sampling program of shark catches by artisanal fisheries in Central America, using sampling methods and logistics developed under the extended FAO-GEF project.			
Background	 Assessment modelling for shark species in the EPO is severely hampered by a lack of reliable data on shark catches. 			
	 Previous work by IATTC staff identified specific data gaps and data collection needs, including the critical need for catch data from Central American fisheries, some components of which are believed generate a large fraction of the EPO catches of sharks. 			
	 The current FAO-GEF-funded project on developing sampling designs for the composition of the shark catches by artisanal fisheries in Central America, supplemented with IATTC capacity-building funds, will be completed at the end of 2019. 			
	 This extended FAO-GEF project has generated, and continues to generate, a wealth of information with which to develop sampling designs for various fleet components of Central American coastal fisheries that land sharks (SAC-10-16). However, no funding is available to implement a long-term sampling program using the methodology developed under the FAO-GEF project. 			
	• Without data provided by a properly designed long-term sampling program for Central American artisanal fisheries, the IATTC will not be able to meet the goal of Resolution C-16-05 of EPO assessments of silky and hammerhead sharks.			
	 Phase 1 of the long-term sampling program will provide the necessary extensive field testing required to fine-tune sampling methodology, logistics and costs for Phase 2 (regular sampling). 			
Relevance	Data collected under a long-term monitoring program based on fully-tested sampling			
for	designs will allow for development of stock status indicators and conventional			
management	assessments of key shark species			
Duration	1 year (April 1, 2020 – March 31, 2021)			
Work plan	2020: Implement the sampling designs developed under the extended FAO-GEF			
and status	project.			
External collaborators	OSPESCA, Central American national authorities			
Deliverables	 Sampling designs and logistical plans for estimating the species and size 			
	composition of shark catches in Central American artisanal fisheries.			
	 SAC-12 (2021): report on final sampling design methodology and costs. 			

PROJECT D.2.a: Pilo	t study of electronic monitoring (EM) of the activities and catches of purse-seine	
vessels		
THEME: Data collection		
GOAL: Investigate u	se of new technologies (pilot studies)	
TARGET: D.2 Electro		
EXECUTION: Bycatc	h and Gear Technology group	
Objectives	A proof-of-concept study to evaluate the types of data that can be reliably	
	collected by electronic monitoring (EM) on Class 1-5 purse-seine vessels.	
Background	• Fisheries management and assessments require complete catch and bycatch	
	information.	
	Logbook data for Class 1-5 vessels provide basic catch information for target	
	species, but no information on tuna discards and incomplete information on	
	catches of non-target species.	
	 EM systems may provide cost-effective and practical solutions. 	
Relevance for	Better-quality and higher-resolution data on catches and discards of target and	
management	non-target species by unobserved purse-seine vessels would improve the staff's	
	stock assessments and management advice	
Duration	23 months	
Work plan and	 2018: January-February: Identify EM capabilities from manufacturers. 	
status	 March-May: Survey of infrastructure configuration and fishing operations of 	
	small vessels. Identify candidate vessels; purchase EM equipment.	
	• June 2018-January 2019: collect EM and observer data on small purse-seine	
	vessels.	
	 2019: February-April: process EM data. 	
	 May-August: Statistical comparisons of EM and observer data; write project 	
	report.	
	 September-November: if proof-of-concept warranted, development of a 	
	sampling design for a pilot study using EM aboard small purse-seine vessels.	
External	Collaboration of fishing industry, observers and technology companies is	
collaborators	essential.	
Deliverables	May 2018: Progress report to SAC-09 meeting.	

PROJECT D.2.a: Pilot study of electronic monitoring (EM) of the activities and catches of purse-seine vessels

Updated: September 2020

Progress summary for the reporting period:

- Since the previous report (May 2019), the staff has been trained on the software for reviewing EMrecords; to date, the resulting EM-data resulting from eight fishing trips have been analyzed, and collection and processing of both EM-records and observer data from all four vessels continues.
- Progress will be reported at SAC-11, including preliminary results of comparisons of EM and observer data (<u>SAC-11 INF-G</u>);
- Draft minimum standards for EM in the EPO (<u>SAC-11-11</u>) were developed, for consideration by the SAC.

Progress summary for the reporting period:

- June: IATTC staff trained on the software for reviewing EM-records.
- July: IATTC staff started producing EM-data from all four vessels.

2020:

- January March:
- Continue collecting EM-records and observer data from all four vessels.
- Produced and analyzed EM-data for eight fishing trips.
- April July: Continue production and processing of EM-data.
- October: Report progress at SAC-11, including preliminary results of comparisons of EM and observer data; propose minimum standards for EM in the EPO (<u>SAC-11-11</u>).
- July December:
 - Continue statistical comparisons of EM and observer data.
 - After presentation and discussion at SAC-11, draft final minimum standards for EM data collection with the purpose of obtaining reliable information on Class 1-5 vessel related to set type, FAD deployments, catches, and bycatches.
 - Determine additional data that can be reliably collected by EM on Class-6 vessels, as accurately as the observer.
 - Write project report.
 - October-December: If results indicate that EM collection aboard Class 1-5 vessels is warranted, develop a sampling design for a pilot study using EM on Class 1-5 vessels.

Challenges and key lessons learnt

Difficulties in finding Class 1-5 vessels willing to participate delayed the project and led to changes in its scope. Similarly, COVID-19 pandemic delayed the review of EM-data for 3 months.

Reports/publications/presentations May 2019:

- <u>Progress report</u> presented at SAC-10.
- SAC-10-12 Electronic monitoring of purse-seine vessel activities and catches

July 2019:

• Presentation: *Progress of electronic monitoring testing in the Eastern Pacific*. Side event hosted by the ISSF at 94th Meeting of the IATTC.

October 2019:

• Participation: *SPC/FFA/PNAO DCC Longline Electronic Monitoring (EM) Planning Workshop*. Honiara, Solomon Islands. To gain and share experiences on EM with other RFMOs. Participation sponsored by The Pew Charitable Trusts.

June 2020:

 Presentation: Progress of electronic monitoring testing in the Eastern Pacific tuna purse-seine fishery. Borchard Foundation Fisheries Colloquium on "'Modernizing global fisheries surveillance with molecular genetics and electronic monitoring technologies". June 21-24. Missillac, France. Participation sponsored by the Borchard Foundation. (Suspended until June 2021, due to COVID-19)

September 2020:

- Progress report at SAC-11
- Proposal for minimum standards in EM for the EPO (SAC-11-11)
- •

May 2021:

• Final project report, and if appropriate, sampling design for EM data collection, to be presented at SAC-12. A revised draft of EM minimum standards may also need to be presented at SAC-12, subject to SAC-11 and Commission feedback.

Comments:

For Class-6 vessels, the objective is to assess which activities of the on-board observers can be performed by EM (Project D.2.c, now combined with this project).

An unfunded project proposal has also been prepared by the staff to extend the EM pilot project to longline vessels.

2. LIFE-HISTORY STUDIES FOR SCIENTIFIC SUPPORT OF MANAGEMENT

PROJECT E.2.a: Investigate spatiotemporal variability in the age, growth, maturity, and fecundity of		
yellowfin tuna in the EPO		
THEME: Life-history studies for scientific support of management		
	pry, behavior, and stock structure of tropical tunas	
•	roductive biology of tropical tunas	
	pgy and Ecosystem Program	
Objectives	Estimate age, growth, maturity, and fecundity of yellowfin from four distinct areas of the eastern Pacific for use in spatially-structured stock assessment models	
Background	 Current estimates of age, growth, maturity, and fecundity of yellowfin are based on otolith and ovarian tissue samples collected over 30 years ago. During 2009-2016 observers collected otolith and ovarian tissues samples at sea 	
	 throughout the EPO Tagging and morphometrics data indicate there are multiple stocks of yellowfin in the EPO, probably with different life history characteristics Heavily-exploited fish stocks often show trends towards earlier maturation 	
Relevance for	Spatially-structured stock assessments based on geographically-explicit life history	
management	parameters will provide a more accurate basis for the staff's management advice	
Duration	5 years; initiated in 2017	
Work plan and status	 2017-2021: Preparation and reading of otolith samples for age estimates 2018-2021: Preparation and reading of ovarian tissue samples for maturity and fecundity estimates 2019-2021: Analyses of age and growth and reproductive biology data, and preparation of manuscripts 	
External		
collaborators		
Deliverables	 Presentation for SAC-12 Updated, geographically-explicit life-history parameters for use in spatially- structured stock assessments Manuscripts for publication in scientific journals 	

PROJECT E.2.a: Investigate spatiotemporal variability in the age, growth, maturity, and fecundity of yellowfin tuna in the EPO

Updated: October 2020

Progress summary for the reporting period

- Daily increment counts for 246 otoliths have been completed, 128 from the central offshore region and 118 from the central nearshore region.
- A general additive model was used to investigate whether differences in growth exists between those two regions.
- Microscopic slides of ovarian tissues from 1,756 fish from the four distinct areas have been prepared for reading.

Challenges and key lessons learnt

Reports/publications/presentations

- Fuller, D. and K. Schaefer. Abstract *in* Proceedings of the 69th annual tuna conference, 21-24 May 2018, Lake Arrowhead, USA
- Fuller, D. and K. Schaefer. Abstract *in* Report of the workshop on age and growth of bigeye and yellowfin tunas in the Pacific Ocean, 23-25 January 2019, La Jolla, USA

Comments:

PROJECT E.3.a. Inv	vestigate geographic variation in the movements, behavior, and habitat utilization	
of yellowfin tuna in the EPO		
THEME: Life-history studies for scientific support of management		
GOAL: E. Life histo	ory, behavior, and stock structure of tropical tunas	
TARGET: E.3. Anal	yze historical tagging data to improve spatially-structured tropical tuna assessments	
EXECUTION: Biolo	gy and Ecosystem Program	
Objectives	Evaluate geographic variation in movements, behavior, and habitat utilization of yellowfin tuna via analyses of existing archival tag data sets from several discrete areas of the EPO	
Background	 Yellowfin exhibit restricted movements; tagged fish are normally recovered within about 1000 nm of point of release 	
	 Future stock assessments of yellowfin should be spatially structured, because there are probably at least three stocks in the EPO 	
	 Understanding movements, dispersion, and mixing between stocks, as well as behavior and habitat utilization, is essential for understanding population dynamics, estimating exploitation rates within stocks, and preventing localized depletions 	
Relevance for	Spatially-structured stock assessments based on geographically-explicit life history	
management	parameters will provide a more accurate basis for the staff's management advice	
Duration	2020-2021	
Work plan and status	 Several existing archival tag data sets from discrete areas of the EPO will be analyzed and compared to describe geographic variation in movements, behavior, and habitat utilization Historical conventional tag data sets for yellowfin from the EPO will also be included in the evaluations of movements and dispersion 	
External collaborators		
Deliverables	Presentation for SAC-12	
	Manuscript for publication in a scientific journal	

PROJECT E.3.a: Investigate geographic variation in the movements, behavior, and habitat utilization of yellowfin tuna in the EPO Updated: January 2020 Progress summary for the reporting period

• This project starts in 2020

PROJECT E.4.a: M	PROJECT E.4.a: Multi-year tuna tagging study		
THEME: Life-history studies for scientific support of management			
GOAL: E. Life histo	ory, behavior, and stock structure of tropical tunas		
TARGET: E.4. Initia	ate a multi-year tagging program for tropical tunas		
EXECUTION: Biology and Ecosystem Program			
Objectives	 Obtain data that will contribute to, and reduce uncertainty in, EPO tuna stock assessments, particularly for skipjack tuna; 		
	 Obtain information on the rates of movement, dispersion, and mixing of skipjack, yellowfin, and bigeye tunas in the EPO, and between this region and other adjacent regions of the Pacific basin; and Obtain estimates of sex-specific growth, mortality, abundance, selectivity, and 		
	exploitation rates for those species of tuna in the EPO		
	This project is described in detail in Appendix 2 of Document <u>CAF-05-04</u> , prepared		
	for the meeting of the Committee on Administration and Finance in July 2017		
Duration	4 years (2019-2022)		

PROJECT E.4.a: Multi-year tuna tagging study

Updated: October 2020

Progress summary for the reporting period

- The initial Phase 1 85-day tagging cruise (6 March to 30 May 2019), aboard a chartered live-bait poleand-line vessel operating off Central America and northern South America, was unsuccessful. No concentrations of skipjack, bigeye, or yellowfin tunas were found in unassociated or associated schools within the areas for which permits were obtained.
- A total of only 1,455 tunas were tagged: 220 skipjack (43 with archival tags (ATs)), 189 bigeye (46 with ATs), and 1,046 yellowfin (242 with ATs).

Work Plan and Status

- Phase 2 of the IATTC multi-year regional tuna tagging project will consist of two tagging cruises conducted during 2020 and 2021 of approximately 90 days each.
- A pole-and-line live-bait tuna fishing vessel has been chartered to conduct a tuna tagging cruise during the period of February through April of 2020.
- Permits have been obtained from the Government of Ecuador and the Galapagos National Park, as well as the Government of Panama, and the Government of Mexico and the Revillagigedo Islands National Park for catching bait and fishing/tagging tunas during the 2020 tagging cruise period.
- The 2020 cruise plan is to go directly from the vessel's homeport of San Diego to the Galapagos Islands to begin fishing/tagging operations, focusing on SKJ.

Reports/publications/presentations

Presentation at the May 2020 IATTC SAC Meeting

Comments:

PROJECT E.5.a: Evaluate the Pacific-wide population structure of bigeye and skipjack tunas, using			
genetic analyses			
THEME: Life-history studies for scientific support of management			
	ory, behavior, and stock structure of tropical tunas		
TARGET: E.5. Gene	etic studies on stock structure		
	gy and Ecosystem Program		
Objectives	Determine whether bigeye and skipjack tuna from discrete areas of the Pacific		
	Ocean show significant genetic heterogeneity		
Background	 Genetic studies can be used to evaluate and validate the results of tagging 		
	experiments		
	 Modern genetic analyses can be used to assess genetic heterogeneity between 		
	tropical tuna stocks		
	 Data from tagging experiments and genetic studies can inform spatially- 		
	structured stock assessments		
Relevance for	Spatially-structured stock assessments based on geographically-explicit life history		
management	parameters will provide a more accurate basis for the staff's management advice		
Duration	4 years (2017-2020)		
Work plan and	 2017-2019: Tissue samples from the Pacific and other oceans processed at 		
status	CSIRO using genotyping and sequencing techniques		
	 2018-2020: Analyses of genetic data at CSIRO with software specifically 		
	designed for uncovering and evaluating genetic heterogeneity in population		
	structure		
	• 2019-2020: Manuscript in preparation on assessment of skipjack population		
	structure from samples from Indian Ocean, western and eastern Pacific.		
	2019-2020: Manuscript in preparation on assessment of bigeye population		
	structure from samples from western, central, and eastern Pacific		
External	CSIRO, Hobart, Australia		
collaborators			
Deliverables	Relevant information on population structure of bigeye and skipjack tunas in		
	the Pacific for informing future stock assessments		
	 Manuscripts for publication in scientific journals 		

PROJECT E.5.a: Evaluate the Pacific-wide population structure of bigeye and skipjack tunas, using genetic analyses

Updated: January 2020

Progress summary for the reporting period

- CSIRO processed additional tissue samples from the Pacific Ocean
- CSIRO conducted updated analyses of genetic data sets, including additional tissue samples
- Interpretation of results is being finalized

Challenges and key lessons learnt

- Collections, processing, and analyses of suitable numbers of tissue samples for assessing population structure of tunas takes considerable time and effort.
- Preparations of manuscripts describing population structure of bigeye and skipjack tunas takes considerably longer than anticipated

Reports/publications/presentations:

• Manuscripts in preparation on Pacific-wide population structure of bigeye and skipjack tuna

Comments:

PROJECT E.5.b: Inv	vestigate the spawning ecology of captive yellowfin tuna, using genetic analyses	
THEME: Life-history studies for scientific support of management		
GOAL: E. Life histo	pry, behavior, and stock structure of tropical tunas	
TARGET: E.5. Gene	etic studies on stock structure	
EXECUTION: Biolo	gy and Ecosystem Program	
Objectives	Assess the spawning ecology of captive yellowfin tuna at the Achotines	
•	Laboratory, by estimating the number of females that contribute to single	
	spawning events, and their spawning periodicity and frequency	
Background	• Determining spawning patterns and maternal lines of inheritance using genetic	
0	techniques contributes to understanding of the stock structure of tropical tunas	
	• Captive spawning populations are useful for identifying genetic markers for	
	female spawning patterns and matching parental markers to those found in	
	progeny	
	 During 2011-2014, spawning female yellowfin at the Achotines Laboratory were 	
	sampled to develop mitochondrial DNA markers, and these markers are being	
	analyzed in the eggs and larvae to estimate spawning periodicity and frequency	
	of females	
Relevance for	Better understanding of reproductive processes contributes to understanding of	
management	recruitment and population structure of yellowfin, essential for stock assessment	
Duration	12 months (June 2018-June 2019)	
Work plan and	• June-December 2018: Complete laboratory analysis of genetic markers from	
status	spawning adults, eggs and larvae sampled in 2014	
	• January 2019-December 2020: Preparation of final study results and submission	
	of manuscript	
External	Kindai University, Japan	
collaborators		
Deliverables	SAC-09-14 Review of research at the Achotines Laboratory	
	 SAC-10-18 Review of research at the Achotines Laboratory 	
	Publication of results in a scientific journal	

PROJECT E.5.b: Investigate the spawning ecology of captive yellowfin tuna, using genetic analyses Updated: May 2020

Progress summary for the reporting period

- Laboratory analysis of genetic markers from spawning adults, eggs and larvae sampled in 2014 completed.
- Analysis of DNA markers to estimate spawning periodicity and frequency of females during 2011-2013 completed; analysis of 2014 data is continuing.
- Results for 2011-2013 presented at 69th Tuna Conference.

Challenges and key lessons learnt

The genetic analyses for this study are time-consuming and require specialized analytical equipment, available to the group only at Kindai University. This delayed completion of the analysis.

Reports/publications/presentations

- Results of genetic analysis presented at the 69th Tuna Conference, May 2018, the World Aquaculture Society Annual Meeting, March 2019, and the 43rd Larval Fish Conference, May 2019
- SAC-10-18 Review of research at the Achotines Laboratory
- In preparation: Publication of results in a scientific journal

Comments:

The genetic study will be completed in 2020. An ancillary activity will be the preliminary testing of a kit designed to identify male sex markers from the skin mucus of fish.

PROJECT F.2.a: Investigate the movements, behavior, and habitat utilization of silky sharks in the EPO			
THEME: Life-history studies for scientific support of management			
GOAL: F. Life-history studies for species at risk			
TARGET: F.2. Life history of sharks			
EXECUTION: Biology and Ecosystem Program			
Objectives	Evaluate movements, behavior, and habitat utilization of silky sharks in the		
	equatorial and tropical EPO from in-depth analyses of existing data obtained from		
	archival tags		
Background	 Understanding population structure and movements is essential for stock 		
	assessments, particularly for sharks		
	• The information available about movements, behavior, and habitat utilization of		
	silky sharks in the EPO is limited		
	 Understanding behavior and habitat utilization is important for effective 		
	conservation measures and for ecological risk assessment analyses		
Relevance for	Improve management advice on silky sharks based on spatially-structured stock		
management	assessments; habitat utilization information is useful for mitigation and spatial		
	management		
Duration	24 months (2020-2021)		
Work plan and	The archival tag data for silky sharks collected for previous IATTC projects funded		
status	through the EU will be analyzed in depth and compared for describing geographic		
	variation in movements, behavior and habitat utilization in a manuscript to be		
	submitted to a scientific journal		
External	INCOPESCA Costa Rica; WWF Ecuador; and INAPESCA Mexico		
collaborators			
Deliverables	Presentation for SAC-12, May 2021		
	 Manuscript for publication in a scientific journal 		

PROJECT F.2.a: Investigate the movements, behavior, and habitat utilization of silky sharks in the EPO

Updated: January 2020

Progress summary for the reporting period

• This project starts in 2020

PROJECT G.1.a: Studies of pre-recruit survival and growth of yellowfin tuna, including expanding			
studies of early-juvenile life stages			
THEME: Life-history studies for scientific support of management			
GOAL: G. Investigate early life-history of tunas			
TARGET: G.1. Investigation of the factors affecting pre-recruit survival of yellowfin			
EXECUTION: Biology and Ecosystem Program			
Objectives	Investigate the effects of key biological and physical factors on the survival and		
	growth of pre-recruit life stages of yellowfin, with a new emphasis on studies of early-juvenile life stages		
Background	 Research on the early life history of yellowfin is designed to develop a more complete understanding of pre-recruit mortality and the influence of key environmental and biological factors on mortality Ongoing research has examined the effects of physical (turbulence, light, water temperature, dissolved oxygen) and biological (food concentration) factors on growth and survival of larval stages of yellowfin Recent rearing success now allows experimental studies of the growth and survival dynamics of early-juvenile yellowfin (1-6 months of age), a life stage rarely studied worldwide 		
Relevance for	The ability to estimate the effects of key biological and physical factors on		
management	survival and growth of pre-recruit (0-6 months) life stages of yellowfin provides		
_	potentially key information on recruitment processes in yellowfin		
Duration	3 years		
Work plan and	January 2018-December 2020: Continued experimental studies of pre-recruit		
status	life stages at the Achotines Laboratory with a focus on early-juvenile life stages		
External	Kindai University		
collaborators	University of Texas		
Deliverables	 Presentations for SAC-09, SAC-10 and SAC-11 		
	 Publication of results in one or more scientific journals 		

Up	dated: May 2020	
Pro	ogress summary for the reporting period	
	Analysis of survival and growth patterns of larval and early-juvenile yellowfin continued through 2018 and 2019.	
• (Current analyses focus on the early-juvenile (1-6 months) stages of yellowfin, which have been	
r	eared in land-based tanks and a sea cage since 2015. A retrospective analysis of early-juvenile	
Ę	growth patterns in captivity over the past 19 years is ongoing.	
Cha	allenges and key lessons learnt	
-		
Rep	ports/publications/presentations	
Pre	esentations:	
• 5	SAC-09 (May 2018)	
• <u>69th Tuna Conference</u> (May 2018) and 70 th Tuna Conference (May 2019)		
• 42nd Larval Fish Conference (June 2018) and 43 rd Larval Fish Conference (May 2019)		
Tw	o publications on this topic are being developed	
SAC	C-10-18 Review of research at the Achotines Laboratory	
Cor	mments:	
The	e planned collaboration with the University of Miami did not develop due to a change in funding	
arrangements in late 2018. The juvenile studies continue to be supported by the regular IATTC budget		
wit	h periodic collaboration with Kindai University.	

PROJECT G.2.a: Develop comparative models of pre-recruit survival and reproductive patterns of		
Pacific tunas		
THEME: Life-history studies for scientific support of management		
GOAL: G. Investigate early life-history of tunas		
TARGET: G.2. Comparative studies of early life histories of yellowfin and Pacific bluefin		
EXECUTION: Biology and Ecosystem Program		
Objectives	Investigate important comparative aspects of the reproductive biology,	
	genetics and early life histories of yellowfin and Pacific bluefin tuna	
Background	Pre-recruit life stages of tunas are potentially key to understanding variations	
	in abundance and reproductive patterns of tuna populations	
	• Ongoing since 2011, this project has investigated the comparative growth,	
	nutrition and survival of larval yellowfin and Pacific bluefin tuna	
	• Experimental results are being used to comparatively model mortality	
	processes occurring during the pre-recruit life stages of both species	
Relevance for	Comparative models of pre-recruit mortality processes are promising for	
management	assessing recruitment patterns of both species	
Duration	30 months	
Work plan and	• June 2018-June 2019: Continue experimental studies of comparative larval	
status	growth and finalize data analyses	
	June-December 2020: Complete manuscript and submit to scientific journal	
External	Kindai University, Fisheries Laboratory	
collaborators	University of Texas	
Deliverables	 Presentations for SAC-09, SAC-10 and SAC-11 	
	Publication of results in a scientific journal	

PROJECT G.2.a: Develop comparative models of pre-recruit survival and reproductive patterns of	
Pacific tunas	

Updated: May 2020

Progress summary for the reporting period

- Comparative experimental studies of pre-recruit life stages of yellowfin and Pacific bluefin continued during 2018 and 2019. Experimental investigations of the growth and feeding patterns of Pacific bluefin larvae were carried out at the Aquaculture Institute of Kindai University in July 2018 and July 2019.
- A comparative analysis of the larval traits (survival, growth, starvation rates) of yellowfin and Pacific bluefin is being developed to gain insights into differences in spawning patterns and nursery habitats of the two species in the Pacific Ocean.
- Experimental results are being incorporated into models of the pre-recruit mortality processes for both species.
- A new study was initiated in mid-2019 in collaboration with Dr. Lee Fuiman of the University of Texas to investigate the relationship between diet and daily ration of captive spawning yellowfin and the fatty acid composition of their eggs. Sampling will be completed in early 2021.

Challenges and key lessons learnt:

Reports/publications/presentations

Presentations:

- SAC-09 (May 2018)
- <u>69th Tuna Conference</u> (May 2018) and 70th Tuna Conference (May 2019)
- 42nd Larval Fish Conference (June 2018) and 43rd Larval Fish Conference (May 2019).
- World Aquaculture Conference (March 2019)
- SAC-10-18 Review of research at the Achotines Laboratory

Two publications on this topic are being developed

Comments:

Regular program funds are supporting the ongoing studies with Kindai University and the fatty acid study of yellowfin eggs conducted in collaboration with University of Texas.

PROJECT G.3.a: Deve	lop a larval growth index to forecast yellowfin recruitment	
THEME: Life-history studies for scientific support of management		
GOAL: G. Investigate	early life-history of tunas	
TARGET: G.3. Tools to	TARGET: G.3. Tools to forecast recruitment	
EXECUTION: Biology	and Ecosystem Program	
Objectives	To develop a larval or early-juvenile growth index for yellowfin tuna in the Panama Bight which might prove useful as an index of recruitment strength of yellowfin in the EPO	
Background	 Growth rate variability in the larval and juvenile stages of pelagic marine fishes is substantial, and has strong potential to influence mortality patterns during pre-recruit life stages Previous research by the Early Life History group has identified some local 	
	correspondence in the Panama Bight between high growth rates/density- dependence in growth of yellowfin larvae and recruitment estimates for yellowfin	
	 Quarterly or seasonal nightlight surveys of early-juveniles in the Panama Bight are recommended at the Achotines Laboratory, with aging analysis conducted for growth rate estimation and comparison to quarterly recruitment estimates for yellowfin 	
Relevance for	The development of a larval or early-juvenile growth index is promising as a	
management	forecasting tool for assessing yellowfin recruitment patterns	
Duration	3.5 years	
Work plan and status	 June 2018-December 2021: Conduct quarterly or seasonal nightlight surveys of yellowfin at the Achotines Laboratory January 2020-June 2021: Conduct otolith aging analysis on field-caught fish Analyze and compare growth data and recruitment estimates for yellowfin, and complete manuscript and submit to scientific journal 	
External collaborators		
Deliverables	Presentations for SAC-09, SAC-10 and SAC-11	
	Publication of results in a scientific journal	

PROJECT G.3.a: Develop a larval growth index to forecast yellowfin recruitment

Updated: May 2019

Progress summary for the reporting period

• Analysis of *in situ* growth of yellowfin larvae and early-juveniles in relation to ocean temperature, availability of forage, larval density and availability of potential predators in nursery grounds in the Panama Bight, determined from past at-sea surveys at the Achotines Laboratory, is continuing during 2020.

Challenges and key lessons learnt

• Funding has not yet been secured for the at-sea surveys and subsequent analyses necessary for the development of the growth index

Reports/publications/presentations

Presentations:

- SAC-09 (May 2018)
- 42nd Larval Fish Conference (June 2018) and 43rd Larval Fish Conference (May 2019)
- SAC-10-18 Review of research at the Achotines Laboratory

Comments:

-

SUSTAINABLE	FISHERIES
PROJECT H.1.a: lı	nprove the bigeye tuna stock assessment
THEME: Sustaina	ble fisheries
GOAL: H. Researc	h and development of stock assessment models and their assumptions
TARGET: H.1. Imp	prove routine tropical tuna assessments
EXECUTION: Stoc	k Assessment Program
Objectives	Improve the bigeye tuna stock assessment
Background	• The assessment of bigeye is conducted every year, using Stock Synthesis
	• The apparent regime shift in recruitment when the floating-object fishery
	expanded in the 1990s indicates that the assessment model is misspecified
	 Management quantities are highly sensitive to the longline CPUE data
	• The current assessment is no longer considered reliable for management advice
	and stock status indicators are used instead
	Recent advances in stock assessment modelling allow several important
	improvements of the assessment model, with regard to a spatial stock
	assessment model, growth curves, time-varying selectivity, recruitment
	assumptions, data weighting, and diagnostics
	A benchmark assessment is scheduled for 2020
Relevance for	The stock assessment is used to provide management advice
management	• The duration of recommended seasonal closures is based on the multipliers of
	fishing mortality (F) estimated in the bigeye and yellowfin assessments
	 Improvements in the bigeye assessment will make the staff's management
	advice more accurate and precise
Duration	2018-2020
Work plan and	2018: Create a spatial model, integrate the new growth curve into the
status	assessment, and implement time-varying selectivity
	2019: Explore different recruitment assumptions, apply data weighting, conduct
	diagnostic tests
	• 2019: Conduct a workshop to finalize the improvements to the longline CPUE
	and length composition data (Project H.1.f)
	2020: Re-evaluate the model assumptions
External	Work conducted under the MSE project will contribute to this project
collaborators	
Deliverables	Reports for SAC-10 and SAC-11 in 2019 and 2020

PROJECT H.1.a: Improve the bigeye tuna stock assessment

Updated: October 2020

Progress summary for the reporting period

- Identified stock and spatial structure
- Developed spatial stock assessment model
- February 2018: <u>CAPAM workshop</u> on the development of spatio-temporal models of fishery CPUE data to derive indices of relative abundance.
- October 2018: <u>CAPAM workshop</u> on the development of spatial stock assessment models.
- January 2019: <u>workshop</u> to evaluate bigeye and yellowfin tuna ageing methodologies and growth models in the Pacific Ocean.
- February 2019: <u>workshop</u> to improve the longline indices of abundance of bigeye and yellowfin tunas in the EPO.
- Analyses for the external review, including exploring different recruitment assumptions, applying data weighting, and conducting diagnostic tests
- March 2019: External review of IATTC staff's stock assessment of bigeye tuna in the EPO.
- March 2020: <u>Benchmark assessment</u> of bigeye tuna in the EPO

Challenges and key lessons learnt

- The operational level longline data essential for improving the assessment are not permanently available to the staff
- An additional workshop to finalize the work on improving the longline CPUE and lengthcomposition data is needed (Project H.1.f), but not currently funded.
- The results used in the risk analysis produced a bimodal probability distribution making their interpretation in respect management advice complicated.

Reports/publications/presentations

See links above for workshop reports and presentations

Comments:

SAC-11-01a – Staff activities and research plan

PROJECT H.1.b: In	nprove the yellowfin tuna stock assessment	
	THEME: Sustainable fisheries	
	GOAL: H. Research and development of stock assessment models and their assumptions	
	rove routine tropical tuna assessments	
	Assessment Program	
Objectives	Improve the yellowfin tuna stock assessment by exploring the use of an age-	
	structured length-based catch-at-age statistical model with a monthly time step	
Background	• The assessment of yellowfin is conducted every year, using Stock Synthesis	
	• There are inconsistencies between the indices based on CPUE for longline and	
	purse-seine sets on dolphins	
	 Management quantities are sensitive to the longline CPUE data 	
	• The current assessment is no longer considered reliable for management advice	
	and stock status indicators are used instead	
	Recent advances in stock assessment modelling allow several important	
	improvements of the assessment model, with regard to a spatial stock	
	assessment model, growth curves, time-varying selectivity, recruitment	
	assumptions, data weighting, and diagnostics	
	 A benchmark assessment is scheduled for 2020 	
Relevance for	 The stock assessment is used to provide management advice 	
management	• The duration of recommended seasonal closures is based on the multipliers of	
	fishing mortality (F) estimated in the bigeye and yellowfin assessments	
	 Improvements in the yellowfin assessment will make the staff's management 	
	advice more accurate and precise	
Duration	2018-2020	
Work plan and	• 2019: Explore different hypotheses to explain the difference between the	
status	indices of abundance, improve estimates of growth, re-evaluate the natural	
	mortality assumptions, apply data weighting, conduct diagnostic tests	
	 2019: Workshop to finalize improvements to the longline CPUE and length- 	
	composition data (Project H.1.e)	
	2020: Re-evaluate the model assumptions	
External		
collaborators		
Deliverables	Report(s) to SAC in 2019	
	Report to SAC in 2020	

PROJECT H.1.b: Improve the yellowfin tuna stock assessment

Updated: May 2020

Progress summary for the reporting period

- Most of the research and analyses to improve the bigeye stock assessment (Project <u>H.1.a</u>) is also applicable to yellowfin.
- Several workshops were conducted that highlighted other areas where the stock assessment of yellowfin could be improved
 - February 2018: <u>CAPAM workshop</u> on the development of spatio-temporal models of fishery catch-per-unit-effort data to derive indices of relative abundance.
 - October 2018: <u>CAPAM workshop</u> on the development of spatial stock assessment models.
 - January 2019: <u>workshop</u> to evaluate bigeye and yellowfin tuna ageing methodologies and growth models in the Pacific Ocean.
 - February 2019: <u>workshop</u> to improve the longline indices of abundance of bigeye and yellowfin tunas in the EPO.
- December 2019: An external review of the assessment of yellowfin tuna was held
- May 2020: Benchmark assessment of yellowfin tuna

Challenges and key lessons learnt

- Management quantities are sensitive to the longline index, and the research had to be refocused to address several issues identified with the assessment
- Lessons learnt from work on the bigeye assessment are applicable to yellowfin
- An additional workshop to finalize the work on improving the longline CPUE and length-composition data was needed (Project H.1.e), but was not funded. Thanks to the collaboration of Japan and Korea, the work was advanced and indices from longline data were obtained
- The standardized indices by size class from purse-seine and longline data where still incompatible pointing towards spatial differences in abundance trends of the northwest area (purse-seine index) and the southeast area (longline index), consistent with the a more complex stock structure, than the high-mixing hypothesis.
- The benchmark assessment was done by modelling several hypotheses, resulting in a reference set of 48 models.
- Time and data constraints limited the stock structure scenarios that could be included in the risk analysis

Reports/publications/presentations

- See links above for workshop reports and presentations
- SAC-10 INF-F Evaluating inconsistencies in the yellowfin abundance indices
- Xu et al., Fisheries Research 213
- External review report
- External review presentations
- <u>SAC-11-07</u> Benchmark assessment of yellowfin tuna

Comments:

The <u>workplan for improving the bigeye assessment</u> was changed in 2019 to encompass both <u>bigeye</u> and <u>yellowfin tuna</u>

PROJECT H.1.c: In	vestigate potential changes in the selectivity of the longline fleet resulting from
changes in gear co	onfiguration
THEME: Sustainable fisheries	
GOAL: H. Research	h and development of stock assessment models and their assumptions
TARGET: H.1. Imp	rove routine tropical tuna assessments
EXECUTION: Stock	Assessment Program
Objectives	Evaluate potential changes in targeting on the size composition of the longline catches of bigeye and yellowfin
Background	 The current yellowfin stock assessment shows a pattern of residuals for the recent longline length-composition data
	 Analyses of operational-level longline data from the Japanese fleet have identified possible changes in targeting that may affect the indices of relative abundance and size composition of the catch
	 The changes in targeting appear to be related to changes in longline gear configuration. The effect on catch rates and species composition is being investigated in
	 The effect on catch rates and species composition is being investigated in related collaborative research between the IATTC staff and NRIFSF, Japan
Relevance for management	Currently, the longline indices are the main information in the stock assessments of yellowfin and bigeye, therefore unaccounted-for changes in the longline selectivity may compromise management advice
Duration	12 months
Work plan and status	 Month 1: match set-by-set gear characteristics and catch data with the size-composition data from the Japanese fleet Months 2-3: analysis of the set-by-set data
	 Months 5-11: Apply the lessons learnt from the set-by-set data to the aggregated level data used in the stock assessment
External collaborators	NRIFSF, Japan
Deliverables	 Presentation for SAC-10, 2019 Procedure to be used in the next full assessment of yellowfin

PROJECT H.1.c: Investigate potential changes in the selectivity of the longline fleet resulting from changes in gear configuration

Updated: October 2020

Progress summary for the reporting period

• This project was not funded, but progress was made in the context of Project H.1.d

Challenges and key lessons learnt

• Matching the length-frequency and operational data has proved difficult, and is not yet completed **Reports/publications/presentations**

- SAC-10 INF-F: Evaluating inconsistencies in the yellowfin abundance indices
- Materials for the workshop to improve indices of abundance held under Project H.1.d
- SAC-11 INF-L: Comparison of tuna length data collected by observers and fishermen from the Korean longline fleet

Comments:

This project was not funded, but progress was made in the context of Project H.1.e

PROJECT H.1.d: Im	nprove indices of abundance based on longline CPUE data
THEME: Sustainab	le fisheries
GOAL: H. Research	n and development of stock assessment models and their assumptions
TARGET: H.1. Imp	rove routine tropical tuna assessments
EXECUTION: Stock	Assessment Program
Objectives	 Improve the yellowfin and bigeye indices of relative abundance from longline data Determine methods to identify targeting in longline fisheries
	 Develop spatio-temporal models for creating indices of relative abundance from longline data
	 Develop appropriate longline length composition data for the index of abundance and for the catch
Background	 Indices of relative abundance derived for longline CPUE data are the most important piece of information in the bigeye and yellowfin stock assessments Only the Japanese data are currently used to create these indices The characteristics, tactics, and spatial distribution of the fishery have been changing over time
	 The same length composition data is used for the index and for the catch, but these could differ New methods, such as spatio-temporal modelling, have been developed and should be used in the creation of the indices
Relevance for	The indices have direct impact on the stock assessment and any improvements in
management	the indices will directly improve the management advice for bigeye and yellowfin
Duration	18 months, starting June 2018
Work plan and status	 June-Dec 2018: Evaluate the data available in the IATTC database and implement the spatio-temporal models Jan-Feb 2019: Hold a one-week workshop to discuss approaches to resolve issues in using the longline CPUE data May-June 2019: Hold a two-week working group to analyze the data (not
	funded)
External	NRIFSF, Japan
collaborators	Invited speakers
Deliverables	 Workshop report Working group report (not funded) Indices of relative abundance Braiset report to SAC
	Project report to SAC

PROJECT H.1.d: Improve indices of abundance based on longline CPUE data

Updated: October 2020

Progress summary for the reporting period

- Preparations for the <u>workshop</u> included:
- Provision of operational-level longline data for main distant-water longline fleets
- Visits by Japanese (Dr. Keisuke Satoh) and Korean (Dr. Sung-Il Lee) scientists to work with the staff on analyses
- Visit by external expert (Dr. Simon Hoyle, supported by ISSF).
- A workshop was held on February 2019: 23 participants, including 7 invited speakers
- The work continued after the workshop and the context of the project H.1.1

Challenges and key lessons learnt

- The operational data essential for improving the assessment are not permanently available to the staff.
- Matching size-composition and operational data proved difficult, and is not yet completed, the indices were obtained by modelling data aggregated into a 1° latitude by 1° longitude
- The additional workshop needed to finalize the work (Project H.1.e) is not currently funded.

Reports/publications/presentations

- Materials for the <u>workshop</u>
- Presentation at SAC-10

Comments:

The work related to this project continued in Project H.1.e

PROJECT H.1.e: Co	onstruct indices of abundance and composition data for longline fleets	
THEME: Sustainat	THEME: Sustainable fisheries	
GOAL: H. Research and development of stock assessment models and their assumptions		
TARGET: H.1. Imp	rove routine tropical tuna assessments	
EXECUTION: Stock	k Assessment Program	
Objectives	 Construct indices of relative abundance and length compositions from longline data for yellowfin and bigeye, ideally using spatiotemporal models 	
Background	 Indices of relative abundance derived for longline CPUE data are the most important piece of information in the bigeye and yellowfin stock assessments Only Japanese data are currently used to create these indices A workshop was held in February 2019 to understand the data from other CPCs that could be used to improve the indices of abundance (<u>WSLL-01</u>) Preliminary results on constructing indices on combined data were obtained during the workshop The resulting indices are needed for the benchmark assessments of bigeye and yellowfin scheduled for 2020 	
Relevance for	The indices have a direct impact on the stock assessment, and any improvements	
management	in the indices will directly improve management advice for bigeye and yellowfin	
Duration	18 months, starting June 2019	
Work plan and status	 Jun-Sep 2019: Preparatory work depending on the availability of operational level data 	
	Oct-Dec 2019: Collaborative work and workshop	
	• Jan- May 2019: Preparation of documents	
External	Scientists from Japan, Korea, Chinese Taipei, China	
collaborators	Invited researchers	
Deliverables	Indices of relative abundanceSAC documents	

PROJECT H.1.e: Construct indices of abundance and composition data for longline fleets

Updated: October 2020

Progress summary for the reporting period

- This project was not funded but some activities took place:
- Japanese (Dr. Keisuke Satoh) and Korean (Dr. Sung-Il Lee) scientists visited the IATTC for a second tome to continue the collaborative work
- The longline indices of abundance by size class for bigeye and yellowfin tuna were obtained using spatiotemporal models. The indices were used in the benchmark assessment for bigeye tuna (SAC-<u>11-06</u>), in models for yellowfin tuna done in preparation for the <u>external review of the yellowfin</u> <u>tuna assessment</u>, and as indicators for both species (SAC-<u>11-05</u>)

Challenges and key lessons learnt

- The operational data essential for improving the assessment are not permanently available to the staff.
- Matching size-composition and operational data for Japan proved difficult, and is not yet completed, the indices were obtained by modelling data aggregated into a 1° latitude by 1° longitude
- Adding the data for Korea to the standardized indices proved difficult for two reasons:

- the comparison with the Japanese data could not be done as operational data was only available to the staff when the scientists were present, and the visits took place in different times,
- the aggregated data indicated that the two fleets may have different size distributions, but this differences may be due to changes in the sampling protocol (Japan changed from fishermen sampling to observer sampling after 2011, and after 2014 all measurement were taken by observers, Korean data include both fishermen and observer sampling, after 2013 a larger proportion of the data comes from observers), or small sample size (the observer coverage is less than 5%).

Reports/publications/presentations

SAC-11-06 Benchmark assessment for bigeye tuna External review of the yellowfin tuna assessment SAC-11-05 Indices used as indicators for yellowfin and bigeye tuna Comments:

Peer review papers resulting from the collaborative work are in preparation

PROJECT H.4.a: Co	onduct routine stock assessments of tropical tunas	
THEME: Sustainab	THEME: Sustainable fisheries	
GOAL: H. Research	GOAL: H. Research and development of stock assessment models and their assumptions	
TARGET: H.4. IATT	C tropical tuna assessments	
EXECUTION: Stock	Assessment Program	
Objectives	Update the assessments of bigeye, yellowfin, and skipjack tunas	
Background	 Assessments of bigeye, yellowfin, and skipjack are conducted every year Bigeye and yellowfin assessments use the Stock Synthesis modeling platform Skipjack assessment is based on stock status indicators Assessments are updated annually, using the most recent data Major improvements to the assessments (methods and assumptions) are implemented periodically 	
Relevance for management	 The staff's management advice for tunas is based on its stock assessments The duration of the seasonal closures recommended by the staff for bigeye and yellowfin are based on the fishing mortality estimated in the assessments 	
Duration	Every year (March-May)	
Work plan and status	 15 March: data for previous year available; assessments initiated Three weeks before SAC meeting: Assessment reports posted on IATTC website Mid-May: Present assessments at SAC meeting 	
External collaborators		
Deliverables	Stock assessment reports for the SAC and the IATTC; presentations at SAC and IATTC meetings	

PROJECT H.4.a: Conduct routine stock assessments of tropical tunas
Updated: October 2020
Progress summary for the reporting period
Benchmark assessment conducted for bigeye
Benchmark assessment conducted for yellowfin
Indicators constructed for bigeye
Indicators constructed for yellowfin
Indicators constructed for skipjack
Challenges and key lessons learnt
• The results of the bigeye assessment in 2018 were considered unreliable, and the assessment is
being improved for the 2020 full assessment (Project H.1.a).
• The model used for the assessment of yellowfin is unable to reconcile data that apparently carry
contradictory signals about the status of the stock. A work plan for improving several aspects of the
model took place (Project H.1.b)
Reports/publications/presentations
SAC-11-05 Bigeye, yellowfin, and skipjack tuna: indicators of stock status
SAC-11-06 Bigeye tuna: benchmark assessment
SAC-11-07 Yellowfin tuna: benchmark assessment
Comments:
-

PROJECT H.6.a: Pa	articipate in assessments of shared species by the International Scientific	
Committee (ISC)	Committee (ISC)	
THEME: Sustainab	THEME: Sustainable fisheries	
GOAL: H. Research	h and development of stock assessment models and their assumptions	
TARGET: H.6. ISC s	stock assessments	
EXECUTION: Stock	< Assessment Program	
Objectives	Staff participation in development and improvement of assessments for North	
	Pacific-wide species of interest to the IATTC, especially Pacific bluefin and	
	albacore tunas, but also billfishes and sharks	
	Understand the assessment results, and communicate them to the Commission	
Background	• The ISC and its various working groups assess stocks in the north Pacific that are	
	covered by both the IATTC and WCPFC	
	 The IATTC staff provides data and advice for the assessments 	
	 Assessments are periodic, and the stocks assessed differ each year. 	
Relevance for	The IATTC uses the results of the ISC assessments to provide management advice	
management		
Duration	Ongoing; ISC meets annually, usually in July	
Workplan and	2018 ISC schedule:	
status	April: Working groups on sharks, billfishes	
	May: Working groups on albacore, MSE	
	July: Plenary; also working groups on albacore, Pacific bluefin, billfishes, sharks,	
	statistics	
External	ISC	
collaborators		
Deliverables	Report to SAC meetings	

PROJECT H.6.a: Participate in assessments of shared species by the International Scientific Committee (ISC)

Updated: October 2020

Progress summary for the reporting period

- May 2018: Attended the Albacore working group workshop
- January 2019: data preparation for benchmark stock assessment for Swordfish in the western and central north Pacific Ocean
- February 2020: submitted a working paper for the Billfish working group
- March 2020: Attended the virtual Pacific bluefin working group workshop. New benchmark assessment developed.
- August/September 2020: Attended the virtual Albacore working group workshop about the progress on Management Strategy Evaluation

Challenges and key lessons learnt

Reports/publications/presentations

See working group reports on the ISC website

Comments:

PROJECT H.7.b: So	outh Pacific swordfish assessment
THEME: Sustainable fisheries	
GOAL: H. Research	h and development of stock assessment models and their assumptions
TARGET: H.7. Oth	er assessments
EXECUTION: Stock	Assessment Program
Objectives	Conduct an assessment for South Pacific swordfish
Background	 The South Pacific swordfish stock has not been assessed since 2011.
	 The longline fishery has recently increased targeting of swordfish
	 An updated assessment is needed to provide management advice
Relevance for	The stock assessment is needed to provide management advice
management	
Duration	2019-2021
Workplan and	Obtain data
status	Conduct assessment
	Report to SAC-11 in 2021
External	• Scientists from Chile, European Union, Peru, Japan, Korea, Chinese Taipei, China
collaborators	and the Pacific Community (SPC)
Deliverables	Report to SAC-11 in 2021

PROJECT H.7.b: South Pacific swordfish assessment

Updated: October 2020

Progress summary for the reporting period

- Progress on this project to date is incidental to research on other topics (<u>CAPAM workshop</u> on spatio-temporal models; <u>workshop</u> on longline indices of abundance); the majority of the work will be conducted in 2020-2021
- The staff gained considerable experience in analyzing operational data, and developed methods and code.
- Exploratory work for the <u>workshop</u> in February 2019 included analyses that used the data for swordfish.
- Contacts in key areas of expertise have been established to start collaborative work
- A virtual workshop on stock structure is planned for December 2020

Challenges and key lessons learnt

- Continued access to operational longline data is essential for conducting the assessment
- Collaboration with CPCs is needed to complete the assessment
- Funding is needed for a workshop in 2020 (remove?)

Reports/publications/presentations

-

Comments:

PROJECT I.1.a: C	onduct a Management Strategy Evaluation (MSE) for tropical tunas in the EPO
THEME: Sustaina	able fisheries
GOAL: I. Test har	rvest strategies using management strategy evaluation (MSE)
TARGET: I.1. Con	nduct a comprehensive MSE for bigeye tuna and plan MSEs for the other tropical tuna
species, including	g the multi-species fishery for tropical tunas
EXECUTION: Sto	ck Assessment Program
Objectives	 Continue technical development of MSE for tropical tunas.
	 Provide training and enhance dialogue / communication among scientists,
	industry, managers and other stakeholders regarding the MSE process for tropical
	tunas through the facilitation of a series of workshops.
	• Elicit alternative candidate reference points, harvest control rules, performance
	metrics from stakeholders to be tested in addition to the interim ones.
Background	• The Performance Review of the IATTC, the proposed Strategic Science Plan, and
	the SAC all recommended improving knowledge sharing, human-institutional
	capacity building and communication of scientific advice.
	 MSE is a major objective at IATTC and other organizations. Part of the MSE process
	is highly technical and done by scientists. Another part (defining objectives,
	performance metrics, candidate management strategies), requires input and
	participation of managers and other stakeholders. These parts evolve in synergy.
	 Stakeholder participation throughout the MSE process is central to its success and
	will be facilitated by understanding the MSE process, its components and by
	strengthening communication among scientists, managers and other stakeholders.
	 Initial introductory workshops on MSE in 2015, 2018, restricted to Latin-American
	developing countries. Further MSE training workshops for the tuna Industry were
	held in 2019. The first IATTC MSE Workshop was held in 2019.
	 Currently no dedicated channels of communication about MSE within the IATTC.
	 Current funding for technical and dialogue work expires end of 2020. SAC-10
	supported the MSE Workplan and recommended continued funding support.
Relevance for	 Key elements of IATTC's current management strategy, such as its control rule and
management	reference points, along with alternatives, are currently being evaluated via MSE.
management	 The technical support will allow for better model development and directly
	influence the relevance of the MSE results.
	Workshops will improve scientists, managers and other stakeholder
	communication and important input for the technical work.
	• The current proposal will advance the MSE process for tropical tunas to assess the
	performance of the interim Harvest Control Rule (HCR) and alternatives.
	Results will facilitate adopting a permanent tropical tuna HCR as per Res. C-16-02
Duration	MSE Workplan extends to 2023, funding ends December 2020. Proposal available.
Work plan and	Continue technical development of MSE and support of IATTC Staff.
status	• Development/tailoring of MSE Workshop materials and online resources to EPO
	tropical tuna fisheries including presentations and hands-on working sessions.
	Conduct annual Workshops with managers, industry and other stakeholders to
	improve understanding of the MSE process, elicit objectives, performance metrics,
	alternative control rules, and risk, as well as to show initial results/gather feedback
Collaborators	Work to be carried out by external contractor and IATTC staff.
Deliverables	• Reporting to SAC of MSE development, progress, and results. Series of Workshops,
	Workshop reports and associated training and online materials.

PROJECT I.1.a: Conduct a Management Strategy Evaluation (MSE) for tropical tunas in the EPO
Updated: October 2020
Progress summary for the reporting period
• 1 st IATTC MSE Workshop conducted (Dec 2019), 2 nd WS postponed due to pandemic.
• Introductory MSE Workshops for the EPO Tuna Industry (Funded by WWF, FAO/ABNJ) in Ecuador,
Panama, Mexico, USA and Colombia (June to September, 2019).
• Work on alternative ways to incorporate uncertainty in parameters and model structure during the
MSE modeling phase were discussed, including incorporating results from the risk analysis.
 Work on educational and communication materials for upcoming workshops.
Challenges and key lessons learnt
Pandemic altered the timeline of the 2 nd WS, consideration of additional online sessions
Reports/publications/presentations (selected)
Presentations:
 March 2019: <u>Independent review</u> of bigeye assessment
 December 2019: 1st. <u>IATTC MSE Workshop Presentations</u>
Publications:
 WSBET-02-02 Stock structure for bigeye tuna in the eastern Pacific Ocean
 WSBET-02-05 Growth used in the eastern Pacific Ocean bigeye tuna assessment
 WSBET-02-07 Natural mortality used in the eastern Pacific Ocean bigeye tuna assessment
• Valero, J. L. 2019. Conversion of BET 2017 base case assessment from Stock Synthesis version 3.23b
to 3.3. 2 nd Bigeye Assessment Review. La Jolla, California (USA), 11-15 March 2019.
• Valero, J. L., Maunder, M., Xu, H., Minte-Vera, C. V., Lennert-Cody, C., Aires-da-Silva, A. 2019.
Investigating potential causes of misspecification-induced regime shift in recruitment in the EPO
bigeye tuna (<i>Thunnus obesus</i>) assessment. 2 nd Bigeye Assessment Review. La Jolla, California (USA),
11-15 March 2019.
• Valero, J. L., Maunder, M., Xu, H., Minte-Vera, C. V., Lennert-Cody, C., Aires-da-Silva, A. 2019.
Spatial stock assessment model options for bigeye tuna (<i>Thunnus obesus</i>) in the EPO and beyond.
2 nd Bigeye Assessment Review. La Jolla, California (USA), 11-15 March 2019.
• Valero, J. L. and Aires-da-Silva, A. 2020. <u>1st Workshop On Management Strategy Evaluation (MSE)</u>
For Tropical Tunas: Overview, Objectives and Performance Metrics. IATTC. Meeting Report.
• Maunder, M., Minte-Vera, C., Lennert-Cody, C., Valero, J.L., Aires-da-Silva, A., Xu, H 2020. Risk
analysis for yellowfin tuna: models and their weights. IATTC, 11th Scient. Adv. Com. Meeting.
• Aires-da-Silva, A., Maunder, M. N., Valero, J. L., Xu, H., Minte-Vera, C., Lenner-Cody, C. 2020. Risk
analysis for management of the tropical tuna fishery in the eastern Pacific Ocean. IATTC, 11th
Scient. Adv. Com. Meeting.
• Xu, H., Maunder, M., Minte-Vera, C., Valero, J. L., Lennert-Cody, C. 2020. Benchmark stock
assessment of bigeye tuna in the eastern Pacific Ocean for 2019. Inter-Amer. Trop. Tuna Comm.,
11th Scient. Adv. Com. Meeting. Minte-Vera, C., Maunder, M., Xu, H., Valero, J.L., Lennert-Cody, C.
2020. Benchmark stock assessment of yellowfin tuna in the eastern Pacific Ocean for 2019. IATTC,
11th Scient. Adv. Com. Meeting.
• Maunder, M., Xu, H., Lennert-Cody, C., Valero, J.L., Aires-da-Silva, A., Minte-Vera, C. 2020.
Implementing Reference Point-based fishery harvest control rules within a probabilistic framework
that considers multiple hypotheses. IATTC, 11th Scient. Adv. Com. Meeting.
Comments:

PROJECT J.2.a: Qu	antify the relationship between vessel operational characteristics and fishing
mortality	
THEME: Sustainab	
	ship between purse-seine fishing strategies and fishing mortality
	tionship between vessel operational characteristics and fishing mortality
EXECUTION: Stock	< Assessment Program
Objectives	 Evaluate the reliability of the data obtained on identification of FADs.
	Investigate methods to determine purse-seine set type from various sources of
	data (i.e. Observers, vessel logbooks, canneries, etc.).
	• Evaluate the relationship between catch and number of FAD deployments.
	 Investigate more precise measures of fishing capacity that take into
	consideration days fished, set type, and vessel characteristics.
	• Investigate the relationship between fishing mortality and fleet capacity.
	• Evaluate alternative management measures such as closed areas, individual
	vessel limits, and gear restrictions.
Background	• The constantly increasing capacity of the purse-seine fleet in the EPO requires
	more stringent management measures.
	Several management measures have been investigated as an alternative to
	increasing the seasonal closure.
	• However, the measure of fishing capacity used to determine the days of closure
	is somewhat simplistic, and a more precise measure of capacity, and the
	relationship between capacity and fishing mortality, need to be investigated.
	• Also, the relationship between the number of FADs deployed and catches needs
	to be better understood.
	• Although the staff has conducted some initial analyses, further studies need to
	be carried out to provide alternative management measures.
Relevance for	The results of the project will enable the staff to refine current measures and
management	develop alternative recommendations for managing tropical tunas in the EPO, and
management	provide the Commission with additional tools when developing management
	measures.
Duration	24 months
Work plan and	 2018 – Initial analyses of the data that will lead to new insights
status	 2019 – Further analyses to improve the staff's management advice
	• 2020 – Apply the lessons learnt from the project and provide recommendations
	on both alternative management measures and additional data collection.
External	
collaborators	
Deliverables	Multiple reports for the meetings of the SAC and the Commission, including
	recommendations on tuna conservation and possibly on improvements to data
	collection.
	• Software will be created that can be used to update the analyses with new data
	and/or alternative assumptions and new methods.

PROJECT J.2.a: Quantify the relationship between vessel operational characteristics and fishing
mortality

Updated: September 2020

Progress summary for the reporting period

- **Task 1** (*Evaluate the reliability of the data obtained on identification of FADs*): an extensive review of FAD data reporting under Resolutions C-16-01 and C-17-02 led to:
 - i. modifications of Resolution C-16-01 to require only vessels without an observers onboard to fill FAD form 9/2018;
 - ii. an agreement to provide high-resolution buoy data, including biomass, in a voluntary basis for a pilot project (X.X.X);
 - iii. continuous update of a database on buoys reported under Resolution C-17-02 and the creation of a preliminary database on buoys with biomass information; and
 - iv. a proposal (C.1.a) for a pilot project on remotely and electronically identifying FADs.
- Task 2 (*Investigate methods to determine purse-seine set type*): following promising tests of a preliminary set type classification algorithm, a new version is being developed, incorporating additional information to reduce the error rates.
- Task 3 (Evaluate the relationship between catch and number of FAD deployments): see <u>Lennert-Cody et al. 2018</u>, FAD-04-01 and FAD-05-INF-A Further analysis may be required once FAD tracking data are available for the entire fleet.
- Task 4, 5 (Investigate more precise measures of fishing capacity/the relationship between fishing mortality and fleet capacity): the staff expects to incorporate the results of its preliminary research in in-depth analyses during year 3-4 of the project. In addition, a collaboration pilot project on developing alternative abundance indices using echo-sounder buoy data is underway (XXX) (see FAD-05 presentation). Preliminary indices are expected to be presented in 2021 SAC.
- Task 6 (Evaluate alternative management measures): the staff is pursuing various alternatives, including a multi-species <u>dynamic management approach</u> and reducing the number of active buoys allowed per vessel (see <u>FAD-04-01</u> and <u>SAC-11-INF-M</u>).

Challenges and key lessons learnt

- Current limits on the number of active buoys per vessel may be too high to be effective.
- The dynamic management approach looks promising for developing alternative conservation and management measures for juvenile bigeye and yellowfin in a multi-species fisheries context.
- Despite the new forms and training workshops, FAD data reporting is still imperfect. Training of managers, fishers and observers should continue.
- High-resolution buoy data are needed to link IATTC databases (*i.e.* observers, FAD logbooks, buoy data). Also, a single reporting format for all CPCs would be desirable.
- High-resolution buoy data, including biomass, is key to develop fisheries-independent abundance indices and test alternative hypothesis for fishing mortality.
- Because active FADs, not FAD deployments, are subject to limits, analyses using this data were performed in FAD-04-01, FAD-05-INF-A and considered in SAC-11-INF-M but may need to be repeated with FAD tracking data

Reports/publications/presentations

Presentations:

• September 2019: American Fisheries Society 2019 annual conference **Reports**:

- FAD-04-01 Active FAD limits
- FAD-05 INF-A Floating object fishery indicators
- SAC-11-INF-M FAD management measures

Comments:

• Because the lead researcher of the project is now permanent staff, additional research will be conducted for some of the tasks in 2020 and 2021

PROJECT I 3 a. De	veloping alternative buoy-derived tuna biomass indexes
THEME: Sustainab	
	ship between purse-seine fishing strategies and fishing mortality
	y the impact of FAD operations on fishing mortality to improve management advice
	tch Mitigation and Gear Technology Group and Stock Assessment Program
Objectives	• Determine the feasibility of echo-sounder buoy data to be used for developing
	alternative abundance indices for tropical tuna.
	• Develop preliminary catch-independent abundance indices for tropical tunas.
	• Evaluate the usefulness of these indices to inform and complement traditional
	stock assessment and other projects of interest for the Commission (e.g. MSE,
	habitat models).
	• Explore the future availability of echo-sounder buoy data in the region for
	scientific purposes.
	• Develop strategies and plans to improve the robustness of results and help
	interpretation.
	 Recommend new feasible technological developments to buoy manufacturers.
Background	
Background	• Fishing efficiency of the tropical tuna purse seines are rapidly evolving due to
	technology and effort creep and obtaining reliable CPUE is challenging task.
	New technologies also provide new opportunities for science. Echo-sounder
	buoys have the potential to daily sample thousands of FADs in a systematic and
	non-invasive manner.
	This information could be used to develop alternative abundance indices for
	tunas using catch-independent data.
	• Other t-RFMOs (e.g. ICCAT) have explored the use of buoy derived abundance
	indices in their recent stock assessments. Those indices were developed by AZTI.
	• The good relationship with AZTI, OPAGAC and Cape Fisheries granted access to
	historical satellite-linked echosounder buoy data used by the fleet in the Pacific
	Ocean.
Relevance for	This project will advance our understanding of tropical tuna species population
management	dynamics and stock status. Project activities will support several objectives for
5	increasing the sustainability of exploited resources described in the SSP as well as
	will advance on the use of new technologies and data sources to improve decision-
	making.
Duration	12 months
Work plan and	 2020 – data extraction and preparation. Run standard procedures and
status	
status	methodologies to obtain preliminary indices. Start discussing and exploring new
	approaches and uses of the data.
	• 2021 – an AZTI researcher will visit the IATTC headquarters and preliminary
	indices will be updated. Preparation of dissemination materials and
	recommendations.
External	AZTI Foundation, OPAGAC, Cape Fisheries, ISSF
collaborators	
Deliverables	• A series of alternative abundance indices for the three species of tropical tuna
	using catch-independent information.
	• Dissemination material, including documents and presentations for the
	Scientific Advisory Committee and the workshop on developing alternative
	abundance indices for tropical tuna that ISSF is organizing, likely, in 2021.
L	

PROJECT K.1.a: PC	DSEIDON project	
THEME: Sustainable fisheries		
GOAL: K. Improve	our understanding the socio-economic aspects of sustainable tropical tuna fisheries	
TARGET: K.1. Colla	TARGET: K.1. Collaborate in socio-economic studies by other organizations	
EXECUTION: Stock	Assessment Program (external collaboration)	
Objectives	Build and evaluate an agent-based, adaptive fishing fleet model as an analytic tool	
	to support management	
Background	 POSEIDON is a coupled human-ecological model that combines an agent-based, adaptive fishing fleet model with existing fishery models or simple biological data, to simulate vessel behavior and fishery outcomes based on policies, market influences, and environmental factors. POSEIDON provides a powerful platform for policy evaluation and decision support, with a strong focus on the spatial and human dimensions of fisheries management. POSEIDON was originally developed by a multidisciplinary team from the University of Oxford, Ocean Conservancy, George Mason University, the University of California, Santa Barbara, and Arizona State University, as part of an effort to advance innovation in fisheries management. The model has been calibrated and validated to the U.S. West Coast groundfish fishery. It is now being adapted to explore MSC certification for Indonesia's deep-water snapper fishery (in partnership with The Nature Conservancy, Indonesia). 	
Relevance for	The model will be used to explore timely research questions, including FAD	
management	management, understanding the spatial dynamics of the fishery, as well as some of the social and economic issues which effect management.	
Duration	18 months (end year 2020)	
Work plan and status	• A post-doctoral researcher will be based at the IATTC's office in La Jolla, and will be charged with 1) scoping model application and designing a use cases that are supportive of IATTC policy evaluation processes, 2) understanding and accessing relevant datasets from IATTC, and 3) conducting statistical analyses of data to support model development.	
	• This researcher will work closely with the modeling team based at the University of Oxford and Ocean Conservancy to drive model design, calibration and validation of the tool and its outputs, as well as evaluation of model results.	
External	University of Oxford, Ocean Conservancy, Arizona State University, International	
collaborators	Seafood Sustainability Foundation	
Deliverables	 A computer algorithm with which to run simulations to explore management options. A project report and possibly publications in peer-reviewed journals. 	
	A project report and possibly publications in peer-reviewed journals.	

PROJECT K.1.a: POSEIDON project

Updated: May 2019

Progress summary for the reporting period

- **Researcher**: Dr. Katyana Vert-pre Kirk will work on this project. She has extensive experience in modeling and statistical analysis of fisheries data.
- **Refinement of research to match IATTC management priorities**. The project has been modified to address specific management questions, including:
 - i. biological and social/economic impact of FAD limits, alongside measures to reduce mortality of small bigeye;
 - ii. impact of advances in FAD technology on catchability of skipjack;
 - iii. ecosystem impacts and management implications of FAD drift.
- **Modification of model framework**. This involves adapting (a) the model infrastructure to better represent the EPO tuna fishery, including oceanographic currents and FAD drift, and (b) the dynamic fleet model to represent the decision-making process, information flow, and trip structure of the purse-seine fishery. A decision-flowchart representing a typical purse-seine fishing trip has been developed, also a survey of vessel captains, to be implemented in August 2019.
- Analysis of IATTC datasets. The parameterization, calibration, and cross-validation of the model require supplemental analyses of IATTC fishery datasets, including:
 - i. Statistical analysis of trends in logbook data to understand fleet dynamics, spatial patterns of fishing effort;
 - ii. Assessment of spatial and temporal patterns of FAD handling and drift; and
 - iii. Assessment of effect on skipjack catchability of changes in technology and spatial patterns in FAD sets.

Challenges and key lessons learnt

Having a team member onsite has already yielded great benefits in terms of project coordination and efficient communication with IATTC staff.

Reports/publications/presentations

February 2019: Presentation to IATTC scientific staff

Comments:

-

THEME: Ecological impacts of fisheries: assessment and mitigation GOAL: L. Evaluating ecological impacts TARGET: L.1. Develop analytical tools to identify and prioritize species at risk for data collection, research and management EXECUTION: Ecosystem Group Objectives • To use presence-only catch data to develop habitat models for key bycatch species caught in EPO tuna fisheries to facilitate mapping of their geograph range. • To make distribution maps available in a format suitable for use as base ma for ecological risk assessment models (PSA, EASI-Fish) Background • Many bycatch species caught in EPO tuna fisheries lack sufficient biological catch data to undertake traditional stock assessment to determine their vulnerability to fishing. • Data-limited Ecological Risk Assessment (ERA) methods are now increasing used to determine the most vulnerable species to fishing effort with a specitistution. • Developing habitat models for bycatch species will improve the fishing morta estimates using ERAs, from which their status can be determined and guide managers. • Jun-Dec 18: model development • Jan-Feb 19: apply habitat model to bycatch species • May 19: present final model and assessment results at SAC-10. External collaborators Deliverables • Precentations at SAC-10	risk assessments (evelop habitat models for bycatch species caught in the EPO to support ecologica (ERAs)
GOAL: L. Evaluating ecological impacts TARGET: L.1. Develop analytical tools to identify and prioritize species at risk for data collection, research and management EXECUTION: Ecosystem Group Objectives • To use presence-only catch data to develop habitat models for key bycatch species caught in EPO tuna fisheries to facilitate mapping of their geograph range. • To make distribution maps available in a format suitable for use as base mator ecological risk assessment models (PSA, EASI-Fish) Background • Many bycatch species caught in EPO tuna fisheries lack sufficient biological catch data to undertake traditional stock assessment to determine their vulnerability to fishing. • Data-limited Ecological Risk Assessment (ERA) methods are now increasing used to determine the most vulnerable species to fishing, which have a stror reliance on estimating impacts using the overlap of fishing effort with a speciatribution. Relevance for management Developing habitat models for bycatch species will improve the fishing morta estimates using ERAs, from which their status can be determined and guide managers. Duration 12 months Work plan and status • Jun-Dec 18: model development • Jan-Feb 19: apply habitat model to bycatch species to be included in ERAs • May 19: present final model and assessment results at SAC-10. CPCs collaborators Presentations at SAC-10		
TARGET: L.1. Develop analytical tools to identify and prioritize species at risk for data collection, research and management EXECUTION: Ecosystem Group Objectives • To use presence-only catch data to develop habitat models for key bycatch species caught in EPO tuna fisheries to facilitate mapping of their geograph range. • To make distribution maps available in a format suitable for use as base may for ecological risk assessment models (PSA, EASI-Fish) Background • Many bycatch species caught in EPO tuna fisheries lack sufficient biological catch data to undertake traditional stock assessment to determine their vulnerability to fishing. • Data-limited Ecological Risk Assessment (ERA) methods are now increasing used to determine the most vulnerable species to fishing, which have a stror reliance on estimating impacts using the overlap of fishing effort with a specied distribution. Relevance for management Developing habitat models for bycatch species will improve the fishing morta estimates using ERAs, from which their status can be determined and guide managers. Duration 12 months Work plan and status • Jun-Dec 18: model development • Jan-Feb 19: apply habitat model to bycatch species • May 19: present final model and assessment results at SAC-10. External collaborators OPCs Deliverables • Presentations at SAC-10	-	· •
EXECUTION: Ecosystem Group Objectives To use presence-only catch data to develop habitat models for key bycatch species caught in EPO tuna fisheries to facilitate mapping of their geograph range. To make distribution maps available in a format suitable for use as base mator ecological risk assessment models (PSA, EASI-Fish) Background Many bycatch species caught in EPO tuna fisheries lack sufficient biological catch data to undertake traditional stock assessment to determine their vulnerability to fishing. Data-limited Ecological Risk Assessment (ERA) methods are now increasing used to determine the most vulnerable species to fishing, which have a stror reliance on estimating impacts using the overlap of fishing effort with a specialistibution. Relevance for management Developing habitat models for bycatch species will improve the fishing morta estimates using ERAs, from which their status can be determined and guide managers. Duration 12 months Work plan and status Jan-Feb 19: apply habitat model to bycatch species to be included in ERAs May 19: present final model and assessment results at SAC-10. External collaborators Presentations at SAC-10 Procedure, if successful, to be used annually within ERA models to assess the successful to assess the		
Objectives • To use presence-only catch data to develop habitat models for key bycatch species caught in EPO tuna fisheries to facilitate mapping of their geograph range. • To make distribution maps available in a format suitable for use as base ma for ecological risk assessment models (PSA, EASI-Fish) Background • Many bycatch species caught in EPO tuna fisheries lack sufficient biological catch data to undertake traditional stock assessment to determine their vulnerability to fishing. • Data-limited Ecological Risk Assessment (ERA) methods are now increasing used to determine the most vulnerable species to fishing, which have a stror reliance on estimating impacts using the overlap of fishing effort with a spe distribution. Relevance for management Developing habitat models for bycatch species will improve the fishing morta estimates using ERAs, from which their status can be determined and guide managers. Duration 12 months Work plan and status • Jun-Pec 18: model development • Jan-Feb 19: apply habitat model to bycatch species to be included in ERAs Mar April 19: Finalize habitat maps for bycatch species • May 19: present final model and assessment results at SAC-10. External collaborators • Presentations at SAC-10 • Procedure, if successful, to be used annually within ERA models to assess the success to be completed on assess to be annually within ERA models to assess to be assess to be annually within ERA models to assess to be annually within ERA models to assess to be assess to be annually within ERA models to assess to be annually within ERA models t		
species caught in EPO tuna fisheries to facilitate mapping of their geograph range.To make distribution maps available in a format suitable for use as base ma for ecological risk assessment models (PSA, EASI-Fish)Background• Many bycatch species caught in EPO tuna fisheries lack sufficient biological catch data to undertake traditional stock assessment to determine their 	EXECUTION: Ecosy	ystem Group
range.To make distribution maps available in a format suitable for use as base mator ecological risk assessment models (PSA, EASI-Fish)Background• Many bycatch species caught in EPO tuna fisheries lack sufficient biological catch data to undertake traditional stock assessment to determine their vulnerability to fishing.• Data-limited Ecological Risk Assessment (ERA) methods are now increasing used to determine the most vulnerable species to fishing, which have a strocreliance on estimating impacts using the overlap of fishing effort with a special distribution.Relevance for managementDeveloping habitat models for bycatch species will improve the fishing morta estimates using ERAs, from which their status can be determined and guide managers.Duration12 monthsWork plan and status• Jun-Dec 18: model development• Jan-Feb 19: apply habitat model to bycatch species to be included in ERAs • May 19: present final model and assessment results at SAC-10.External collaboratorsCPCsDeliverables• Presentations at SAC-10 • Procedure, if successful, to be used annually within ERA models to assess the species to be complexed by the species complexed b	Objectives	• To use presence-only catch data to develop habitat models for key bycatch
 To make distribution maps available in a format suitable for use as base material for ecological risk assessment models (PSA, EASI-Fish) Background Many bycatch species caught in EPO tuna fisheries lack sufficient biological catch data to undertake traditional stock assessment to determine their vulnerability to fishing. Data-limited Ecological Risk Assessment (ERA) methods are now increasing used to determine the most vulnerable species to fishing, which have a strorreliance on estimating impacts using the overlap of fishing effort with a speciative distribution. Relevance for management Developing habitat models for bycatch species will improve the fishing morta estimates using ERAs, from which their status can be determined and guide managers. Duration Jun-Dec 18: model development Jan-Feb 19: apply habitat model to bycatch species to be included in ERAs Mar-April 19: Finalize habitat model and assessment results at SAC-10. External collaborators Presentations at SAC-10 Procedure, if successful, to be used annually within ERA models to assess the second second		species caught in EPO tuna fisheries to facilitate mapping of their geographic
for ecological risk assessment models (PSA, EASI-Fish)Background• Many bycatch species caught in EPO tuna fisheries lack sufficient biological catch data to undertake traditional stock assessment to determine their vulnerability to fishing. • Data-limited Ecological Risk Assessment (ERA) methods are now increasing used to determine the most vulnerable species to fishing, which have a stro reliance on estimating impacts using the overlap of fishing effort with a spec distribution.Relevance for managementDeveloping habitat models for bycatch species will improve the fishing morta estimates using ERAs, from which their status can be determined and guide managers.Duration12 monthsWork plan and status• Jun-Dec 18: model development • Jan-Feb 19: apply habitat model to bycatch species • May 19: present final model and assessment results at SAC-10.External collaboratorsCPCsDeliverables• Presentations at SAC-10 • Procedure, if successful, to be used annually within ERA models to assess the		range.
 Many bycatch species caught in EPO tuna fisheries lack sufficient biological catch data to undertake traditional stock assessment to determine their vulnerability to fishing. Data-limited Ecological Risk Assessment (ERA) methods are now increasing used to determine the most vulnerable species to fishing, which have a stror reliance on estimating impacts using the overlap of fishing effort with a species tradition. Relevance for management Developing habitat models for bycatch species will improve the fishing morta estimates using ERAs, from which their status can be determined and guide managers. Duration 12 months Work plan and status Jan-Feb 19: apply habitat model to bycatch species to be included in ERAs Mar-April 19: Finalize habitat maps for bycatch species May 19: present final model and assessment results at SAC-10. CPCs Presentations at SAC-10 Procedure, if successful, to be used annually within ERA models to assess the summary of the summ		• To make distribution maps available in a format suitable for use as base maps
Catch data to undertake traditional stock assessment to determine their vulnerability to fishing.• Data-limited Ecological Risk Assessment (ERA) methods are now increasing used to determine the most vulnerable species to fishing, which have a stro- reliance on estimating impacts using the overlap of fishing effort with a spe- distribution.Relevance for managementDeveloping habitat models for bycatch species will improve the fishing morta estimates using ERAs, from which their status can be determined and guide managers.Duration12 monthsWork plan and status• Jun-Dec 18: model development • Jan-Feb 19: apply habitat model to bycatch species • Mar-April 19: Finalize habitat maps for bycatch species • May 19: present final model and assessment results at SAC-10.External collaborators• Presentations at SAC-10 • Procedure, if successful, to be used annually within ERA models to assess the		for ecological risk assessment models (PSA, EASI-Fish)
vulnerability to fishing.• Data-limited Ecological Risk Assessment (ERA) methods are now increasing used to determine the most vulnerable species to fishing, which have a stro- reliance on estimating impacts using the overlap of fishing effort with a species distribution.Relevance for managementDeveloping habitat models for bycatch species will improve the fishing morta estimates using ERAs, from which their status can be determined and guide managers.Duration12 monthsWork plan and status• Jun-Dec 18: model development • Jan-Feb 19: apply habitat model to bycatch species to be included in ERAs • Mar-April 19: Finalize habitat maps for bycatch species • May 19: present final model and assessment results at SAC-10.External collaboratorsCPCsDeliverables• Presentations at SAC-10 • Procedure, if successful, to be used annually within ERA models to assess the	Background	• Many bycatch species caught in EPO tuna fisheries lack sufficient biological and
 Data-limited Ecological Risk Assessment (ERA) methods are now increasing used to determine the most vulnerable species to fishing, which have a strorreliance on estimating impacts using the overlap of fishing effort with a species to fishing effort with a species to reliance on estimating impacts using the overlap of fishing effort with a species management Developing habitat models for bycatch species will improve the fishing morta estimates using ERAs, from which their status can be determined and guide managers. Duration 12 months Vork plan and status Jun-Dec 18: model development Jan-Feb 19: apply habitat model to bycatch species to be included in ERAs Mar-April 19: Finalize habitat maps for bycatch species May 19: present final model and assessment results at SAC-10. External CPCs Presentations at SAC-10 Procedure, if successful, to be used annually within ERA models to assess the species of the		catch data to undertake traditional stock assessment to determine their
used to determine the most vulnerable species to fishing, which have a stror reliance on estimating impacts using the overlap of fishing effort with a spec distribution.Relevance for managementDeveloping habitat models for bycatch species will improve the fishing morta estimates using ERAs, from which their status can be determined and guide managers.Duration12 monthsWork plan and status• Jun-Dec 18: model development • Jan-Feb 19: apply habitat model to bycatch species to be included in ERAs • Mar-April 19: Finalize habitat maps for bycatch species • May 19: present final model and assessment results at SAC-10.External collaboratorsCPCsDeliverables• Presentations at SAC-10 • Procedure, if successful, to be used annually within ERA models to assess the		vulnerability to fishing.
reliance on estimating impacts using the overlap of fishing effort with a species distribution.Relevance for managementDeveloping habitat models for bycatch species will improve the fishing morta estimates using ERAs, from which their status can be determined and guide managers.Duration12 monthsWork plan and status• Jun-Dec 18: model development • Jan-Feb 19: apply habitat model to bycatch species to be included in ERAs • Mar-April 19: Finalize habitat maps for bycatch species • May 19: present final model and assessment results at SAC-10.External collaboratorsCPCsDeliverables• Presentations at SAC-10 • Procedure, if successful, to be used annually within ERA models to assess the		• Data-limited Ecological Risk Assessment (ERA) methods are now increasingly
distribution.Relevance for managementDeveloping habitat models for bycatch species will improve the fishing morta estimates using ERAs, from which their status can be determined and guide managers.Duration12 monthsWork plan and status• Jun-Dec 18: model development• Jan-Feb 19: apply habitat model to bycatch species to be included in ERAs • Mar-April 19: Finalize habitat maps for bycatch species • May 19: present final model and assessment results at SAC-10.External collaboratorsCPCsDeliverables• Presentations at SAC-10 • Procedure, if successful, to be used annually within ERA models to assess the		used to determine the most vulnerable species to fishing, which have a strong
Relevance for managementDeveloping habitat models for bycatch species will improve the fishing morta estimates using ERAs, from which their status can be determined and guide managers.Duration12 monthsWork plan and statusJun-Dec 18: model development . Jan-Feb 19: apply habitat model to bycatch species to be included in ERAs . Mar-April 19: Finalize habitat maps for bycatch species . May 19: present final model and assessment results at SAC-10.External collaboratorsCPCsDeliverables• Presentations at SAC-10 . Procedure, if successful, to be used annually within ERA models to assess the		reliance on estimating impacts using the overlap of fishing effort with a species
managementestimates using ERAs, from which their status can be determined and guide managers.Duration12 monthsWork plan and status• Jun-Dec 18: model development • Jan-Feb 19: apply habitat model to bycatch species to be included in ERAs • Mar-April 19: Finalize habitat maps for bycatch species • May 19: present final model and assessment results at SAC-10.External collaboratorsCPCsDeliverables• Presentations at SAC-10 • Procedure, if successful, to be used annually within ERA models to assess the		
managers. Duration 12 months Work plan and status • Jun-Dec 18: model development • Jan-Feb 19: apply habitat model to bycatch species to be included in ERAs • Mar-April 19: Finalize habitat maps for bycatch species • May 19: present final model and assessment results at SAC-10. External collaborators Deliverables • Presentations at SAC-10 • Procedure, if successful, to be used annually within ERA models to assess the substatement of t	Relevance for	
Duration 12 months Work plan and status • Jun-Dec 18: model development • Jan-Feb 19: apply habitat model to bycatch species to be included in ERAs • Mar-April 19: Finalize habitat maps for bycatch species • May 19: present final model and assessment results at SAC-10. External collaborators CPCs • Presentations at SAC-10 • Procedure, if successful, to be used annually within ERA models to assess the second secon	nanagement	
Work plan and status• Jun-Dec 18: model development • Jan-Feb 19: apply habitat model to bycatch species to be included in ERAs • Mar-April 19: Finalize habitat maps for bycatch species • May 19: present final model and assessment results at SAC-10.External collaboratorsCPCsDeliverables• Presentations at SAC-10 • Procedure, if successful, to be used annually within ERA models to assess the		
status • Jan-Feb 19: apply habitat model to bycatch species to be included in ERAs • Mar-April 19: Finalize habitat maps for bycatch species • May 19: present final model and assessment results at SAC-10. External collaborators Deliverables • Presentations at SAC-10 • Procedure, if successful, to be used annually within ERA models to assess the second		
 Mar-April 19: Finalize habitat maps for bycatch species May 19: present final model and assessment results at SAC-10. External collaborators Deliverables Presentations at SAC-10 Procedure, if successful, to be used annually within ERA models to assess the second seco	•	
May 19: present final model and assessment results at SAC-10. External collaborators Deliverables Presentations at SAC-10 Procedure, if successful, to be used annually within ERA models to assess the set of the set	status	
External collaborators CPCs Deliverables • Presentations at SAC-10 • Procedure, if successful, to be used annually within ERA models to assess the second		
collaborators Deliverables • Presentations at SAC-10 • Procedure, if successful, to be used annually within ERA models to assess the second se		
 Presentations at SAC-10 Procedure, if successful, to be used annually within ERA models to assess the second s		CPCs
Procedure, if successful, to be used annually within ERA models to assess the second sec		
	Deliverables	
vulnerability of bycatch species in the EPO		
vullerability of bycatch species in the LFO.		vulnerability of bycatch species in the EPO.

PROJECT L.1.a: Develop habitat models for bycatch species caught in the EPO to support ecological risk assessments (ERAs)

Updated: May 2020

Progress summary for the reporting period

- Models were developed using Integrated Nested Laplace Approximation (INLA) and Generalized Additive Models (GAMs) for one species of mobulid, which formed the basis of an EASI-Fish assessment for the species.
- Relative Environment Suitability (RES) models were used with presence-only data to develop habitat maps suitable for input into the EASI-Fish model to undertake a vulnerability assessment for the eastern Pacific leatherback turtle stock in 2020.

Challenges and key lessons learnt

- Even highly sophisticated models in data-rich settings can predict habitat poorly, depending on the environmental data used for the prediction.
- Simple RES models can produce ecologically plausible habitat predictions, especially if the presence points are widely spread spatially.

Reports/publications/presentations

Four manuscripts that use the habitat models have been submitted (or prepared for submission) to scientific journals or IATTC presentations:

- Griffiths, S.P., Lezama-Ochoa, N., Román, M.H., 2019. Moving towards quantitative ecological risk assessment for data-limited tuna fishery bycatch: application of "EASI-Fish" to the spinetail devil ray (*Mobula mobular*) in the eastern Pacific Ocean. 9th Meeting of the IATTC Working Group on Bycatch, 11 May 2019, San Diego, California, USA. Document BYC-09-01.
- Griffiths, S.P., Kesner-Reyes, K., Garilao, C., Duffy, L.M., Román, M.H., 2019. Ecological Assessment of the Sustainable Impacts of Fisheries (EASI-Fish): a flexible vulnerability assessment approach to quantify the cumulative impacts of fishing in data-limited settings. *Marine Ecology Progress Series* 625, 89-113.
- Griffiths, S.P., Wallace, B., Swimmer, Y., Alfaro-Shigueto, J., Mangel, J.C., Oliveros-Ramos, R., 2020. Vulnerability status and efficacy of potential conservation measures for the east Pacific leatherback turtle (*Dermochelys coriacea*) stock using the EASI-Fish approach. *10th Meeting of the IATTC Working Group on Bycatch, 10 September 2020, La Jolla, California, USA. Document BYC-10-01.*
- A manuscript entitled "A 40-year chronology of vulnerability of the spinetail devil ray (Mobula mobular) to tuna fisheries and options for future conservation and management" has been completed and is currently undergoing IATTC internal review before it will be submitted to a scientific journal.

Comments:

-

	evelop a flexible spatially-explicit ERA approach for quantifying the cumulative	
	heries on data-limited bycatch species in the EPO	
-	THEME: Ecological impacts of fisheries: assessment and mitigation GOAL: L. Evaluating ecological impacts	
	elop analytical tools to identify and prioritize species at risk for data collection,	
research and man EXECUTION: Ecos	-	
Objectives	• To develop a spatially-explicit model for quantifying the cumulative impact of	
	multiple fisheries on data-limited bycatch species in the EPO	
	• To use the model to prioritize potentially vulnerable species for further research	
	and/or management	
	 To design the model in a user-friendly format to maximize uptake and utilization by IATTC CPCs 	
Background	 IATTC is committed, through the Antigua Convention, to ensure the long-term 	
Ducing, Curra	sustainability of all target and associated species impacted by EPO tuna	
	fisheries.	
	 Many associated (<i>i.e.</i> bycatch) species lack detailed biological and fisheries data 	
	for stock assessment, so data-limited approaches required to identify and assess	
	the most vulnerable species.	
	 Productivity-Susceptibility Analysis (PSA) has been widely used, but it cannot 	
	provide a quantitative measure of risk, nor can it assess cumulative impacts of	
	multiple fisheries.	
Relevance for	The new model will more reliably identify potentially vulnerable bycatch species	
management	and assess their status under current fishing effort regimes to better guide	
	managers	
Duration	48 months	
Work plan and	Jan-Apr 18: complete the development of a preliminary model	
status	 May 18: present preliminary model and results at SAC-09. 	
	Jun-Dec 18: continue model development with feedback from CPCs	
	 Jan-Feb 19: Finalize model and user-friendly module 	
	• Mar-May 19: Finalize assessment of cumulative impacts of EPO tuna fisheries	
	for all bycatch species to identify most vulnerable species.	
	 May 19: present final model and assessment results at SAC-10. 	
External	CPCs	
collaborators		
Deliverables	Presentations at SAC-09 and SAC-10	
	Scientific journal publication	
	Procedure, if successful, to be used annually to assess the vulnerability of	
	bycatch species in the EPO.	

PROJECT L.1.b: Develop a flexible spatially-explicit ERA approach for quantifying the cumulative impact of tuna fisheries on data-limited bycatch species in the EPO

Updated: May 2020

Progress summary for the reporting period

- An <u>EASI-Fish</u> model was developed for the eastern Pacific stock of the critically endangered leatherback turtle, in collaboration with the Inter-American Convention for the Protection and Conservation of Sea Turtles (IAC) and scientists from the USA and Peru. The stock's current vulnerability was assessed as well as the potential impacts of implementing a range of conservation and management measures.
- The 2019 EASI-Fish assessment for *Mobula mobular* was revised after IATTC internal review and extended to analyze the historic impacts of EPO tuna fisheries on the species' vulnerability over the past 40 years.
- The EASI-Fish model itself was further developed and is now a stand-alone Excel package where all uncertainty analyses are undertaken within Excel and no longer relies on the expensive add-in tool "CrystalBall"

Challenges and key lessons learnt

- In order for EASI-Fish to be widely available and updateable, a web-based version is desirable, although further IATTC resources are needed.
- More sophisticated habitat models (*e.g.* MaxEnt, INLA) may provide more reliable base maps for habitat and will be considered in future analyses.

Reports/publications/presentations

- <u>BYC-10-XX Vulnerability status and efficacy of potential conservation measures for the eastern</u> <u>Pacific leatherback turtle (*Dermochelys coriacea*) stock using the EASI-Fish approach</u>
- A manuscript entitled "Ecological Assessment of the Sustainable Impacts of Fisheries (EASI-Fish): a flexible vulnerability assessment approach to quantify the cumulative impacts of fishing in datalimited settings" was been published in the scientific journal "Marine Ecology Progress Series" in December 2019.
- A manuscript entitled "A 40-year chronology of vulnerability of the spinetail devil ray (Mobula mobular) to tuna fisheries and options for future conservation and management" has been completed and is currently undergoing IATTC internal review before it will be submitted to a scientific journal.
- An invited keynote presentation entitled "EASI-Fish: a flexible vulnerability assessment tool for quantifying the cumulative impacts of tuna fisheries on data-poor bycatch species" was given at the Joint tRFMO Bycatch Working Group Meeting in Porto, Portugal, 16-18 December, 2019.
- A presentation was given at the 70Th Tuna Conference "Assessing potential conservation measures for data-poor mobulid bycatch in the eastern Pacific Ocean tuna fishery using the "EASI-Fish" ecological risk assessment tool" in May 2019.

Comments:

EASI-Fish was developed in Microsoft Excel to maximize its acceptance and utilization by IATTC CPCs and more broadly.

	evelop and update Productivity-Susceptibility Analyses (PSAs) of tuna fisheries in
the EPO	
	l impacts of fisheries: assessment and mitigation
	ng ecological impacts
	duct ERAs of EPO fisheries to identify and prioritize species at risk
EXECUTION: Ecosy	
Objectives	 To improve the currently used PSA methodology by reducing the number of redundant biological attributes without compromising PSA results. Apply the new PSA methodology to existing assessments of the purse seine fishery (class 6 vessels) and the industrial longline fishery. To prepare manuscripts for publication in a peer-reviewed scientific journal for (1) improved PSA methodology, and (2) purse seine and longline fishery PSA results.
Background	IATTC's PSAs have not yet been published in a peer-reviewed journal therefore
	access of this information to the broader scientific community is limited to IATTC's
	website. Publication of IATTC's approaches to ecosystem-based research is one
	step towards demonstrating IATTC's commitment to ecosystem-based fisheries
	management.
Relevance for management	 Results in the PSA papers may be used to prioritize data collection, mitigation, and/or management measures for species identified as vulnerable by the method.
	 Improving the methodology by reducing the number of biological parameters will optimize reliability of results from the PSA method, while decreasing the data requirements to further expedite this rapid assessment approach for data- limited fisheries.
Duration	8 months
Work plan and status	• Jan-Jun 18: prepare a manuscript for the existing PSA for the large purse-seine fishery and submit to co-authors for review
	 Aug 18: submit PSA manuscript on the large purse-seine fishery for publication in a peer-reviewed scientific journal
	 Jan-May 18: Submit PSA-methods manuscript for publication in a peer-reviewed scientific journal
External	-
collaborators	
Deliverables	Manuscripts demonstrating IATTC's approaches to ecosystem-related research for data-limited species

PROJECT L.2.a: Develop and update Productivity-Susceptibility Analyses (PSAs) of tuna fisheries in the EPO

Updated: May 2020

Progress summary for the reporting period

• This project has now been completed and the IATTC has no immediate plans to use PSA for future ecological risk assessments since the new quantitative EASI-Fish approach is now being used in favor of PSA.

•

Challenges and key lessons learnt

- This key lesson learned from this project is the PSA approach actually requires far more data inputs than other quantitative ERA approaches but provides only a relative measure of risk for each species.
- The exploratory statistical work undertaken in this project demonstrated that the subjective weightings previously recommended to apply to susceptibility and productivity parameters can have variable impacts on model outcomes and increase uncertainty regarding the risk level of a species.

Reports/publications/presentations

- A manuscript entitled "Assessing vulnerability of bycatch species in the tuna purse-seine fisheries of the eastern Pacific Ocean" has been published in the journal *Fisheries Research*
- A manuscript entitled "Assessing attribute redundancy in the application of productivitysusceptibility analysis to data-limited fisheries" has been published in the journal Aquatic Living Resources

Comments:

-

PROJECT M.1.a: Ev	valuate the effect of the depth of non-entangling FADs on catches of tunas and	
bycatches of othe	r species in the purse-seine fishery	
THEME: Ecological	THEME: Ecological impacts of fisheries: assessment and mitigation	
GOAL: M. Mitigati	ng ecological impacts	
TARGET: M.1. Inve	estigate gear technology to reduce bycatch and bycatch mortality	
EXECUTION: Life-h	nistory and Behavior	
Objectives	Evaluate the performance of shallow non-entangling versus normal depth FADs in the EPO purse-seine fishery, with an emphasis on the tuna and non-tuna species catch composition; seeking a practical solution to reduce fishing mortality on small undesirable sizes of bigeye	
Background	 The fishing mortality of small bigeye caught in sets on FADs should be reduced, to increase the maximum sustainable yield from the bigeye fisheries in the EPO Bigeye tuna associated with FADs in the EPO exhibit deeper depth distributions than skipjack or yellowfin tunas The presence of bigeye in the EPO purse seine catch was reported to be more likely with deeper floating objects 	
Relevance for	A potential solution for reducing fishing mortality on small undesirable sizes of	
management	bigeye and/or reducing fishing mortality on bycatch species associated with FADs, including sharks and turtles	
Duration	2015-2018	
Work plan and status	 2015-2017: ISSF arranged for experiments to be undertaken at sea in collaboration with NIRSA, a seafood company located in Posorja, Ecuador, with a fleet of 11 purse-seine tuna vessels. The first experiment began in June-July 2015 with deployments of 50 shallow and 50 normal depth FADs and concluded on 31 October 2016. The second experiment began in March-May 2017 with deployments of 100 shallow and 100 normal depth FADs and concluded on 31 December 2017. 2018: The catch data collected by observers aboard NIRSA vessels from sets on the experimental FADs from the two experiments is being examined to confirm FAD types 2018: A statistical evaluation of the performance of the shallow non-entangling versus normal depth FADs, including the tuna and non-tuna species catch compositions, will be conducted 	
External	ISSF, NIRSA	
collaborators		
Deliverables	 Relevant information on performance of shallow non-entangling FADs versus normal FADs based on field experiments Manuscript for peer review and publication in a scientific journal 	

PROJECT M.1.a: Evaluate the effect of the depth of non-entangling FADs on catches of tunas and bycatches of other species in the purse-seine fishery

Updated: June 2019

Progress summary for the reporting period

- Analyses of the catch-per-set data for tunas and non-tuna species, coupled with corresponding effort and environmental data, were completed.
- Manuscript in final stages of preparation for submission to a peer-reviewed scientific journal in 2019

Challenges and key lessons learnt

Reports/publications/presentations

Comments:

PROJECT M.1.b:	Test sorting grids
THEME: Ecologic	al impacts of fisheries: assessment and mitigation
GOAL: M. Mitiga	ting ecological impacts
TARGET: M.1. Inv	vestigate gear technology to reduce bycatch and bycatch mortality
EXECUTION: Byca	atch Mitigation and Gear Technology
Objectives	Reduce bycatches of small fishes (tunas and others) in purse-seine sets.
Background	 Small individuals of any species (target or non-target) of no market value should be released to reduce the impacts of fishing operations and improve the sustainability of the fishery.
	 Many seiners have sorting grids, different types of panels to allow the escape of fish of a size determined by the dimensions of the grid used, but their use has not been well documented because captains can lift them out of the water, and they do so not to lose any potential catches.
	• Previous experiments have quantified unwanted species passing through the grid. It is necessary to test their survival after escaping, since they may have been injured while going through the grid.
	• Experiments to verify survival should follow the tests of the grid to release unwanted individuals.
Relevance for management	Reduce the impacts of fishing and improve the sustainability of the fishery
Work plan and status	 Convene a workshop with fishing captains and gear experts to decide on the standard design for all tests, using previous experience from the region. Build the design in 2 seiners, with a commitment to cooperate by leaving the grid fully underwater in all sets. Monitor with a camera the utilization of the grid in all sets. Deploy a speedboat with a researcher to film escape through the grid. This initial pilot program will attempt to measure the quantity and characteristics of escaped fish, not their survival Evaluate the significance of the releases, assuming survival. If significant, design a project to measure survival in a floating pen. Discuss with captains ways to improve their operation if needed.
Duration	18 months
External	
collaborators	
Deliverables	May 2019: progress report for SAC-10

PROJECT M.1.b: Test sorting grids Updated: May 2019 Progress summary for the reporting period See WSSG-01 Meeting Report

PROJECT M.1.c.	Acoustic discrimination to avoid purse seine catches of undersized yellowfin tuna
THEME: Ecologic	cal impacts of fisheries: assessment and mitigation
GOAL: M. Mitiga	iting ecological impacts
TARGET: M.1. In	vestigate gear technology to reduce bycatch and bycatch mortality
EXECUTION: Byc	atch Mitigation and Gear Technology Group
Objectives	Reduce bycatches of small yellowfin in purse-seine sets.
Background	 The International Seafood Sustainability Foundation (ISSF) has been supporting investigations of acoustic methods for discrimination among tuna species caught in purse-seine sets Acoustic technologies could provide the ability to discriminate and avoid undersized yellowfin tuna by the purse-seine fishery to reduce the impacts of
	fishing operations and improve the sustainability of the fishery.
	• To discriminate yellowfin from skipjack and bigeye, it is necessary to know the acoustic properties of yellowfin, in particular, the target strength (TS) and TS-fish length relationship.
	 Acoustic studies will be conducted on juvenile yellowfin (1-yr-old) held in a previously-deployed sea cage at the Achotines Laboratory
	 The fundamental acoustic information obtained for yellowfin will then be compared to information previously obtained for skipjack and bigeye, hopefully enabling fishers to discriminate species before fishing
Relevance for management	Reduce the impacts of fishing and improve the sustainability of the fishery
Work plan and	• Early 2020 purchase materials used to anchor and deploy sea cage
status	• April-May2021 install sea cage and collect juvenile yellowfin in waters adjacent to the Achotines Laboratory
	 May-June 2021 staging of ISSF acoustic equipment at Achotines Laboratory May-June 2021 conduct acoustic trial
	 Mid 2021 draft report of study results completed by ISSF researchers
	 Mid 2021 workshop organized to present the results and discuss them with scientists and buoy manufacturers
Duration	24 months
External	International Seafood Sustainability Foundation (ISSF) researchers Drs. Gala Moreno
collaborators	and Guillermo Boyra
Deliverables	 Study report developed by ISSF researchers and workshop organized by ISSF Publication of results by ISSF researchers in peer-reviewed journal

PROJECT M.2.b: E	valuate best handling practices for maximizing post-release survival of silky sharks
in longline fisherie	es, and identification of silky shark pupping areas for bycatch mitigation
THEME: Ecological impacts of fisheries: assessment and mitigation	
GOAL: M. Mitigati	ing ecological impacts
TARGET: M.2. Dev	velop best practices for release of bycatch species
EXECUTION: Life-h	nistory and Behavior Group
Objectives	Estimate post-release survival of silky sharks captured by Mexican longline vessels
	in the eastern tropical Pacific, utilizing a best handling practice, and define
	boundaries encompassing the probable distribution silky shark pupping areas in
	the EPO
Background	• Apparent severe decline in the population of silky sharks in the EPO, based on
	trends in standardized catch-per-unit-of-effort indices
	Domestic longline fleets from Latin America conduct multi-species fisheries
	including retaining silky sharks
	• Defining the probable distribution of silky shark pupping areas would be useful
	for better understanding population structure and for consideration of
	conservation measures including spatiotemporal closures
Relevance for	Resolution C-16-06 on conservation measures for silky sharks stipulates to
management	improve handling practices for live sharks to maximize post-release survival, and
	identification of pupping areas of the silky shark
Duration	2018-2020
Work plan and	• 2018-2019: 69 silky sharks will be tagged with archival tags on Mexican longline
status	vessels, using best handling practices
	• 2019-2020: The data obtained will be analyzed for post-release survival and
	movements during 2019 and 2020.
	• 2019-2020: Exploratory analyses of silky shark size at capture data, compiled
	from various fisheries in the EPO, will be conducted to determine the areas and times where ciller shark numering most likely accurs
External	times where silky shark pupping most likely occurs
collaborators	INAPESCA, Mexico
Deliverables	Cilly, chark past release survival rate contured by Meyican lengting years levels
Deliverables	 Silky shark post-release survival rate captured by Mexican longline vessels, using best handling practices
	 Probable distribution of silky shark pupping areas

PROJECT M.2.b: Evaluate best handling practices for maximizing post-release survival of silky sharks in longline fisheries, and identification of silky shark pupping areas for bycatch mitigation

Updated: June 2019

Progress summary for the reporting period

- 57 silky sharks were tagged with archival tags on Mexican longline vessels, using best handling practices
- The satellite data sets obtained have been compiled
- A table of metadata has been compiled, including release and pop-up dates and locations for all tags reporting to date, along with the fate of each shark.

Challenges and key lessons learnt:

Reports/publications/presentations

Comments:

	evelop and test non-entangling and biodegradable FADs I impacts of fisheries: assessment and mitigation
GOAL: M. Mitigating ecological impacts	
-	elop best practices to mitigate anthropogenic impacts on EPO habitats
	tch Mitigation and Gear Technology Group
Objectives	Construction of non-entangling FADs from biodegradable materials, not only to decrease mortality of non-target species by net-webbing entanglement, but also minimize contributions to ocean debris and pollution by commercial tuna fishing.
Background	 Non-target species are also found in association with FADs, and in some instances, may become entangled in the FADs and perish. Some FAD components that are lost at sea or not retrieved, particularly those including plastics or other materials that are not readily degradable may last many years in the environment as pollutants, and threatening vulnerable ecosystems. There is an increasing interest in identifying non-entangling and biodegradable components that could be used in FAD construction, while still providing similar function in terms of tuna aggregation.
Relevance for	Ecological impacts on vulnerable ecosystems may be considered an important
management	factor for FAD fishery management purposes.
	 Results may be used by the Commission members in the development of best fishing practices and management measures
Duration	29 months
Work plan and status	 August 2015 – April 2017: Purchase of FAD and mooring materials. FAD deployment at test site. FAD monitoring. April – December 2017: Ongoing research on alternative non-entangling and biodegradable materials to extend the durability of the FADs. January 2018: Project report
External	
collaborators	
Deliverables	 May 2016. Ad hoc working group on FADs. La Jolla, USA. May 2017. 68th Tuna Conference. Lake Arrowhead, USA. October 2017. ECOFAD meeting. Manta, Ecuador. March 2018. Project final report

PROJECT M.5.a: Develop and test non-entangling and biodegradable FADs	
Updated: August 2020	
Progress summary for the reporting period	
• February–December 2018: Research on alternative non-entangling and biodegradable materials to	
extend the durability of the FADs.	
December 2018: Agreement with vessel companies concerning methodology and allocation of FAD	
prototypes to vessels through Memorandums of Understanding.	
 April 2019: Agreement with companies regarding purchase and allocation of materials. 	
 August 2019: Deployment and Collection of data of non-entangling devices (NEDs) and control 	
pairs (traditional FADs); observers record condition of NEDs and catches. Database on interactions	
with NEDs created.	
 June 2020: reporting of satellite buoy data attached to experimental objects starts. 	
Challenges and key lessons learnt	
 Reaching agreement with vessel captains on using a limited number of standard FAD prototypes. 	
 Simplifying the materials to purchase. 	
• The flotation of NEDs made of natural materials (balsa wood, bamboo) was satisfactory during the	
period observed.	
 Materials like canvas and ropes made with abaca fiber showed good condition after 2-3 months at 	
sea.	
 The use of the selected cotton seems to be inappropriate. Modifications have been made to 	
accommodate fleet's concerns. Modified prototypes are being currently tested.	
 Preliminary analyses of tuna catches between close NEDs and FADs showed similar values. 	
 COVID-19 pandemic caused delays on NED construction. Meetings with fleet managers and 	
stakeholders have been held to adapt to the exceptional situation. Most of the works have been	
already resumed.	
Reports/publications/presentations	
 Presentations made at workshops in the region 	
Online technical meetings with researchers involved in similar projects in the Atlantic and Indian	
Oceans, and ISSF staff.	
• SAC-09: progress report.	
 SAC-11: progress presentation 	
SAC-11-12: progress report	
Comments:	

Project was suspended during March-July 2018, thus missing the fishing season off Peru. Next opportunity for deployment will be second half of 2019, for the season west of Galapagos. A project extension proposal was approved on October 2019 for a total of 38 months. Matters related to COVID-19 pandemic may lead to an additional project extension request.

PROJECT M.5.b: R EPO	educing losses, and fostering recovery of FADs in the purse-seine fishery in the		
THEME: Ecological impacts of fisheries: assessment and mitigation			
•	GOAL: M. Mitigating ecological impacts		
-	velop best practices to mitigate anthropogenic impacts on EPO habitats		
	Collection and Database Program, Bycatch Mitigation and Gear Technology Group		
Objectives	 Evaluate the extent of stranded, abandoned or lost FADs (SAL-FADs) in the EPO. 		
Objectives	 Evaluate the extent of stranded, abandoned of lost (SAET Abs) in the EFO. Evaluate the impact of SAL-FADs on coastal areas and islands of the EPO, with 		
	special emphasis on identification of deploying locations.		
	 Identify or develop oceanographic models to forecast strandings of FADs. 		
	 Based on findings, develop mitigation and management measures and 		
	strategies to minimize SAL-FADs. Promote recovery of SAL-FADs and evaluate its		
	effectiveness.		
Background	 SAL-FADs have an impact on coastal areas in the EPO, but the information 		
2000.0000	available is mostly anecdotal.		
	 Some FAD components lost at sea or not retrieved, particularly those made of 		
	plastics or other materials that are not readily degradable, can last many years		
	in the environment as pollutants and threaten vulnerable ecosystems.		
	 SAL-FADs can also be a danger to navigation. 		
	• SAL-FADs may produce 'ghost-fishing' in the EPO.		
Relevance for	Ecological impacts on vulnerable ecosystems are an important factor in FAD		
management	fishery management.		
	• Results may be useful for CPCs in the development of best fishing practices and		
	management measures for FADs		
Duration	28 months		
Work plan and	May 2019-March 2020: Survey stakeholders about areas and impacts of SAL-		
status	FADs.		
	• May-Dec 2019: Identify or develop ocean circulation model to forecast FAD		
	trajectories beyond fishing grounds.		
	 May 2020 (SAC-11): Present results of ocean circulation model 		
	• June-Dec 2020: Based on models and surveys, identify levels of sensitivity and		
	categorize possible stranding areas.		
	• Dec 2020: Workshop with stakeholders and ISSF scientists to identify mitigation		
	strategies for SAL-FADs, based on findings of survey and models		
	• May 2021 (SAC-12): Present a report of all findings and proposals for mitigation		
	strategies at.		
External	To be decided. An oceanographic modeler, and ISSF scientists working on similar		
collaborators	projects in other oceans		
Deliverables	 May 2020 (SAC-11): Report on results of survey and circulation model 		
	 December 2020: Workshop with stakeholders 		
	March 2021: Workshop report		
	 May 2021 (SAC-12): Report on results 		
	October 2021: Proposals for mitigation strategies and management options to		
	reduce SAL-FADs		

PROJECT M.5.b: Reducing losses, and fostering recovery of FADs in the purse-seine fishery in the EPO

Updated: May 2019

Progress summary for the reporting period

- Development and distribution of survey on impact of SAL-FADs. 14 responses to date: academic (1), consultant (1), industry (2), environmental NGOs (3), industry NGO (5), government (2).
- Two staff members attended the ISSF-sponsored <u>workshop</u> on the reduction of the impact of FADs in September 2018.

Challenges and key lessons learnt

-

Reports/publications/presentations

- Original project start date was early 2018, but it was delayed, and to date only the first objective has been addressed.
- The modelling of FAD movements will require collaborative work with an oceanographer

5.	INTERACTIONS AMONG THE ENVIRONMENT	, THE ECOSYSTEM, AND FISHERIES
----	------------------------------------	--------------------------------

and vulnerability			
	ons among the environment, the ecosystem, and fisheries		
	GOAL: N. Understanding the interactions among environmental drivers, climate, and fisheries		
	derstanding the effects of short-term environmental fluctuations		
EXECUTION: Ecos	system and Bycatch Program		
Objectives	To better understand environmental drivers that might be responsible for		
	increasing the vulnerability of non-target species to being caught in EPO fisheries,		
	and devise management measures that may reduce their vulnerability to capture		
	(e.g. space-time closures).		
Background	• Each year the IATTC reports catch estimates for non-target species in its Fishery Status Report.		
	 Nominal catches of bycatch species may not fully explain the magnitude of inter- annual variability in fishing effort, since environmental factors may drive key processes such as recruitment. 		
	• To improve our understanding of processes affecting catches in the EPO purse-		
	seine fishery, we assess ecosystem components including catches of vulnerable shark species in relation to variability in oceanographic conditions and life history characteristics.		
Relevance for	Catch prediction models to better manage data-poor species		
management			
Duration	12 months		
Work plan and status	• Jan-Apr 18: exploratory analyses of IATTC observer catch data and oceanographic conditions over the past two decades		
	• Apr-May 18: present results at the international PICES conference,		
	"Understanding Changes in Transitional Areas of the Pacific" and the 69th Tuna		
	Conference		
	Jun-Jul 18: Prepare a manuscript for publication in a scientific journal		
External	None		
collaborators			
Deliverables	Reporting of bycatch estimates in the Ecosystem Considerations report		
	• Manuscript that contributes to IATTC's ecosystem approach through evaluation		
	of potential environmental drivers influencing catches in the EPO purse-seine		
	fishery and relationships between environment and life history characteristics		

PROJECT N.1.a: Analyze EPO bycatch data to assess the influence of environmental drivers on catches and vulnerability

Updated: May 2020

Progress summary for the reporting period

- Bycatch estimates for 2019 documented in the *Ecosystem Considerations* report
- Oceanographic data (SST, chlorophyll-*a*, etc.) and environmental indices (ONI, PDO, others) included in the *Ecosystem Considerations* report

•

Challenges and key lessons learnt

• Models are now being revised and run with target species to ensure their reliability before being applied to other species of bycatch

Reports/publications/presentations

Presentations:

- <u>PICES International Symposium</u> on Understanding Changes in Transitional Areas of the Pacific (April 2018)
- <u>69th Tuna Conference</u> (May 2018)

Comments:

• The Ecosystem Group has been collaborating with the Bycatch and Gear Technology Group to determine an appropriate model to apply to bycatch species.

•

DROJECT N 1 h. In	wastigate the offects of wind induced microturbulence on vellowfin langel survival	
	PROJECT N.1.b: Investigate the effects of wind-induced microturbulence on yellowfin larval survival	
THEME: Interactions among the environment, the ecosystem. and fisheries		
GOAL: N. Understanding the interactions among environmental drivers, climate, and fisheries		
TARGET: N.1. Und	lerstanding the effects of short-term environmental fluctuations	
EXECUTION : Early	Life-history Group	
Objectives	Estimate the optimal microturbulence and wind speed for the survival of yellowfin	
	larvae and examine any association between yellowfin recruitment and historical	
	wind speeds in the EPO	
Background	• Studies have shown that feeding success and survival of marine fish larvae can be influenced by the levels of wind-induced microturbulence in the larval feeding environment	
	 Multiple experiments were conducted over 4 years to examine microturbulence effects on yellowfin larval survival, and optimal turbulence estimates for larval survival were converted to optimal wind speeds Estimated optimal wind speeds for larval survival have been examined for 	
	correlations with yellowfin recruitment during 1987-2007	
Relevance for	The wind speed-recruitment analysis is promising for assessing yellowfin	
management	recruitment patterns in relation to larval survival	
Duration	18 months	
Work plan and	• June-December 2019: Refine analyses of survival and feeding data and finalize	
status	wind speed-recruitment analysis	
	• January-December 2020: Complete manuscript and submit to scientific journal	
External	University of Tokyo	
collaborators		
Deliverables	 Presentations for SAC-09, SAC-10 and SAC-11 	
	Publication of results in a scientific journal	

PROJECT N.1.b: Investigate the effects of wind-induced microturbulence on yellowfin larval survival Updated: March 2020

Progress summary for the reporting period

- Analysis of experimental survival and feeding data in response to microturbulence completed.
- Feeding parameters examined in relation to microturbulence included average prey and biomass consumption and size of prey captured.
- A meeting with Dr. Shingo Kimura at University of Tokyo in August 2019 included adjustments and improvements to the final modeling of the experimental turbulence results.
- A manuscript summarizing experimental estimates of optimal microturbulence and a wind speedrecruitment analysis of select areas of the EPO is nearing completion

Challenges and key lessons learnt

• Measuring microturbulence in experimental tanks is difficult on a scale that is relevant to the foraging environment of larval yellowfin. This was addressed by using a microacoustic doppler velocimeter (ADV) to measure turbulent dissipation rates in the tanks at microscale (5 mm x 5 mm) precision; they were also estimated using a small-scale (m³) model developed by a colleague at the University of Tokyo.

Reports/publications/presentations

• Presentation at SAC-10 and SAC-11

Comments:

This project will be completed with the submission of a manuscript by the end of 2020.

PROJECT N.2.a. Develop models of the effects of climate change on pre-recruit life stages of tropical			
tunas	tunas		
	THEME: Interactions among the environment, the ecosystem. and fisheries		
	ng our understanding of the EPO ecosystem		
	lerstanding the effects of long-term climate drivers		
	Life-history Group		
Objectives	 Investigate experimentally the effects of important climate change factors on early life stages of tropical tunas, and incorporate those results into models that can predict climate change effects on the distribution and abundance of tropical tunas 		
Background	 Tuna populations are key components of pelagic ecosystems, but the effects of climate change on tuna biomass, distributions and recruitment are almost unknown The Achotines Laboratory provides an essential experimental center for investigations of the effects of climate change factors on pre-recruit life stages of tropical tunas A study of the effects of ocean acidification on yellowfin egg and larval stages was conducted at the Achotines Laboratory in 2011 and the results published in two papers in 2015 and 2016, with an additional two papers in preparation A new study investigating molecular effects of ocean acidification on yellowfin eggs and embryos was conducted by University of Miami scientists at the Achotines Laboratory in late 2019. The IATTC early life history group is collaborating on the study. The effects of additional climate change factors, such as ocean warming and anoxia, can be studied at the Achotines Laboratory and incorporated into models of multifactor effects on pre-recruit life stages 		
Relevance for	Potential impacts of climate change on early life stages are an important		
management	consideration in future assessments of tunas in the EPO, and experimental results		
	can allow models to be parameterized to include climate change effects on pre-		
	recruit survival and spawning and nursery habitat		
Duration	3 years		
Work plan and status	 January 2018-June 2021: Completion of analyses and manuscripts from the 2011 study describing ocean acidification effects on larval otolith morphology and genetic expression of resistant traits in yellowfin 		
	 May 2020 – March 2021: Completion of analyses and manuscript from the 2019 molecular study led by University of Miami 		
	 January 2020-December 2021: There are plans to develop experimental investigations to study the effects of ocean warming and anoxia on pre-recruit life stages of yellowfin 		
External	ABARES and AFMA, Australia; Macquarie University, Australia		
collaborators	Drs. Rachael Heuer and Martin Grosell, University of Miami		
Deliverables	 Presentations for SAC-09, SAC-10 and SAC-11 		
	Publication of results in several scientific journals		

tunas
Updated: May 2020
Progress summary for the reporting period
• Analysis of the effects of ocean acidification on yellowfin larval otolith morphology and genetic expression of resistant traits continued.
• The larval otolith analysis will be completed and submitted as a manuscript by mid-2021. The genetic analysis of expression of resistant traits in response to ocean acidification has been slower
• The experimental results from the 2011 study have been used in several modeling efforts to estimate the impacts of ocean acidification on yellowfin in the Pacific Ocean
• The molecular study of ocean acidification effects led by University of Miami was conducted at the Achotines Laboratory in late 2019
Challenges and key lessons learnt
 Combining rearing larval tunas with precise control of the physical carbonate system was particularly challenging. A large collaborative research group, with expertise in larval ecology, carbonate system testing, and modeling was developed to complete the study. Studies of the effects of additional climate change factors, such as ocean warming and anoxia, will
require additional funding, which to-date has not been secured.
 Reports/publications/presentations Presentations: SAC-09 SAC-10 <u>69th Tuna Conference</u> (May 2018) 42nd Larval Fish Conference (June 2018) and 43rd Larval Fish Conference (May 2019) Two scientific papers using experimental results from the 2011 study presented modeling predictions of the effects of ocean acidification on yellowfin abundance in the Pacific Ocean A manuscript summarizing results of the 2019 molecular study led by University of Miami with IATTO
 collaboration will be submitted for review in late 2020 Comments:

The analysis of experimental results from the 2011 study should be completed in 2021.

DPOIECT N 2 h. S	upporting climate-ready and sustainable fisheries: using satellite data to conserve	
and manage life in the ocean and support sustainable fisheries under climate change		
THEME: Interactions among the environment, the ecosystem. and fisheries		
	ng our understanding of the EPO ecosystem	
	lerstanding the effects of long-term climate drivers	
	tch Mitigation and Gear Technology Group	
Objectives	• Produce forecasted dynamic species and vessel distributions under different	
	anomaly and climate change scenarios in the near, mid and long-term based on	
	changing environmental drivers.	
	• Quantify shifts in overlap among species and vessels given shifting habitat for	
	both.	
	Understand the impact of climate anomalies, changing oceanographic conditions	
	and future scenarios on forecasted dynamic species and vessel distributions with	
	a specific focus on forecast skill and accounting for uncertainty.	
Background	Balancing short, medium and long-term sustainability, food security and	
	economic objectives in a changing environment is a challenge to fisheries	
	management.	
	• Current conservation measures have not been specifically designed to adapt to	
	a changing environment, particularly in the medium-long term.	
	• Previous research has documented distributional shifts of pelagic predators and	
	fishing effort in response to climate-driven changes, but no particular study has	
	been conducted for the tropical tuna and bycatch species in the EPO.	
	• A better understanding of climate-induced shifts in the spatial distribution of	
	target and non-target species is needed to develop climate-resilient fisheries.	
Relevance for	Understanding tuna stocks and fishers' response to medium and long-term	
management	changing ocean conditions is important to develop subsequent policy and	
	management strategies and ensure climate-resilient fisheries in the EPO.	
Duration	24 months	
Work plan and	2020 – Develop vessel distributions models; gather model outputs from target	
status	species; assemble projected environmental data.	
	 2021 – Develop forecasted target and vessel distributions; target species and 	
	vessels models validation; gather distribution model outputs from bycatch	
	species; develop forecasted bycatch distributions; bycatch models validations.	
	• 2022 – preparation of dissemination material; present at the SAC, the Bycatch	
	WG and other IATTC meetings of interest.	
External	San Diego State University-Conservation Ecology Lab, The Ocean Conservancy	
collaborators		
Deliverables	• A series of climate change medium and long-term projected dynamic species	
	distributions for both target and non-target species and vessels.	
	Compilation of reliable environmental data for different climate scenarios.	
	• Web-based tools and forecast products. Open source code to allow replication.	
	Dissemination material, including documents and presentations for the	
	Scientific Advisory Committee and the Bycatch working Group in 2021 and 2022.	

PROJECT O.1.b: Qua	antifying spatial and ontogenetic variation in the feeding ecology of skipjack
tuna in the eastern	Pacific Ocean
	s among the environment, the ecosystem, and fisheries
•	our understanding of the EPO ecosystem
	uct trophodynamic studies for defining key assumptions in EPO ecosystem models
EXECUTION: Ecosys	
Objectives	• Broadly describe the trophic ecology of skipjack tuna in the EPO using classical
	stomach-contents analysis
	Quantitatively disentangle spatial, temporal, and ontogenetic differences in
	diet to identify important habitats of skipjack and their forage
Background	• Early accounts of skipjack stomach contents in the EPO have been limited to
	measurements of prey volume by size class with sampling strata determined a
	priori based on presumed areas of high skipjack densities
	• Other studies have used calculations of prey weight, number and frequency of
	occurrence of skipjack sampled opportunistically throughout the EPO
	• Little attention has been placed on quantitatively assessing the potential
	relationships between oceanography, ontogeny and skipjack feeding ecology
	Such information is essential for informing a planned spatially-explicit ecosystem model of the EPO (Project 0.2.b) to account for direct and indirect
	impacts from fishing on the ecosystem, as mandated by the Antigua
	Convention
Relevance for	Quantifying trophic linkages in ecosystem models provide descriptions of the
management	magnitude of biomass transfer through the ecosystem and assist in assigning a
management	more reliable proportion of both predator and prey in spatial strata using
	spatially-explicit ecosystem models, such as Ecospace.
Duration	12 months
Work plan and	Task 1: Exploratory analysis of skipjack tuna diet data
status	1.1: Map locations of skipjack stomach samples overlaid with Longhurst bio-
	geochemical Provinces;
	1.2: Assess size distribution of skipjack sampled for stomach-contents analysis;
	1.3: Explore the relationship of predator-prey size.
	Task 2: Diet composition and classification tree analysis using analytical tools
	developed at CSIRO in collaboration with IATTC
	2.1: Compute gravimetric, numeric and occurrence indices of diet composition
	to examine prey importance;
	2.2: Run classification trees using skipjack diet data as the response variable and
	Longhurst Province and skipjack size as the explanatory variables;
	2.3: Interpret results with respect to ecosystem-related goals outlined in the SSP;
	2.4: Prepare manuscript
External	CICIMAR, La Paz, Mexico
collaborators	
Deliverables	 Manuscript that contributes to IATTC's ecosystem approach to fisheries
	management through identification of ontogenetic functional groups and
	quantifying their predator-prey interactions for use in ecosystem models.

PROJECT O.1.b: Quantifying spatial and ontogenetic variation in the feeding ecology of skipjack tuna in the eastern Pacific Ocean

Updated: April 2020

Progress summary for the reporting period

• A manuscript entitled "Spatial and ontogenetic relationships in the trophic ecology of skipjack tuna, Katsuwonus pelamis, in the eastern Pacific Ocean" was submitted for publication in the journal "Marine Biology" in December 2019.

Challenges and key lessons learnt

• An extensive exploratory analysis is essential for appropriate interpretation of the classification tree results.

Reports/publications/presentations

• A manuscript entitled "Spatial and ontogenetic relationships in the trophic ecology of skipjack tuna, Katsuwonus pelamis, in the eastern Pacific Ocean" has been submitted for publication in the journal "Marine Biology

Comments:

This project will help improve diet matrices in EPO ecosystem models.

i fishes: a precursor to experimental estimation for key predators in the EPO among the environment, the ecosystem, and fisheries	
mong the environment, the ecosystem, and fisheries	
-	
GOAL: O. Improve our understanding of the EPO ecosystem	
TARGET: 0.1. Conduct trophodynamic studies for defining key assumptions in EPO ecosystem models	
m Group	
 Review available methods to estimate prey consumption and gastric evacuation rates and daily ration to reliably estimate the consumption biomass ratio (Q/B) for tropical tunas and tuna-like fishes in ecosystem models being developed for the EPO. Recommend a reliable method(s) that is feasible, practical and cost-effective for estimating Q/B for key predators in the EPO ecosystem. 	
 Fisheries management strategies are increasingly considering impacts on ecosystems supporting target tuna species. Tuna fisheries impact apex predators in marine ecosystems and have the potential to disrupt ecosystem structure and function. Ecosystem models, such as Ecopath with Ecosim, are being increasingly used to explore and forecast the potential effects of fishing and climate on marine ecosystems. A key parameter in such models is Q/B. However, this highly influential parameter can be difficult to estimate experimentally, especially for large pelagic fishes. A review of methods to estimate Q/B is required to determine which methods are feasible for parameterizing ecosystem models. 	
The Antigua Convention requires the IATTC to consider the ecological impacts of	
una fisheries in the EPO. The SSP details the development of a spatially-explicit ecosystem model of the EPO. Without reliable estimates of Q/B for key species n the EPO ecosystem, the ecosystem model will produce unreliable results that will be of little use for tactical or strategic fisheries management.	
12 months	
 Jan-Mar: Collate available literature on methodologies used to estimate prey consumption and Q/B in marine fishes, with an emphasis on predatory pelagic fishes. Mar-Apr: Write a comprehensive literature review of methods to estimate Q/B and make recommendations as to which method(s) may be useful for IATTC to use in future. May: Present the review document at SAC-10 and at the 70th Tuna Conference Jun-Dec: Prepare and revise the review document for a peer-reviewed scientific journal. 	
·	
Information paper for SAC-10	
• Publish the literature review in an international scientific journal.	

PROJECT O.1.c: A review of methods to determine prey consumption rates, gastric evacuation and daily ration of pelagic fishes: a precursor to experimental estimation for key predators in the EPO

Updated: May 2020

Progress summary for the reporting period

- Review manuscript revised to update method descriptions in text and tables.
- Yellowfin tuna feeding, growth, metabolic, and reproductive data were compiled as input data for bioenergetics models using Fisheries Bioenergetics 4.0 software to examine consumption rates/energy requirements based on variations in biological/physical parameters.
- Modifications to all model input files complete and sensitivity analyses in progress.

Challenges and key lessons learnt

• Significant challenges were encountered learning the new software.

Reports/publications/presentations

• Document SAC-10 INF-E, May 13-17, 2019/70th Tuna Conference, May 20-23, 2019

Comments:

This project is a critical precursor to experimental work required to estimate values of the consumption/biomass ratio (Q/B) for an ecosystem model in development for the EPO.

PROJECT 0.2.a: Develop and implement analytical tools for understanding the trophic ecology of			
apex predators			
	THEME: Interactions among the environment, the ecosystem. and fisheries		
	GOAL: O. Improve understanding of the EPO ecosystem		
	rove analytical tools to evaluate anthropogenic and climate impacts on the EPO		
ecosystem	uctom Crown		
EXECUTION: Ecosy Objectives	 To further develop and validate statistical tools for the analysis of complex 		
Objectives	datasets in trophic studies of apex predators.		
	 To enhance external collaborations and professional development through the 		
	analysis of Atlantic bluefin tuna diets in relation to biological and environmental		
	variables.		
Background	IATTC staff have developed an innovative approach for analyzing complex diet		
Ducital	data using classification trees. The approach has been used for regional diet		
	studies of yellowfin tuna in the EPO and for a broad-scale global comparison of		
	yellowfin, bigeye and albacore diets.		
	• To facilitate more widespread adoption of the method, it requires validation of		
	regional studies in other ocean basins, given the importance of spatio-temporal		
	differences in available prey taxa.		
	Collaboration with other scientists studying the trophic ecology of apex		
	predators can assist with validating the approach, while also enhancing		
	collaborative relationships.		
Relevance for	Optimizing statistical tools to analyse trophic data is crucial for understanding		
management	the trophodynamics of apex predators in the EPO and whether predator-prey		
	relationships may be impacted by fishing.		
	Diet analyses are fundamental for the identification of ecological functional		
	groups, which are required in the development of ecosystem models to		
	understand the potential ecological impacts of fishing.		
	Integrating environmental factors into analyses of regional studies provides		
	managers with information on effects of climate change on variation in forage		
	communities to verify observed global patterns.		
Duration	9 months		
Work plan and	• Jun 2018: data analyses		
status	• Aug – Nov 2018: Discuss preliminary outputs with collaborators and implement		
	necessary collaborator inputs into method development		
Eutomol	Nov 2018-Mar 2019: Manuscript preparation		
External collaborators	Massachusetts Division of Marine Fisheries; numerous other universities and		
Deliverables	government agencies		
Deliverables	Manuscript summarizing the revised approach, using an Atlantic-wide analysis of bluefin trophic ecology as a case study.		
	Suchin tropine ecology as a case study.		

PROJECT O.2.a: Develop and implement analytical tools for understanding the trophic ecology of apex predators

Updated: May 2020

Progress summary for the reporting period

• Improvements have been made to a statistical tool for analyzing complex diet data, developed in collaboration with scientists at CSIRO (Australia), used to represent trophic interactions in ecosystem models

Challenges and key lessons learnt

• The project is stalled pending provision of data by external collaborators and then by COVID-19.

Reports/publications/presentations

• The statistical tool is being used by various organizations, including IRD (France) and SPC.

Comments:

-

PROJECT O.2.b: An	updated ecosystem model of the tropical EPO for providing standardized
	rs for monitoring of ecosystem integrity
THEME: Interaction	s among the environment, the ecosystem, and fisheries
GOAL: O. Improve of	our understanding of the EPO ecosystem
TARGET: 0.2. Impro	ove analytical tools to evaluate anthropogenic and climate impacts on the EPO
ecosystem	
EXECUTION: Ecosys	tem Group
Objectives	Update the Ecopath ecosystem model developed for the eastern tropical
	Pacific Ocean (ETP) by Olson and Watters (2003).
	• Convert the model to Ecopath with Ecosim (EwE) software version 6.5.
	Update the model with annual catch, discards, fishing mortality and fishing
	effort data for each functional group from 1993 to present.
	Calibrate the model with new catch and effort time series to improve the
	reliability of model forecast outputs.
	Produce annual ecological indicators for inclusion in the <i>Ecosystems</i>
	Considerations report as standardized measures of ecosystem integrity.
Background	IATTC is committed, through the Antigua Convention, to ensuring the long-
	term sustainability of all target, associated and dependent species impacted
	by EPO tuna fisheries.
	Although the IATTC undertakes stock assessments for economically important
	species and ecological risk assessments (e.g. PSA, EASI-Fish) to prioritize
	research and management of non-target species, these single-species
	assessments do not take into account possible impacts on ecosystem
	dynamics through changes in the strength of trophic linkages due to
	anthropogenic and/or climate impacts.
	 Olson and Watters (2003) developed an Ecopath ecosystem model of the ETP for 1993, with dynamic simulations extended to 1999.
	 No further updates or development of ecosystem models for the EPO have
	been undertaken by the IATTC staff, due to the departure of key members
	with ecological modelling expertise.
Relevance for	 The ETP model will be available in EwE 6.5, which can more rapidly provide
management	annual updates of a range of ecological indicators to provide standardized
indiagenient	measures of the integrity of the ETP ecosystem.
	 The ETP model can be used to simulate 'what if' hypotheses relating to
	changes in fishing activities (<i>e.g.</i> use of FADs) and/or climate drivers on the
	ETP ecosystem structure, and individual functional groups and key species.
	Conservation and management recommendations for vulnerable species may
	be developed, based on model outputs.
Duration	36 months
Work plan and	Jun–July 2018: Convert model to EwE version 6.5.
status	Mar 2019: Update model with new catch data for 1993-2017.
	• Apr–May 2019: Produce ecological indicator values for 1993-2017 and run
	hypothetical fishery scenarios and present findings at SAC-10.
	Jun–Dec 2019: Collaborate with the Stock Assessment Group to update time
	series of biomass, fishing mortality and catch data for the ETP.
	• Jan–Mar 2020: Calibration of model to new data time series.

	 Apr-May 2020: Produce ecological indicator values for 1993-2018 and run hypothetical fishery scenarios and present findings at SAC-11. Jun-Dec 2020: Explore expansion of ETP model to be spatially explicit using Ecospace. Jan-Mar 2021: Update model with new data for 1993-2019 and calibrate model to new data time series. Apr-May 2021: Produce ecological indicator values for 1993-2019 and run spatially-explicit hypothetical fishery scenarios and present findings at SAC-12.
External collaborators	None
Deliverables	 A new version of the ETP model Olson and Watters (2003) that will exist in the latest version of EwE software with updated data time series of catch, effort, and also biomass and fishing mortality where available. Annual updates of ecological indicators to provide standardized measures of the integrity of the ETP ecosystem.

PROJECT O.2.b: An updated ecosystem model of the tropical EPO for providing standardized ecological indicators for monitoring of ecosystem integrity

Updated: May 2020

Progress summary for the reporting period

- Model updated with new catch data time series for 1993–2018.
- Ecological indicator values for 1993–2018 produced from new model and included in the *Ecosystem Considerations report.*
- Staff successfully completed a 1-week Ecopath training course in Florida in December 2019 to develop skills that will be necessary to construct a spatially-explicit ecosystem model of the EPO.

Challenges and key lessons learnt

The predator-prey matrix underlying the ecosystem model is based on stomach contents data from the early 1990s. The staff <u>recommends</u>, for a third time that Proposal O.1.a be funded, to obtain updated trophic samples to best represent the current dynamics of the EPO ecosystem.

Reports/publications/presentations

- Presentation at SAC-10
- <u>SAC-10-14 Ecosystem considerations</u>
- <u>SAC-10-15 Towards standardized ecological indicators for monitoring ecosystem health: an updated</u> <u>ecosystem model of the tropical EPO</u>

6. KNOWLEDGE TRANSFER AND CAPACITY BUILDING

PROJECT P.1.a: Fu	Ifil requests for development of database and data processing applications for
entities outside the IATTC	
THEME: Knowledge transfer and capacity building	
GOAL: P. Responding to requests from CPCs and other organizations	
	pond to requests by CPCs
EXECUTION: Data	Collection and Database Program
Objectives	Provide support to CPCs through the development of data collection forms and the
	most appropriate computer application to allow the collection, entry, editing and
	analysis of locally-collected datasets.
Background	IATTC staff receives requests to develop data entry and editing solutions for
	data collected by outside organizations.
	IATTC staff possesses years of experience in these tasks, which is not otherwise
	available to outside organizations.
	 Through a policy of capacity-building, the staff collaborates with outside
	organizations to develop the requested applications.
Relevance for	Through collaboration with data collectors, the staff may be granted access to new
management	sources of data.
Duration	Ongoing
Work plan and	 Currently developing an MS Access database to process FAD information
status	collected through Resolution C-16-01.
	 Request for additional form to be incorporated into the OSPESCA artisanal
	longline database.
	Evaluate ability to accept participation in additional requests as they occur.
External	OSPESCA
collaborators	
Deliverables	Completion of requested computer applications.
	 Provide technical support and training of the new applications.

PROJECT P.1.a: Fulfil requests for development of database and data processing applications for entities outside the IATTC

Updated: May 2019

Progress summary for the reporting period

• All requests received have been addressed.

Challenges and key lessons learnt

-

Reports/publications/presentations

Comments:

The current system for dealing with such requests appears adequate.

PROJECT P.1.b: Re	espond to requests for scientific analyses
THEME: Knowledge transfer and capacity building	
GOAL: P. Responding to requests from CPCs and other organizations	
TARGET: P.1. Respond to requests by CPCs	
EXECUTION: Stock	Assessment Program
Objectives	Respond to requests by CPCs and other entities in a timely manner
Background	 The information necessary for making important management decisions is often situation-dependent and evolves as discussions progress. CPCs and other entities regularly make requests for analyses and other work that is not included in the staff work plan The type of requests varies widely.
Relevance for	Many requests by CPCs are directly used to inform management decisions
management	
Duration	Ongoing
Work plan and	The workplan cannot be anticipated
status	
External	Varies
collaborators	
Deliverables	Vary. Can include reports and/or presentations to SAC and the IATTC meetings.

PROJECT P.1.b: Respond to requests for scientific analyses
Updated: October 2020
Progress summary for the reporting period
All requests received have been addressed.
Challenges and key lessons learnt
-
Reports/publications/presentations
-
Comments:
The current system for dealing with such requests appears adequate.

PROJECT Q.1.a: A	chotines Laboratory support of Yale University's Environmental Leadership	
Training Initiative	Training Initiative (ELTI) in Panama	
THEME: Knowledge transfer and capacity building		
0	GOAL: Q. Training	
	t visiting scientists and students from CPCs	
	Life-history Group	
Objectives	To support the ELTI objectives of facilitating cooperation, training and research on the conservation, rehabilitation and restoration of forest lands and watersheds in Panama, and to conserve coastal and marine living resources and ecosystems	
Background	 The Yale-ELTI Program has been holding training workshops at the Achotines Laboratory for several years and has created a teaching trail in the Achotines Forest which is a key component of their training workshops To demonstrate good stewardship of the Achotines Forest and surrounding watershed, the Achotines Laboratory has expanded its support of the ELTI Program and will serve as the host center for the ELTI Program and training workshops The ELTI training workshops have no footprint on the tuna research facilities at the Achotines Laboratory, and are restricted to the Laboratory conference center and the Achotines Forest 	
Relevance for management	The Achotines Laboratory support of the ELTI Program in Panama provides an important contribution to regional watershed restoration and conservation of coastal ecosystems in Panama	
Duration	3 years	
Work plan and status	April 2018-March 2021: Four training courses will be held each year at the Achotines Laboratory, with ELTI affiliates coordinating periodic updates and annual technical reports of activities	
External collaborators	Yale University, ELTI Program	
Deliverables	 Presentations for SAC-09, SAC-10 and SAC-11 Annual technical reports prepared by ELTI affiliates 	

PROJECT Q.1.a: Achotines Laboratory support of Yale University's Environmental Leadership Training Initiative (ELTI) in Panama

Updated: May 2020

Progress summary for the reporting period

• Six training courses, focused on the conservation, rehabilitation and restoration of forest lands and watersheds in Panama, were held at the Achotines Laboratory during April 2019-March 2020. An agreement has been finalized to continue the Achotines-ELTI initiative for the period of April 2020 through March 2021.

Challenges and key lessons learnt

Reports/publications/presentations

- Brief summaries of this initiative were included in presentations at SAC-09 and SAC-10.
- An ELTI technical report covering the April 2019-March 2020 period is in preparation.

Comments:

This initiative has been very successful. The Yale/ELTI Program has continued its focus on training for reforestation without any footprint on the tuna research facilities of the Achotines Laboratory. The IATTC has promoted good stewardship of the Achotines forest and is supporting watershed restoration and conservation of coastal ecosystems in Panama.

7. SCIENTIFIC EXCELLENCE	
PROJECT U.1.a: L	ong-term plan to strengthen research at the Achotines Laboratory
THEME: Scientifie	Excellence
GOAL: U. Strengt	hen research at the Achotines Laboratory
	engthen and diversify the research program at the Achotines Laboratory
	y Life-history Group
Objectives	• Use of Achotines Laboratory as support for a wide array of research activities under the Strategic Science Plan
	 Improved links among early life history research, stock assessment and
	management of tropical tunas under a changing climate
	 Increased use of the Laboratory as support for IATTC's capacity-building activities
Background	• A long-term (5-10 years) plan to strengthen and diversify the research program of the Laboratory is needed beyond 2020
	• The Director Coordinator of Scientific Research and members of the Early Life
	History Group have identified areas of research emphasis to be expanded and diversified
	 Planning will include improvements in infrastructure, optimal utilization of human resources and identification of new sources of funding
	• The development of the plan will also include staff internal review, review by SAC, and external review of the draft plan and research programs of the Laboratory
Relevance for	• The plan will strengthen links among early life history research, stock
management	assessment and management of tropical tunas
	• The plan will improve the use of the Laboratory to develop a program of great
	return value to IATTC Members and the goals of the Antigua Convention
Duration	16 months. The plan will be developed during 2020 and early 2021, and the
	implementation of the plan will extend long-term (5-10 years)
Work plan and	 Mid-2020 prepare a draft plan
status	Fall 2020 staff internal review of the plan
	Winter 2020-2021 external review of plan
	Early 2021 final plan developed with initial implementation of plan
External	Independent reviewers
collaborators	
Deliverables	Final plan developed by staff

PROJECT X.1.a: W	orkshop to advance spatial stock assessments of bigeye tuna in the Pacific Ocean	
	THEME: Scientific excellence	
GOAL: X. Promote	GOAL: X. Promote the advancement of scientific research	
TARGET: X.1. Con	TARGET: X.1. Continue the annual CAPAM workshops	
EXECUTION: Stoc	k Assessment Program	
Objectives	 Bring together researchers to present and discuss the development and 	
	application of spatial stock assessments	
	 Improve the bigeye tuna stock assessment 	
Background	 Properly accounting for the spatio-temporal distribution of both fishing effort and fish abundance has been one of the largest sources of uncertainty ignored in most stock assessments 	
	• Substantial progress has been made in both the statistical methodology and the practical implementation (e.g. software) of spatial stock assessment models	
	 Tagging data show substantial directional movement of bigeye tuna in the EPO. The current stock assessment model for bigeye lacks spatial structure, and does not explicitly take local depletion into account, thus resulting in apparent regime shifts in the estimated recruitment. 	
Relevance for	• Knowledge gained from the workshop will be uses to improve the bigeye tuna	
management	stock assessment	
	 Improvements in the bigeye assessment will improve management advice 	
Duration	October 2018	
Work plan and	April 2018 – invite keynote speakers	
status	 August 2018 – prepare background material 	
	October 2018 – Conduct workshop	
	November 2018 – Write workshop report	
	May 2019 – report to SAC	
External		
collaborators		
Deliverables	Workshop report	

PROJECT X.1.a: Workshop to advance spatial stock assessments of bigeye tuna in the Pacific Ocean Updated: May 2019

Progress summary for the reporting period

- The <u>workshop</u> was held in October 2018, with 10 invited presentations and 18 contributed presentations
- IATTC staff gave six presentations and conducted a tutorial on implementing spatial models in Stock Synthesis

Challenges and key lessons learnt

There are few examples of spatial models used for management advice

Reports/publications/presentations

- Six <u>presentations</u> by staff members
- A special issue of *Fisheries Research*, containing the presentations from the workshop, is in preparation

Comments:

The workshop informed the staff's assessment of bigeye in the EPO

F. PUBLICATIONS

1. Peer-reviewed journal publications

- **Compean, G.A**. 2018. Review of Management and Conservation Measures for Tropical Tunas in the Eastern Pacific Ocean. Ocean Year Book 32: 317-328.
- Frisk, M. G., Dolan, T. E., McElroy, A. E., Zacharias, J. P., Xu, H., & Hice, L. A. (2018). Assessing the drivers of the collapse of Winter Flounder: Implications for management and recovery. Journal of sea research, 141, 1-13.
- Gilman, E., Chaloupka, M., Dagorn,L., **Hall, M**., Hobday,A., Musyl,M., Picher,T., Poisson,F., Restrepo,V., Suuronen,P. Robbing Peter to Pay Paul; replacing unintended cross-taxa conflicts with intentional tradeoffs by moving from piecemeal to integrated fisheries bycatch management.January 2019.Rev Fish Biol. Fisheries Online Dec 2018
- **Griffiths, S.P**.; Allain, V.; Hoyle, S.D.; Lawson, T.A.; Nicol, S.J. 2018. Just a FAD? Ecosystem impacts of tuna purse-seine fishing associated with fish aggregating devices in the western Pacific Warm Pool Province. Fisheries Oceanography. 28: 94-112.
- Kwan, G.T., Wexler, J.B., Wegner, N.C., Tresguerres, M. 2019. Ontogenetic changes in cutaneous and branchial ionocytes and morphology in yellowfin tuna (*Thunnus albacares*) larvae. Journal of Comparative Physiology B 189:81–95 (<u>https://doi.org/10.1007/s00360-018-1187-9</u>).
- Lennert-Cody, C. E., Buckland, S. T, Gerrodette, T., Webb, A., Barlow, J., Fretwell, P., Maunder, M. N., Kitakado, T., Moore, J. E., Scott, M. D., Skaug, H. J. 2018. Review of potential line-transect
- methodologies for estimating abundance of dolphin stocks in the eastern tropical Pacific. Journal of Cetacean Research and Management, 19: 9-21.
- Lennert-Cody, C.E. Moreno, G., Restrepo, V., Román, M.H., Maunder, M.N. 2018. Recent purse-seine FAD fishing strategies in the eastern Pacific Ocean: what is the appropriate number of FADs at sea? ICES Journal of Marine Science 75 (5), 1748-1757.
- Lezama-Ochoa, N; Hall,M; Roman,M; Vogel, N. Spatial and temporal distribution of mobulid ray species in the eastern Pacific Ocean ascertained from observer data from the tropical tuna purse-seine fishery. 2019. Springer Nature B.V.pdf Online Dec 2018
- Maunder, M.N., Deriso, R.B., Schaefer, K.M., Fuller, D.W., Aires-da-Silva, A.M., Minte-Vera, C.V., Campana, S.E. 2018. The growth cessation model: a growth model for species showing a near cessation in growth with application to bigeye tuna (Thunnus obesus). Marine Biology (2018) 165:76.
- Minte-Vera, C.V., Maunder, M.N., Schaefer, K.M. Aires-da-Silva, A. M. in press The influence of metrics for spawning output on stock assessment results and evaluation of reference points: An illustration with yellowfin tuna in the eastern Pacific Ocean. Fisheries Research (https://doi.org/10.1016/j.fishres.2018.09.022)
- Pethybridge, H.; Choy, C.; Logan, J.; Allain, V.; Lorrain, A.; Bodin, N.; Somes, C.J.; Young, J.; Ménard, F.; Langlais, C.; **Duffy, L**.; Hobday, A.; Kuhnert, P.; Fry, B.; Menkes, C.; **Olson, R.** 2018. A global metaanalysis of marine predator nitrogen stable isotopes: Relationships between trophic structure and environmental conditions. Global Ecology and Biogeography. 27:1043-1055.
- Schaefer, K.M., Fuller, D.W., Aires-da-Silva, A., Carvajal, J.M., Martinez, J. and Hutchinson, M.R., 2019. Post-release survival of silky sharks (*Carcharhinus falciformis*) following capture by longline fishing vessels in the equatorial eastern Pacific Ocean. Bull. Mar. Sci. 95(3):355-369.

- Stein, M., Margulies, D., Wexler, J.B., Scholey, V.P., Katagiri, R., Honryo, T., Sasaki, T., Guillen, A., Agawa, Y., Sawada, Y. 2018. A comparison of the effects of two prey enrichment media on growth and survival of Pacific bluefin tuna, *Thunnus orientalis*, larvae. Journal of the World Aquaculture Society, 49: 240-255.
- Valencia-Gasti, J.A., Weber, E. D., Baumgartner, T., Durazo, R., Lennert-Cody, C.E. and McClatchie, S. 2018. Spring Spawning Habitat of Pacific Sardine in US and Mexican Waters. CalCOFI Reports 59: 79-85.
- Xu, H., Miller, T. J., Hameed, S., Alade, L. A., & Nye, J. A. (2018). Evaluating the utility of the Gulf Stream Index for predicting recruitment of Southern New England-Mid Atlantic yellowtail flounder. Fisheries oceanography, 27(1), 85-95.
- Xu, H., Thorson, J. T., Methot, R. D., & Taylor, I. G. (2018). A new semi-parametric method for autocorrelated age-and time-varying selectivity in age-structured assessment models. Canadian Journal of Fisheries and Aquatic Sciences, 76(2), 268-285.

2. Reports

- Clarke, S., Langley, A., Lennert-Cody, C., Aires-da-Silva, A., and Maunder, M. 2018. Pacific-wide Silky Shark (Carcharhinus falciformis) Stock Status Assessment. Western and Central Pacific Fisheries Commission Document WCPFC-SC14-2018/SA-WP-08.
- **Duffy, L.; Griffiths, S**. 2018. Ecosystem Considerations. SAC-09-11. Inter-American Tropical Tuna Commission Scientific Advisory Committee Ninth Meeting. La Jolla, CA USA. 14–18 May 2018.
- Griffiths, S.P.; Kesner-Reyes, K.; Garilao, C.V.; Duffy, L.; Roman, M. 2018. Development of a flexible ecological risk assessment (ERA) approach for quantifying the cumulative impacts of fisheries on bycatch species in the eastern Pacific Ocean. SAC-09-12. Inter-American Tropical Tuna Commission Scientific Advisory Committee Ninth Meeting. La Jolla, CA USA. 14–18 May 2018.
- Johnson, K.F., Punt, A.E. and **Lennert-Cody, C.E**. 2018. Report fo the workshop on methods for monitoring the status of eastern Tropical Pacific dolphin populations. IATTC Special Report 22.
- Lennert-Cody, C.E., Aires-da-Silva, A., Maunder, M.N. 2018. Updated stock status indicators for silky sharks in the eastern Pacific Ocean, 1994-2017. IATTC Document SAC-09-13.
- Margulies, D., Scholey, V.P., Mauser, E., Cusatti, S., Tejada, L., Wexler, J.B. Review of research at the Achotines Laboratory. IATTC Document SAC-10-18.
- Maunder, M.N. 2018. Updated indicators of stock status for skipjack tuna in the eastern Pacific Ocean. Pages 25-31 in IATTC Stock Assessment Report 19.
- Maunder, M.N., Xu, H., Minte-Vera, C., and Aires-da-Silva, A. 2018. Investigation of the substantial change in the estimated F multiplier for bigeye tuna in the eastern Pacific Ocean. IATTC Document SAC-09-INF-B.
- Maunder, M.N., Lennert-Cody, C.E., and Román, M. 2018. Stock status indicators for bigeye tuna in the eastern Pacific Ocean. Pages 18-24 in IATTC Stock Assessment Report 19
- Minte-Vera, C.V., Maunder, M.N., and Aires-da-Silva, A. 2018. Status of yellowfin tuna in the eastern Pacific Ocean in 2017 and outlook for the future. Pages 3-17 in IATTC Stock Assessment Report 19.
- Moreno, G; Murua, J; **Hall, M; Altamirano, E**; Cuevas, N; Grande, M; Moniz, I; Sancristobal, I; Santiago, J; Uriarte, I; Zudaire, I y Restrepo, V. 2018. Technical Report ISSF 19A. Workshop for the reduction of the impact of fish aggregating devices structure on the ecosystem.
- Murua, J., Moreno, G., Itano, D., Hall, M., Dagorn, L., and Restrepo, V., 2018. ISSF Skippers Workshop Round 7. ISSF Technical Report 2018-01, International Seafood Sustainability Foundation, Washington, D.C., USA..pdf

- Oedekoven, C.S., Buckland, S.T., Marshall, L., and Lennert-Cody, C.E. 2018. Design of a survey for eastern tropical Pacific dolphin stocks. IATTC Document MOP-37-02.
- Scott, M.D.; Lennert-Cody, C.; Gerrodette, T.; Chivers, S.J.; Danil, K.; Hohn, A.A.; Duffy, L.M.; Olson, R.; Skaug, H.J.; Minte-Vera, C.V.; Fiedler, P.C.; Ballance, L.T.; Forney, K.A.; Ferguson, M.C.; Barlow, J. 2018. Data available for assessing dolphin population status in the eastern tropical Pacific Ocean. Inter-American Tropical Tuna Commission, Special Report 23:1-31.
- Valero, J.L., Aires-da-Silva, A., Maunder, M.N., and Lennert-Cody, C. 2018. Exploratory spatiallystructured assessment model for bigeye tuna in the eastern Pacific Ocean. Pages 32-97 in IATTC Stock Assessment Report 19.
- Wang, S-P., Maunder, M.N., Lennert-Cody, C.E., Aires-da-Silva, A. 2018. CPUE standardization for bigeye tuna and yellowfin tuna caught by Taiwanese longline in the eastern Pacific Ocean. IATTC Document SAC-09-INF-F.
- Xu, H., Minte-Vera, C., Maunder, M.N., Aires-da-Silva, A. 2018. Status of bigeye tuna in the eastern Pacific Ocean in 2017 and outlook for the future. IATTC Document SAC-09-05.
- Xu, H., Lennert-Cody, C.E., Maunder, M.N., and Minte-Vera, C. 2018. Spatiotemporal dynamics of the dolphin-associated purse-seine fishery for yellowfin tuna in the eastern Pacific Ocean. IATTC Document SAC-09-09.

3. Conference and workshop presentations

- Duffy, L.; Griffiths, S.; Lennert-Cody, C. 2018. Can we predict vulnerability of shark species in eastern Pacific Ocean tuna fisheries using environmental drivers and life history? PICES International Symposium: Understanding Changes in Transitional Areas of the Pacific, La Paz, Mexico. 24–26 April 2018.
- **Duffy, L.; Griffiths, S.; Lennert-Cody, C**. 2018. Can we predict vulnerability of shark species in eastern Pacific Ocean tuna fisheries using environmental drivers and life history? 69th Annual Tuna Conference, Lake Arrowhead, USA, 21–24 May 2018.
- **Griffiths, S.; Duffy, L.; Roman, M**. 2018. A flexible spatially-explicit ecological risk assessment approach for quantifying the cumulative impact of tuna fisheries on data-poor bycatch species caught in eastern Pacific Ocean transition areas. PICES International Symposium: Understanding Changes in Transitional Areas of the Pacific, La Paz, Mexico. 24–26 April 2018.
- **Griffiths, S.; Duffy, L.; Roman, M.** 2018. A flexible spatially-explicit ecological risk assessment approach for quantifying the cumulative impact of tuna fisheries on data-poor bycatch species caught in the eastern Pacific Ocean. 69th Annual Tuna Conference, Lake Arrowhead, USA, 21–24 May 2018.
- Lennert-Cody, C.E., Moreno, G., Restrepo, V., Lopez, J., Román, M., Maunder, M.N. Recent purse-seine FAD fishing strategies in the eastern Pacific Ocean: What is the appropriate number of FADs at sea? ISSF Side Event at IATTC Annual Meeting, August 24, 2018, San Diego, CA.
- Lennert-Cody, C.E., Maunder, M.N., Minte-Vera, C., Xu, H., Valero, J., Aires-da-Silva, A., Lopez, J. A Multivariate Tree-based Method for Exploring Stock Structure in Multiple Data Sets. CA CAPAM workshop on the development of spatial stock assessment models, La Jolla, USA, 1-5 October 2018.
- Margulies, D., Scholey, V.P., Mauser, E., Honryo, T., Wexler, J.B., Stein, M.S., Kurata, M., Katagiri, R., Agawa, Y., Sawada, Y. 2019. Laboratory-based comparative studies of the effects of environmental and climate variables on early life stages of yellowfin tuna and Pacific bluefin tuna in Panama and Japan. 43rd Annual Larval Fish Conference, Mallorca, Spain, 20-24 May, 2019.
- Maunder, M.N. 2018. Likelihood functions for including CPUE based indices of abundance in stock assessment. CAPAM workshop on the development of spatio-temporal models of fishery catch-per-

unit-effort data to derive indices of relative abundance in La Jolla, CA, USA, February 26-March 2, 2018.

- Maunder, M.N., Thorson, J.T., Xu, H. 2018. Using spatio-temporal models of tagging data to deal with incomplete mixing. CAPAM workshop on the development of spatial stock assessment models, La Jolla, USA, 1-5 October 2018.
- Mauser, E., Margulies, D., Scholey, V., Cusatti, S., Tejada, L., Wexler, J., Stein, M., Honryo, T., Katagiri, R., Kurata, M., Agawa, Y., Sawada, Y. 2019. Comparative analysis of the laboratory growth of yellowfin tuna *Thunnus albacares* and Pacific bluefin tuna *Thunnus orientalis* larvae, and growth of early-juvenile yellowfin reared in land based tanks and a sea cage. World Aquaculture Society Annual Meeting, New Orleans, LA, USA., 7-11 March, 2019.
- Mauser, E., Margulies, D., Scholey, V., Cusatti, S., Wexler, J., Stein, M. 2019. Review of recent research activities focused on yellowfin tuna (*Thunnus albacares*) at the IATTC's Achotines Laboratory. 70th Annual Tuna Conference, Lake Arrowhead, USA, 20-23 May, 2019.
- Scholey, V.P., Margulies, D., Mauser, E. 2019. Research activities at the Inter-American Tropical Tuna Commission Achotines Laboratory. 43rd Annual Larval Fish Conference, Mallorca, Spain, 20-24 May, 2019.
- Valero, J.L. 2018. Modeling of EPO Tropical tunas and dorado. Shark-Tuna Stock Synthesis Workshop, La Jolla, Feb 21-23, 2018.
- **Valero, J.L**. 2018. Spatial models in Stock Synthesis. CAPAM workshop on the development of spatial stock assessment models, La Jolla, USA, 1-5 October 2018.
- **Valero, J.L.** 2018. Incorporating tagging data in Stock Synthesis. CAPAM workshop on the development of spatial stock assessment models, La Jolla, USA, 1-5 October 2018.
- Valero, J.L. 2018. Estrategias de ordenación: objetivos, estrategias y tácticas, RCE. Taller de entrenamiento, comunicación y evaluación de estrategias de ordenación para pesquerías de atunes en el OPO. San Diego, USA, 25-26 de agosto de 2018.
- Valero, J.L. 2018. Evaluación de estrategias de ordenación mediante simulación. Taller de entrenamiento, comunicación y evaluación de estrategias de ordenación para pesquerías de atunes en el OPO. San Diego, USA, 25-26 de agosto de 2018.
- Valero, J.L., Minte-Vera, C. 2018. Progress on MSE work at IATTC. MSE Communications Workshop, San Diego, 14-16 January 2018.
- Valero, J.L., Minte-Vera, C. 2018. Progress on MSE work at IATTC. Tuna RFMO Management Strategy Evaluation Working Group Meeting, Seattle, USA, 13-15 June 2018.
- Valero, J.L., Maunder, M. N., Haikun Xu, Minte-Vera, C., Lennert-Cody, C., Aires-da-Silva, A. 2018. Exploratory spatial stock assessment of Bigeye tuna (*Thunnus obesus*) in the EPO. CAPAM workshop on the development of spatial stock assessment models, La Jolla, USA, 1-5 October 2018.
- **Wexler, J** 2019. Tag-recapture oxytetracycline-marking experiments to investigate daily increment deposition rate in yellowfin otoliths. Workshop to evaluate bigeye and yellowfin tuna ageing methodologies and growth models in the Pacific Ocean 23-25 January, 2019 La Jolla, California, USA.
- **Wexler, J,** and Griffiths, S. 2019. A review of methods to determine prey consumption rates, gastric evacuation and daily ration of pelagic fishes: a precursor to experimental estimation for key predators in the eastern Pacific Ocean ecosystem. The 70th Tuna Conference, Lake Arrowhead, California USA, May 20-23, 2019.

- Xu, H., Lennert-Cody, C.E., Maunder, M.N., and Minte-Vera, C. 2018. Spatiotemporal dynamics of the dolphin-associated purse-seine fishery for yellowfin tuna in the eastern Pacific Ocean. 69th Annual Tuna Conference, Lake Arrowhead, USA, 21–24 May 2018.
- Xu, H., Lennert-Cody, C.E., Maunder, M.N., and Minte-Vera, C. 2018. Spatiotemporal dynamics of yellowfin tuna in the eastern Pacific Ocean. CAPAM workshop on the development of spatiotemporal models of fishery catch-per-unit-effort data to derive indices of relative abundance in La Jolla, USA, February 26-March 2, 2018.
- Xu, H., Lennert-Cody, C.E., Maunder, M.N., Minte-Vera, C., Valero, J., Lopez, J., Schaefer, K., Fuller, F., Hampton, J., and Aires-da-Silva, A. 2018. Estimating the movement rate of bigeye tuna in the eastern Pacific Ocean. CAPAM workshop on the development of spatial stock assessment models, La Jolla, USA, 1-5 October 2018.

4. Awards

The Center for the Advancement of Population Assessment Methodology (CAPAM), cofounded by Mark Maunder of the IATTC staff, received the 2018 American Fisheries Society's (AFS) William E. Ricker Resource Conservation Award for improving the quantitative methods used in fisheries stock assessment.

G. PROJECTS COMPLETED SINCE PREVIOUS REPORT

PROJECT C.4.a: Improving data collection for Central American shark fisheries

THEME: Data collection

GOAL: C. Facilitate the improvement of data quality, coverage, and reporting by CPC data collection programs

TARGET: C.4. Artisanal longline fleet

EXECUTION: Stock Assessment Program

EXECUTION: STOCK P	
Objectives	 Obtain an order-of-magnitude estimate of shark catch for the artisanal fleet. Design and test sampling protocols for estimating shark species and size composition for the industrial fleet. Produce a sampling protocol for the catch and effort of the shark artisanal fisheries that can be operatively implemented in Central America, by field-testing during Project C.4.b.
Background	 There is a critical need for stock assessments of sharks to better inform their management and conservation. This has not been possible in the EPO to date due to the lack of reliable fishery statistics from all important fisheries. In September 2017, with funding from FAO-GEF in the framework of the <i>Common Oceans</i> project, a "Workshop to Develop a Pilot Study for a Shark Fishery Sampling Program in Central America" was convened to bring together sampling design experts, and scientific and technical experts from OSPESCA's GTEAM, to discuss how to address data deficiencies. Based on recommendations from this workshop, activities were funded in 2018 under the <i>Common Oceans</i> tuna project (GCP/GLO/365/GFF) and 2019 by IATTC Capacity-Building Fund to improve data collection for Central American shark fisheries.
Relevance for	Improving catch data collection will help to fill the current data gaps and thus
management	lead to better management of shark fisheries in the EPO.
Duration	24 months
Work plan and status	 Collect data to create a Google Earth map of all landing sites of artisanal shark fisheries in Central America, with associated levels of fishing activity. Use this map to guide sampling of catches at select landing sites in Central America. Compute an order of magnitude estimate of total shark catch for the artisanal fleet from sample data and map information. Conduct a survey of industrial vessel unloading characteristics that can be used to develop catch sampling protocols. Develop and test several sampling designs for shark catch size and sex
	composition of the industrial fleet.
External collaborators	OSPESCA; Central American national authorities
Deliverables	 SAC-11-13 Pilot study for shark fishery sampling program in Central America
	- she ii is i not study for shark isnery sampling program in central America

PROJECT E.1.a	: Evaluate potential improvement of growth model for bigeye in the EPO based on	
presumed annuli counts from otoliths of large fish		
THEME: Life-history studies for scientific support of management		
GOAL: E. Life h	GOAL: E. Life history, behavior, and stock structure of tropical tunas	
TARGET: E.1. A	ge and growth of tropical tunas	
EXECUTION: B	iology and Ecosystem Program	
Objectives	Evaluate the potential improvement in accuracy of the growth model for bigeye in the EPO resulting from including more age-at-size data for large fish	
Background	 Growth model for bigeye is based on validated counts of daily otolith increments, corroborated by extensive tagging data, but age-at-size data for larger fish (150-200 cm) are lacking High-confidence tagging data for bigeye >150 cm are limited The National Research Institute for Far Seas Fisheries (NRIFSF) of Japan's collections of otoliths from large bigeye captured in the EPO are now available for evaluating age estimates from counts of presumed annuli 	
Relevance	Improving the accuracy of the bigeye growth model, particularly for larger fish, would	
for	help resolve some of the uncertainty regarding the status of the stock, and improve	
management	the framework on which management advice is based	
Duration	24 months; initiated November 2017	
Work plan and status	 Fish Ageing Services (FAS) in Australia counted annuli on 140 pairs of bigeye otoliths from up to 20 fish within each 10 cm length interval between 110 and 200 cm and estimated the ages of the fish FAS age estimates for 110-150 cm fish will be compared to published age-at-size data Growth rates for 150-180 cm fish based on EPO tagging data will be compared with 	
	growth rates based on the FAS age estimates.Age estimates from otoliths of 150-200 cm fish will be combined with the existing data set and used in an integrative growth model.	
External	NRIFSF, Japan	
collaborators		
Deliverables	 Presentation for SPC-OFP bigeye pre-assessment workshop, 2018 	
	 Potential update of bigeye growth model for use in stock assessments 	

PROJECT E.1.a: Evaluate potential improvement of growth model for bigeye in the EPO based on presumed annuli counts from otoliths of large fish

Updated: June 2019

Progress summary for the reporting period

- Annual and daily increment counts from 70 otolith pairs, from fish 80-150 cm from the South EPO, were compared.
- The daily increment counts were compared to decimal ages for 133 fish 112-207 cm from the South EPO.
- Decimal ages for fish > 150 cm were compared with the integrated growth model for fish from the EPO, including high-confidence tagging data for fish 150-201 cm.

Challenges and key lessons learnt

• The decimal age estimates based on the 70 otolith pairs are greater for fish 130-150 cm than those based on daily increment counts.

- Distinguishing annual increments is problematic.
- For fish 120-150 cm from the South EPO, the decimal age estimates are on average 1.3 years greater than the age at length for fish from the equatorial EPO estimated by the integrated growth model. For fish 150-200 cm from the South EPO, the adjusted annual increment counts estimate age at length 2.4 years greater, on average, than the integrated growth model for the equatorial EPO.
- These results indicate that the annual age estimates should not be included in a new integrated growth model for bigeye in the EPO.

Reports/publications/presentations

Schaefer, K., Fuller, D., and Satoh, K. Abstract *in* Report of the workshop on age and growth of bigeye and yellowfin tunas in the Pacific Ocean, 23-25 January 2019, La Jolla, USA

PROJECT E.2.b: \	Norkshop to evaluate differences in bigeye tuna age estimation methods and	
resulting growth models utilized in current stock assessments by the IATTC and WCPFC		
THEME: Life history studies for scientific support of management		
GOAL: E. Life history, behavior, and stock structure of tropical tunas		
TARGET: E.2. Co	TARGET: E.2. Conduct spatiotemporal research on the reproductive biology of tropical tunas	
EXECUTION: Bio	logy and Ecosystem Program	
Objectives	Resolve concerns about differences in age estimation methods and resulting growth	
	models used in bigeye tuna stock assessments by IATTC and WCPFC	
Background	Although there are documented differences in the life history characteristics of the	
	bigeye stocks from the EPO and WCPO, the magnitude of the discrepancies in the	
	estimated length-at age data, growth models, and L_{∞} estimates used in the recent	
	IATTC and WCPFC stock assessments, along with the dramatic shift in stock status of	
	WCPO bigeye population is concerning. The estimated L_{∞} from the WCPO bigeye	
	growth model is 157 cm, unrealistically low, and is highly influential in the	
	assessment model and resulting stock status determination.	
Relevance for	Age and growth models and their estimates of L_{∞} are highly influential in assessing	
management	the status of bigeye in integrated assessment models	
Duration	2 days	
Work plan and	Workshop to be held in La Jolla, November 2018, or as soon as possible in 2019	
status		
External	SPC; CSIRO and FAS, Australia; FSFRL, Japan; PIFSC	
collaborators		
Deliverables	A workshop report to be shared with all interested parties	

PROJECT H.5.a: Revise tre	end estimation methods for purse-seine silky shark indices for the EPO	
THEME: Sustainable fisheries		
GOAL: H. Research and development of stock assessment models and their assumptions		
TARGET: H.5. Improve sto	ck assessments for data-limited species	
EXECUTION: Stock Assessment Program		
Objectives	Develop new methods to estimate trends in relative abundance of silky sharks from purse-seine observer data that are less influenced by inter- annual variability in oceanographic conditions.	
Background	• Fluctuations in the index of relative abundance for juvenile silky sharks correlate with inter-annual variability in oceanographic conditions in the offshore area of the northern EPO.	
	 Recent fluctuations in the index are not biologically realistic, compromising the reliability of the index as a stock status indicator. The index based on purse-seine observer data is the only index available for management because of data deficiencies in other fisheries. 	
	 New methods are necessary to estimate more reliable trends in relative abundance for the silky shark using purse-seine observer data. 	
Relevance for	Improving the reliability of the purse-seine index will improve	
management	management advice for the silky shark in the EPO.	
Duration	9 months	
Work plan and status	• Months 1-6: develop new methods for catch-per-set standardization.	
	 Months 7-9: apply new methods to estimate a revised index. 	
External collaborators		
Deliverables	<u>SAC-10-17 Purse-seine indicators for silky sharks in the EPO</u>	
	BYC-10 INF-A Purse-seine indicators for silky sharks in the EPO	

PROJECT H.8.a:	Design a survey for dolphins in the eastern tropical Pacific Ocean (ETP)	
	THEME: Sustainable Fisheries	
GOAL: H. Improv	GOAL: H. Improve and implement stock assessments, based on the best available science	
TARGET: H.8. Ass	sess status of dolphin stocks in the eastern tropical Pacific	
EXECUTION: Stor	ck Assessment Program	
Objectives	Design, in consultation with the IATTC staff and other relevant scientists, a ship- based line-transect survey for ETP dolphin species, including development of a comprehensive budget for implementation of the survey and analysis of survey results.	
Background	 Population dynamics modelling has been the preferred approach for evaluating the stock status of ETP dolphins, and those models have relied on estimates of abundance from fishery-independent surveys that were conducted by the US National Marine Fisheries Service (NMFS). As a result of a hiatus in the NMFS surveys since 2006, there are currently no reliable indicators with which to monitor the status of ETP dolphin populations. This lack of information poses obvious problems for management. For example, the Antigua Convention requires that the status of all species potentially impacted by the tuna fisheries be monitored. In addition, abundance estimates are needed to ensure that incidental dolphin mortalities are both sustainable and insignificant, because the AIDCP stock mortality limits are based on estimates of abundance. These needs provide impetus for a new ship-based line-transect survey to obtain new estimates of absolute abundance so that population trends can be updated. 	
Relevance for	Improve the management of dolphin stocks in the ETP.	
management		
Duration	8 months	
Work plan and	 January - May: draft a report with survey design and budget. 	
status	 June-August: obtain an external review of draft the draft report and revise as 	
	necessary.	
External	University of St Andrews, Scotland	
collaborators		

PROJECT I.3.a: Eva	aluate potential reference points for dorado in the EPO	
THEME: Sustainab	THEME: Sustainable fisheries	
GOAL: I. Test harv	GOAL: I. Test harvest strategies using management strategy evaluation (MSE)	
TARGET: I.3. Evaluation of harvest strategies for data-limited species based on stock status indicators		
EXECUTION: Stock	Assessment Program	
Objectives	• Build upon the previous collaborative work and continue to develop dorado	
	stock assessment methodologies	
	 Expand the MSE for dorado by evaluating alternative reference points and 	
	harvest control rules.	
Background	 Some Members of the IATTC are interested in obtaining MSC certification for 	
	their dorado fisheries, and have requested guidance in developing of reference	
	points (RPs) and harvest control rules (HCRs).	
	 Other Members are seeking guidance regarding data collection, research 	
	efforts, and management options	
Relevance for	The results of the project, such as alternative estimates of stock status (e.g.	
management	assessments, depletion estimator), reference points, and harvest control rules,	
	could be used by the Commission, or by individual Members, in developing,	
	adopting, and subsequently modifying as necessary, a harvest strategy for dorado.	
Duration	6 months, starting January 2019	
Work plan and	Alternative RPs and HCRs will be evaluated, and their respective advantages and	
status	disadvantages will be discussed, to assist Members considering the	
	implementation of reference points and harvest control rules for dorado.	
	• The performance of alternative assessment methods, HCRs and RPs will be	
	evaluated by simulation methods, using Stock Synthesis. Candidates for the	
	different components of a management strategy (data, assessment method,	
	HCR, RPs) and the performance measures to judge such strategies will be	
	identified.	
	Options will include minimum size limits, precautionary lower CPUE levels that	
	would trigger management actions. Alternative RPs will be developed with	
	yield-per-recruit considerations, as well as alternative expected reductions of recruitment without fishing (R_0) and unfished biomass (B_0).	
External	Work to be carried out by external contractor	
collaborators		
Deliverables	 List of candidate RPs and HCRs to be tested using a management strategy 	
	evaluation (MSE) framework;	
	 Simulation study to evaluate candidate HCRs and RPs; 	
	 Written report summarizing the results; and presentation at SAC-10. 	

PROJECT I.3.a: Evaluate potential reference points for dorado in the EPO

Updated: May 2019

Progress summary for the reporting period

• A review of potential reference points (RPs) and harvest control rules (HCRs) for dorado in the South EPO was conducted, using updated catch, CPUE, and size-composition data.

Challenges and key lessons learnt

- This simulation study was delayed to accommodate work required for the bigeye assessment review in March 2019.
- The lack of stock assessments for dorado in the South EPO is problematic, since determining RPs and HCRs depends on assessment estimates.
- Obtaining complete and timely data is critical, given the dynamics of dorado and of the fishery, but this is not always easy.

Reports/publications/presentations

SAC-10-11 Potential reference points and harvest control rules for dorado in the EPO

PROJECT M.2.a: E	PROJECT M.2.a: Evaluate the post-release survival of silky sharks captured by longline fishing		
vessels in the equatorial EPO, using best handling practices			
THEME: Ecological impacts of fisheries: assessment and mitigation			
GOAL: M. Mitigating ecological impacts			
TARGET: M.2. Develop best practices for release of bycatch species			
EXECUTION: Biology and Ecosystem Program			
Objectives	Estimate the post-release survival of silky sharks captured by longline vessels in the equatorial EPO, using archival tags		
Background	 Apparent severe decline in the population of silky sharks in the EPO, based on trends in standardized catch-per-unit-of-effort indices 		
	 Domestic longline fleets from Latin America conduct multi-species fisheries including retaining silky sharks 		
Relevance for	Resolution C-16-06 on conservation measures for silky sharks stipulates to improve		
management	handling practices for live sharks to maximize post-release survival		
Duration	2016-2018		
Work plan and status	 2016-2017: 40 total silky sharks were tagged and released with satellite tags, and the resulting data have been analyzed to estimate a post-release survival rate, , and evaluate movements, dispersion, and potential entanglement in FADs 2017: A final report for this project was submitted to the EU (funding source) 2018: A manuscript is in progress and will be submitted to a scientific journal 		
External collaborators	INCOPESCA, Costa Rica; WWF, Ecuador; University of Hawaii		
Deliverables	 Silky shark post-release survival rate following capture by longline vessels, using best handling practices Presentation of preliminary results at SAC-08 Manuscript for publication in a peer-reviewed scientific journal 		

PROJECT M.2.a: Evaluate the post-release survival of silky sharks captured by longline fishing vessels in the equatorial EPO, using best handling practices

Updated: June 2019

Progress summary for the reporting period

Manuscript accepted for publication in the *Bulletin of Marine Science*.

Challenges and key lessons learnt

Reports/publications/presentations

Schaefer, K.M., Fuller, D.W., Aires-da-Silva, A., Carvajal, J.M., Martinez, J. and Hutchinson, M.R., 2019. Post-release survival of silky sharks (*Carcharhinus falciformis*) following capture by longline fishing vessels in the equatorial eastern Pacific Ocean. Bulletin of Marine Science.

PROJECT R.1.a: Workshop on training, communication and evaluation of management strategies for tuna fisheries in the EPO	
	ge transfer and capacity building
-	communication of scientific advice
•	rove communication of the staff's scientific work to CPCs
•	Assessment Program
Objectives	Provide training and enhance communication between scientists and managers on management objectives, harvest strategies and management strategy evaluation (MSE).
Background	 Several tuna RFMOs are strengthening communications among scientists, managers and other stakeholders throughout similar workshops, including an initial one for the EPO in Panama (2015). The IATTC Performance Review and Strategic Science Plan recommend improving knowledge sharing, human-institutional capacity building and communication of scientific advice.
Relevance for management	 Key elements of IATTC's management strategy, such as its harvest control rule and reference points, along with alternatives, are being evaluated via MSE. Improving participation and communication among all stakeholders is important throughout the development, evaluation and implementation of a management strategy
Duration	 Planning and organization: 1-2 weeks Workshop: 2 days (last quarter of 2018)
Work plan and status	 Form organizing committee to develop workshop agenda. Develop/tailor workshop materials (preferably in Spanish) to EPO tuna- management needs. Likely topics: Objectives, tactics and strategies, Kobe plots, harvest control rules, reference points. MSE components, development and implementation. Logistics: Confirm presenters, host country (Ecuador has expressed interest), travel, venue, accommodations, invite Commissioners (mainly from coastal CPCs). Conduct workshop with a format of both presentations and hands-on sessions with MSE "toy" models to illustrate main points, issues, trade-offs, and foster dialogue among Workshop participants.
External	WWF; Ocean Outcomes; ISSF
collaborators	
Deliverables	Workshop report and associated materials

PROJECT R.1.a: Workshop on training, communication and evaluation of management strategies for tuna fisheries in the EPO

Updated: March 2019

Progress summary for the reporting period

• The workshop was conducted in August 2018.

Challenges and key lessons learnt

• The full cycle of an MSE will need several iterations of dialogs with stakeholders.

Reports/publications/presentations

- Presentations, glossary and workshop report available on request.
- Interactive application (in Spanish) illustrating major MSE features

Comments:

The workshop was very <u>well received</u>. The participants from other t-RFMOs and institutions (FAO, ISSF, WWF, *etc.*) with direct experience of MSE greatly enriched the discussions.

SAC-11-01a – Staff activities and research plan

	and a state of binary bases and and	
PROJECT T.1.a: External review of bigeye tuna assessment		
THEME: Scientific Excellence		
GOAL: T. Implement external reviews of the staff's research		
TARGET: T.1. Facilitate external reviews of stock assessments		
EXECUTION: Stock Assessment Program		
Objectives	 Review the assessment model used for bigeye tuna 	
	 Improve the assumptions made in the assessment 	
Background	• The bigeye tuna stock assessment was last independently reviewed in 2010	
	 Several issues have been identified in the stock assessment 	
	• The CAPAM workshop series has identified several modelling good practices that	
	should be incorporated into the bigeye tuna assessment	
	• Major improvements to the stock assessment are underway, including modelling	
	of spatial structure	
	 Review of the assessment is important to get external input into improving the 	
	assessment	
Relevance for	 The results of the bigeye assessment are used for management advice 	
management	 Improvements in the stock assessment will improve the management advice 	
Duration	The project will extend over 2019, but the workshop will be a single week in Fall	
Work plan and	Early 2019: Identify review panel	
status	Mid 2019: Prepare documents describing major developments in the model	
	Fall 2019: Hold workshop	
	Fall 2019: Write workshop report	
External	Independent reviewers	
collaborators		
Deliverables	Workshop report	

PROJECT T.1.a: External review of bigeye tuna assessment

Updated: May 2019

Progress summary for the reporting period

- The <u>review</u> was conducted in March 2019 by a panel of 7 independent reviewers
- The panel identified several potential improvements to the assessment

Challenges and key lessons learnt

Several hypotheses were identified to explain the regime shift in recruitment, a few were able to substantially reduce the shift, but the cause could not be clearly identified

Reports/publications/presentations

- Presentation at SAC-10
- <u>Documents</u> prepared by the staff for the review
- <u>Report</u> of the Review panel

PROJECT T.1.b: Ex	ternal review of yellowfin tuna assessment		
THEME: Scientific Excellence			
GOAL: T. Implement external reviews of the staff's research			
TARGET: T.1. Facil	TARGET: T.1. Facilitate external reviews of stock assessments		
EXECUTION: Stock Assessment Program			
Objectives	 Review the assessment model used for yellowfin tuna 		
	 Improve the assumptions made in the assessment 		
Background	• The yellowfin tuna stock assessment was last independently reviewed in 2012		
	 Several issues have been identified in the stock assessment 		
	• The CAPAM workshop series and research on the bigeye tuna assessment have		
	identified several modelling good practices that should be incorporated into the		
	yellowfin tuna assessment		
	 Review of the assessment is important to get external input into improving the assessment 		
Relevance for	• The results of the yellowfin assessment are used for management advice		
management	 Improvements in the stock assessment will improve the management advice 		
Duration	The project will extend over 2019, but the workshop will be a single week in		
	winter		
Work plan and	Mid-2019 identify review panel		
status	• Fall 2019 prepare documents describing major developments in the model		
	Winter 2019 Hold workshop		
	Winter 2019 Write workshop report		
External	Independent reviewers		
collaborators			
Deliverables	Workshop report		

PROJECT T.1.b: External review of yellowfin tuna assessment
Updated: May 2020
Progress summary for the reporting period
Review held December 2019
Workshop report completed
Challenges and key lessons learnt
-No single model identified and multiple models need to be considered
Reports/publications/presentations
<u>Workshop report</u>
Comments: