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Seabirds and fisheries have been interacting from ancient times, sometimes with mutual benefits: Seabirds provided fishermen with visual
cues of fish aggregations, and also fed upon food subsids generated by fishing activities. Yet fisheries and seabirds may also compete for the
same resources, and their interactions can lead to additional seabird mortality through accidental bycatch and diminishing fishing efficiency,
threatening vulnerable seabird populations. Understanding these complex relationships is essential for conservation strategies, also because it
could enhance and ease discussion between stakeholders, towards a common vision for marine ecosystem management. As an aid in this pro-
cess, we reviewed 510 scientific publications dedicated to seabirds–fisheries interactions, and compiled a methodological toolkit. Methods
employed therein serve four main purposes: (i) Implementing distribution overlap analyses, to highlight areas of encounter between seabirds
and fisheries (ii) Analysing movement and behavioural patterns using finer-scale information, to characterize interaction types (iii)
Investigating individual-scale feeding ecology, to assess fisheries impacts at the scale of bird populations, and (iv) Quantifying the impacts of
seabird–fishery interactions on seabird demography and population trends. This latter step allows determining thresholds and tipping points
with respect to ecological sustainability. Overall, we stress that forthcoming studies should integrate those multiple approaches, in order to
identify and promote best practices towards ecosystem-based fisheries management and ecologically sound marine spatial planning.

Keywords: at-sea surveys, biologging, bycatch, demography, discards, ecosystem-based fisheries management, marine spatial planning,
movement ecology, spatial analyses, stable isotopic analyses.

Introduction
Seabird and fisheries occur in all areas of the world ocean. In

aquatic environments exposed to global changes, they share com-

mon challenges linked to e.g. vanishing fish resources. Their rela-

tionships are ancestral but the development of fishing and

research technologies has transformed their many interactions,

and our capacity to study these processes and rate their ecological

consequences.

Notably, seabirds are conspicuous scavengers (Figure 1a;

Hudson and Furness, 1988; Catchpole et al., 2006; Depestele

et al., 2016) and have been feeding on fishery waste around the

world ever since humans started harvesting marine organisms.

For instance, the albatross sung by Charles Baudelaire

(Baudelaire, 1857) probably followed ships in search of food.

Depending on the species involved, seabirds feed on fishery dis-

cards or on offal, whereby birds tend to target energy-rich organs

(Hudson and Furness, 1988). In addition to discards and offal,

Procellariforms have been shown to target baits used in longline

fisheries (e.g. Brothers, 1991; Kumar et al., 2016). Furthermore,

even if a limited number of cases have been reported in the litera-

ture, some diving species (e.g. cormorants and gannets) are

strongly suspected to depredate fishing devices underwater

(Ferrari et al., 2015), as already well-described in marine mam-

mals (Guinet and Bouvier, 1995). Finally, slippage and escapees

from purse seine and trawl fisheries represent another potential

food source for seabirds. Exploiting such easily accessible food

may be advantageous for some species (Tasker et al., 2000;

Furness, 2003), at least when natural prey is scarce (Tew-Kai
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et al., 2013). These supplementary prey items represent an impor-

tant part of the diet in some species, and have been shown to po-

tentially promote seabird population growth (Bicknell et al.,

2013). However, when it is of lower nutritional value, fishery

waste may set ecological traps for seabirds (Grémillet et al., 2008).

Overall, these predictable anthropogenic food subsidies (Oro

et al., 2013) have shaped seabird communities, to the advantage

of generalist predators (Votier et al., 2004).

To benefit from fishery wastes seabirds need to approach fish-

ing vessels, exposing themselves to bycatch on fishing gear

(Figure 1b). The proximity between seabirds and fishing vessels

also arises from the use of seabirds as indicators of profitable har-

vesting grounds (Figure 1c). This ancestral fishing strategy

(Crawford and Shelton, 1978) uses the fact that seabirds aggregate

when foraging on pelagic fish shoals, and can then be easily spot-

ted from a distance. This technique is still commonly used today,

especially by the tuna fishing fleet, which uses radars to spot sea-

bird aggregations at sea. This specific fishing strategy enhances

spatial overlaps between seabirds and fishing vessels, increasing

the probability of interaction.

Three major types of casualties (bycatch on longlines, entan-

glement in gill nets and collision with trawling cables) and several

other risks to seabirds are reported in the literature (Figure 1b).

Notorious are bycatches of procellariforms on the hooks of long-

line fishing fleets. Such bycatch has been described in numerous

areas, e.g. albatrosses in Patagonian toothfish fisheries (Wienecke

and Robertson, 2002; Delord et al., 2005), albatrosses in Japanese

tuna longline fisheries (Brothers, 1991), shearwaters in

Mediterranean longline fisheries (Garcia-Barcelona et al., 2010),

albatrosses and petrels in Brazilian longline fisheries (Bugoni

et al., 2008). Worldwide, bycatches in longline fisheries have been

estimated to at least 160 000 seabirds annually (Anderson et al.,

2011), with albatrosses making up to 80% of the bycaught indi-

viduals in some areas (Jiménez et al., 2009). Entangling of diving

seabirds in gill-nets, especially alcids (Darby and Dawson, 2000;

Osterblom et al., 2002; Cardoso et al., 2011), is another common

case of incidental catch. �Zydelis et al. (2013) estimated that

>400 000 seabirds are accidentally caught by worldwide gillnet

fisheries each year. Trawl fisheries also represent a major threat to

seabirds, which are killed or injured through collision with wrap

cables (Gonzalez-Zevallos et al., 2007; Croxall, 2008; Watkins

et al., 2008). Further, seabird mortality through artisanal fisheries

is hard to assess, but is also considered as non-negligible (Suazo

et al., 2013). Overall, even in omission of substantial mortalities

caused by abandoned fishing gear (Rodriguez et al., 2013), threats

caused by fisheries activities to seabird populations have been

confirmed as a major conservation issue (Lewison et al., 2004;

Croxall et al., 2012).

As the capture of non-target organisms such as seabirds is also

detrimental to fishing efficiency, there is a global concern and a

common interest for fishery management and seabird conserva-

tion stakeholders to eradicate bycatch. This led to the publication

of a special guideline by the Food and Agriculture Organization

by the United Nations in 1999 (International plan Of Action—

Seabirds), prescribing mitigation measures built upon technical

solutions (Cooper et al., 2001), and enhanced specific actions for

dedicated organisms (e.g. BirdLife International and Agreement

on the Conservation of Albatrosses and Petrels, 2009). Those ef-

forts gathering non-governmental organizations, scientists, man-

agers and fishermen led to substantially reduced impacts (Agnew

et al., 2000; Abraham et al., 2009; Bull, 2009), even if bycatch

could not be eradicated, and may still arise through uncontrolled

and/or illegal fisheries (Grémillet et al., 2015). Synoptically, re-

search conducted across the last two decades triggered a paradigm

shift in fisheries management. Evidence that humans affect fish

populations and marine ecosystems around the world (Jackson

et al., 2001; Christensen et al., 2003; Myers and Worm, 2003;

Chavance et al., 2004) led to a shift from single-species

approaches to ecosystem-based fishery management (Pikitch

et al., 2004). In this context, several new legislations have been

implemented to reduce the collateral damages of fishing activities.

For example, in Europe, the new Common Fishery Policy en-

forces a reduction of discarding practices through a landing obli-

gation of all organisms for species under quotas, which is

predicted to modify seabirds–fisheries interactions (Bicknell

et al., 2013).

However, despite these new insights, marine conservation is

now facing the same research-implementation gap as its

Figure 1. Schematic representation of direct interactions between seabirds and fisheries. (a) Seabirds forage on food subsidies from fishing
activity. A1, Offal; A2, Discards; A3, Baits; A4, Depredation; A5, Escapees. (b) Foraging in the vicinity of fishing vessels causes accidental
mortality for seabirds. B1, Bycatch; B2, Collision. (c) Fishermen cue on seabirds for profitable fishing grounds.
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terrestrial counterpart (Knight et al., 2006, 2008; Ban and Klein,

2009; Biggs et al., 2011), partly stemming from the difficulty to

develop true cooperation among typically diverse stakeholder

groups, whose interests, norms, values, powers or communica-

tion skills may diverge. To overcome this hurdle, Lescroël et al.

(2016) proposed to use charismatic marine predators, such as

seabirds, as ambassadors of global ocean conservation to “see the

oceans through the eyes of seabirds” and foster stakeholder coop-

eration. Part of this approach requires improved knowledge of

seabird-fisheries interactions. Specifically, forthcoming research

should enhance operational approaches, to better understand and

forecast the impact of management policies on fishing practices

and seabird populations. As an aid to these developments, we

propose a methodological review and synthesis of the best meth-

odologies currently available for the study of seabird–fishery di-

rect interactions (see Sydeman et al., 2017 for a review of

competition interaction), with additional suggestions for future

key developments.

Methods
We used the Web Of Science database with the following combi-

nation of search terms for the 1990–2017 time period: [seabird*

OR gull* OR gannet* OR albatross* OR petrel* OR shearwater*

OR fulmar* OR penguin* OR skua* OR kittiwake* OR tern* OR

guillemot* OR shag* OR cormorant*) AND (fisher* OR bycatch*

OR discard* OR offal* OR longline* OR gillnet* OR trawl* OR

seine*]. After eliminating studies focussed on food competition

between seabirds and fisheries (methods reviewed in Sydeman

et al., 2017), and incorporating some missing studies rated as im-

portant by our group of authors, we obtained 510 papers of inter-

est for our synthesis. To quantify the diversity of approaches

reported in the literature, we specifically focussed on 249 original

studies, putting aside reviews and technical studies relative to

mitigation measures and their implementation. We classified

these studies according to four broad categories, which may

nonetheless partially overlap: (i) Analyses of large-scale distribu-

tional overlaps between seabirds and fisheries, (ii) Analyses of

their movement and behaviour, (iii) Analyses of seabird feeding

ecology and dependence from fishery subsidies, and (iv)

Quantification of the impacts of these interactions on seabird de-

mography and population trends. For each of these four catego-

ries, we critically evaluated methodological processes, from data

acquisition to statistical analyses, and provided a synthetic sum-

mary table to guide choices and rank methodologies.

Distribution overlap analyses
The main objective of distribution overlap analyses is to identify

areas of potential interactions between seabirds and fisheries,

based on separately acquired data sets on seabird and fishery dis-

tributions (Table 1[A]).

The major difficulty has always been to acquire information

about seabird distributions, as some of their ranges may stretch

over several ocean basins (Egevang et al., 2010). Therefore, except

for some species for which presence can be studied from land

(such as gulls, e.g. Castilla and Perez, 1995; Arcos and Oro, 1996),

knowing where seabirds go requires advanced logistics and meth-

odologies. At-sea surveys from either scientific cruises (Jespersen,

1924; Garthe, 1997; Camphuysen and van der Meer, 2005; Guy

et al., 2013) or fishing vessels (Cabezas et al., 2012) are the pri-

mary source of knowledge about large-scale seabird at-sea distri-

butions. From these ships, observers will report the presence and

number of the different species, associated with the position of

the boat (Tasker et al., 1984). Aerial survey transects can also be

used to estimate seabird at-sea distribution at large spatial scales

(Certain and Bretagnolle, 2008). Benefiting from developments in

telemetry technologies, animal-borne devices have also been de-

veloped to monitor the movements of wild animals. Three main

electronic devices are used for the study of seabird at-sea distribu-

tions. Platform terminal transmitters (PTTs) linked to the Argos

system are the most commonly used (43% of distribution overlap

studies). These platforms emit a signal which is received by a sat-

ellite and transferred to a ground receiving station. They can pro-

vide �10–12 locations per day with a relative accuracy of up to a

few kilometres (e.g. Nel et al., 2002; Cuthbert et al., 2005; Hatch

et al., 2016). Global positioning system (GPS) loggers are used in

25% of all distribution overlap studies. Contrary to PTTs, GPSs

do not emit, but receive signals from a satellite network.

Locations are accurate to 3–5 m and can be sampled at any fre-

quency, starting from 1 s. They can be either stored onboard and

retrieved after recovery of the device, or downloaded remotely via

Argos, ultra high frequency, or the cellphone network. In the lat-

ter cases, tracking can therefore be performed in near-real time

(Navarro et al., 2016), i.e. as with PTTs, but with greater posi-

tioning accuracy. For both PTTs and GPSs, the recording dura-

tion is limited by power supply and attachment to the tracked

birds (devices attached to the feathers will be shed during molt).

Recent advent of solar-powered devices has drastically expanded

deployment durations in some species, to several months, or even

years (Bouten et al., 2013). GPS device mass has also been re-

duced to a few grams (Amélineau et al., 2016). Global location

sensors (GLS) is the third main type of loggers used in distribu-

tion overlap analyses. Those devices record light level and time,

which after processing can provide one to two daily positions

(outside of the equinox periods) with an accuracy of 6 190 km

(Wilson, 1992; Phillips et al., 2004). GLSs are small and light

enough (<1 g) to be affixed to a bird ring, and deployed for one

to several years (Weimerskirch et al., 2014). very high frequency

tags have been used occasionally to study distribution overlap be-

tween seabirds and fisheries (Manosa et al., 2004; Hamel et al.,

2008), but the logistical costs of mapping large-scale bird pres-

ence (aerial detection) make its implementation too difficult for a

more common use.

Regarding the spatial and temporal distribution of fisheries, re-

searchers benefit from diverse sources of data produced by a wide

range of fishery stakeholders, although not all are easily available.

Historically, these consist in logbooks from individual boats re-

cording fishing zones and the number of sets, hauls, as well as

gear type, together with indices of fishing effort such as numbers

of hooks set per unit area (e.g. Cuthbert et al., 2005; Bugoni et al.,

2009; Reid et al., 2013). This information is collated and archived

by international governance instances such as the International

Commission for the Conservation of Atlantic Tunas (ICCAT) or

the Indian Ocean Tuna Commission (IOTC) for tuna longline

fisheries, or by national instances as the National Oceanic and

Atmospheric Administration (NOAA) in the United States or the

Marine Fisheries Agency in the United Kingdom. Such official

statistics have nonetheless been demonstrated to be underesti-

mates, both in terms of catch volumes and exploited areas (Pauly

and Zeller, 2016). More recently, a specific application of moni-

toring commercial fishing boats, the vessel monitoring system

(VMS), has been implemented worldwide. VMS is particularly

useful as a database of fishing vessels positions, which allows

Methods to study seabird-fishery interactions 1515
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accurate tracking of their movements at 30 min to 3 h intervals

(Granadeiro et al., 2011; Copello et al., 2014; Patrick et al., 2015).

The automatic identification system (AIS) developed to prevent

ship collisions has also proved extremely useful (Robards et al.,

2016), notably to map fishing activities (Mazzarella et al., 2014;

Natale et al., 2015) and will soon be used extensively to study sea-

birds–fisheries interactions. Further, bird-borne devices coupling

a GPS and a ship radar/AIS detector (Weimerskirch et al., 2017)

enable recording seabird-ship encounters, as well as the AIS regis-

tration number of the vessels. This enables using seabirds as senti-

nels of fishing activities, being legal or illegal; especially in areas

were surveillance is logistically challenging (e.g. West Africa, the

Southern Ocean). Finally, fishing vessels distribution can be esti-

mated from reported presence during scientific at-sea surveys,

producing data equivalent to those from seabird direct

observations.

To identify areas used by seabirds and fisheries from these data,

the most common method is kernel analysis. This algorithm cal-

culates a density distribution of the locations and a probability

distribution in space use, termed utilization distribution (UD).

Thereby, the density matrix is estimated via fixed kernel home-

range analyses following Worton (1989; see also Brothers et al.,

1998; Nel et al., 2000, 2002; Copello et al., 2014), with potential

modifications following (Wood et al. 2000; Xavier et al., 2004;

Bugoni et al., 2009). Contour plots can be generated, over which

areas of overlap between seabirds and fisheries are visually identifi-

able. The degree of overlap can also be quantified using a UD

overlap index (UDOI, Fieberg and Kochanny, 2005) derived from

the estimated UDs. It has been used extensively to quantify large-

scale overlaps between seabirds and fisheries (e.g. Granadeiro

et al., 2011, 2014; Copello et al., 2014). Two other important over-

lap indices can be computed without relying on probability distri-

bution in space: (i) A Spearman correlation coefficient (rs),

calculated between geographical grid cells for the density of pres-

ence of both seabirds and fisheries (Camphuysen and Garthe,

1997; Hyrenbach and Dotson, 2003); (ii) A measure of the overlap

between individual seabird geographical density and fishing effort

(Cuthbert et al., 2005). This latter index is the simple multiplica-

tion of the density of birds by the fishing effort (number of hooks,

hours of trawling) reported to unit area. It is commonly used to

study overlaps with longline fisheries (Hamel et al., 2008; Thiers

et al., 2014; Jiménez et al., 2016), and with trawling fisheries (Guy

et al., 2013). In the literature, such overlap indices are not always

calculated, and fishing effort or distribution are handled as envi-

ronmental variables susceptible to impact modelled seabird space

utilization. The corresponding statistical methods are principal

component analyses (Garthe, 1997; Weichler et al., 2004) or gen-

eralized models (e.g. generalized linear model (GLM), Cama et al.,

2012; Catry et al., 2013 or generalized additive model (GAM),

Weimerskirch et al., 2010; Renner et al., 2013) with seabird pres-

ence or density as the response variable and fishing effort or distri-

bution and other environmental variables as explanatory

variables.

Whatever the method used, distribution overlap approaches

have the huge advantage of identifying areas with strong proba-

bility of encounter between seabirds and fisheries. It allows defin-

ing high-risk areas deserving specific conservation efforts (e.g.

Tancell et al., 2016) and their projection following global change

scenarios (e.g. Krüger et al., 2018). Yet, overlap does not always

mean direct interaction. Sharing the same resources, seabirds and

fishing vessels are targeting the same areas (e.g. Pichegru et al.,

2009), but conservation and management measures will largely

depend upon interaction types. This calls for the downscaling of

impact studies, to include information on the actual behavioural

patterns of seabirds and fishing units (Table 1[B], Torres et al.,

2013).

Analysis of movement and behaviour
Using direct observations and tracking data, it is possible not

only to define space use in seabirds and fisheries, but also to asso-

ciate at-sea positions with specific behaviours. For instance, dedi-

cated observers onboard fishing boats (hereafter seabird

observers) can record the characteristics of seabird feeding aggre-

gations (mainly species and broad age composition), as well as

the different behaviours displayed by seabirds, with respect to

prey choice, intra- and interspecific competition and rank-order

(Hudson and Furness, 1988; Garthe and Huppop, 1994; Otley

et al., 2007; Carniel and Krul, 2011; Depestele et al., 2016), and

also interaction types, food choices and any potential accidental

mortality (Bugoni et al., 2008). Specifically, efforts have been

made by concerned nations to deploy fisheries observers on at-

risk fisheries (such as longline and gillnet fisheries), so as to re-

cord accidental seabird bycatch (Reviewed in Anderson et al.,

2011; �Zydelis et al., 2013). Yet observers focus on caught seabirds

and hardly take in account individuals injured or killed that are

not hauled on board. Furthermore, costs incurred limit the num-

ber of deployed observers and the rate of monitored fisheries is

still low, some remaining unmonitored (Pauly et al., 2014). At-

sea observations using video-based monitoring (McElderry,

2008) could be a solution in the future. This approach still re-

quires research and development (e.g. observation event detection

algorithms for automatic analysis of video sequences) and en-

hanced co-construction of video monitoring programmes with

fishery stakeholders (Lescroël et al., 2016).

Fisheries observer’s data may nonetheless be an important in-

put, allowing an evaluation of interaction levels at a broader scale

(Gilman et al., 2017). A simple method consists in up-scaling ob-

served bycatch rates, taking into account overall fishing effort

(Francis and Sagar, 2012). But as incidental catches are rare

events, even recorded at large regional scales, error margins are

substantial (Lewison et al., 2004). Methods to model rare events

have been recently improved, and their application to bycatch es-

timates offers fruitful perspectives. Notably, generalized models

have been used in this field (e.g. Winter et al., 2011; Yeh et al.,

2013), but Bayesian frameworks providing robustness for uncer-

tainty accounting may soon become the norm (e.g. Martin et al.,

2015). Another problem to address when estimating mortality

from bycatch observer data is to identify the origin of individuals

incidentally caught. However solutions based on the application

of biochemical and molecular markers have been implemented

(Burg, 2007; Lavers et al., 2013; Jiménez et al., 2015; Techow

et al., 2016). Relevantly, Burg et al. (2017) have been able to dif-

ferentiate origins of intraspecific groups of albatrosses using mi-

tochondrial DNA extracted from blood or feathers of bycaught

individuals. Furthermore, seabird observer data are essential to

quantify the amount of subsid prey fed to seabirds. Foraging suc-

cess indices can be calculated by species (Garthe and Huppop,

1998; Jodice et al., 2011), providing feeding rates upon which to-

tal consumed amounts can be estimated. Some studies go further,

by using bioenergetics modelling so as to estimate the implica-

tions of discard consumption for seabird energy balances

(Lilliendahl and Solmundsson, 1997; Walter and Becker, 1997;
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Arcos and Oro, 2002). Even though ecophysiological modelling

tools (Votier et al., 2004; Fort et al., 2009) offer great perspectives,

estimating the amount of consumed subsid prey is still complex.

Notably, direct seabird observations do not provide any informa-

tion on the number of other fishing vessels visited by seabirds

during their foraging trips.

A solution is to reverse the viewpoint, from the birds towards

fishing vessels, which is difficult to obtain, but can be achieved

with novel electronic tools. The most obvious ones are bird-

borne cameras, which can directly record the visual landscape of

the bird. It is then possible to detect when fishing vessels are pre-

sent in the vicinity of the birds and whether there are direct inter-

actions with them (Grémillet et al., 2010; Votier et al., 2013;

Lescroël et al., 2016). However, in the case of video recordings,

the battery size of such portable devices is still limiting the dura-

tion of image acquisition to a few hours. Progress in automatic

image processing is also required to detect and characterize inter-

actions more efficiently (e.g. Spampinato et al., 2010). For these

reasons, the most commonly used devices to study behavioural

interactions between seabirds and fisheries remain GPS recorders,

but the use of radar detector loggers (see previous section,

Weimerskirch et al., 2017) could soon become important to. Two

types of analyses are performed using GPS tracks; the first is in

the continuity of distribution overlap studies, and aims at detect-

ing overlaps between individual birds and fishing vessel trajecto-

ries. The second aims at identifying specific seabird behavioural

patterns as they approach fishing vessels. The two approaches are

dependent upon fine-scale localization of fishing vessels, mostly

via VMS. When individual tracks from both seabirds and fishing

vessels are available, interactions can simply be assumed when

tracks overlap spatially and temporally (Granadeiro et al., 2011;

Torres et al., 2011; Tew-Kai et al., 2013). To go further, and con-

trary to overlap analyses, seabird foraging tracks can be analysed

individually to extract characteristics such as foraging trip dura-

tion, path length and maximum distance reached (e.g. Mattern

et al., 2013; Garcia-Tarrason et al., 2015). The influence of fisher-

ies on seabird foraging behaviour can then be assessed by model-

ling the effect of fishery activity patterns (e.g. weekdays vs.

weekends, Garcia-Tarrason et al., 2015; Tyson et al., 2015) on

these characteristics using GAMs or generalized linear mixed

models. Some studies go further and identify the strict periods of

active foraging within seabird tracks (i.e. excluding resting and

travelling periods, see Barraquand and Benhamou, 2008; Torres

et al., 2017 for a specific discussion), usually using residence time

methods. Seabird specific overlap with active vessels is then iden-

tified and differentiated from “natural” foraging, i.e. in the ab-

sence of fishing vessels (Votier et al., 2010; Patrick et al., 2015).

The second approach focuses on identifying seabird behavioural

changes when in the vicinity of a fishing boat. There again, move-

ment analysis methods are used to track specific behavioural sig-

natures or responses in bird tracks interacting with fishing

vessels. For example, birds may redirect flight trajectories towards

boats (Collet et al., 2015) or adopt vessel cruising pattern (Torres

et al., 2011). In this way, Bodey et al. (2014) showed that seabirds

switched between foraging and commuting behaviour according

to the fishing activity of the followed vessel. As this method is

based on the preliminary identification and isolation of behaviou-

ral sequences that are specific to interactions with fishing vessels,

it avoids confounding direct interactions and mere spatial overlap

of two entities co-existing in the same area, because targeting the

same resources. However, automatic detection of such behaviour

can be difficult, and is strongly dependent upon individualities in

behavioural patterns.

Feeding ecology and dependence on fishery
subsidies
Another powerful way to quantify the dependence of a given sea-

bird species or population on food sources originating from fish-

eries is to search for traces of these food sources (Table 1[C]) in

bird stomach contents (diet sampling) or tissues (usually blood

or feathers, using biochemical methods). This relies on the as-

sumption that prey items provided by fisheries are different from

natural prey targeted by the studied species. The most obvious ex-

ample is the case of seabirds naturally targeting pelagic prey and

eating discards from demersal fishing activities (Kakela et al.,

2010).

Diet sampling analysis can be performed on dead or live birds.

On dead birds (e.g. from bycatch, Gould et al., 1997) the stomach

or the entire digestive track is removed and stored for latter iden-

tification of the content. These samples may be biased in popula-

tions containing diet-specialist, as all sampled birds are caught in

the vicinity of fishing vessels, and naturally foraging individuals

may be missed. To sample the diet of live birds, it is possible to

retrieve stomach contents by stomach flushing (Wilson, 1984),

but for those seabird species which vomit when captured, acquir-

ing samples from regurgitation may be easier. Fresh food bowls

can then be sorted and prey items can be directly identified when

digestion is not too advanced (Blaber et al., 1995; James and

Stahl, 2000). When it is the case, rigid parts such as otoliths and

cephalopods beaks are still identifiable (James and Stahl, 2000).

Those non-digestive parts are evacuated by some species by the

production of pellets, which can be collected and studied after-

wards (Votier et al., 2008). This method has limitations, as the

otoliths of some species (e.g. clupeids) are very small and might

be fully digested or simply not retrieved, with an overall bias to-

wards larger prey (Alonso et al., 2013).

Two different biochemical methods are used in the studies of

interactions between seabirds and fisheries. Most prominent are

stable isotopic analyses (SIA; Jaeger et al., 2013; Mariano-Jelicich

et al., 2014; Edwards et al., 2015). Those technics rest on the mea-

surement of the differential between stable isotopes for carbon

(d13C), nitrogen (d15N), and further elements. Nitrogen ratios

mainly reflect trophic level, and carbon ratios are linked to at-sea

habitats (Bearhop et al., 2001). SIA can be performed on different

tissues which will have different proprieties for signalling diet

specification. Inert tissues as feathers provide signals upon the

diet during feather synthesis, which can be different from the iso-

topic signature of food items ingested later on (Jaeger et al.,

2009). Complementary information about the current diet of the

studied animals can then be found in plasma or red blood cells

(Mariano-Jelicich et al., 2014). Isotopic signature is indicative of

diet over at least a few days (plasma) and presents the big advan-

tage of not being dependent upon a single meal. It avoids there-

fore the risk of sampling food caught by an adult bird, not for its

own use, but for its chick (Grémillet et al., 2008). Yet, specific

items constituting the diet are not directly identifiable through

SIA, although mixture models allow reconstruction of overall diet

composition, provided SIA signatures are known for potential

prey. Such stable isotope analysis in R (SIAR) models (Jackson

et al., 2009) which follow a Bayesian structure are being widely

used (e.g. Meier et al., 2015; Osterback et al., 2015).
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Second, fatty acid signatures measured in bird plasma may

also help distinguishing natural from discarded prey (Kakela

et al., 2009, 2010). This method requires larger blood samples

and has been used less extensively in the literature, because of its

lower accuracy with respect to differentiating natural from subsid

prey (but see Moseley et al., 2012). Combining classical dietary

analyses based upon e.g. stomach contents, with aforementioned

biochemical methods reduces overall biases in estimating seabird

diet composition (Karnovsky et al., 2012). It is therefore recom-

mended to cross those different approaches to detect and quantify

the presence of fisheries subsids in seabird diet (e.g. Jiménez

et al., 2017).

Dietary studies allow extensive sampling which can be per-

formed within very limited time periods at seabird colonies, with

modest associated field costs and, in most cases, without the need

for at-sea campaigns. They are therefore a very powerful tool for

the study of seabird–fishery resource overlap, even if necessary

sample sizes have to be carefully determined with respect to the

potential impact of sampling (e.g. stomach flushing, blood sam-

pling) on animal well-being. Method standardization nonetheless

strongly promotes the expansion of dietary studies from the indi-

vidual, to the populational, meta-populational, and inter-specific

levels, to yield better understanding of fisheries impacts on the

diet of the entire seabird community (e.g. Phillips et al., 1997;

Votier et al., 2008).

Impacts of fishery interactions upon seabird
populations
Beyond characterizing and quantifying seabird–fishery at-sea in-

teractions, evaluating the ultimate impact of these processes on

seabird population dynamics is the most important step towards

sounds marine management and conservation (Table 2). At the

populational level, one approach consists in confronting long-

term seabird population trends with indicators of seabird-fishery

interactions. Along these lines, population size can be observed in

parallel to fishing effort, within shared areas, using discarded prey

volumes as a covariate (Chapdelaine and Rail, 1997; Bunce et al.,

2002). This correlative approach may provide a qualitative view

upon the level of interaction, but cannot rate impacts; neither

provides metrics of sustainability thresholds. Specifically in the

case of seabird bycatch, reference points are required to assess the

sustainability of the bycatch level relative to a conservation objec-

tive. Those conservation reference points (reviewed and discussed

in Moore et al., 2013) can be used as a main indicator in the con-

text of seabird mortality (e.g. Jiménez et al., 2012; Genovart et al.,

2016). Primarily developed to estimate marine mammals allow-

able bycatch (Wade, 1998), the potential biological removal

(PBR) is also an estimation of the additional mortality that can

be sustained by a population each year. Calculation of the PBR

rests on estimates of population size and its maximum annual re-

cruitment rate (Rmax, sensu Dillingham and Fletcher, 2008).

Rmax can be estimated from matrix population models when ap-

propriate demographic information is available. However, it is

seldom the case in seabird studies, even though Niel and

Lebreton (2005) proposed a method allowing Rmax estimation in

a data-poor context, while only relying on age at first reproduc-

tion and adult survival (See Dillingham and Fletcher, 2011 for de-

tails). By including those reference points (e.g. Tuck et al. 2011),

ecological risk assessment (reviewed in Small et al., 2013) offers a

framework particularly relevant for the study of incidental seabird

mortalities through fisheries. Within vulnerable species or popu-

lations, it allows a focus on high-risk seasons and/or areas, facili-

tating specific bycatch mitigation measures.

When a seabird population is monitored in the longer term,

the influence of interacting with fisheries can be evaluated

through regression analyses. Typically, reproductive success and

population size is then modelled as a function of discard avail-

ability (Oro et al., 1995; Louzao et al., 2006; Mullers et al., 2009).

Thereby, potential confounding effects can be tested, but forward

projections are difficult using these methods. When capture-

mark-recapture (CMR) data are available, classical CMR analyses

can also be used to estimates different demographic parameters

and confront them to interaction influence. Most of the studies

implemented Cormack-Jolly-Seber like models to estimate adult

survival in the population (e.g. Delamare and Kerry, 1994;

Arnold et al., 2006; Francis and Sagar, 2012), adding age-

structured matrixes models (Caswell, 2001) in most cases

(Lewison and Crowder, 2003; Awkerman et al., 2006; Barbraud

et al., 2008; Genovart et al., 2016). This second step offers the

possibility to estimate probabilities of transition from one age

class to another. It is particularly relevant for the study of sea-

bird-fishery interactions, as individual vulnerability may diverge

according to age (e.g. Baker et al., 2007). Those demographic

models provide parameters that can be linked to environmental

covariates, as incidental mortality from fisheries. Yet, they may

also be calculation-intensive, in addition to the commitments

and costs of long-term seabird CMR monitoring studies.

However, they allow testing scenarios with different levels of in-

teraction (e.g. mortality from fisheries; Lewison and Crowder,

2003; Baker and Wise, 2005), and exploring the populational im-

pacts of positive or negative interaction with fisheries, as well as

integrating, and so comparing, other effects, as climate change

(Barbraud et al., 2012; Pardo et al., 2017). Therefore, they offer

the possibility to detect non-viable levels of incidental seabird ex-

ploitation, to monitor population status in the case of positive

fishery impacts on seabirds, and to assess the risk of generating

ecological traps.

Conclusions
This synthesis allowed us to review the vast diversity of methods

currently available to study direct interactions between seabirds

and fisheries (Tables 1 and 2). Those interactions feature a com-

plex system. Such complexity stems from the multiplicity of pro-

tagonists, amplified by their respective behavioural plasticity.

Further, interactions are largely scale-dependent, both in time

and space. Static representations are necessary at large scales, to

evaluate areas of overlap, but they can be misleading if protago-

nists share ranges at different times. Finally, the nature of sea-

bird-fishery interactions and their functioning is strongly

influenced by environment constraints such as resource availabil-

ity and abiotic factors (e.g. wind fields acting upon seabird travel-

ling costs, Amélineau et al., 2014). Overall, understanding this

very particular case of association between wildlife and anthropo-

genic activities, and designing appropriate conservation strategies,

requires the use of multiple approaches and methods in parallel.

We hope that the panel of tools presented here will assist re-

searchers and managers in understanding the ancestral associa-

tion between fishermen and seabirds, in a globally modified

ocean.
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Table 2. Methods used in 43 original publications dedicated to evaluate the impact of interactions with fisheries, for seabird populations.

General purpose
Specific
objective Methods

Sample
size

Logistics
required Invasiveness

Data
accessibility

Quantify
impact

Project
scenarios

Help for
decision
making

Analysis
complexity

Utilization
Frequency
% (R)

What is the
repercussion
of interacting
with fisheries for
seabird
populations?

Population
monitoring

Demography þþþ þþ þ þþþ 44, 2 (19)
CMR data þþ þþþ þþ þþþ 55, 8 (24)

Evaluate the
sensibility of the
population

Correlative
approach

þ – þ þ 7 (3)

Regression
approach

þþ þþ þ þþ 32, 6 (14)

PBR, reference
point

þþ þ þþþ þþþ 11, 6 (5)

CMR þþþ þþþ þþ þþþ 55, 8 (24)

Methods for data acquisition are given in italics in opposition to methods for data analysis. The utilization frequency index (% of occurrence and number of
studies) gives the frequency of use of each method in the literature. The corresponding references are given in Supplementary appendix Table S1.
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