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ABSTRACT 

The Eastern Pacific leatherback turtle population (Dermochelys coriacea) has dramatically declined 
in recent years, being bycatch from coastal and pelagic fisheries one of the major causes. In this 
study, we created a machine learning species distribution model trained with fisheries observations 
and remotely sensed environmental data. Through a highly collaborative international participatory 
approach, we obtained leatherback observation data from multiple fisheries that operated in the 
eastern Pacific Ocean between 1995 and 2020. A daily predictive process was applied to predict 
leatherback habitat suitability (probability of occurrence) for the study period as a function of 
dynamic and static environmental covariates. This model serves as the basis for dynamic ocean 
management and Ecological Risk Assessment from which outputs can inform managers and 
stakeholders as to appropriate management action that can reduce leatherback turtle bycatch 
while providing a modeling framework for analyzing fisheries observations for other data-limited 
vulnerable populations and species. 

1. INTRODUCTION 

Sea turtles represent a unique example of the diversity of life histories of living animals in the 
world’s oceans by straddling the interface between ocean and land throughout their lives. They 
spend most of their lives at sea, but are tied to terrestrial habitats (i.e., nesting beaches) for 
reproduction. This life history strategy exposes sea turtles to significant natural (e.g., climate 
change and habitat loss) and anthropogenic (e.g., fishing, pollution and marine debris, egg 
consumption, coastal development) threats that currently compromise their population viability, 
with all species classified by the International Union for Conservation of Nature (IUCN) Red List of 
Threatened Species as either “vulnerable”, “endangered”, or “critically endangered”19. 
Consequently, conservation efforts have increased in many regions of the world in an attempt to 
curb these threats, with varying degrees of success (Wallace et al. 2011). 

One species of particular concern is the leatherback turtle (Dermochelys coriacea), the largest (~2 
m in length) and most geographically widespread of all sea turtle species (Wallace et al. 2010). 
Distributed circumglobally in tropical to temperate regions, and regularly occurring in coastal as 
well as high-seas areas, the species comprises seven regional management units (RMUs) or 
subpopulations (Wallace et al. 2010). Two RMUs—the East Pacific (EP) stock and West Pacific 
(WP)—exist in the Pacific Ocean, both of which are currently classified as “Critically Endangered” 
on the IUCN Red List (Tiwari et al. 2013; Wallace et al. 2013). The EP stock in particular has 
demonstrated a precipitous population decline, with the annual number of nesting females 
estimated to have declined by over 90% since the 1980s resulting from unsustainable levels of 
incidental mortality in industrialized and artisanal fisheries, which mainly affect sub-adults and 
adults, and human consumption of eggs (Laúd OPO Network, 2020). 

Given that industrial and artisanal tuna purse seine and longline fisheries cover a high proportion 
of the species’ distribution in the EPO, they unavoidably interact with leatherback turtles, and other 
sea turtle species, during their normal fishing operations as they target tunas, billfish and other 
species that share similar epipelagic habitats (IATTC, 2020).  

The Inter-American Tropical Tuna Commission (IATTC) is the Regional Fisheries Management 
Organization (RFMO) that is responsible for the management of these tuna fisheries in the eastern 
Pacific Ocean (EPO). Since the Antigua Convention entered into force in 2010, which significantly 
broadened IATTC scope to consider an ecosystem-based approach, several Resolutions pertaining 

 
19 The flatback turtle (Natator depressus) is the lone exception, as its current IUCN Red List status is Data Deficient. 

https://www.iattc.org/PDFFiles/IATTC-Instruments/_English/IATTC_Antigua_Convention%20Jun%202003.pdf
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to the conservation and management of various sensitive bycatch species have been implemented, 
including sea turtles (Res. C-07-03). However, in light of the declining population of leatherback 
turtles in the EPO in particular, the IATTC implemented in 2021 more stringent conservation 
measures to mitigate the fishery impacts on sea turtles through the development of Resolution C-
19-04.  

Further, the Inter-American Convention for the Protection and Conservation of Sea Turtles (IAC) is 
an intergovernmental treaty that provides the legal framework for countries in North and South 
America to take actions to benefit sea turtles, in both nesting beaches and the Parties’ territorial 
waters. Concerned with the critical status of leatherback turtles, the IAC adopted Resolution CIT-
COP7-2015-R2 that requests IAC Parties to make efforts to reduce the bycatch of the species in the 
EPO using recommendations from IAC Resolution COP3/2006/R-2, such as exercising FAO 
guidelines to reduce sea turtle mortality in fishing operations (FAO, 2009). Other international 
conservation instruments have been developed for sea turtles as well, such as their inclusion in 
Appendices I and II of the Convention of Migratory Species (CMS) (CMS, 2015) and under Appendix 
I of the Convention on International Trade in Endangered Species (CITES) (CITES, 2016). These 
measures were required to meet regional conservation goals as well as curb international trade of 
sea turtle products (e.g., eggs, meat, shell material). 

Quantitatively demonstrating the sustainability of bycatch species is challenging due to the often 
lack of reliable biological and catch information available, especially for species of little or no 
economic value or in data-limited settings. Therefore, assessing bycatch species using traditional 
stock assessment approaches is often both cost-prohibitive and impractical. As an alternative, the 
IATTC staff developed a flexible spatially-explicit quantitative ecological risk assessment 
approach—Ecological Assessment of Sustainable Impacts of Fisheries (EASI-Fish)—to quantify the 
cumulative impacts of multiple fisheries for data-limited bycatch species, such as sea turtles 
(Griffiths et al., 2019a). The basic principle of EASI-Fish is to estimate the proportional overlap of 
fishing effort on the geographic distribution of the species of interest, which is converted into a 
proxy for species’ vulnerability for an assessment period based on well-established biological 
reference points. Since the extent of overlap between the fishery and species is of critical 
importance in this approach, a reliable species distribution model (SDM) is required. SDMs are built 
to describe the relationship between a species and environmental conditions and can predict how 
environmental variability may affect their distribution and habitat choice (Elith & Leathwick, 2009). 
Although SDMs have been widely applied in predicting suitable habitats for marine species over 
past few decades (Melo-Merino et al. 2020), only a few studies have focused on sensitive bycatch 
species (e.g., Sequeira et al. 2014; Abrahms et al. 2019, Lezama-Ochoa et al 2020, Lopez et al 2020). 

Unfortunately for rarely encountered bycatch species, whether their rarity is due to selectivity 
issues, non-reporting, or declining population size, there is often a small number of observations 
from which to develop an SDM. This therefore limits the types of models available to develop an 
SDM that can make use of scant presence records. Unlike other methods, machine learning 
algorithms, including boosted regression trees (BRT) (Elith et al 2006), are powerful tools in dealing 
with non-linear relationships, high-dimensional large datasets, imbalanced classes, and limited 
species occurrences (Elith et al 2008; Mi et al. 2017). 

The goal of this study is to generate a reliable high-resolution SDM to inform conservation and 
management of EP leatherback turtle in the EPO. Previous studies have developed potential 
methods for producing SDMs for EP leatherbacks using individual-based satellite telemetry data 
(Hoover et al. 2019) or presence-only observation data (Degenford et al. 2021). Here, we developed 
a hierarchical machine learning modelling approach that used a region-wide presence-absence 

https://www.iattc.org/getattachment/ad1b189c-4a6e-4ac9-93df-5786fb64c921/C-07-03_Sea-turtles.pdf
https://www.iattc.org/GetAttachment/7ef88817-47f2-4c98-8e29-883729e60a95/Sea%20turtles
https://www.iattc.org/GetAttachment/7ef88817-47f2-4c98-8e29-883729e60a95/Sea%20turtles
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dataset for EP leatherback turtles and incorporated different predictive variables and modelling 
scenarios to: i) understand the potential distribution of the species at different spatio-temporal 
scales, and ii) identify the environmental preferences of the species, and iii) develop a final 
prediction map describing to most plausible distribution for the species that will be used in a 
concurrent study to assess the species’ vulnerability. This paper describes the fundamental role of 
SDMs to quantify and mitigate the impacts of EPO fisheries on EP leatherback turtles, help inform 
their vulnerability status and guide the development of appropriate conservation and management 
decisions. The framework presented in this study could also be applied to other data-limited 
vulnerable species and populations. 

2. METHODS 

All data processing and analytical work was carried out in the Microsoft R Open environment (MRO 3.4.3; 
https://mran.microsoft.com/rro). Microsoft R Open is the enhanced distribution of R from Microsoft 
Corporation and includes additional capabilities for improved performance, parallelization, and 
reproducibility. 

2.1 Fisheries observer data 

We used 26 years (1995–2020) of primarily fisheries’ observer and logbook data from a variety of 
industrial and small scale coastal (“artisanal”) fisheries (Table 1) operating in 6 countries and the high-
seas within the IATTC convention area in the EPO – defined as the region from the coast of the Americas 
to 150°W between 50°S and 50°N.  

The vast majority of the industrial high-seas observations corresponded to the large-scale tuna longline 
fishing vessels (herein called the “industrial longline fishery”) and the tropical tuna large purse-seine 
fishing fleet (Class 6 with a carrying capacity >363 mt). The data include set-level information on 
leatherback turtle interactions along with location, date and time of the observation. The distribution of 
industrial tuna fishing effort mostly concentrated between 20°N and 20°S during the study period. The 
data for these fleets were collected by IATTC on-board scientific observers, or submitted to the IATTC by 
its Members under Resolution C-19-08. The observer coverage rate was close to 100% for purse seine 
vessels of class 6 and around 5% for the industrial longline fishery.  

In contrast to the industrial fisheries in the EPO, catch and effort by the numerous artisanal fleets that 
operate within the EEZs of countries in the EPO generally have very low (if any) observer coverage, and 
are poorly documented in general. However, leatherback turtles have been shown to be heavily impacted 
by coastal, artisanal gillnet and longline fisheries, particularly in foraging areas, but also in migratory and 
reproduction areas (Wallace et al., 2013a). Reasonably detailed effort data for artisanal longline vessels 
throughout Central America was available from IATTC’s long-term research program that examined the 
effects of different hook types on bycatch rates, in part reported by Andraka et al. (2013). In addition, the 
IATTC-IAC EP leatherback turtle ad hoc working group compiled leatherback turtle interaction and fishing 
effort information for several artisanal fisheries operating in territorial waters of 6 countries in the EPO 
(Table 1) (see BYC-11-02 for details). 

Duplicate records, data outside the EPO, and observations without reliable date and location information 
were removed from the dataset (~3.5%). The final dataset included 1,088 leatherback records from nearly 
575,000 fishing sets (0.19%) (Table 1) (Fig. 1).  

2.1 Predictive variables 

A total of 23 variables were included in species distribution models (SDMs), which included 3 spatio-
temporal variables, 11 surface variables, 2 subsurface variables, and 2 static variables (Table 2). The three 
spatio-temporal variables included location and date of set, as seasonality may affect catches. Spatio-

https://mran.microsoft.com/rro
https://www.iattc.org/GetAttachment/614c5692-74c5-40a7-a8b0-148ec0e52206/Observers%20on%20longliners
https://www.iattc.org/GetAttachment/e5b273d6-d37c-421c-87c2-0c8587bcaa85/BYC-11-02%20-%20EASI-Fish%20assessment%20for%20leatherback%20turtle
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temporal variables can be confounded with environmental factors and reflect certain natural processes 
not captured by the surface and subsurface variables. The majority of environmental data was sourced 
from daily/weekly fields of global data assimilative models (i.e. assimilate available data from satellites 
and in situ platforms) that include the IATTC convention area at 0.25° (∼25 km2) resolution (available at 
http://marine.copernicus.eu/ and https://www.aviso.altimetry.fr/). The 0.25° spatial resolution, 
combined with a fine temporal scale, is considered adequate for habitat modeling (Scales et al. 2016).  

The 11 surface variables chosen included sea surface temperature (SST) and its gradient (SST_grad; 
calculated as the change in temperature at the same pixel over a period of 7 days), salinity (Sal), sea 
surface height (SSH), current speed (Vel), current direction (Dir), eddy kinetic energy (EkE), finite size 
Lyapunov exponents (FSLE), front index (FrontIndex; estimated as a count of the front pixels in the grid 
cell for the 7-day window), Chlorophyll a (CHL), and Chlorophyll a gradient (CHL_grad; computed as the 
difference in Chlorophyll a concentration in the same pixel over a 7-day period).  

The 2 subsurface variables included temperature at 100 m depth (SST100) and mixed layer depth (MLD). 
Temperature at 100 m depth and mixed layer depth have proven to be helpful to improve SDMs for large 
pelagic species (Brodie et al. 2018) as help describe the two-dimensional (i.e., vertical and horizontal 
space) structure of the water column properties.  

The 2 static variables included bathymetry (Depth), and the distance to land (LandDistance). These 
variables were extracted from the Global Marine Environmental Datasets (GMED) (Basher et al., 2018) 
and MARSPEC Ocean Climate Database (Sbrocco et al., 2013), respectively, and have shown to be 
important to define leatherback turtle’s habitat (e.g. Hazen et al., 2018; Robinson et al., 2016; Willis-
Norton et al., 2015). 

2.2 Model Specification 

In the interest of robustness and to inform comparisons, we took a hierarchical multi-model approach, 
building 6 presence–absence (catch vs. zero catch per set, binary response) models with each set of 
variables, from simplest to most complex models. The following models were established for the original 
model with all presence and absence data: i) spatio-temporal, ii) surface, iii) subsurface, iv) environmental 
(surface + subsurface), v) static, and vi) full (environmental and static) (Fig. 2). 

Because the full model had the best performance metrics (Table 3), subsequent models using different 
proportions of presence to absence data were only established with this set of variables (full; 
environmental and static variables) (see section sensitivity analysis for details).  

2.2.1 Species Distribution Models: Boosted Regression Trees 

a. Model building 

Boosted regression trees (BRTs) are a flexible classification algorithm based on machine learning 
principles (De'ath 2007; Elith et al. 2006). Consequently, some of the caveats of more commonly 
used techniques such as generalized linear models (GLMM) or generalized additive mixed models 
(GAMM) are not applicable. BRTs have the particular  advantage of being tolerant to missing values, 
outliers, collinearity, non-independence, and allowing for the inclusion of irrelevant predictors 
(Leathwick et al. 2006). BRTs are also designed to accommodate non-linear relationships, large 
high-dimensional datasets, imbalanced classes, and limited species occurrences (Elith et al. 2008; 
Mi et al. 2017). While GLMMs and GAMMs seek to fit the most parsimonious model to a dataset, 
BRTs combine predictions of many simple models (i.e., many shallow classification trees) to 
maximize robustness and predictive performance to reduce associated error (Scales et al. 2017). 
Accordingly, we fitted BRTs with all available sets of covariates. In the past, authors also fitted 
GAMM and Random Forest (RF) models to other species presence-absence data to compare and 

http://marine.copernicus.eu/
https://www.aviso.altimetry.fr/
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better understand consistency and interpretation between algorithms (e.g., SAC-10-INF-D). In these 
cases, BRTs performed better than GAMMs and had very similar performance to the RFs. As such, 
we decided to use BRTs to build all the models in this study, which were implanted in R using the 
dismo package (Hijmans et al. 2017). 

In fitting BRTs, we adapted the protocols outlined by Brodie et al. (2018), Elith et al. (2008), Hazen 
et al. (2018) and Scales et al. (2017). Presence–absence models were built with a binomial 
(Bernoulli) distribution. We used a tree complexity of 3, a bag fraction of 0.7, and conducted 
sensitivity analyses on learning rate (“shrinkage”) for each model set, aiming for at least 1,000 trees 
in final model configurations. The sensitivity runs determined 0.01 as the learning rate to be used 
in all the models, except for the model with the same number of presences and absences (i.e., 50-
50 presence-absence ratio; see section on sensitivity analysis), where a value of 0.005 was used. 
Tree complexity refers to the number of nodes in a tree, which constrains the maximum size of 
each of the regression trees that together make up a boosted regression tree model. By controlling 
the number of nodes/branches, tree complexity also sets the maximum number of interactions 
between predictor variables that are possible (i.e., 3 in this case as a two-way, and perhaps three-
way, interactions among variables may be important, but higher-orders unnecessary, in fisheries 
contexts; Soykan et al. 2014). Bag fraction refers to the percentage of the data that is randomly 
used for model building at each step, which usually ranges between 0.6-0.75 (Elith et al. 2008). The 
stochasticity that this step provides to the model building process improves model performance 
(Soykan et al. 2014). 

The potential for model simplification was evaluated with the function gbm.simplify. Simplified 
models were fitted by re-running models without those variables that gave no evidence of 
improving predictive performance. Deviance explained, variable importance, as well as interactions 
between variables were also estimated for all the models using the function gbm.interactions. Each 
of these configuration settings and the performance procedures are described in detail by Elith and 
Leathwick (2017); Elith et al. (2008); Hazen et al. (2018); Scales et al. (2017) and Soykan et al. (2014).  

b. Model validation 

A k-fold cross-validation method was used to evaluate the reliability and the predictive 
performance of final models. This method consists of using independent data sets for model 
building (i.e., the training data) and model validation (i.e., the test data), where data is partitioned 
into k equally sized segments or folds through random resampling. Model performance is assessed 
by successively removing each subset, rebuilding the model on the retained data, and predicting 
on the omitted data (Elith and Leathwick 2009). In this study, a k = 4 partitioning method was used, 
meaning that 75% of the observations were used for model building, and the other 25% for model 
validation. Hold-out validation avoids the overlap between training data and test data, yielding a 
more accurate estimate of the generalization performance of the algorithm (Villarino et al. 2015).   

The predictive power of the model was assessed by computing a set of diagnostic metrics. The 
mean Area Under the receiver-operating Curve (AUC) (Hanley and McNeil 1982) and the mean True 
Skill Statistic (TSS) (Allouche et al. 2006) were calculated for each iteration from each confusion 
matrix. The AUC provides a single measure of overall model accuracy that is threshold independent, 
with an AUC value of 0.5 indicating the prediction is as good as random, whereas 1 indicates perfect 
prediction (Fielding and Bell 1997). AUC has been extensively used in SDMs and measures the ability 
of the model to correctly predict where a species is present or absent (Elith et al. 2006). An AUC 
value of >0.75 is considered to have a good predictive power and is acceptable for conservation 
planning (Pearce and Ferrier 2000). TSS is an alternative measure of model accuracy that is 
threshold dependent and not affected by the size of the validation set (Allouche et al. 2006). It is 
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an appropriate evaluative tool in cases where model predictions are formulated as presence–
absence maps (Allouche et al. 2006). TSS is on a scale from -1 to +1, with 0 representing no 
predictive skill and is calculated from the confusion matrix outputs as sensitivity plus specificity 
minus 1 (i.e. TSS = sensitivity + specificity - 1). Threshold independent and dependent statistics, 
such as AUC and TSS, respectively, should be used in combination when evaluating the predictive 
power of a SDM (Pearson et al. 2006). 

c. Sensitivity analyses 

The model utilizing all data (hereafter called the “original model”) contained 573,883 observations (1088 
presences; 0.19%) . To determine the effect of using different proportions of presence on model 
performance, the relationship between the response variable and the covariates (i.e. environmental and 
static), as well as the generated predictions, a multi-model approach was conducted using 10 datasets 
with each having a different presence-absence ratio. The presence-absence ratio in the data used to build 
the final models was incrementally decreased from 50 to 0.5%. In each case, all 1088 presence 
observations were included with a variable number of randomly selected absences. For example, the 
50:50 model included 1088 absences while the 0.5:99.5 model included 216,512 absences (Table 4). All 
models (hereafter called “final models”) were run using all environmental and static variables, as per the 
full model) and followed the same model building and validation procedures mentioned above.     

2.3 Predictions 

a. Daily predictions 

Daily predictions of the probability of occurrence of leatherback turtles over the IATTC convention area 
were conducted for 2002–2020 (i.e. 6935 daily predictions). A series of time-matched environmental data 
fields (both surface and subsurface as well as static variables) were used to generate daily predictions 
based on the 11 final models and their best number of trees using function predict in the package raster 
(Hijmans et al. 2015). Therefore, 11 different predictions were computed for each day of the time series 
to inform consistency and interpretation, and to visualize the effect of accounting for different proportion 
of presences on the predictions. The spatial resolution of the predictive surface was set to the lowest 
common resolution of environmental data fields (0.25°).  

b. Prediction averaging and ensemble 

Daily predictions (n = 6935) were averaged for 2002–2020 for each of the 11 final models. Visual 
inspection of predictions, and exploration of performance metrics and the relationships between 
response the variable and covariates suggested two groups of similar models: i) six models with a 
presence-absence ratio ranging from 50% to 10%, and ii) five models models with a presence-absence 
ratio ranging from 5% to 0.19%. All averaged predictions were inspected by experts in leatherback turtle 
ecology who concurred that the models of the first group best represented the species habitat. Therefore, 
an ensemble model was created using the average predictions from all models having a presence-absence 
ratio of 50% to 10%. Similarly, the model with a 25% presence-absence ratio was also identified by both 
expert opinion and performance metrics as a plausible  model (hereafter called the “reference model”). 
Therefore, a ensemble model was developed using the average predictions from the upper (33:66) and 
the lower (20:80) models. Generating the two ensemble predictions allowed comparisons between 
candidates and the exploration of the potential effects of model selection on the final prediction.  

c. Probability-of-occupancy (ψ) threshold 

The first stage of EASI-Fish in estimating the vulnerability of a species is to determine the number of grid 
cells where the species is considered to be present and also contains fishing effort. Because SDMs 
estimate a probability of a species to occur in each grid cell, a probability-of-occupancy threshold value 
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(ψ) must be used to define whether the species is present or absent in each cell. However, the spatial 
extent of the species’ distribution increases and decreases with lower and higher ψ values, respectively, 
and thus influences the proportion of the species’ population that is exposed to fishing. To account for 
this uncertainty, three ψ values (0.1, 0.2, and 0.3) were applied to each 0.25° cell, based on statistically 
determined thresholds and verification by experts. This range was determined by overlaying the 
distribution of predicted probability of presence with that of predicted probability of absences. The ψ 
value where these two distributions intersected was selected to define the most probable species 
distribution and upper and lower bounds were selected by visual inspection of the two distributions on 
either side of the intersection point (Lopez et al. 2020). 

Given the critically endangered status of EP leatherbacks, we selected relatively low ψ values to 
conservatively include areas where experts considered leatherbacks likely to occur, even if in relatively 
low numbers and for limited periods of time, based on documented patterns of spatio-temporal habitat 
use (Shillinger et al. 2008; 2011; Donoso and Dutton 2010; Bailey et al. 2012; Quiñones et al. 2021) and 
previously published SDM maps (Hoover et al. 2019; Degenford et al. 2021). This is key to ensuring that 
EASI-Fish would be precautionary in its calculations of fishery impacts on leatherbacks throughout their 
distribution and across fisheries known to interact with the species (see BYC-11-02). 

3. RESULTS 

3.1 Model performance 

Models including all data and environmental and static variables (i.e. model vi - full) demonstrated better 
performance under the diagnostic measures we used (deviance explained, AUC and TSS) (Table 3). In 
general, complex models (i.e. models iv, vii) had better performance than simpler models including sets 
of variables individually (i.e. models i, ii, iii, v). These models explained between 19.71% and 40.57% of 
the deviance in the data, had AUC values between 0.79 and 0.94, and had TSS values that ranged between 
0.51 and 0.76 (Table 3). The number of trees created by the these models ranged between 3600 and 7000. 
The comparison in model performance led us to recommend the use of this model configuration (model 
vi - full, environmental and static variables) for further exploration on the sensitivity analysis. 

Models including different proportions of presence ratios with environmental and static variables (i.e. 
model vi - full) shown similar but also different performance under the diagnostic measures we used 
(Table 4). In general, models with balanced or slightly imbalanced dataset (i.e. models 50:50, 33:66, 25:75, 
20:80, 15:85, 10:90) had better performance than models that used highly imbalanced datasets (i.e. 
models 5:95, 2.5:97.5, 1:99, 0.5:99.5, original - 0.19%). These models explained between 40.57% and 
61.54% of the deviance in the data, had AUC values between 0.92 and 0.96, and had TSS values that 
ranged between 0.76 and 0.81 (Table 4). Based on these diagnostic measures, the model using 25% of 
presence-absence ratio was identified as the reference model.  

3.2 Drivers of leatherback turtle presence 

An examination of the relationships between species and the environmental and static variables showed 
a range of interesting patterns for each of the 11 final models, based on variable importance analysis (Fig. 
3) and partial dependence plots (e.g., Fig. 4). These indicators suggested two groups of similar models: i) 
models with a presence-absence ratio ranging from 50% to 10%, and ii) models with a presence-absence 
ratio ranging from 5% to 0.19%. The first group showed higher variable importance with SST, SST100, CHL, 
MLD, FrontIndex, CHL gradient and current direction, whereas the second group showed higher values for 
Depth, SAL, LandDistance, FSLE and SSH.  

A closer look to the reference model showed interesting patterns as well. After simplification, 8 variables 
were included in the final model, for which relative variable importance was 3.3%-49.9%. EkE, FSLE, 
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LandDistance, SSH, Vel, SST_grad and FrontIndex were dropped from the final model as they did not 
improve predictive performance. With the exception of CHL_grad (3.3%), all variables contributed more 
than 5%: SST (49.9%), Depth (12.5%), MLD (9%), SST100 (7.5%), Dir (6.7%), CHL (6.2%), and Sal (5%) (Fig. 4). 

The model identified higher probabilities of leatheback turtle presence around SST values of 16-20⁰C. For 
Depth, higher probabilities of leatherback turtle were found in waters shallower than 1000m. MLD values 
<100m showed higher probabilities of leatherback turtle presence, whereas SST100 showed a positive 
relationship. Currents with south-west direction showed an evident negative relationship with 
leatherback turtle presence. A positive relationship was also observed between the leatherback turtle 
presence probability and CHL, while the opposite relationship was observed for SAL (salinities higher than 
30 PSU). Similarly, the model showed higher probabilities of leatherback turtle presence at positive CHL 
gradient values. 

3.3 Predictions 

Final models were used to predict species habitat suitability in the convention area for 2002-2020 (Fig. 5).  

Predictions revealed spatial differences among models, with, in general, higher probabilities of 
leatherback turtles predicted by models with presence-absence ratios ranging from 50% to 10%. The 
predictions of this group of models highlighted several areas expected to support high residence or 
occurrence by leatherback turtles (Fig. 5). These include coastal areas near nesting beaches in Mexico and 
Central America, high seas areas through which leatherbacks transit and in which they are presumed to 
forage, and nearshore foraging areas in southern latitudes. For example, the continental shelf and 
adjacent high-seas areas within South American EEZs, as well as the higher latitude subtropical 
convergence zone extending from south-central Chile clearly and consistently supported high 
probabilities of leatherback turtle presence.  

These patterns were also reflected by the ensemble predictions (Fig. 6) and the maps developed after 
applying the probability of occupancy thresholds mentioned above (Fig. 7).  

4. DISCUSSION 

Understanding the spatial distributions of marine species is becoming increasingly important as 
international and regional oceans and fisheries instruments evolve further toward ecosystem-based 
approaches to conservation and management of marine resources (Aburto et al., 2012; Kirkfeldt, 2019). 
In a fisheries context, having a reliable prediction of a species’ distribution that can be compared with that 
of fishing effort can allow managers to determine the extent of overlap and implement conservation and 
management measures (CMM), such as spatial closures, that can reduce fishery interactions, fishing 
mortality, and thus promote long-term population sustainability.  

However, SDMs have traditionally required a large number of species presence locations at fine resolution 
to be useful for fisheries management in jurisdictions that typically span spatial scales of hundreds, or 
even thousands, of kilometers. Furthermore, because the largest quantity of data is usually collected for 
species of high commercial importance (i.e., target species), the application of SDMs has primarily been 
constrained to these species. However, large scale fisheries such as tuna fisheries that deploy passive 
gears such as longlines and gillnets to target tunas and other large oceanic predators such as billfish and 
sharks can be unselective and indiscriminately catch a variety of non-target species such as seabirds, 
marine mammals and sea turtles, which are mostly discarded at sea and often dead. Some of these 
bycatch species, such as the leatherback turtle, have life histories of slow growth and low reproductive 
potential that even low levels of additional mortality applied by fisheries can drive their population to the 
brink of extinction (Baum et al., 2003; Laúd OPO Network, 2020).  

Unfortunately, reliable catch, or even simple occurrence, data is often lacking for bycatch species for a 
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variety of reasons, such as their perceived unimportance to the fishing industry from an economic 
perspective, the absence of observer programs or policies mandating fishers to record all species 
interactions in catch logbooks, policies requiring rapid release and no-retention of species, and the 
typically low frequency of interactions and subsequent issues pertaining to species identification. As was 
shown in the present study of the critically endangered EP leatherback turtle population, the incidence of 
interactions in EPO fisheries was extremely low—1088 occurrences from over half a million observations 
(0.19%). Regardless of whether the low frequency of interactions is attributed to naturally low density in 
the EPO, rarity of the species following its documented population decline (Laúd OPO Network, 2020), or 
less than optimal gear selectivity by EPO fisheries, the totality of data available are too few to undertake 
conventional stock assessments. Therefore, more rudimentary vulnerability assessment approaches that 
are designed to assess data-limited species (e.g. EASI-Fish) are highly reliant on estimating vulnerability 
based on the three-dimensional overlap between the species and fisheries, and thus, reliable SDMs. 

Nonetheless, the present study showed the improved capability of BRTs to characterize the habitat 
preferences of a critically endangered species for which very few occurrence records existed in industrial 
purse-seine and longline fisheries in the EPO (Hall and Roman, 2013; Griffiths and Duffy, 2017; Lezama-
Ochoa et al., 2017, SAC-13-10). The SDM that we produced is spatially comprehensive with respect to the 
full distribution of the EP leatherback population, as well as the distributions of various fisheries that are 
known to interact with leatherbacks in the EPO region. Performance metrics for the BRTs (i.e., AUC, TSS, 
Deviance explained) showed that the models were robust to the extreme imbalance between leatherback 
presences (~1,000) and absences (>570,000). In fact, the performance metrics of our BRTs are in line, or 
even surpass, the values shown in other BRT models developed for a number of large pelagics, including 
sharks, tuna, swordfish and leatherback turtles, among others (Brodie et al. 2018, Hazen et al. 2018, Scales 
et al. 2017). Thus, we suggest that our modeling approach has the potential to be applied to other data-
limited vulnerable species and populations. However, we recognize that for many species, researchers 
might not have access to absence data when generating SDMs and will have to rely on presence-only 
approaches.  

Patterns of leatherback occurrence appeared to be driven largely by SST and bathymetry (Figs. 3 and 4), 
particularly when models included near parity between numbers of presences and absences. The 
influence of SST on leatherback occurrence is has been described by telemetry (e.g., Jonsen et al. 2007; 
Sherrill-Mix et a. 2008; Shillinger et al. 2008; 2011) and modeling studies (e.g., Hoover et al. 2019), which 
suggest seasonal movements that track preferred SST ranges, particularly in foraging areas. In the EPO, 
for example, leatherbacks are thought to exploit high latitude foraging areas in the South Pacific 
Subtropical Convergence during the austral summer (December-April) when SST is higher in this region, 
later moving northward toward tropical and subtropical latitudes in austral winter (May-November) (Saba 
et al. 2008; Hoover et al. 2019). Leatherbacks in the Northwest Atlantic Ocean follow a similar general 
pattern of high latitude occurrence in summer followed by movement to lower latitudes in winter, 
tracking SSTs above approximately 18-20C (Sherrill-Mix et al. 2008). Leatherbacks might depart high 
latitude areas when prey abundance declines, rather than specifically because of decreased water 
temperatures, considering their capacity for effective thermoregulation (Sherrill-Mix et al. 2008; Wallace 
and Jones 2008).  

Further, our model successfully highlighted several areas known, or expected, to support high residence 
or occurrence by leatherback turtles (Fig. 5), many of which are relatively close to shore; distance to shore 
was an important covariate (Figs. 3 and 4). These include coastal areas near nesting beaches in Mexico 
and Central America (e.g., Shillinger et al. 2011), high seas areas through which leatherbacks transit and 
in which they are presumed to forage (Shillinger et al. 2008; Bailey et al. 2012; Hoover et al. 2019), and 
nearshore foraging areas in southern latitudes (Alfaro-Shigueto et al. 2007; Donoso and Dutton 2010; 

https://www.iattc.org/Meetings/Meetings2022/SAC-13/_English/SAC-13-10_Ecosystem%20considerations.pdf
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Degenford et al. 2020; Quiñones et al. 2021).  

Our SDM predicted similar areas of relatively high probability of occurrence to those highlighted in 
previous efforts using satellite telemetry data (Hoover et al. 2019) and presence-only observation data in 
national fisheries, mainly from Peru and Chile (Degenford et al. 2021). For example, the continental shelf 
and adjacent high-seas areas within South American EEZs, as well as the higher latitude subtropical 
convergence zone extending from south-central Chile clearly and consistently supported high 
probabilities of occurrence in our SDM. This result is generally supported by long-term monitoring 
observations (Donoso and Dutton 2010; Quiñones et al. 2021), telemetry data (Shillinger et al. 2008), and 
species distribution modeling (Hoover et al. 2019; Degenford et al. 2020). These comparable patterns are 
encouraging, particularly when considering the distinctly different analytical methods, data, and spatial 
and temporal scales used in each study, which were each constrained by the amount and types of 
information available.  

In the present case, although our model relied on fisheries-dependent observation data to produce the 
SDM, it used presences and absences from several different fisheries (industrial and small-scale), each of 
which use different gear types (e.g., longlines, purse seines, and nets) in different regions (i.e., from 
Mexico to Chile, and international waters  to 150°W), different depths (i.e., surface to ~300 m), and in 
different habitat types (i.e., temperate to tropical, coastal to high-seas). Therefore, our dataset was 
derived from a diverse and extensive suite of sampling platforms and should be considered 
comprehensive for describing patterns of leatherback turtle distribution in the EPO region. In particular, 
the fact that we were able to include presences as well as absences from the same sampling platforms 
(i.e., fisheries) improved the strength of our inferences about the magnitude and direction of 
environmental covariate influence on predicted leatherback occurrence. The resulting SDM prediction 
maps are thus considered to be robust representations of the probability of leatherback occurrence in the 
region.  

Although BRTs have been applied to many marine species, there have been few, if any, instances of BRTs 
being used with such a small number of occurrences, which required a deep exploration of specific model 
diagnostics and sensitivity analyses to determine the utility of BRTs in such data-limited settings. The 
scarcity of leatherback observation data, and their critically endangered status, motivated our 
conservative selection of relatively low bounds as threshold values for defining ‘high’ probabilities of 
occurrence to parameterize the EASI-Fish model to assess vulnerability (see BYC-11-02). As suggested 
previously, the scarce EP leatherback occurrence data available may be attributable to a combination of 
several possible reasons. It may be a result of depleted population abundance in the EPO (Laúd OPO 
Network, 2020) and low observer coverage—and thus leatherback observations—in IATTC tuna longline 
fisheries and small-scale fisheries throughout the region. Because sea turtle interactions are not generally 
required to be recorded in catch logbooks in any IATTC tuna fishery or fishery within national jurisdictions 
of EPO coastal states, their occurrence is generally only recorded by onboard observers when they interact 
with the gear or are sighted in the vicinity of the fishing operation. Unfortunately, besides the 
AICDP/IATTC observer program that covers 100% of sets of all large (Class 6; >363 mt) purse-seine vessels 
in the EPO—where very few sea turtles are caught (Hall and Roman, 2013; Lezama-Ochoa et al., 2017)—
observer coverage is very low for most other fleets, especially longline, where sea turtles are frequently 
hooked or entangled (Swimmer et al., 2017). For example, IATTC Resolution C-19-08 requires only 5% of 
the fishing effort of vessels greater than 20 m LOA to be observed, but even this low level of coverage is 
frequently not met by some nations (e.g., IATTC, 2021a). Although the quality of species-specific reporting 
by this fleet has greatly improved in recent years with C-19-08 mandating reporting of operational level 
data, the reported information is not considered representative of the fleets in space and time (Griffiths 
et al., 2021) and therefore, there may be some important habitats for leatherback turtles where data is 

https://www.iattc.org/Meetings/Meetings2022/BYC-11/Docs/_English/BYC-11-02_EASI-Fish%20assessment%20for%20leatherback%20turtle.pdf
https://www.iattc.org/PDFFiles/Resolutions/IATTC/_English/C-19-08-Active_Observers%20on%20longliners.pdf
https://www.iattc.org/PDFFiles/Resolutions/IATTC/_English/C-19-08-Active_Observers%20on%20longliners.pdf
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not currently collected. Given that the IATTC staff has proposed an increase in observer coverage to at 
least 20% for several years (see IATTC, 2021b), it is hoped that longline observer data will further improve 
in the near future; a particularly important aspect for data-limited species. 

Improving data collection programs, both fisheries-dependent and fisheries-independent, is one of the 
most important consideration for improving SDMs, not only to better characterize a species’ distribution 
with an increased number of occurrence points, but to disentangle some of the aforementioned issues 
pertaining to interpretation of increasing or decreasing incidences of the capture of vulnerable species 
that can guide the subsequent development of appropriate management action. To optimize the utility 
of data collection programs for SDM development in particular, they need to be carefully designed to 
cover the widest possible spatial extent of the species of interest that cover the full gradient of 
environmental variables in which the species is naturally exposed (Araújo and Guisan, 2006; Grenouillet 
et al., 2011). This maximizes the performance of SDMs since strong and contrasted species-environmental 
relationships allow the model to better interpolate these relationships into unsampled areas or 
environmental conditions (Miller, 2010). However, data collection programs can be a costly and 
logistically difficult proposition for highly migratory wide-ranging pelagic species, such as the leatherback 
turtle, and fisheries that cover thousands of square kilometres of ocean. Consequently, fishery-dependent 
data is often the primary source of information from which species occurrence locations can be derived. 
Although with cooperation and proper coordination with fishers and their national management 
organizations these programs can be run cost-effectively, occurrence data, and to a lesser extent 
electronic tagging data, are mainly derived from the fishing grounds, which may not cover the breadth of 
habitats occupied by the species of interest.  

Though we are confident that our EPO-wide SDM provides robust results to evaluate CMM efficacy in the 
EASI-Fish framework, as well as other conservation applications (see below), we recognize additional 
potential directions for this SDM work. First, there is clear value in detailed investigation of large-scale 
environmental cycles (e.g., ENSO regimes, climate change) on inter- and intra-annual leatherback 
distributions to propose adaptive management options that reflect these dynamics (e.g., Hazen et al 2018, 
Willis-Norton, 2015, Pons et al 2022). Leatherback movements, habitat use, and life history are known to 
be strongly influenced by environmental conditions, specifically how those conditions affect resource 
availability (Saba et al. 2007; 2008; Shillinger et al. 2008; 2010; Wallace and Saba 2009; Bailey et al. 2012; 
Hoover et al. 2019). Thus, high-resolution predictions of leatherback occurrence in time and space at 
different scales would be highly informative and useful for fine-tuning conservation strategies in the EPO. 

Next, considering that development of EP leatherback SDMs has received significant attention to date 
(Hoover et al. 2019; Degenford et al. 2020; this study), integration of fisheries-independent data with 
fisheries-dependent data to validate observation-based models and generate a single SDM for the species 
would be beneficial. Our model expanded on the fishery-based observation data used by Hoover et al. 
(2019) to include also the high-seas and higher latitudes, among others, but EP leatherback satellite 
telemetry data (Shillinger et al. 2008; Degenford et al. 2020) were unavailable for this study. Given the 
similarities in estimated residence times and occurrence probabilities among the existing studies, it is 
unclear whether one SDM that included all available fishery-dependent and fishery-independent data 
would produce significantly different, region-wide results than those we present here. Nonetheless, a 
single, integrated SDM would avoid confusion among users about which SDM to use in their own work, 
and thus ensure consistency in research and conservation applications.  

On that note, we encourage applications of the high-resolution EP leatherback SDM presented here 
beyond the current specific application to the EASI-Fish vulnerability assessment and evaluation of CMM 
efficacy. Improved SDMs can inform dynamic ocean management approaches to identify and manage 
spatio-temporal overlaps between high-use areas and potential threats, including fisheries activities. For 
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example, a simple environmental envelope model was developed for NOAA’s TurtleWatch tool (Howell et 
al., 2008; Howell et al., 2015) to mitigate loggerhead (Caretta caretta) and leatherback turtle bycatch by 
longline fisheries in the Central North Pacific Ocean. TurtleWatch identifies potential turtle ‘hotspots’ 
based on environmental characteristics, such as favorable sea surface temperatures and the presence of 
current fronts. However, this model relies heavily upon data collected by observers who have observed 
100% of shallow sets in the Hawaiian longline fishery since 2004 (Sippel et al., 2014), providing turtle catch 
counts as well as information on turtle absences. A conceptually comparable tool is being developed for 
EP leatherback turtles, but it relies heavily on habitat use data limited to post-nesting females from a 
single nesting population (Hoover et al., 2019). Further, moving from SDMs for individual species to 
integrated, multi-species predictions could inform development of ocean planning conservation tools to 
highlight areas in which effective management of fishing (and other) activities (e.g., shipping) would be 
most beneficial (Hazen et al. 2018, Abrahams et al. 2019). In addition, simply making SDM outputs publicly 
available to researchers and conservation practitioners could unlock several potential and yet unforeseen 
applications of these important resources to various issues at different scales. In this vein, we see value 
in implementing participatory-inclusive approaches with stakeholders, and fishers in particular, to discuss 
results and bycatch mitigation ideas, define/propose practical management plans, as well as reinforce 
capacity building with regards to sensitive species, and the leatherback turtle in particular.   

CONCLUSION 

The work described in this paper highlighted several ways in which BRTs, and SDMs more generally, may 
be used to improve our understanding of the spatio-temporal distributional dynamics of marine species, 
and how this knowledge may translate into improved management of vulnerable species. Further, this 
effort was the product of an international collaboration under a MoU between two inter-governmental 
conventions—one established to protect and conserve marine turtles (IAC) and the other to sustainably 
manage commercially valuable tuna stocks (IATTC). Because this collaborative effort brought together 
several individual representatives of member countries as well as experts in turtle biology and fisheries 
operating at multiple scales, the resulting product was able to integrate proprietary datasets whose 
combined value far exceeds their individual value to understanding comprehensive patterns of 
leatherback distribution throughout the EPO region. Our results are also encouraging as they reveal that 
theoretically there is plenty of good habitat for leatherback turtles to thrive, and therefore, if conservation 
efforts are focused on reducing one of its major threats, the bycatch, the species could find suitable 
habitat to rebuild its population to levels far lees dire than the current situation. 
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FIGURE 1. Distribution of leatherback presences and absences 
 

 
FIGURE 2. Infographic of the methods 
 
 



BYC-11-01 – Leatherback turtle SDM  18 

 
FIGURE 3. Variable importance 
 

 
FIGURE 4. Partial dependence plots for leatherback turtle SDMs (example of model with 25% of presences 
vs 75 absences – reference model) 
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FIGURE 5. Model-specific predictions (averages for daily predictions for the period 2002-2020). The 
number on top of each panel denotes the ratio of presence to absences used to build the final model (e.g. 
50 refers to a 50:50 presence to absence ratio, 33 to a 33:66 presence to absence ratio and so on).  
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FIGURE 6. Average predictions from an ensemble of SDMs where the ratio of presence to absences were 
50-10 (left panel) and 33-25-20 (right panel)  
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FIGURE 7. The final appearance of the SDM predictions using three threshold values (minimum = 0.3, blue; 
most probable = 0.2, red;  maximum = 0.1, green) upon which the predicted probability of presence is 
used to create binary values of species presence. For example, at a threshold of 0.2, predicted 
probabilities of presence above and below 0.2 are predicted to be absence and presence records, 
respectively. 
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TABLE 1. Data sources and period of coverage of data used to build the leatherback species distribution model for the EPO. 

Country Gear First 
year 

Last 
year 

Presence 
only Abundance Effort No. 

Presences 
No. 

individuals 

No. 
total 
sets 

% of 
presen

ces 
Source 

Chile1 Purse-seine 2015 2019 No No - 3 3 4396 0.07 Observers 

Chile1 Industrial longline 2001 2018 No Yes Yes (No 
hooks) 327 365 1382

8 2.36 Observers 

Chile1 Artisanal longline 2002 2018 No Yes Yes (No 
hooks) 59 62 1831 3.22 Observers 

Chile1 Artisanal longline 
(espinel) 2010 2019 No No (?) Yes (No 

hooks) 2 2 564 0.35 Observers 

Chile1 Artisanal gillnet 2007 2019 No Yes No 22 24 1399 1.57 Observers 
Colombia2 Gillnet 2017 2018 Yes No No 3 3 3 - Observers 
Colombia2 Longline 2018 2018 Yes No No 2 2 2 - Observers 

IATTC Purse-seine 1995 2020 No Yes No 272 274 5328
57 0.05 Observers 

IATTC Longline 2013 2020 No Yes No 67 67 2400
5 0.28 Observers 

Panama3 PS/LL/Gillnet 2018 2020 Yes No No 10 10 10 - Observers 
Peru3 
(ProDelphinus) - 2001 2019 Yes No - 186 186 186 - ProDelphinus 

Ecuador3 Purse-seine 2019 2020 No No (?) - 3 3 2746 0.11 Observers 
Ecuador3 Longline (bottom) 2017 2020 No No (?) No 0 0 766 0.00 Observers 
Ecuador3 Longline (surface) 2019 2020 No No (?) No 2 2 1667 0.12 Observers 

Peru3 Net 1997 2015 Yes No No 141 141 141 - IMARPE/ACOR
EMA 

Peru3 Driftnet/Gillnet 2013 2020 Yes Yes No 21 21 21 - 
IMARPE 

(LAMBAYEQU
E) 

WWF (various) 3 LL 2004 2009 No Yes Yes 
(Various) 20 20 7539 0.27 WWF-IATTC 

Costa Rica3 LL 2005 2012 No Yes Yes (No 
hooks) 5 5 2602 0.19 WWF 

- - 1995 2020 - - - 1145 1190 5945
63 0.19  
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TABLE 2. Comparing variables’ data sources and spatio-temporal resolutions for species distribution 
models 

Variable Spatial 
Resolution 

Temporal 
Resolution Source 

Spatio-temporal    
Latitude GPS - - 

Longitude GPS - - 

Day of the year - D Processed 

Environmental surface    

SST 1/4° D CMEMS 

∆ SST 1/4° D Processed 

Salinity 1/4° D CMEMS 

SSH 1/4° D CMEMS 

Speed 1/4° D Processed 
Heading 1/4° D Processed 
EkE 1/4° D Processed 
FSLE 1/25° D AVISO 
Front index 1/4° W Processed 
CHL 1/4° W CMEMS 
∆ CHL 1/4° W Processed 
Environmental subsurface    
Temp 100m 1/4° D CMEMS 
MLD 1/4° D CMEMS 
Static    
Bathymetry 1/12° - GMED 

Distance to coast 1/120° - MARSPEC (Sbrocco et al 
2013) 
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TABLE 3. Hierarchical models performance metrics with all data (n = 573,889). ST = spatio-temporal 
variables; SUR = environmental surface variables; SUB = environmental subsurface variables; ENV = 
environmental Surface and subsurface variables; STA = static variables; FULL = all environmental 
variables and static variables.  
 

  lr n.trees Dev AUC TSS Drop 

1 fit 0.01 4500 38.64 0.89 0.66   

ST simp - - - - - No drop 

2 fit 0.01 5150 32.28 - -   

SUR simp   5150 32.40 0.92 0.71 EkE 

3 fit 0.01 3600 23.62 0.88 0.65   

SUB simp - - - - - No drop 

4 fit 0.01 5600 38.14 0.94 0.74   

ENV simp - - - - - No drop 

5 fit 0.01 4400 19.71 0.79 0.51   

STA simp - - - - - No drop 

6 fit 0.01 7000 40.57 0.94 0.76   

FULL simp - - - - - No drop 
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TABLE. 4. Performance metrics of the models conducted during the sensitivity analyses for full models 
(all environmental and static variables) with different presence-absence ratios (e.g., 50:50 presence-
absence ratio) 
 

  lr n.trees Dev AUC TSS Drop 
50:50 fit 0.005 2900 58.10 - -   
 n = 2176 simp 0.005 3650 59.37 0.92 0.71 7 variables 
33:66 fit 0.01 2050 59.16 - -   
 n = 3264 simp 0.01 2650 61.54 0.94 0.76 5 variables 
25:75 fit 0.01 2700 59.70 - -   
 n = 4352 simp 0.01 3250 60.42 0.96 0.81 7 variables 
20:80 fit 0.01 3200 60.29 - -   
 n = 5440 simp 0.01 3350 59.14 0.94 0.77 6 variables 
15:85 fit 0.01 3950 60.21 - -   
n = 7250  simp 0.01 3650 58.96 0.94 0.76 3 variables 
10:90 fit 0.01 5050 60.93 - -   
 n = 10880 simp 0.01 4800 60.16 0.95 0.78 2 
5:95 fit 0.01 5300 56.36 0.95 0.78   
 n = 21760 simp - - - - - No drop 
2.5:97.5 fit 0.01 6400 54.67 - -   
 n = 43520 simp 0.01 5650 52.08 0.95 0.77 7 variables 
1:99 fit 0.01 6650 49.24 0.94 0.78   
 n = 108800 simp - - - - - No drop 
0.5:99.5 fit 0.01 6100 45.23 0.94 0.76   
 n = 217600 simp - - - - - No drop 
0.19:99.81 fit 0.01 7000 40.57 0.94 0.76   
n = 573889 simp - - - - - No drop 
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