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Inferring the depth distribution of catchability for
pelagic fishes and correcting for variations in the
depth of longline fishing gear

Peter Ward and Ransom A. Myers

Abstract: We introduce a new method that uses generalized linear mixed models to infer the depth distribution of
pelagic fishes. It uses existing data from research surveys and observers on commercial vessels to estimate changes in
catchability when longline fishing gear is lengthened to access deeper water. We infer the depth distribution of
catchability for 37 fish species that are caught on pelagic longlines in the Pacific Ocean. We show how the estimates
of catchability can be used to correct abundance indices for variations in longline depth. Our method facilitates the
inclusion of data from early surveys in the time series of commercial catch rates used to estimate abundance. It also
resolves inconsistencies in the time series caused by a rapid switch to deep longlining in the 1970s. The catchability
distribution does not always match depth preferences derived from tracking studies. Therefore, depth preferences from
tracking studies should not be used to correct abundance indices without additional information on feeding behavior.

Résumé : Nous présentons une nouvelle méthode qui utilise des modèles linéaires généralisés mixtes pour estimer la
répartition des poissons pélagiques en fonction de la profondeur. La méthode exploite les données existantes
d’inventaires scientifiques et d’observations faites sur les navires commerciaux afin d’estimer les changements de
capturabilité qui se produisent lorsqu’on allonge les palangres pour pêcher en eau plus profonde. Nous estimons la
répartition de la capturabilité en fonction de la profondeur chez 37 espèces de poissons récoltés à la palangre pélagique
dans le Pacifique. Nous démontrons comment les estimations de capturabilité peuvent servir à corriger les indices
d’abondance en fonction des variations de la profondeur des palangres. Notre méthode facilite l’inclusion de données
d’inventaires plus anciens dans la série chronologique de taux de capture commerciaux utilisée pour estimer
l’abondance. Elle permet aussi de résoudre les irrégularités dans la série chronologique causées par un passage rapide à
la pêche à la palangre en profondeur durant les années 1970. La répartition de la capturabilité ne correspond pas
toujours aux préférences de profondeur déterminées par les études qui traquent les poissons; il ne faut donc pas utiliser
les préférences de profondeurs obtenues de ces études pour corriger les indices d’abondance s’il n’existe pas de rensei-
gnements supplémentaires sur le comportement alimentaire.

[Traduit par la Rédaction] Ward and Myers 1142

Introduction

Recent analyses indicate that the state of the world’s pe-
lagic fish stocks is much worse than previously believed.
Most species of pelagic shark in the northwest Atlantic are
now declining by about 10%·year–1 (Baum et al. 2003). Ward
and Myers (2005) found that the biomass of large sharks, tu-
nas, and billfishes has fallen to one tenth of the level when
pelagic longline fishing commenced in the tropical Pacific
Ocean. Globally, the abundance of many large marine preda-
tors is now less than 10% of the pre-exploitation level
(Myers and Worm 2003).

The new perspective on the status of pelagic fishes is di-
rectly linked to the recovery of historical data from longline
surveys and commercial operations. However, critics have
challenged conclusions based on those data, pointing to un-

certainties in using longline catch rates as indices of abun-
dance. Longline fishing effort must be corrected or “stan-
dardized” for variations in fishing practices and
oceanographic conditions if abundance indices for early
years are to be comparable with indices from recent years.
The timing of longlining operations in relation to peak feed-
ing periods is an example of a historical change in fishing
practices. Ward et al. (2004) found that changes in the tim-
ing of longlining operations, which now have hooks avail-
able during dusk as well as dawn, have resulted in the
overestimation of abundance for many species in recent
years.

Another important historical change in longlining opera-
tions is the depth range of the gear (Fig. 1), which is the
topic of this article. Two methods have been used to account
for changes in the depth distribution of longline hooks. One
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method is to use generalized linear models to relate catches
to longline depth and other explanatory variables. In most
longline fisheries, however, a switch to deep gear was so
rapid in the mid-1970s that there is inadequate temporal
overlap to allow comparison of the performance of regular
and deep gear (Suzuki et al. 1977). Takeuchi (2001) con-
cluded that it was not possible to make reliable inferences
about changes in abundance from historical longline catch
and effort data.

The second method of correcting abundance indices for
longline depth is to model the species’ preferred habitat.
Oceanographic information (e.g., thermocline depth) is com-
bined with information from tracking studies (e.g., Musyl et
al. 2003) to estimate the species’ depth distribution in time
and area strata (e.g., Hinton and Nakano1996; Bigelow et al.
2002). The habitat-based model is then combined with the
inferred depth distribution of longline hooks to adjust the
fishing effort for the species’ availability in each time–area
stratum.

The previous methods required the estimation of an addi-
tional parameter for each longlining operation included in
the analysis. Consequently, estimates become increasingly
biased as the sample size increases (Kiefer and Wolfowitz
1956). The generalized linear models used the proportions of
catch at depth. However, the local abundance and gear con-
figuration vary among longlining operations, causing further
biases in the interpretation of the depth distribution derived
from catch proportions. This article describes a new method
that uses data from individual longline hooks to estimate rel-
ative catchability at depth. The lack of an adequate statistical
framework has previously precluded the use of individual
hook data to derive statistically valid estimates of the depth
distribution of catchability.

We use generalized linear mixed effect models (Wolfinger
and O’Connell 1993), which have considerable advantages
for estimating catchability at depth: (i) they allow for nonlin-
ear relationships between independent variables and the
dependent variable (mean catch), (ii) a variety of error distri-
butions (e.g., Poisson) can be modeled, and (iii) they allow
local abundance to be a random variable, providing statisti-

cally consistent estimates with improved accuracy (Robin-
son 1991).

Variations in fishing gear and oceanographic conditions
affect catchability, the part of a stock that is caught by a de-
fined unit of fishing effort. The catchability coefficient q re-
lates catch C to the species’ local abundance N and the
amount of fishing effort E:

(1) C qEN=

A reliable estimate of catchability is therefore necessary to
estimate abundance from catch and effort data (Murphy
1960). Catches are the product of catchability, local abun-
dance, and fishing effort. For longline gear, fishing effort is
often measured as the number of longline hooks available at
each depth. Our approach is to first estimate the depth distri-
bution of catchability independent of availability. We then
take availability into account by adjusting the number of
hooks at each depth by the estimated catchability.

Materials and methods

Data
We analyzed data collected by scientists involved in a re-

search survey and by observers on commercial vessels using
pelagic longlines. The data included gear dimensions for
each longlining operation, which we used to estimate the
maximum settled depth of each hook deployed. The scien-
tists and observers also reported a unique identifier, a se-
quential number, for each longline hook. Combined with the
gear dimensions, the individual hook data were used to esti-
mate the depth at which each animal was caught.

We combined three data sets. The US Pacific Oceanic
Fisheries Investigations conducted 1157 longlining opera-
tions in an area of the Pacific Ocean bounded by 175°E–
115°W and 12°S–44°N during 1950–1958 (Fig. 2). Survey
longliners used fishing gear and techniques adopted from Ja-
pan (Murphy and Shomura 1972). They typically deployed
longlines at dawn each day and retrieved in the afternoon.
They usually attached six hooks between each pair of floats,
amounting to about 240 hooks in each daily longlining oper-
ation. The maximum settled depth of the hooks ranged from
18 to 103 m (unless otherwise indicated, all hook depths
were estimated from the catenary formula reduced by 25%
for the effects of currents). The survey longliners occasion-
ally deployed longlines at night and deep longlines with up
to 21 hooks between floats (18–144 m). They mostly used
sardines (Sardinella spp.) as bait but also experimented with
saury (Scomberesox spp.), squids (Illex spp.), and various
other baits.

The second data set was from US National Marine Fish-
eries Service observers placed on commercial longliners in
the Pacific Ocean during 1994–2002. The data consisted of
8037 daily longlining operations in an area bounded by
5°N–40°N and 174°E–134°W. The longliners targeted
broadbill swordfish (Xiphias gladius) or tunas, specifically
bigeye tuna (Thunnus obesus) and yellowfin tuna (Thunnus
albacares), for domestic fresh-fish markets. To catch tunas
in tropical waters, they deployed deep longlines with sar-
dines as bait during the day with about 28 hooks between
floats (40–230 m). To catch swordfish in temperate waters,
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Fig. 1. Configuration of (a) a regular longline with six hooks be-
tween floats, like the longlines deployed by the US Pacific Oce-
anic Fisheries Investigations survey and (b) a deep longline with
28 hooks between floats, like those deployed by Hawaii-based
longliners to catch bigeye tuna. Many longliners began using
deep longlines in the tropical Pacific Ocean after 1974 and in
the tropical Atlantic Ocean after 1979.



they deployed shallower longlines (39–121 m) with shortfin
squid (Illex illecebrosus) as bait at night.

The Secretariat of the Pacific Community assembled the
third data set from data collected by observers placed on
commercial longliners during 1992–2002. The data consisted
of 1813 longlining operations in an area of the Pacific Ocean
bounded by 27°S–12°N and 138°E–172°W. Most of the
longliners targeted bigeye tuna during the day with deep
longlines consisting of about 30 hooks between floats (33–
267 m). They used saury, sardines, or squids as bait.

The longliners used similar fishing gear, e.g., comparable
hook sizes and wire leaders to connect hooks to branch
lines. The longliners monitored by US National Marine
Fisheries Service and Secretariat of the Pacific Community
observers deployed monofilament-nylon branch lines, whereas
the survey longliners used rope gear. The next section de-
scribes the random effects model that are used to account for
variations in local abundance and catches among longlining
operations. It was included to reduce the effects on
catchability of variations in bait and fishing gear among
longline operations.

Observers and survey scientists identified the species and
recorded the hook number for each animal caught. Occa-
sionally, they did not identify animals to the species level, so
that species were combined into species groups. For brevity,
we use the term species group to refer to individual species
as well as species groups. The US National Marine Fisheries
Service observers did not record the hook number for spe-
cies groups other than tunas, billfishes, and sharks.

We assumed that the mainline formed a catenary curve be-
tween each pair of floats and estimated the depth of each

hook by applying the formula presented by Suzuki et al.
(1977) to longline dimensions reported for each operation.
We assumed that the shape of the catenary curve (and there-
fore the corresponding depth of hooks) did not systemati-
cally vary along each longline or during each longline
operation. Observed depths and predicted depths are known
to vary, with ocean currents and wind having the most im-
portant influence on hook depth. Bigelow et al. (2002) esti-
mated that hook numbers 3 and 10 of longline gear with 13
hooks between floats shoaled by about 20% when subjected
to a current velocity of 0.4 m·s–1. To represent shoaling of
longlines in our study area, we reduced all depths predicted
by the catenary formula by 25%. The data were then binned
into 40-m depth categories ranging from 0–40 to 480–520 m.

We estimated catchability distributions separately for day
and night operations. Most day operations commenced at
dawn (the median deployment time was 0705 (local) with
50% beginning between 0520 and 0747). Night operations
often started at dusk (median time of 1817 with 50% be-
tween 1711 and 1930). We analyzed a total of 3155 night
operations (13 679 animals) and 7852 day operations
(32 046 animals) (Table 1).

Models
We used generalized linear mixed effect models (Wolfinger

and O’Connell 1993) to estimate parameters that describe
the shape of the depth distribution of catchability of each
species group. The catch of each species group in longlining
operation i at depth D was assumed to follow an over-
dispersed Poisson distribution with a mean of µi,D. The as-
sumption of a Poisson distribution is reasonable because
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Fig. 2. Geographical ranges of data sets used to derive the depth distribution of catchability for each species. The data were collected
by longline surveys under the US Pacific Oceanic Fisheries Investigations and compiled by the Secretariat of the Pacific Community
from observers on commercial longliners operating in the western Pacific and by observers placed on Hawaii-based longliners by the
US National Marine Fisheries Service. The Hawaii longliners targeted swordfish in the North Pacific or bigeye tuna in the tropical
Pacific Ocean.



only a small proportion of the hooks are occupied by a spe-
cies group, e.g., the mean percentage of hooks occupied by
one of the most abundant species, yellowfin tuna, was
1.7% ± 4.1% SD.

For each species group, the model predicts the mean catch
µi,D using a log link:

(2) log( ) log( ), ,µ λ γ γ γi D i i DD D D H= + + + +1 2
2

3
3

where λi and γj are parameters estimated for each species
group and the offset Hi,D is the number of hooks H deployed

at depth D of longlining operation i. Our method includes a
random effects model that accounts for variations in the lo-
cal abundance of each species. We assumed that the log
abundance of the species group, when it is encountered, fol-
lowed the random effects distribution, which we assumed to
be a normal distribution,

λ µ σi N~ ( , )2

The regression coefficients γj in eq. 2 describe how
catchability changes with depth (µ represents catch, H is
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No. modeled

Common name Scientific name Day Night

Tunas and tuna-like species
Albacore tuna Thunnus alalunga 2777 1267
Bigeye tuna Thunnus obesus 2980 1819
Skipjack tuna Katsuwonus pelamis 2771 241
Wahoo Acanthocybium solandri 528 122
Yellowfin tuna Thunnus albacares 3131 1417

Billfishes
Black marlin Makaira indica 225 98
Blue marlin Makaira nigricans 1902 593
Broadbill swordfish Xiphias gladius 1277 2332
Sailfish Istiophorus platypterus 402 148
Shortbill spearfish Tetrapturus angustirostris 2477 269
Striped marlin Tetrapturus audax 2726 743

Other teleosts
Barracudasa Sphyraena spp. 240 0b

Escolar Lepidocybium flavobrunneum 266 107
Great barracuda Sphyraena barracuda 102 0b

Lancetfishesa Alepisaurus spp. 358 0b

Longnosed lancetfish Alepisarus borealis 46 0b

Mahi mahi Coryphaena hippurus 349 157
Oilfish Ruvettus pretiosus 254 96
Opah Lampris guttatus 197 0b

Pomfretsa Family Bramidae 179 35
Shortnosed lancetfish Alepisaurus brevirostris 53 7
Sickle pomfret Taractichthys steindachneri 20 0b

Snake mackerel Gempylus serpens 102 113
Sharks and rays

Bigeye thresher shark Alopias superciliosus 956 139
Blue shark Prionace glauca 3050 2444
Common thresher shark Alopias vulpinus 30 0b

Crocodile shark Pseudocarcharias kamoharai 384 84
Dusky shark Carcharhinus obscurus 54 0b

Grey reef shark Carcharhinus amblyrhynchos 25 0b

Long-finned mako shark Isurus paucus 153 0b

Oceanic whitetip shark Carcharhinus longimanus 1910 494
Pelagic stingray Dasyatis violacea 356 204
Short-finned mako shark Isurus oxyrinchus 665 388
Silky shark Carcharhinus falciformis 1019 362
Silver-tip shark Carcharhinus albimarginatus 29 0b

Tiger shark Galeocerdo cuvier 34 0b

Whip stingray Dasyatis akajei 19 0b

aOccasionally, observers did not identify animals to the species level. Consequently, we modeled data for
species groups (e.g., barracudas (Sphyraena spp.)) separately to data for identified species (e.g., great barracuda
(Sphyraena barracuda)).

bInsufficient numbers caught to allow reliable parameter estimation.

Table 1. Common and scientific names of each species or species group analyzed and the
number of animals modeled for day and for night longlining operations.



fishing effort, and the γj parameters represent catchability in
eq. 1). For each species group, we sequentially tested in-
creasingly complex functional forms of eq. 2 to find the
most appropriate model. We initially fitted eq. 2 with γ1 =
γ2 = γ3 = 0 and then tested the model in which we estimated
γ1 while constraining the quadratic and cubic parameters to
zero. We sequentially added other γj parameters until the in-
crease in the fit of the model was not significant as judged
by a likelihood ratio test. The cubic model adequately de-
scribed most of the variation in depth; including additional
terms had very little effect on parameter estimates.

We then used parameter estimates, denoted by the “hat”
symbol, from eq. 2 to estimate the catchability of each spe-
cies group as a function of hook depth D (metres):

f D D D D( ) ( � � �= + + +exp α γ γ γ1 2
2

3
3)

where α is chosen such that the mean of f(D) equals one
over the depth range considered. We refer to these standard-
ized f(D) as the depth distribution of catchability or simply
the catchability distribution.

Correcting abundance indices for depth effects
To correct abundance indices for variations in longline

depth, we can apply our estimates to data where gear dimen-
sions are known for each operation. They can also be used to
correct indices for changes in catchability when only the
proportion of gear configurations is known. In almost all
cases, the longline configuration is identical between floats
and symmetrical. Therefore, the number of depths k that
needs to be considered for each gear configuration is half the
number of hooks between floats. We then estimated qg, which
is the average catchability of the species group for gear con-
figuration g:

q f D p Dg k
k

g k= ∑ ( ) ( )

where pg(Dk) is the proportion of hooks at depth Dk. For
each year, the catchability averaged over all gear configura-
tions is

q P qy y g
g

g= ∑ ,

where Py,g is the proportion of longlining operations using
gear configuration g in year y. For each species group, we
standardized the average catchability q y by dividing it by its
value in the first year of the time series.

We illustrate the effect of the depth correction by applying
it to a time series of annual catch rates for Japan’s longline
fleet operating in the southern Atlantic Ocean. Estimation of
the average annual catchability used the depth distribution of
catchability combined with changes in gear configurations
reported by Suzuki et al. (1977) and Uozumi and Nakano
(1996). For each year, we divided the species’ catch rate by
our estimate of its average catchability for all gear configu-
rations q y. We then standardized the estimate by dividing it
by the average catchability in 1975 (the first year of the time
series).

Results and discussion

Precision of depth estimates
The application of our estimates of the depth distribution

of catchability should not be affected by uncertainty over the
depths of longline hooks estimated by the catenary formula.
It is true that observed depths (obtained using depth sensors)
and predicted depths often differ. The weight of the longline
causes a gradual shortening in the distance between floats
during the operation. Consequently, longline hooks may sink
to deeper depths than those predicted by the catenary for-
mula. At the same time, wind and current sheer may cause
hooks to rise towards the surface or “shoal” (Hanamoto 1987;
Mizuno et al. 1999). However, we contacted several observ-
ers and longline fishers who pointed out that commercial
fishers adjust their fishing practices to maximize the avail-
ability of longline hooks to target species, such as deep-
dwelling bigeye tuna. Since the 1980s, many longliners have
used Doppler current profilers to monitor the velocity and
direction of subsurface currents. Most fishers minimize
shoaling by deploying their longline in the same direction as
prevailing currents. Furthermore, the predicted depth distri-
butions of the hooks are surrogates for their true, but un-
known, depth distributions. Our approach does not require
accurate depth estimates because exactly the same methods
and corrections that we used to estimate depth for our mod-
els can be applied to the longline data that are being corrected.
By contrast, the depth estimates from tracking studies that
are used in habitat-based models are not calibrated against
longline depth.

Various factors may influence the depth distribution of
catchability derived from observer data, e.g., spatial and sea-
sonal variations in wind, currents and thermal structure and
differences in fishing practices and gear among fleets. Our
presentation of one night and one day distribution for each
species should not preclude further investigation of the im-
portance of those influences on depth distributions.

Ecological groups
We derived reliable estimates of the depth distribution of

catchability for 37 species groups over a depth range of 18–
512 m for day operations (Fig. 3) and for 24 species groups
over 28–504 m for night operations (Fig. 4) (Appendix A
provides parameter estimates for each species). The species
groups show considerable variability in the distribution of
catchability. The distributions indicate at least three distinct
ecological groups, which should be considered separately in
ecosystem models: epipelagic species that feed in surface
waters (<200 m) during the day, wide-ranging pelagic spe-
cies whose catchability does not vary over the observed depth
range, and mesopelagic species that feed at intermediate and
deep depths (>200 m) by day and then range more widely at
night. Few species groups show high catchability at interme-
diate depths (200–400 m).

Swordfish, blue shark (Prionace glauca), and yellowfin
tuna are members of the wide-ranging pelagic group. Their
daytime catchability shows only minor variations over the
observed depth range (Fig. 3). Tracking studies indicate that
they range throughout the epi- and meso-pelagic zones (e.g.,
Carey and Robison 1981; Carey and Scharold 1990; Holland
et al. 1990a).
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The epipelagic group includes oceanic whitetip shark
(Carcharhinus longimanus), dusky shark (Carcharhinus
obscurus), skipjack tuna (Katsuwonus pelamis), mahi mahi
(Coryphaena hippurus), wahoo (Acanthocybium solandri),
and all billfishes except swordfish. They were most often
caught in surface waters above the thermocline (about 140 m
in the tropical Pacific Ocean) during the day (Fig. 3). How-
ever, some were also caught on deep hooks. This is probably
because animals may be caught when “deep” hooks pass
through surface waters during longline deployment and re-
trieval (Boggs 1992).

Diel variation
Comparisons of catchability for day and night operations

(Figs. 3 and 4) reveal patterns of diel variation among the
mesopelagic species that probably represent vertical migra-
tion. The catchability of bigeye tuna, for example, increases
with depth during the day, whereas it shows a much more
uniform distribution at night. Our interpretation is that visi-
bility is critical to the vertical distribution of large predators
like bigeye tuna in the open ocean. They have several physi-

ological adaptations, such as large eyes, that provide acute
vision and allow them to hunt at low light levels (Pereira
1996). They feed below the sunlit zone during the day where
they can avoid detection by their prey. At night, they range
more widely because the ocean is almost uniformly dark.
The distributions of other large predators indicate patterns of
vertical migration that are similar to that of bigeye tuna, e.g.,
albacore tuna (Thunnus alalunga), escolar (Lepidocybium
flavobrunneum), and bigeye thresher shark (Alopias super-
ciliosus).

Visibility is also critical for predator avoidance by small
species, such as snake mackerel (Gempylus serpens), which
are the prey of large tunas, billfishes, and sharks (Kitchell et
al. 1999; Rosas-Alayola et al. 2002). These small species
concentrate at deep depths, below the sunlit zone during the
day, where they can avoid their predators. At night, they
venture into surface waters. Several epipelagic species show
the opposite pattern, concentrating in surface waters during
the day and then ranging more widely at night, e.g., shortbill
spearfish (Tetrapturus angustirostris) and striped marlin
(Tetrapturus audax).
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Fig. 3. Estimates of the depth distribution of catchability f(D) (thick line) with the 95% prediction intervals (thin lines) for day long-
lining operations. The mean catchability has been set to 1 to facilitate comparison between species and species groups.



The depth distribution of catchability does not change
markedly between day and night for several species, e.g.,
skipjack tuna, mahi mahi, and sailfish (Istiophorus pla-
typterus). These epipelagic species are most abundant in sur-
face waters. Hook-timer experiments (e.g., Boggs 1992)
confirm that they are often caught in surface waters, particu-
larly during longline deployment and retrieval. Night long-
lining operations caught fewer species groups than day
operations, and the night depth distributions for several
epipelagic species are poorly estimated compared with the
estimates of their daytime distributions. This is partly due to
differences in sample sizes (we analyzed 3155 night opera-
tions compared with 7852 day operations). The poor esti-
mates of night distributions might also be related to diel

variations in feeding activity. Stomach content analyses
indicate reduced feeding activity among many epipelagic
species at night. Analyses of the stomach contents of sailfish
by Rosas-Alayola et al. (2002), for example, show that this
species feeds mainly in surface waters during the day.

Comparison with tracking studies
For several species groups, the depth preferences derived

from acoustic telemetry in the open ocean can be compared
with the catchability distributions that we derived from long-
line data. The tracking studies are mostly limited to large,
commercially important species of tunas and billfishes and
several shark species (Table 2). Each study involved small
numbers fitted with acoustic transmitters and tracked for
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Fig. 4. Estimates of the depth distribution of catchability f(D) (thick line) with the 95% prediction intervals (thin lines) for night
longlining operations. The mean catchability has been set to 1.



several days. Recent studies using archival tags (e.g., Musyl
et al. 2003) have allowed the depth preferences of animals to
be estimated over longer periods, thereby providing a more
complete understanding of their behavior.

Our estimates of catchability distributions from longlining
operations provide a good match to the tracking data in sev-
eral cases (Fig. 5). For example, tagged black marlin
(Makaira indica) spent most of the day in surface waters,
which matches the catchability distribution (Fig. 5g). For
bigeye tuna, however, the tracking data show patterns differ-
ent from the catchability distribution (Figs. 5a and 5b). The

inconsistencies between catchability distributions and depth
preferences may be due to the small numbers of animals
tracked or differences in behavior and oceanographic condi-
tions between our broad study area and the areas where the
animals were tracked. Eight of the yellowfin tuna tracked by
Holland et al. (1990a) (Fig. 5c), for example, were associated
with fish-aggregating devices. Those animals were found to be-
have quite differently from yellowfin tuna in the open ocean.

The inconsistencies between the depth distribution of
catchability and depth preferences derived from tracking
studies might also reflect a mismatch between the estimated
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Species Device
No. of
animals

Time at
liberty Location Reference

Bigeye tuna Archival tags 4 9–76 days Southwestern Hawaii Musyl et al. 2003
Yellowfin tuna Ultrasonic transmitters 11 5 h – 6 days Hawaii Holland et al. 1990a
Blue marlin Ultrasonic transmitters 5 24–42 h Hawaii Holland et al. 1990b
Black marlin Ultrasonic transmitters 4 18–24 h Northeastern Australia Pepperell and Davis 1999

Table 2. Details of tracking data used to estimate the proportion of time spent at each depth.

Fig. 5. Estimates of the depth distribution of catchability f(D) of longline-caught fishes (thick line) compared with the percentage of
time at each depth for tracked animals (histograms) for day and night periods: (a, b) bigeye tuna, (c, d) yellowfin tuna, (e, f) blue
marlin, and (g, h) black marlin. Where available, standard errors (vertical lines) are shown for the mean percentage of time at depth.
Thin lines are 95% prediction intervals for catchability.



depth of longline hooks and tracking depths or differential
vulnerability to longline fishing gear. It is quite possible for
a species to be abundant at depths where they have a re-
duced vulnerability to the gear. For example, bigeye tuna
might be present in surface waters during the day but not
caught on longline hooks there because they are not feeding
or cannot detect the baits. This is not of concern because we
intend the estimates of catchability to be used to correct
abundance indices derived from longline data. However, the
mismatch between catches on longline hooks and the spe-
cies’ depth preference is a flaw in habitat-based models that
are solely based on tracking data. Tracking data show an an-
imal’s depth preference, which may not always match the
species’ vulnerability to longline fishing gear. From an anal-
ysis of simulated data for blue marlin (Makaira nigricans),
Goodyear (2003) concluded that the propensity of the spe-
cies to take longline baits and the actual depth profile of the
fishing gear strongly influenced habitat-based model esti-
mates of abundance. The development of statistical habitat-
based models, which fit observed catches (Hinton and
Maunder 2003), may help to correct for differences between
depth preferences and vulnerability.

An alternative to our approach is to use hook-timers that
record the time and depth when each animal was caught
(e.g., Boggs 1992). However, a very large number of hook-
timer experiments are required to derive reliable estimates of
depth preference. For example, Matsumoto et al. (2001) ana-
lyzed over 300 longlining operations, each deploying 10–
163 hook-timers. However, that number of experiments was
not large enough to obtain reliable estimates of depth prefer-
ence.

Environmental constraints on depth distribution
The tracking studies show that environmental conditions

set broad limits to the vertical distribution of each species.
Those limits will also apply to the depth distribution of
catchability. For example, Brill et al. (1993) concluded that
sharp gradients in water temperature between the mixed
layer and deeper waters represented a barrier to vertical mi-
grations of striped marlin near Hawaii. Other conditions,
such as oxygen concentration, are also known to limit the
vertical distribution of pelagic fishes (Hanamoto 1987).
The efficacy of those thresholds will vary seasonally, spa-
tially, among species, and with body size (Dagorn et al.
2000). Caution is required in applying our estimates of
catchability distributions to regions outside the study area.
For example, the shallow thermocline in the tropical east-
ern Pacific Ocean results in very low catch rates of striped
marlin on longline hooks below about 100 m (Matsumoto
and Miyabe 2002). By contrast, our estimates indicate an
average level of catchability for striped marlin below
100 m (Figs. 3 and 4).

Further work is required to determine whether our esti-
mates can be applied to other regions. Several organizations
hold hook-level data that we could not access, e.g., data col-
lected by British observers on longliners in the Indian Ocean
and surveys by Japan’s National Research Institute of Far
Seas Fisheries. Such data sets should be used to test the hy-
pothesis that the shape of a species’ catchability distribution
does not vary among regions or seasons but is compressed or
extended by local conditions that limit the species’ depth

range. Data were not available to model the effects of body
size on the depth distribution of each species, but we expect
further work to show that larger animals generally have a
wider depth range.

Correcting longline catch rates
There are two ways that our estimates of the depth distri-

bution of catchability can be used to improve estimates of
abundance. First, correction factors can be applied to
operation-level data where gear dimensions and the number
of hooks between floats are known for each operation. Such
data exist for a large number of longline surveys conducted
before commercial fishing commenced (e.g., Wathne 1959)
and for more recent research cruises and monitoring pro-
grams. Ward and Myers (2005) illustrated how the correc-
tion factors can adjust abundance indices derived from
longline surveys in the 1950s and commercial operations in
the 1990s.

The second application of our estimates is to correct abun-
dance indices for changes in depth when only the proportion
of gear configurations is known. Japan’s longliners rapidly
switched  from  regular  longlining  (<120  m)  to  deep  long-
lining (deepest hooks ranging beyond 120 m) in the Atlantic
Ocean in the late 1970s (Fig. 6a). The introduction of deep
longlining had virtually no effect on the catchability of
yellowfin tuna and swordfish (Figs. 6b and 6c). Catchability
declined for marlins and sailfish but increased by 60% for
bigeye tuna and by 40% for albacore tuna. While these changes
warrant their inclusion in assessment models, they are less
than those estimated by the early nonstatistical habitat-based
models (e.g., Hinton and Nakano 1996).

The application of our depth correction to annual catch
rates of longliners in the southern Atlantic Ocean illustrates
how variations in gear configurations can affect estimates of
abundance. We have previously advised caution in applying
our estimates of catchability to regions outside the study
area; this application to the southern Atlantic Ocean is only
intended to illustrate how the estimates can be used. The use
of longline catch rates as indices of abundance is also sub-
ject to debate (R.A. Myers and A.M. Edwards, unpublished
data). The introduction of deep longlines resulted in the
overestimation of bigeye tuna abundance but had a relatively
small effect on abundance indices for other species (Fig. 7).
In absolute terms, the effect is small on estimates of blue
marlin, sailfish, and albacore tuna because of the significant
decline in the abundance of those species well before the
switch to deep longlining (Myers and Worm 2003). Further-
more, deep hooks take about 30 min to move through shal-
low and intermediate depths during longline deployment and
retrieval. Consequently, catches are smeared over a range of
depths (Boggs 1992).

The effects of the increased depth range on catchability
indicate that the 90% decline in the abundance of tunas and
billfishes reported by Myers and Worm (2003) would be an
underestimate. This is because the animal community has
been modified so that most of the biomass is now concen-
trated in swordfish, bigeye tuna, and yellowfin tuna, which
declined less dramatically than other species. The catchability
of target species has not changed or it has increased. Al-
though the catchability of marlins and sailfish has declined,
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they now constitute only a small part of the pelagic fish
community available to longline fishing gear.

In summary, we have demonstrated a method where abun-
dance indices derived from longline catch rates can be cor-

rected for historical variations in the depth range of the fish-
ing gear. The method is relatively simple to apply and uses
existing data that previously lacked the appropriate statisti-
cal framework for analysis. It can be applied to bycatch spe-
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Fig. 6. Historical variations in gear configurations and catchability.
(a) Number of hooks between floats deployed by Japan’s longline
fleet in the tropical Atlantic Ocean (modified from Yokawa and
Uozumi (2001)). Hooks between floats is a rough indicator of
longline depth range (for these operations, six hooks between
floats produces a depth range of about 50–150 m compared with
50–300 m for a configuration with 14 hooks between floats).
(b) Estimated change in average catchability over all gear configu-
rations qy used by the tropical Atlantic fleet relative to the 1975
gear configuration. (c) Change in the depth distribution of
catchability qg relative to the gear configuration with three hooks
between floats for six species taken by the tropical Atlantic fleet.

Fig. 7. Abundance indices of four species in the southern Atlan-
tic Ocean (modified from Myers and Worm (2003)) with (solid
line) and without (broken line) the depth correction from Fig. 6c.
Species are as follows: (a) albacore tuna, (b) bigeye tuna,
(c) blue marlin, and (d) sailfish.



cies that have not been the subject of tracking studies and it
accommodates early data where only approximate gear char-
acteristics are known and detailed oceanographic data are
not available. Our method also eliminates the confounding
in other statistical methods caused by the rapid switch to
deep longline gear in the 1970s. Thus, we reject the claim by
Takeuchi (2001) that abundance indices cannot be corrected
for historical changes in the depth of longline hooks.

Longliners have maintained catch rates of target species
by improving the efficiency of their fishing gear (Stone and
Dixon 2001), increasing soak time, ensuring that hooks are
available at peak feeding periods (Ward et al. 2004), and by
extending the geographical limits of fishing grounds (Myers
and Worm 2003). In the 1970s, they also began to exploit a
much greater depth range. Our analyses show that deep
longlining has resulted in the underestimation of the abun-
dance of several epipelagic species (e.g., sailfish). However,
it has resulted in the overestimation of the abundance of sev-
eral pelagic species, including target species like bigeye tuna.
Those large predators not only support valuable fishing in-
dustries, they have unique ecological roles, influencing the
diversity and abundance of lower trophic levels.
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Appendix A. Estimates of depth distribution parameters derived from pelagic longline data.

We used generalized linear mixed effect models with a Poisson distribution to model the mean catch µ of each species or
species group in longline operation i at depth D. The model predicted the mean catch using a log link:

log( ) log( ), ,µ λ γ γ γi D i i i DD D D H= + + + +2
2

3
3

where the “offset” Hi,D is the number of hooks deployed at depth D in longline operation i, and λi is the random effects distri-
bution for the species in operation i (we assumed that the log abundance of the species encountered by each operation follows
a normal distribution). The regression coefficients γj describe how the species’ catchability varies with depth. For each spe-
cies, we used the GLIMMIX macro in SAS (version 8.0) to fit the models separately to day (Table A1) and night longlining
operations (Table A2). We also investigated the alternative assumption of extrabinomial variation, which gave results very
similar to those of the Poisson distribution. We report only the Poisson results because they are simpler to interpret.
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Parameter

Common name No. modeled λ γ1 γ2 γ3

Tunas and tuna-like species
Albacore tuna 2777 –6.47 (0.04) 9.44 (0.43) –20.34 (1.39) 13.81 (1.34)
Bigeye tuna 2980 –6.44 (0.05) 7.83 (0.48) –12.25 (1.45) 7.20 (1.33)
Skipjack tuna 2771 –5.38 (0.06) –0.09 (0.63) –9.69 (2.12) 10.97 (2.10)
Wahoo 528 –5.68 (0.14) –6.88 (2.51) 4.46 (12.34) 4.95 (15.94)
Yellowfin tuna 3131 –5.48 (0.04) 1.73 (0.39) –6.05 (1.35) 5.32 (1.37)

Billfishes
Black marlin 225 –6.06 (0.25) –9.48 (4.28) 22.77 (19.67) –16.81 (23.33)
Blue marlin 1902 –5.81 (0.08) –3.77 (1.06) 1.83 (3.78) 1.86 (3.89)
Sailfish 402 –5.81 (0.14) 148.00 (2.22) 8.61 (9.28) 2.61 (10.43)
Shortbill spearfish 2477 –4.79 (0.07) –7.95 (0.84) 4.31 (2.97) 3.34 (3.03)
Striped marlin 2726 –5.11 (0.06) –3.82 (0.77) –2.30 (2.62) 6.29 (2.61)
Swordfish 1277 –6.94 (0.14) 2.74 (1.61) –11.45 (5.38) 11.84 (5.24)

Other teleosts
Barracudas 240 –5.45 (0.20) –19.17 (3.87) 47.12 (19.04) –32.90 (23.27)
Escolar 266 –6.71 (0.19) 8.72 (3.24) –21.67 (16.64) 6.73 (24.41)
Great barracuda 102 –4.91 (1.44) –8.86 (33.83) –45.90 (232.52) 178.29
Lancetfishes 358 –6.20 (0.15) 9.50 (2.22) –30.57 (9.56) 31.86 (11.61)
Longnosed lancetfish 46 –6.27 (0.81) –20.84 (16.97) 93.31 (92.41) –74.91 (136.92)
Mahi mahi 349 –4.41 (0.18) –25.17 (4.32) 86.37 (29.58) –108.34 (58.60)
Oilfish 254 –7.72 (0.30) 9.58 (4.95) –29.23 (24.06) 25.94 (32.87)
Opah 197 –8.24 (0.33) 8.81 (4.78) –0.74 (20.18) –17.56 (24.37)

Table A1. Parameter estimates and the number of each species or species group modeled for day longlining operations (standard errors
of each estimate are in parentheses).
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Parameter

Common name No. modeled λ γ1 γ2 γ3

Pomfrets 179 –6.95 (0.31) 6.69 (4.92) –29.87 (21.93) 38.71 (26.09)
Shortnosed lancetfish 53 –7.41 (0.45) –2.93 (6.33) 51.76 (27.49) –70.62 (35.01)
Sickle pomfret 20 –8.87 (1.08) 20.50 (17.01) –73.37 (79.15) 102.60 (106.75)
Snake mackerel 102 –6.34 (0.33) –11.78 (6.06) 63.10 (30.00) –72.36 (42.00)

Sharks and rays
Bigeye thresher shark 956 –8.08 (0.21) 7.88 (1.98) –12.95 (5.69) 8.52 (4.98)
Blue shark 3050 –5.43 (0.05) 0.35 (0.52) –0.77 (1.68) –0.16 (1.62)
Common thresher shark 30 –7.67 (1.52) –2.40 (27.45) 59.64 (149.25) –135.85 (247.22)
Crocodile shark 384 –7.79 (0.30) 7.17 (3.18) –18.88 (9.83) 16.39 (9.14)
Dusky shark 54 –4.55 (0.57) –19.05 (7.22) 47.48 (25.06) –35.91 (25.48)
Grey reef shark 25 –6.51 (0.56) 3.43 (16.68) –46.59 (130.00) 101.53 (283.53)
Long-finned mako shark 153 –6.00 (0.29) –6.66 (4.00) 9.83 (14.42) –1.46 (14.66)
Oceanic whitetip shark 1910 –4.92 (0.07) –9.85 (0.97) 11.61 (3.48) –2.09 (3.56)
Pelagic stingray 356 –5.85 (0.15) –9.97 (2.65) 28.78 (12.82) –24.50 (16.14)
Short-finned mako shark 665 –6.14 (0.18) –9.11 (2.33) 26.32 (8.22) –22.57 (8.45)
Silky shark 1019 –5.17 (0.08) –3.56 (1.00) –4.43 (3.76) 9.90 (4.02)
Silver–tip shark 29 –6.34 (0.66) 12.75 (15.51) –162.55 (105.60) 407.47 (211.62)
Tiger shark 34 –5.03 (0.69) –27.92 (10.81) 91.35 (43.29) –87.35 (49.00)
Whip stingray 19 –2.69 (0.86) –75.92 (15.42) 298.97 (64.83) –322.17 (76.22)

Table A1 (concluded).

Parameter

Common name Number modeled λ γ1 γ2 γ3

Tunas and tuna-like species
Albacore tuna 1267 –4.92 (0.17) –3.99 (2.17) 14.44 (8.43) –13.26 (9.83)
Bigeye tuna 1819 –5.53 (0.07) –1.50 (1.00) 8.32 (4.10) –7.84 (4.76)
Skipjack tuna 241 –5.63 (0.26) –10.47 (4.74) 39.32 (24.12) –44.72 (34.83)
Wahoo 122 –6.12 (0.29) –3.83 (8.24) –12.18 (64.44) 59.35 (128.00)
Yellowfin tuna 1417 –5.00 (0.07) –7.97 (1.14) 25.43 (5.58) –25.02 (7.89)

Billfishes
Black marlin 98 –5.57 (0.24) –21.65 (8.46) 151.63 (77.45) –310.27 (189.09)
Blue marlin 593 –5.70 (0.10) –7.35 (1.91) 24.06 (9.64) –22.96 (13.05)
Sailfish 148 –6.19 (0.21) 1.58 (5.16) –39.99 (34.39) 69.81 (47.04)
Shortbill spearfish 269 –6.56 (0.29) –0.08 (4.34) 8.10 (18.86) –16.20 (23.66)
Striped marlin 743 –6.35 (0.16) 0.88 (2.37) 6.05 (10.39) –12.54 (13.72)
Swordfish 2332 –6.22 (0.07) 16.38 (0.95) –47.07 (3.54) 39.58 (3.87)

Other teleosts
Escolar 107 –6.55 (0.28) 6.57 (5.19) –28.51 (26.10) 37.79 (35.79)
Mahi mahi 157 –6.09 (0.23) 3.88 (5.65) –48.80 (37.60) 74.12 (51.85)
Oilfish 96 –6.25 (0.43) –17.73 (14.76) 268.21 (144.36) –854.80 (410.20)
Pomfrets 35 –6.58 (0.54) –5.46 (13.57) 75.28 (99.03) –177.15 (195.89)
Shortnosed lancetfish 7 –4.76 (1.18) –32.04 (17.98) 145.64 (69.78) –168.07 (79.16)
Snake mackerel 113 –5.99 (0.29) –6.92 (9.85) 48.80 (95.07) –133.89 (243.15)

Sharks and rays
Bigeye thresher shark 139 –6.58 (0.29) –1.20 (4.43) 10.49 (18.75) –16.13 (22.29)
Blue shark 2444 –5.00 (0.07) 5.79 (0.84) –19.62 (3.15) 17.38 (3.34)
Crocodile shark 84 –6.55 (0.40) 1.44 (5.97) –4.02 (24.39) 4.66 (27.48)
Oceanic whitetip shark 494 –4.97 (0.11) –17.14 (2.39) 66.41 (14.78) –77.27 (26.39)
Pelagic stingray 204 –6.00 (0.24) –5.54 (6.86) 43.57 (56.22) –119.38 (127.20)
Short-finned mako shark 388 –5.74 (0.20) –13.66 (3.31) 58.33 (16.64) –66.17 (24.42)
Silky shark 362 –4.99 (0.12) –3.90 (2.71) 3.82 (19.07) –5.10 (30.97)

Table A2. Parameter estimates and the number of each species or species group modeled for night longlining operations (standard
errors of each estimate are in parentheses).


