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Using a Bayesian modelling 
approach (INLA‑SPDE) to predict 
the occurrence of the Spinetail 
Devil Ray (Mobular mobular)
Nerea Lezama‑Ochoa1,2*, Maria Grazia Pennino3, Martin A. Hall2, Jon Lopez2 & 
Hilario Murua1,4

To protect the most vulnerable marine species it is essential to have an understanding of their 
spatiotemporal distributions. In recent decades, Bayesian statistics have been successfully used 
to quantify uncertainty surrounding identified areas of interest for bycatch species. However, 
conventional simulation‑based approaches are often computationally intensive. To address this 
issue, in this study, an alternative Bayesian approach (Integrated Nested Laplace Approximation 
with Stochastic Partial Differential Equation, INLA‑SPDE) is used to predict the occurrence of Mobula 
mobular species in the eastern Pacific Ocean (EPO). Specifically, a Generalized Additive Model is 
implemented to analyze data from the Inter‑American Tropical Tuna Commission’s (IATTC) tropical 
tuna purse‑seine fishery observer bycatch database (2005–2015). The INLA‑SPDE approach had the 
potential to predict both the areas of importance in the EPO, that are already known for this species, 
and the more marginal hotspots, such as the Gulf of California and the Equatorial area which are 
not identified using other habitat models. Some drawbacks were identified with the INLA‑SPDE 
database, including the difficulties of dealing with categorical variables and triangulating effectively 
to analyze spatial data. Despite these challenges, we conclude that INLA approach method is an 
useful complementary and/or alternative approach to traditional ones when modeling bycatch data to 
inform accurately management decisions.

The use of Species Distribution Models (SDMs) in conservation ecology has increased substantially in recent 
years. SDMs seek to link species presence/absence or abundance information with environmental variables to 
predict the probability of a species being found in non-sampled places or time  periods1. SDMs have recently been 
used to identify and manage priority areas or “hotspots” of vulnerable species. Therefore, to protect these areas, 
it is essential that they are identified correctly. A variety of methodological approaches have been developed 
over the last decades to generate SDMs, such as Artificial Neural Networks (e.g., SPECIES), Classification and 
Regression Trees (e.g., BIOMOD), Maximum Entropy (e.g., MAXENT), Climatic Envelops (e.g., BIOCLIM), and 
regression models, such as Generalized Linear and Additive Models (GLM/GAM)2–8. However, the statistical 
challenges using SDMs have increased as datasets have become more complex over  time9. Indeed, the need to 
account for spatial and temporal autocorrelations in data is now common when modelling complex non-linear 
relationships between species and the environment and quantifying the various sources of uncertainty associated 
with input data, sampling processes, observer biases and analytical  errors9. If these issues are ignored in SDMs 
the models could generate misleading estimations of species-environment relationships and misidentifications 
of predicted suitability areas.

Within this context, Bayesian models are able to incorporate our knowledge of the unknown parameters of 
SDMs that govern species behavior, expressed through probability distributions, rather than just fixed estimates, 
as in frequentist  approaches10. These resulting probability distributions are also the result of joining previous 
knowledge of the parameters with the observed data.
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However, predicting the behavior of a species also requires knowledge of its spatial and temporal nature. 
Generally when geo-referenced species data are analyzed geographic coordinates (latitude and/or longitude) 
and temporal factors (e.g., year, month, etc.) are included in SDMs as continuous explanatory variables. Conse-
quently, the spatial and temporal dependencies of observations are not taken into account. Hierarchical Bayesian 
models extend the concept of spatial and temporal autocorrelation in multilevel structures that include spatial 
and temporal random effects, and represent all the spatiotemporal variability that may have an effect on the 
species  patterns11.

Nevertheless, as is the case in nearly all complex Bayesian models, posterior distributions and posterior 
predictive distributions attained from SDMs do not yield analytical expressions and, therefore, numerical meth-
ods are needed to approach them. In this sense, the most commonly used simulation-based approach is the 
Markov Chain Monte Carlo (MCMC) technique, despite it being computationally  intensive12,13. By contrast, the 
Integrated-Nested Laplace Approximation (INLA) framework proposed by Rue, et al.14 is a relatively novel, and 
much faster alternative to MCMC.

Recently, researchers have been turning to INLA to model spatial and temporal fisheries data (e.g., trawler and 
gillnet fisheries)15–22, as they produce more realistic and accurate predictions than conventional  models31,33,37,40–43. 
However, with regard to the tropical tuna purse-seine fisheries, INLA has only recently been explored for tuna 
and non-target  species23,24 but has yet to be used for particular vulnerable bycatch species, such as sharks, turtles 
or mobulid rays.

Eastern Tropical Pacific tuna purse seine fisheries capture the greatest numbers of mobulids in bycatch com-
pared to other gears and  regions25–27. The Spinetail Devil Ray, or Mobula mobular (Müller & Henle, 1841), is one 
of the most frequently caught mobulid bycatch species in eastern tropical Pacific tuna purse-seine  fisheries27–29. 
The taxonomy of the Genera Manta and Mobula have recently been  revised30 and Mobula japanica has been 
included under Mobula mobular. The International Union for Conservation of Nature (IUCN) Red List of Threat-
ened Species (https ://www.iucnr edlis t.org/) lists it as “Endangered” globally. Mobula mobular is circumglobally 
distributed in tropical and subtropical waters, both in coastal and oceanic pelagic  habitats31,32. Thus, accurately 
predicting hotspot areas (e.g., nurseries, reproductive, feeding, etc.) for this species is of vital importance to 
developing effective fishery management options.

This study aims to describe the use of the INLA-SPDE Bayesian approach by using Generalized Additive 
Models to predict the occurrence of Mobula mobular taken incidentally in the tropical tuna purse-seine fishery of 
the eastern Pacific Ocean using IATTC observer bycatch data. In doing so, this study initiates a discussion about 
the different models to obtain accurate spatial predictions of vulnerable bycatch species, such as M. mobular, for 
conservation and management purposes.

Results
All the models that included the spatial effect showed lower DIC than those without it (Supplementary Table S4). 
Similarly, most of the models that do not account for non-linear relationship showed higher DIC values than 
the ones using smoothing functions. When the type of set was included as a dummy variable good prediction 
performance statistics and smoother predictions were obtained (Supplementary Table S4). Based on the combina-
tion of different aspects to obtain the most accurate model, both in terms of estimations and predictions (AUC, 
Sensitivity, Specificity, prediction and DIC values), the best fit INLA model included presence-absences as the 
response variable and oxygen, chlorophyll, nitrate, sea surface temperature, month and type of set as explanatory 
variables. The spatial effect was included in the model.

The final INLA-SPDE (option 10) model had both the lowest DIC (8773.68) and LCPO (3.66), compared to 
the others (see Supplementary Table S4). The mean posterior probability of occurrence, the standard deviation 
and the first and third quartiles for each parameter of the fixed effects included in the final model are shown in 
Table 1. Results showed a positive relationship between chlorophyll and the presence of M. mobular between 
0.1–0.2 mg·m−3. Similarly, results demonstrated that higher occurrences of M. mobular are expected to be found 
in waters with oxygen concentrations between 210–220 mg/l and low-medium nitrate concentrations (Fig. 1). 
A negative correlation was also identified between sea surface height values and the probability of occurrence 
of M. mobular, with higher probability in low SSH. Finally, the highest probability of presence of M. mobular 
was found mainly during winter (Fig. 1). The lowest relationship between the type of set and the presence of the 
species was found in Floating object sets (posterior mean = − 1.918; SD = 18.239); compared with the presence in 
School (posterior mean = 1.026; SD = 18.239) and Dolphin sets (posterior mean = 0.917; SD = 18.239) (Table 1).

The overall predictability of the models was evaluated using the Area Under the receiver-operating Curve 
(AUC), Sensitivity, Specificity and Kappa. Kappa measures the proportion of correctly classified presence and 

Table 1.  Numerical summary of the marginal posterior distribution of the fixed effects for the best INLA 
model for Mobula mobular. For each variable the mean, standard deviation, median  (Q0.5) and a 95% credible 
intervals  (Q0.025–Q0.975) are provided, containing 95% of the probability under the posterior distribution.

Species Predictor Mean SD Q0.025 Q0.5 Q0.975

Mobula mobular

(Intercept) 0.000 31.406 − 61.746 0.005 61.656

Dolphin set 0.917 18.239 − 34.895 0.917 36.697

Floating object set − 1.918 18.239 − 37.730 − 1.919 33.862

School set 1.026 18.239 − 34.786 1.026 36.806

https://www.iucnredlist.org/
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absence after accounting for the probability of chance  agreement17. AUC values were around 0.80–0.90, which 
indicates good model prediction performance and an excellent degree of discrimination between the locations 
with species presence and absence. All Kappa values were around 0.14, which indicates a good degree of simi-
larity between the predicted species occurrence and the observations. Sensitivity (0.40–0.70) and Specificity 
(0.80–0.90) values were also good, which reflects the ability of the model to correctly predict true negative and 
true positive predictions (Table 2).

Prediction maps, including all the terms in the model, identified the area off the coast of Peru, the Galapagos 
Islands, and the Costa Rica Dome to be areas of importance for the species. With regard to the Gulf of California 
and the Equatorial area, both areas were properly identified by the INLA-SPDE model to be areas with high and 
medium probability of species presence (Fig. 2). Furthermore, the spatial effect (Fig. 1a), which indicates intrinsic 
spatial variability of the species distribution after excluding the environmental variables, was consistent with the 
probability map (Fig. 2); meaning that the variability of occurrence data for M. mobular could not be explained 
solely by the selected variables in the model, and, therefore, there is an unconsidered effect in the model.

Figure 1.   (a) The posterior mean of the spatial effect and the smoothed fits of covariates modeling the presence 
of Mobula mobular for: (b) Month, (c) Chl (chlorophyll, in mg·m−3 in x-axis), (d) SSH (sea surface height, in cm 
in x-axis), (e) Ni (nitrate, in mg/l in x-axis) and (f)  O2 (oxygen, in mg/l in x-axis) variables. The y-axis represents 
the spline function. Shaded polygons indicate approximate 95% credible intervals bounds. Maps were created 
using Quantum GIS geographic information system. Open source geospatial foundation. URL: https ://qgis.
osgeo .org (2014).

Table 2.  Model prediction performance statistics for the 5 INLA interactions. Statistics acronyms are: 
deviance information criterion (DIC), area under the curve (AUC), kappa, sensitivity and specificity.

Interaction INLA DIC AUC Kappa Sensitivity Specificity

1.0 8944.3 0.9 0.0 1.0 0.8

2.0 8879.2 0.9 0.4 0.4 0.9

3.0 8695.6 0.8 0.0 0.7 0.9

4.0 8688.7 1.0 0.3 0.4 1.0

5.0 8660.6 0.8 0.0 0.5 0.8

https://qgis.osgeo.org
https://qgis.osgeo.org
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Discussion
This study uses a Bayesian approach to model the occurrence of Mobula mobular using IATTC observer bycatch 
data from the tropical tuna purse-seine fishery in the eastern Pacific Ocean (EPO). We consider the INLA-SPDE 
Bayesian approach as a complementary method to SDM traditional ones to obtain the prediction of hotspots of 
vulnerable species and to inform accurately management decisions.

SDMs have become one of the most powerful tools to address certain fisheries issues, such as bycatch species 
 distribution19. One of the first steps to reducing bycatch mortality is to identify and manage conservation prior-
ity areas, or “hotspots”, where bycatch species may be  important19,33. Correct identification of these areas could 
lead to effective spatial management strategies for their conservation. However, for regulations to be effective it 
requires an understanding of the spatiotemporal distribution of the species, given that wrong identification of 
bycatch "hotspots" can lead to erroneous mitigation practices with irreversible ecological  consequences34. Ideally, 
space and time should be better incorporated into models when bycatch data is analyzed, and the choice of the 
best SDM model should depend on the spatial pattern of the input  data19,35. The Bayesian approach considered 
in this study tried to describe these issues along with the advantages and disadvantages of using this technique 
in an effort to predict M. mobular occurrence in the EPO.

Results of the model confirm that the presence of M. mobular is determined by the most important seasonal 
upwelling systems in the EPO. The Bayesian method was able to estimate the relationship between the distribu-
tion of a species and its environment.

The non-lineal relationships observed by the models suggest that M. mobular may inhabit areas with different 
environmental characteristics but showing higher preferences for coastal, productive (with concentrations of 
chlorophyll between 0.1–0.2 mg·m−3) and low oxygen areas (around 210–220 mg/l). The presence of the species 
in areas with negative SSH values also suggest the association of the M. mobular to mesoscale process, such as 
eddies and coastal upwelling systems, where the food availability seems to be more abundant.

Spatial autocorrelation of residuals is normally induced by lack of a random distribution of individuals, 
absence of a covariate in the model or incorrect specification of the relationship between the covariate and the 
response  variable36. Generally when analyzing geo-referenced by-catch data, geographic coordinates (latitude 
and/or longitude) are included in the models as continuous explicative  variables37,38 given that fixed effects and, 
therefore, the spatial dependency of observations, is not considered. Similarly, non-random spatial variables or 
geographic fishing boundaries can be included as predictors in models to try to capture spatial species trends. 
For example, Escalle, et al.39 accounted for spatial autocorrelation by incorporating a contiguity matrix based 

Figure 2.  (a) Posterior predictive mean, (b) standard deviation, (c) 2.5% quantile and (d) 97.5% quantile of 
the presence of Mobula mobular bycatch from the tropical tuna purse-seine fishery (2005–2015) in the eastern 
Pacific Ocean. Maps were created using Quantum GIS geographic information system. Open source geospatial 
foundation. URL: https ://qgis.osgeo .org (2014).

https://qgis.osgeo.org
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on a residual’s autocovariate (RAC) as an explanatory variable in their models. However, only geo-statistical 
techniques intrinsically incorporate a component to account for spatial autocorrelation. Hierarchical Bayesian 
spatial models extend the concept of spatial autocorrelation in multilevel structures, including a spatial random 
effect that is a stochastic process indexed in space, which represents all spatially explicit processes that may influ-
ence the species pattern. By applying hierarchical Bayesian spatial models to species data the multiple sources 
of uncertainty associated with both the observed data and the species process can be included in the analysis to 
generate a more robust statistical inference and lead to more realistic  predictions1,35. The standard deviation, the 
first and third quantile of the posterior distribution of the prediction and the spatial effect map and its uncertainty 
can also be mapped as another component of the model.

Moreover, one of the advantages of using INLA-SPDE approach is that is permits Delaunay triangulation 
over the regular grids that are normally used in SDMs. This technique congregates more information in the areas 
where there are more observations and, therefore, triangulation is denser in these regions and contributed to 
more accurate predictions. This technique is also less computationally demanding and considers the boundary 
effect by generating a mesh with a smooth transition from areas dominated by small triangles (which correspond 
to the domain of interest) to areas with larger triangles (areas out of the domain and used to avoid boundary 
effects). Since inference is deduced from the domain rather than the observations (which could change from year 
by year), the corresponding interpolation creates a better prediction surface than the traditional one using regular 
 grid17. This study is also an example of these advantages. The INLA-SPDE approach was able to highlight new 
areas of interest, such as the Gulf of California, where the species are known to inhabit these areas. The Gulf of 
California is known to be an important ecological hotspot for this  species32. Indirect exploitation of this species 
in the Gulf of California is mainly attributed to small-scale Mexican  fisheries40, as there is scarce information 
of presence of mobulid rays due to little fishing effort of the large-scale tropical tuna purse-seine fisheries in 
this  area28,29. Because this study has no access to small-scale fishery data, the correct prediction of the spatial 
distribution of Mobula mobular in the Gulf of California is even more important, as it could be considered a 
possible area for conservation purposes. Since most surveys and research are carried out in coastal waters (due 
to accessibility, funding, etc.), results from the model in this area should be taken into consideration in future 
analyses. The Equatorial area was also predicted to be an important area of presence for the species. In that sense, 
the INLA-SPDE model confirms the results obtained by Lezama-Ochoa, et al.41 with the correct identification 
of the most important areas for the species.

In this work, the model fit was different depending of the parameters considered as well as the covariates 
selected. For example, the inclusion of the spatial effect in the model improved significantly the model fit (lower 
DIC values). Therefore, we suggest including the spatial effect in future works for accounting the spatial auto-
correlation of the occurrence data; really necessary to obtain real model predictions that may be used to inform 
management decisions. In the case of the variables chosen to explain the distribution of M. mobular, we also 
found that specific variables significantly contributed to obtain a good model fit. This is the case of “month” or 
“oxygen  (O2)”. When these variables were included in the model, lower DIC, Specificity and accuracy values 
were obtained, representing a better model performance. These results lead to consider that the species could 
have a seasonal distribution and that oxygen is a limiting factor on their horizontal but also vertical distribution. 
However, all the covariables included in the different models were having non-linear effect on the presence of 
the species (since marine species do not usually respond linearly to the environment), but showing variability 
depending on areas or time of the day. Therefore, future work should explore a combination of linear and non-
linear effects when modelling presence/absence data with environmental variables.

The spatial effect map (Fig. 1) created with the INLA-SPDE approach suggests that most of the variability 
in the occurrence dataset of M. mobular could not be explained by only the variables selected by the model. 
This could be true for oceanographic variables related to productivity features, such as upwelling systems, e.g., 
chlorophyll and sea surface height. The spatial effect represents the intrinsic spatial variability of the data after 
excluding the environmental variables. Therefore, when the pattern of the spatial map is similar to the map of 
the species prediction, it implies that there is an unconsidered effect that is driving the majority of the observed 
spatial distribution. In that sense, including the spatial effect as another component in the model improves model 
fit in addition to identifying the spatial effects that affect the distribution of the species of  interest42.

The Bayesian approach uses probability distributions to model uncertainty in the value of  parameters43. In 
that sense, not only is a point estimate of the probability of presence obtained, but it is also possible to assess 
the uncertainty surrounding an  estimation20. Indeed, by using INLA-SPDE approach, it is possible to obtain the 
classical statistics, including standard deviation and the credible interval of the posterior probability of occur-
rence of the species, therefore providing an explicit quantification of the uncertainty associated to the prediction 
trough spatial maps. Explicitly quantifying uncertainty through spatial maps is essential to providing end-users 
with a reliable species distribution to determine management options.

INLA-SPDE is a relatively new approach, it is continuously being tested and improved. INLA models can 
also deal with traditional smoothing approaches (such as GAMs) but they also provide full inference by quan-
tifying the uncertainty of each model parameter in a fast computational way compared to traditional MCMC 
 simulations17,42,44,45. Moreover, INLA models also offer additional advantages, such as the capability to (i) simul-
taneously calculate inference and prediction, (ii) deal with missing data or (iii) consider data biases (e.g., survey 
effort can be incorporated into the models as a spatial-random effect)10,17.

Although the number of studies where INLA models have been compared to other approaches using fisher-
ies data is  limited1,16,20,42, the available studies have shown good results using Bayesian approaches. However, 
improvements are still needed. For instance, Lezama-Ochoa, et al.41 found that the frequentist GAM model is, 
from a computational point of view, a faster predictive technique than INLA. The model used by Lezama-Ochoa, 
et al.41 ran in a few minutes, whereas the INLA models took hours for each trial. INLA becomes quite slow 
when estimating non-linear posterior distributions of the covariates in a large  datasets12,46, such as the IATTC 
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database. When lineal components were considered, it took minutes to run models compared to approximately 
one hour with the non-linear relationships, however, the predictions were less precise when linear relationships 
were modeled (Supplementary Table S4).

The Matérn covariate function was used to model spatial autocorrelation. The correlation of every cell with 
every other cell in the modelling approach has a high computational cost, known as the big n  problem13. The 
SPDE approach is normally used to address this problem, i.e., dealing with a big dataset that requires some 
additional computational  time12. As such, the regression model process is faster and easier. Specific distribution 
models should be developed, depending of the objective of the study and the data limitations. The present study 
revealed that when either multiple factors or complex relationships are included in the INLA-SPDE model, the 
running process finished but the estimation was difficult to interpret. For example, when the variable “Type 
of set” (Dolphin set = 1, Floating object sets = 2, School sets = 3) was considered to be a factor (in preliminary 
analysis of the model) in both the estimation and the prediction, estimation of the model was correct but the 
evaluation and prediction was wrong.

Thus, INLA-SPDE models still face some difficulties when it comes to dealing with factors when compared to 
frequentist GAM models that provide easy interpretation of the ecological relationships. When “type of set” was 
introduced as a dummy variable in the prediction, the results improved considerably (Supplementary Table S4). 
This does not necessarily mean that this is the best model, but it is a good option to obtain correct predictions 
with our data. Regarding the standard errors or set type dummy variables (1 and 0), they seemed very large. 
The model without type of set showed an increment in DIC of 699.62 (Option 8, Supplementary Table S4). SD 
gives some rapid information about the degree of “balance” in the data from groups coded 0 and 1. For example, 
hypothetically the mean for the set type “Dolphin” equal to 0.95 would mean that 95% of our sample is coded 1 
and the rest 0. The same in the case of “School” set type. For “Floating object”, the mean is be sensibly lower than 
those for “Dolphin” and “School” set type, indicating that the data are less balanced for the groups determined 
by the values of “Floating object”. The dummy variables included in the model, in this case the type of set, had 
an effect on the response variable (i.e. the distribution of the species). The negative values estimated from the 
model in the case of the Fishing Aggregating devices show a weak preference of these species for areas where 
FAD fishery is operating. This is corroborated by the fact that mobulid rays seem to be found significantly more 
in Dolphin and School sets compared with floating object  sets41. The reason are unknown, but probably is due 
to the distribution of FAD sets in open ocean far away from coastal areas; where the productivity is much lower 
and, hence, mobulid rays do not find high aggregations of food available as in coastal areas. Moreover, mobulid 
rays do not seem to show a strong aggregating behavior around FADs as other pelagic species, such as sharks. 
Their preference for shallow and productive waters makes them more likely to be found in areas of the other two 
types of sets. This fact could explain why the variability of mobulid presence in the case of the floating object 
sets was so high.

Moreover, for the INLA-SPDE approach, careful consideration should be given to the selection of prior dis-
tributions or the triangulation process given that the wrong choice could lead to biased results and, therefore, 
more options should be compared to improve performance of the Bayesian model.

Regarding evaluation of the model predictions, there are not many differences between frequentist and Bayes-
ian approaches. For example, Lezama-Ochoa, et al.41 obtained similar accuracy indices with slightly better AUC 
values found in the frequentist GAM model (0.92) than in our INLA model (0.88).

However, in the case of the Sensitivity index, the INLA model revealed better values (0.61) than the frequen-
tist model (0.44). This result leads us to suggest that the prediction should be more correct in the case of the 
INLA-SPDE model.

In any case, as this conclusion is based on a comparison between similar models with the same environmental 
variables, more research is needed to compare different SDM algorithms and model parametrizations of differ-
ent environmental variables. One of the objectives of this study was to explore the weaknesses and strengths of 
the INLA model when using observer bycatch information to model the habitat of a data poor species Mobula 
mobular. Ultimately, selection of the best model should be determined based on the objective of the study and 
the data. One limitation of this work arises from the lack of detailed fishing effort information. Therefore, it 
wasn’t possible to account for the effect of the number of sets in a particular grid on the probability of presence 
of the species. Future studies should consider the inclusion of fishing effort as an offset or as another explanatory 
variable in the model especially when modelling abundance.

From a conservation point of view, M. mobular, along with the rest of mobulid rays, has recently included 
in Appendix II of the Convention on International Trade in Endangered Species (CITES) (Appendix II) and 
Appendices I and II of the Convention of Migratory Species (CMS) (Appendices I & II)47,48. Given that the species 
could be exploited both as target and bycatch  species27, it is believed that some populations could be declining 
in some  regions27,49.

In the EPO, the IATTC adopted a resolution (Res. 15-04) that aims to reduce the mortality of these rays in 
purse seine  vessels50. This conservation measure prohibits retaining onboard, transshipping, landing, storing, 
selling, or selling any part or entire carcasses of mobulid rays taken by purse seiners. Given this decision adopted 
by IATTC, the conservation of this species may be expected to improve in the region, however, for that best 
practices for handling and safe-release should be developed and implemented to ensure the highest post-release 
survival possible. From this perspective, prediction of the spatial distribution and hotspots will contribute to 
incorporate spatial strategies in the future as management options to reduce their mortality, while keeping an 
economically viable fishery.

This work implements a Bayesian GAM to investigate habitat occurrence of the Spinetail Devil Ray using 
data from the IATTC tropical tuna purse-seine fishery observer bycatch database. Using a novel approach and 
methodology it provides good model habitat occurrence predictions, which are as good as the predictions 
obtained with other algorithms (e.g. Random Forest, Maxent, GLM, etc.). These predictions are considered 
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enough accurate to be included in future management plans by the tuna RFMOs. For example, model predic-
tions from this work could be included in a new Ecological Risk Assessment approach (EASI-Fish)51 to study 
the impact of the fishery on data-poor bycatch species. This methodology could be extended to other mobulid 
rays or vulnerable bycatch species (i.e. sharks, turtles) and other Oceans to obtain accurate habitat occurrence 
predictions to inform management actions. The main achievement of this work was to provide novel and rel-
evant information on the distribution of M. mobular that usually is only available from diver surveys or tagging 
studies limited to coastal areas.

To obtain realistic and accurate hotspots of the species, comparisons between different species distribution 
models (e.g., Random Forests, Maxent, Classification or Boosted Regression Trees) are needed. This would allow 
researchers to identify each model weaknesses and strengths to be taken into account when informing manage-
ment decisions to protect the species. A community of researchers, in collaboration with the fishing industry, 
governments and the NGOs, that work together to implement science-based specific spatial management meas-
ures and plans depending on the areas of importance (i.e., nursery areas, reproductive, or feeding areas, etc.) or 
species characteristics (vulnerable, endemic, migratory, etc.) is essential for the conservation of mobulid rays.

Conclusion
This study used a Bayesian approach to model the occurrence of Mobula mobular using data from the IATTC 
tropical tuna purse-seine fishery observer bycatch database in the EPO. The spatially-explicit Bayesian INLA-
SPDE model performed well as it was able to account for the spatial autocorrelation in the data and quantify the 
uncertainty of parameters. Additionally, contrary to other SDM models using the same bycatch data, INLA-SPDE 
model correctly predicted areas of importance, such as the Gulf of California, where the presence of the species 
is known to occur. Although INLA-SPDE methods offer improvements to traditional models, we consider that 
both frequentist and Bayesian model approaches should still be combined in a complementary approach to 
benefit from the advantages of each method and, thus, better interpret the species distribution patterns of this 
vulnerable bycatch species to inform management decisions.

Methods
Species data. Mobula mobular bycatch data were collected between 2005 and 2015 by the Agreement on the 
International Dolphin Conservation Program (AIDCP) onboard observer program, which employs observers 
from both the National Observer Program and Inter-American Tropical Tuna Commission (IATTC). Data were 
collected in large purse seine vessels (> 363 t carrying capacity-Class 6) using three types of fishing modes or 
sets: tunas associated with dolphins (“Dolphin sets”), tunas associated with Floating objects [encountered (“Log 
sets”) or deployed by the fishers (“Fish Aggregating Devices or FAD sets”)] and unassociated schools (“School 
sets”). The difference between the fishing modes is the strategy used to find the school of tuna and how the set 
is performed: School sets are normally monospecific and schools of tuna are detected by sonar marks, jumpers 
or breezes in surface waters. Drifting Fish Aggregating Device sets (FADs) are done on floating objects and are 
used to attract tuna and other species around them. Finally, in the case of the eastern Pacific Ocean (EPO) tuna 
(mainly yellowfin tuna) they are frequently associated with groups of dolphins and, therefore, called Dolphin 
sets (Supplementary Fig. S1)29.

Environmental variables. Nine oceanographic variables were extracted using python scripts from the 
European Union Copernicus Marine Environmental Monitoring Service (CMEMS) (https ://marin e.coper nicus 
.eu/). For each fishing set (date and position between 2005 and 2015) the following variables were obtained at 
1/4° spatial resolution: daily sea surface temperature (SST; in °C), daily sea surface height (SSH; in cm), daily 
salinity (Sal; in PSU), daily eddy kinetic energy derived from altimetry (Eke, in  m2  s−2), daily heading and cur-
rent speed derived from UV vectors (N–S◦ and W–E◦) (Heading; degrees; vel; m/s), monthly oxygen concentra-
tion (O2; mg/l), monthly Nitrate (Ni; mg/l), monthly phytoplankton (Phy; in mg·m−3), and monthly chlorophyll 
(Chl; mg·m−3) (Table 3).

Two topographic covariates were also included in the models: bathymetry and distance to the coast. Both vari-
ables were obtained in raster format (ASCII format) from the Global Marine Environmental Datasets (GMED) 
database (https ://gmed.auckl and.ac.nz/downl oad.html), and positions were matched with the positions of the 
fishing sets (Table 3).

To avoid correlation and collinearity between explicative variables, the Pearson’s rank correlation index and 
the variance inflation factor (VIF)52 were calculated before running the models. Specifically, correlation among 
variables was checked by performing a Pearson’s correlation test with the corrplot package in R  software53. Red 
ellipses represent negative correlation and blue ellipses positive correlation. High correlation between two vari-
ables was represented in both cases by ellipses with thin thickness. Collinearity was tested by computing the 
generalized variance-inflation factors (GVIF), which are the corrected VIF values, by the number of degrees of 
freedom of a predictor variable. GVIF was assessed using the corvif function in R software. Pairs of variables 
with high correlation values (Pearson correlation r > 0.6) or high variance inflation (VIF > 5) were identified and 
only one was included in the modelling process (Supplementary Fig. S2)38.

Modeling mobulid presence. Generalized Additive models (GAMs)8 are semi-parametric extensions of 
Generalized Linear Models (GLMs) that are able to model continuous and categorical variables, yet show non-
linear responses by fitting smooth functions to predictor  variables54.

The general structure of a GAM is as  follows5:

https://marine.copernicus.eu/
https://marine.copernicus.eu/
https://gmed.auckland.ac.nz/download.html
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where g is the link function (logit for binomial family), µi is the expected response variable (probability of bycatch 
in a binomial structure), a is the intercept, fn are smooth functions (regression splines), and Xn are the  covariates5.

Overall, the IATTC observer bycatch database recorded 260,002 species absences and 1270 species presences 
during the study period, obtained from surveys (i.e., sets with no presence of M. mobular recorded).

The INLA  framework14 was implemented using the inla package in R software. A hierarchical Bayesian spatial 
GAM was implemented to model the M. mobular bycatch  data55. INLA uses the Stochastic Partial Differential 
Equations (SPDE)  approach56 for the spatial effect, which approximates a continuously indexed Gaussian Field 
(GF), where z(s) is a zero-mean Gaussian Markov Random Field (GMRF) in which the correlation between 
locations  si and  sj, is Matérn. The smoothness of the field under this condition is typically denoted by the Kappa 
statistics  index57. The spatial effect is a numeric vector that links each observation to a spatial location, and thus it 
accounts for independent region-specific noise that cannot be explained by the available  covariates20. As recom-
mended by Lindgren and  Rue57, multivariate Gaussian distributions with zero means and a spatially-structured 
covariance matrix were assumed for the spatial component.

The response variable was modelled using the common binomial family and logit link function. All explana-
tory variables, except the type of set, were modeled using a second order random walk (RW2) latent model that 
allowed for possible non-linear  relationships12. The variable month was included in the model as a cyclical effect. 
The type of set was considered a factor (Dolphin, Floating object, School) in the inference and a dummy variable 
in the prediction (i.e., 1 and 0 for each level of the factor, see Supplementary Table S4 for details). Blangiardo and 
 Cameletti10 recommend that dummy variables be used to best deal with factors in INLA models.

Thus, the model can be specified as: species presence or absence at fishing location i (i = 1,…,n, n = 261,272) is 
given as  yi, where  yi = 1 if species was present, and  yi = 0 if species was not present. We assumed  yi ~ Bernoulli(πi) 
where πi is the probability of presence of Mobula mobular at location i. Then we define the model as 
logit(πi) = α0 + Xiβ + Wi where α0 is the intercept, β is the vector of regression parameters,  Xi is the matrix of the 
explanatory covariates at location i, and  Wi represents the spatially structured random effect at location i.

Because no prior information was available, a vague zero-mean Gaussian prior distribution with a variance 
of 100 was used for all the parameters involved. Posterior distributions were obtained for all the parameters that 
delimit the region of each posterior distribution by the 0.025 and 0.975 quantiles, where each unknown parameter 
is 95% likely to fall within this range of  values58.

Model selection. Different options were tested to obtain the best model. First, variables were included in 
the model without a smoothing function (i.e., linear relationship). Second, the influence of the spatial effect was 
explored by removing it from the model. Third, the type of set was included in the model as a dummy variable 
(Supplementary Table  S4). Selection of the final models also occurred after carrying out a forward stepwise 
procedure. These options were evaluated by considering the Deviance Information Criterion (DIC)59. The DIC 
values were selected as they are the most common ones used to evaluate the performance of the models. Moreo-
ver, the Condition Predictive Ordinate (CPO) was also calculated. CPO is computed via its logarithmic score 
(LCPO) according to Roos and  Held60. The CPO was used as effective index to evaluate the predictions as it is 
able to make an internal cross-validation taking each time just one value. Specifically, DIC measures the compro-
mise between fit and parsimony in the model, and LCPO is a “leave one out” cross‐validation index to assess the 
predictive power of the  model17,18. Lower DIC and LCPO values suggest better model performance.

g(µi) = α + f1(X1i)+ f2(X2i)+ f3(X3i) . . . .+ fn(Xni)

Table 3.  Summary of the environmental variables obtained from Copernicus Marine Environment 
Monitoring Service (CMEMS): variable acronym and name, unit, average value, minimum value, maximum 
value, and spatial and temporal resolution.

Variables acronym Variable name Units Average Min Max Spatial resolution Temporal resolution

Depth Depth m 3732.41 6476.67 45.357 30 arc-s –

Distance to the coast Distance Km*1000 (Euclidean distance) 8.907 0.059 23.026 5 arcmin –

SST Sea surface temperature °C 25.276 16.69 29.636 0.25° Daily

Sal Salinity psu 34.371 26.943 36.453 0.25° Monthly

SSH Sea Surface Height M 0.246 − 0.001 0.627 0.25° Daily

Chl Chlorophyll concentration mg  m−3 0.217 0.024 1.83 0.25° Monthly

Phy Phytoplankton mg  m−3 1.611 0.427 15.369 0.25° Monthly

O2 Oxygen concentration mg/l 209.613 193.605 252.1 0.25° Monthly

Ni Nitrate mg/l 4.785 0 20.173 0.25° Monthly

Vel Velocity m/s 0.247 0.001 1.161 0.25° Monthly

Ke Kinetic energy m/s 0.046 0 0.674 0.25° Monthly

Heading Direction of the current Degrees 213.341 0 359.85 0.25° Monthly

Type Type of set (Dolphin vs. Floating 
object vs. School)

Considered as a factor in the estima-
tion and as a dummy variable (0,1) in 
the prediction
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Model validation and evaluation. A cross-validation was applied with a k-fold partitioning method 
(with k = 5), to assess model  performance61,62. The relationship between occurrence data and the environmental 
variables was modeled by using a training dataset (80% of data), and the quality of predictions was assessed using 
test data for validation (20% of data)17,38,39. Validation was repeated five times for the best model and results were 
averaged over the different random  subsets17.

Models were evaluated to formally assess their overall predictability by calculating the Area Under the 
receiver-operating Curve (AUC), Sensitivity, Specificity and  Kappa63,64. The AUC measures the ability of the 
model to correctly predict presences and absences, Sensitivity measures the percentage of presences correctly 
predicted, and Specificity measures the percentage of absences correctly  predicted65. Kappa is a statistic index 
that corrects the overall accuracy of model predictions by the accuracy expected to occur by chance. The index 
ranges from 1 to + 1, where + 1 indicates perfect agreement and values of zero or less indicate a performance no 
better than  random65. Model validation was performed using the cmx function of the PresenceAbsence  package66 
in R software.

Model prediction. Prediction maps of the posterior mean, standard deviation, first and third quartile of 
probability of presence of M. mobular were obtained from the INLA model. Predictions were made using the 
inla.mesh.project and raster functions of the inla and the raster  packages14 in R software. A Bayesian kriging was 
applied by treating the parameters as random variables in order to incorporate uncertainty into the prediction 
 process17. Bayesian kriging is incorporated into the INLA approach through the SPDE module, which enables 
Delaunay triangulation around the presence/absence points in the sampling area (Supplementary Fig.  S3)57. 
INLA perform inference and prediction simultaneously, by considering prediction locations to be points where 
the response is  missing15,17,20,42. Once the prediction is generated in the selected locations, additional functions 
interpolate linearly to generate results for the entire study area. Model outputs were scaled from 0 to 1.

Data availability
The datasets generated during and/or analyzed for the current study are not publicly available due to fishers’ 
confidentiality but are available from the IATTC’s Director under reasonable request. However, the dataset 
aggregated by 1 × 1º level are available at the public domain (https ://www.iattc .org/publi cdoma indat a/iattc -catch 
-by-speci es1.htm).
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