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Abstract

Static and dynamic area-based management tools hold substantial potential to

balance socioeconomic benefits derived from fisheries and costs from bycatch

mortality of at-risk species. Palau longline fisheries have high bycatch of

at-risk species including the olive ridley marine turtle and silky and blue

sharks. This study analyzed a two decades-long time series of observer and

electronic monitoring datasets from the Palau distant-water and locally-based

pelagic longline fisheries. An interpretable or explainable machine learning-

based modeling approach was used to derive spatially resolved species-specific

catch rate predictions. These models were conditioned on a suite of potentially

informative environmental, bathymetric, ocean-climate metric, vessel, moni-

toring system, and set-specific operational predictors. Overall, there would be

limited ecological tradeoffs from focusing fishing effort within primary catch

rate hotspots for target bigeye and yellowfin tunas. Mean field prediction sur-

faces also defined catch rate hotspots for at-risk species of silky and blue

sharks, olive ridley turtle, and pelagic stingray, which did not overlap the

hotspots for target species. The predicted target species hotspots, however,

overlap olive ridley and pelagic stingray warmspots. Results also identify

opportunities for temporally dynamic spatial management to control catch

rates of target and bycatch species. Management of fishery operational predic-

tors of fishing depth and soak duration present additional opportunities to bal-

ance catch rates of at-risk bycatch and target species. A transition to employing

fleetwide or vessel-based output controls that effectively constrain the fishery

would alter the spatial management strategy to focus on zones with the lowest

ratio of at-risk bycatch to commercial catch. Our findings support

evidence-informed evaluation of spatial management strategies and complemen-

tary measures to meet objectives for balancing socioeconomic benefits derived

from target species catch with costs to threatened species.
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INTRODUCTION

Tuna resources supply the third most valuable globally
traded aquatic products, worth about USD 14.6 billion
(FAO, 2022). They also provide substantial economic
revenue, employment, and food security to fishing and
coastal states. Several Pacific island countries and terri-
tories obtain a large proportion of their gross domestic
product from revenue from tuna fisheries, including fees
from issuing licenses and effort and catch quota to for-
eign fishing vessels (Aqorau, 2009; Bell et al., 2015;
FFA, 2015; Gillett, 2016). Capture and processing sectors
generate additional revenue and substantial employment
and contribute to local food security and tourism sectors
in the Pacific islands region (Bell et al., 2015; FFA, 2015;
Gillett, 2016).

However, fisheries targeting tunas and other highly pro-
ductive species can have profound impacts on co-occurring
species exposed to incidental capture, particularly when
those species have low reproductive potential due to long
generation lengths, low fecundity, and other life history
traits that make them vulnerable to elevated mortality
levels (Hall et al., 2017; Jorgensen et al., 2022; Musick,
1999). There has been increasing concern over the broad
effects from selective fishery removals of pelagic apex
and mesopredators such as altered population and size
structure, cascading effects through top-down trophic
links in some ecosystems, and reduced population fitness
from fisheries-induced evolution (Cox et al., 2002; Hinke
et al., 2004; Kitchell et al., 2002; Polovina &
Woodworth-Jefcoats, 2013; Ward & Myers, 2005a). There
has also been increasing attention to risks from bycatch to
food, nutrition, and livelihood security (Jaiteh et al., 2017;
Seidu et al., 2022).

Pelagic longlining has been the main commercial
fishing sector of the Pacific Island nation of Palau (Dacks
et al., 2020; Jaiteh et al., 2021; Republic of Palau, 2022).
The Palau tuna longline fisheries have produced high
value products including for the Japanese sashimi market
and for the Palau domestic market (Dacks et al., 2020;
Sisior, 2004). In 2020, the establishment of a no-take
marine reserve within 80% of the Palau 594,000 km2

exclusive economic zone (EEZ) came into effect through
regulations promulgated under the Palau National Marine
Sanctuary Act (Republic of Palau, 2019). Unintended
consequences included displacement of effort by the
locally based longline vessels to other areas of the west-
ern and central Pacific Ocean with less restrictive bycatch
management frameworks (such as a Palau shark reten-
tion ban) and an abrupt, large reduction in supply of
pelagic seafood to the Palau domestic market that exacer-
bated pressure on overstressed nearshore resources
including coral reef fish communities (Gillett, 2016;

Jaiteh et al., 2021; SPC & FFA, 2015; Wabnitz et al., 2018).
The Palau government is now reevaluating spatial man-
agement strategies for commercial tuna fisheries (Palau
MAFE, SPC, & U.S. Department of State, 2022; Palau
Office of the President, 2022).

Ecological objectives of area-based management tools
(ABMTs) for blue water fisheries include contributing
to maintaining stocks of principal market species above
limit and near target thresholds, reducing incidental
bycatch including threatened species, protecting habitat
critical for certain life stages of species exposed to fisher-
ies, reducing trait-based selective fishing mortality and
fisheries-induced evolution, and maintaining ecosystem
structure and functions (Gilman, Kaiser, et al., 2019;
Hilborn et al., 2022). A review of blue water protected
areas concluded that they have relatively high promise to
mitigate fisheries bycatch of threatened species, to protect
habitats important for critical life history stages of some
species, and to increase local abundance of target stocks
(Gilman, Kaiser, et al., 2019). However, few studies
have assessed ecological responses to blue water ABMTs,
providing a limited basis for causal inferences (Gilman,
Kaiser, et al., 2019).

Pelagic longline principal market species are highly
migratory and fecund broadcast spawners with extensive
spawning grounds, wide larval dispersal, and protracted
spawning seasons (Collette et al., 2011; Dueri & Maury,
2013; Schaefer, 2001). Thus, protection by a no-take
reserve of a very small proportion of their total distribu-
tion, of the individuals of a stock, of spawning stock bio-
mass, and of spawning habitat, as is the case for the
Palau sanctuary, is expected to have minimal effect on
recruitment or absolute biomass (Essington, 2010; Gilman,
Kaiser, et al., 2019; Hampton et al., 2023; Myers
et al., 1999; Stefansson & Rosenberg, 2006). However,
some longline-targeted species may have residency times
ranging from months to years (Adam et al., 2003;
Sibert & Hampton, 2003). No-take reserves could provide
protection to individuals for a sufficient proportion of
their lifetime during which a large proportion of their
total growth occurs, augmenting their local biomass
(number of individuals and body size) within the
protected area and adjacent spillover areas (Boerder
et al., 2017; Bucaram et al., 2018; Filous et al., 2022;
Gilman, Kaiser, et al., 2019). Furthermore, if the recent
proliferation of large blue water marine-protected areas
(Gannon et al., 2017; Marine Conservation Institute,
2023) continues, then the cumulative area of the network of
reserves could reach the substantial area required to affect
absolute stock biomass (Stefansson & Rosenberg, 2006).

ABMTs are one of a suite of available approaches for
fisheries management, where an ensemble of measures
is often needed to achieve objectives (Selig et al., 2017).
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The Palau longline fisheries have apparently high
bycatch of at-risk species such as olive ridley turtles
(Lepidochelys olivacea) and silky (Carcharhinus falciformis)
and blue (Prionace glauca) sharks (Gilman et al., 2016;
Jaiteh et al., 2021). There are now numerous methods avail-
able to mitigate at-risk species bycatch in pelagic longline
fisheries that are also commercially viable and that support
a range of approaches for effective compliance monitoring
(Hall et al., 2017; Poisson et al., 2016). This includes both
static and dynamic ABMTs, which hold substantial poten-
tial to balance fishery-dependent socioeconomic benefits
and costs to threatened species exposed to bycatch fishing
mortality, including in pelagic longline and other blue
water fisheries (Gilman, Chaloupka, Fitchett, et al., 2020;
Gilman, Kaiser, et al., 2019; Halpern, 2003; Mannocci
et al., 2020; Slooten, 2013).

This study provides evidence to inform spatial man-
agement strategy evaluation for the Palau pelagic long-
line fisheries. The study objectives were to (1) identify
any spatially and temporally predictable hot and cold
spots for principal market species and at-risk bycatch
species and (2) determine whether static and dynamic
spatial fishery closures might provide practical options
for separating hotspots for target and at-risk bycatch
species catch rates. Findings are intended to help support
evidence-informed policy for the Palau government to
apply area-based fisheries management approaches
to balance minimizing threatened species bycatch with
maximizing target species catch.

METHODS

Data sources and study area

The study used monitoring data from two pelagic long-
line fleets that fish in the Palau EEZ: (1) a distant-water
Japan-based fishery and (2) a locally based fishery. The
study analyzed observer and electronic monitoring (EM)
datasets for fishing conducted within and adjacent to the
Palau EEZ, summarized in Appendix S1: Table S1 and
displayed in Appendix S1: Figure S1. Of the 1,638 sets in
the study sample, 26 were made during Palau locally
based trips in areas adjacent to the Palau EEZ seaward
margin, in a high seas pocket and in the Indonesia EEZ.
Locally based vessels would periodically fish in adjacent
areas when catch rates of commercial species within the
Palau EEZ were poor (personal communication, 16 June,
2023, Terry Huang, former base manager, Pacific
International Trading Inc.). The six vessel flag states of
locally based vessels were China (N = 88 sets), Cook
Islands (N = 51 sets), Kiribati (N = 12 sets), Palau
(N = 206 sets), Taiwan (N = 433 sets), and Vanuatu

(N = 4 sets). The distant-water sampled effort was
conducted by Japanese-flagged vessels.

During the study period, logbook data indicate that
the observer and EM-monitoring coverage rate was
1.1% of sets, and 0.7% and 11.2% of sets made by the
locally based and distant-water fleets, respectively. The
logbook dataset is missing records, and therefore, these
monitoring coverage rates are overestimates.

The fleet-specific set intensity is summarized using a
2D kernel density estimator (Appendix S1: Figure S1)
(Venables & Ripley, 2002). Set locations are not shown to
reduce visual clutter, to prevent obscuring the density
bands, and to comply with data confidentiality require-
ments. The distant-water pelagic longline fleet operated
mainly in the western region of the Palau EEZ while
the locally based fishery operated mainly in the eastern
region (Appendix S1: Figure S1). The number of observed
longline sets by the locally based fishery increased signifi-
cantly during the 5-year period from 2006 to 2010 and
then again during the 5-year period from 2016 to 2020.

There were 28 potentially informative continuous
and nominal categorical predictors, summarized in
Appendix S1: Table S2 (see also Appendix S1: Table S3
for a summary of SHAP value-based predictor importance).
The section below, Potentially informative environmental
and pelagic habitat predictors, provides details on the envi-
ronmental and bathymetry predictors. Other potentially
informative predictors were excluded due to data quality
constraints such as use of “shark lines” and hook size (see
Gilman et al., 2016).

Overview of statistical modeling workflow

We used recent advances in machine learning (ML) appro-
aches coupled with Shapley additive feature explanations
(SHAP) to derive interpretable species-specific and spatially
resolved catch predictions for pelagic longline fishing fleets
that fish in the Palau EEZ for bigeye tuna (Thunnus obesus),
yellowfin tuna (T. albacares), combined billfishes (1621
swordfish Xiphias gladius, 1623 istiophorid billfishes—
mainly blue marlin Makaira nigricans and Indo-Pacific sail-
fish Istiophorus platypterus), silky shark, blue shark, pelagic
stingray (Pteroplatytrygon violacea), and olive ridley turtle.
Our modeling workflow, outlined in detail below, can be
summarized as follows: (1) identify and extract poten-
tially informative environmental predictors; (2) impute
missing values for key operational predictors such as
hook type, bait type, and hooks per set using chained
imputation procedures; (3) identify the ML algorithm
appropriate for each of the species-specific catch data time
series in terms of potential predictive performance; (4) fit
the species-specific spatially resolved ML models with the
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set of 28 potentially informative predictors; (5) explore
model fit using recent advances in interpretable ML tools
using SHAP values for assessing the predictor marginal
effects; and (6) derive spatially resolved catch (or
bycatch) prediction surfaces or maps for each species to
support evidence-informed marine spatial planning.

Potentially informative environmental and
pelagic habitat predictors

We focused on using macro-scale ocean/climate indica-
tors such as the Pacific Decadal Oscillation (PDO) index
and Multivariate El Niño Southern Oscillation (ENSO)
Index (MEI) as potential environmental drivers known to
affect both pelagic fish and marine turtle productivity
(Bjorndal et al., 2017; Free et al., 2019; Newman et al.,
2016). The PDO is a regional climate index based on
cyclical variations in North Pacific sea-surface temperature
(Newman et al., 2016). The MEI is another widely used
regional scale ocean-climate index based on sea-surface
temperature anomalies (Zhang et al., 2019). We sourced
the monthly PDO index and the revised bimonthly MEI
from NOAA data repositories using the rsoi package for R
(Albers, 2022). The monthly PDO index and MEI were
then matched with the month of each pelagic longline
set—the PDO and MEI time series lagged by 1–3 months
and 12 months were also included to potentially reflect
any delay in ocean productivity response to ocean temper-
ature effects (Bjorndal et al., 2017; Reisinger et al., 2022;
Saba et al., 2007). Seascape features and depth are related
predictors affecting pelagic biodiversity hotspots and tuna
catch rates in the Pacific Ocean (Gilman et al., 2012;
Morato et al., 2010), so we sourced the bathymetric depth
(depth to seafloor) for the geolocation of each set using
Bio-ORACLE v2.0 (Assis et al., 2018) and the
sdmpredictors package for R (Bosch & Fernandez, 2021).
Lunar illumination has been shown to be informative of
tuna catch in the Palau region (Gilman et al., 2016), so we
sourced predicted moonlight intensity for the date: time
and geolocation of each set using the moonlit package for
R (Śmielak, 2023). The strength of correlation among all
the continuous predictors (including spatial predictors:
longitude and latitude) was explored using the corrplot
package for R (Wei & Simko, 2021)—this helped deter-
mine whether any potential predictors might best be
excluded from subsequent models.

ML-based missing data imputation

Dealing with missing data in one or more predictors is
a major challenge for principled statistical modeling

(Kuhn & Johnson, 2013; Little, 1988) and is usually dealt
with using some form of model-based imputation prior to
fitting the model to be used for inference (Murray, 2018).
Around 60% of the 1683 sets were missing one of the
following three predictors (hook type, leader type, and
lightstick usage), while 48% of the sets were missing
number of hooks deployed per set and 24% were
missing bait type with 4% missing number of hooks
between floats. Some sets were missing multiple predic-
tors with 26% of sets missing all three predictors (hook
type, leader type, and lightstick) while 8% of the sets
were missing all five predictors (hook type, leader type,
lightstick, bait type, and hooks per set). The missing data
were not missing completely at random (MCAR) as deter-
mined with a test for MCAR (Little, 1988; χ2 test = 1561,
df = 52, p < 0.0001) using the nanair package for R
(Tierney & Cook, 2023)—so naively deleting missing
cases or variables in our study is simply not appropriate
but requires modeling the missingness instead to support
robust statistical inference (Gelman & Hill, 2006; Murray,
2018). It is possible to fit a Bayesian regression-based
model using the original data with all predictors and
directly estimate the missing data during the model fitting
procedure. However, for a high-dimensional dataset con-
sidered here, this sort of Bayesian measurement-error
modeling procedure (Goldstein et al., 2018; Richardson &
Gilks, 1993) is not computationally feasible. Here we
used a fast multivariate missing data imputation
approach based on multiple chained random forests
(RFs) (an ensemble ML algorithm) to impute all missing
data for all continuous and categorical predictors using
the missRanger package for R (Mayer, 2021) with the
ranger package for R as the backend (Wright &
Ziegler, 2017)—all missing data were simultaneously
imputed multiple times until the minimum mean
out-of-bag error was found (Mayer, 2021). The chained
RF data imputation model also applied predictive mean
matching (Little, 1988) to avoid any imputation with
values never present in the original dataset. This imputed
dataset now comprises the original 1683 sets and 28 pre-
dictors but now without any missing values and so was
the dataset then used in all our subsequent analyses. It is
important to note that ML approaches like RF make min-
imal assumptions about data distributions or data depen-
dence and require no data transformation.

Statistical modeling approach

We then used ML-based modeling approaches (Kuhn &
Johnson, 2013), coupled with recent developments in
explainable artificial intelligence (AI) tools (Lundberg
et al., 2020; Qiu et al., 2022; Scholbeck et al., 2020),
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to derive interpretable species-specific and spatially resolved
catch predictions for pelagic longline fishing fleets that
operate in the Palau EEZ. ML approaches are increasingly
used in a wide range of knowledge domains including med-
icine, finance, geoscience, ecology, paleobiology, climatol-
ogy, fisheries, marine spatial planning, and economics
to derive informed predictions from data that could
include spatial–temporal structures, nonlinear predictor
functional form, and complex predictor interactions (Bergen
et al., 2023; Dedman et al., 2017; Effrosynidis et al., 2020;
Foster et al., 2022; Gerassis et al., 2021; Sokhansanj &
Rosen, 2022; Viquerat et al., 2022; Yang et al., 2022).
ML-based approaches are powerful tools for applied predic-
tive modeling and make few assumptions about data struc-
tures (Kuhn & Johnson, 2013). However, ML models are
often considered difficult to understand, explain, and
interpret—a common lament being that they might predict
well but who knows why. A rapidly evolving area of
ML/AI-based computer science research has been directed
toward resolving that long-standing concern by developing
both model-specific and model-agnostic interpretable ML or
explainable AI tools (Lundberg et al., 2020; Wikle et al.,
2023). So, our modeling workflow, outlined in more detail
below, comprises spatial ML-based predictive modeling for
each of the seven species-specific catch data series and then
model-specific predictions explored using model-agnostic
tools to derive insight into which predictors are driving the
predictive performance of each model. Model-agnostic inter-
pretable tools are general and can be applied to any predic-
tive model based on any type of algorithm (ML, generalized
linear model [GLM], generalized linear mixed effects model
[GLMM], generalized additive mixed effects model
[GAMM], etc.), whereas model-specific tools can only be
applied to a specific ML algorithm (Wikle et al., 2023).

Selecting an appropriate ML algorithm

The first challenge in our modeling workflow was to
determine which ML algorithm was the most applicable
for the species-specific longline fishery catch data. Usually,
ML-based applications apply a single prediction algorithm
often with little if any specific knowledge domain justi-
fication. Here, we adopt an automatic ML or AutoML
procedure (He et al., 2021; Steinruecke et al., 2019) in the
first instance to explore which prediction algorithm might
be best suited for each of the species-specific catch time
series. We used the AutoML procedure on the H2O.ai plat-
form (H2O.ai, 2022; LeDell & Poirier, 2020) via both the
h2o (LeDell et al., 2023) and agua (Kuhn et al., 2023) inter-
face packages for R to (1) explore, (2) hyperparameter
tune, and (3) evaluate a large number of regression or clas-
sification models using six prediction algorithm classes

(gradient boosting machine, xgboost, distributed RF, neural
nets, GLM, and stacked ensemble) and four model-specific
performance metrics for each species. Stacked ensemble
ML uses a supervised meta-learning algorithm to find
the optimal combination of the other five prediction
algorithms. We used stacked ensembles as a benchmark to
determine which of the other single-class algorithms was as
well suited in terms of predictive performance for each
species-specific dataset—stacked ensembles are useful for
prediction but very difficult to interpret, which is a major
objective of this study, and so we chose the next best
performing single-class algorithm for each species that com-
pared adequately with the stacked ensemble class. The per-
formance metrics were (mean absolute error [MAE], root
mean square error [RMSE], R 2, mean residual devi-
ance) for the regression-based models and (area under the
curve, accuracy, RMSE, logloss) for classification-based
models (see Kuhn & Johnson, 2013). All ML modeling
workflows were applied within the tidymodels
meta-learning framework for R (Kuhn & Wickham, 2020).

Species-specific interpretable ML models

We then fitted the species-specific supervised ML algo-
rithm determined using AutoML to each of the seven
species-specific catch data series using all of the 28 predictors.
The response variable (hence supervised) in the case of
six species (yellowfin tuna, bigeye tuna, pelagic stingray,
billfish, blue shark, and silky shark) was the recorded
set-specific catch with hooks per set as a nonproportional
effort proxy (Davies & Jonsen, 2011) being one of the
potentially informative predictors. On the other hand, the
olive ridley turtle bycatch was low with 94% of sets record-
ing zero turtles, 4% of sets with one turtle, and 2% of sets
with two or more turtles—so the set-specific response vari-
able was recoded as a binary classification (0, ≥1) and then
the ML model fitted with Bernoulli likelihood and again
hooks per set being one of the potentially informative
predictors. We did not adjust for response class-imbalance
using for instance the commonly used synthetic minority
over-sampling (SMOTE) or perhaps other data augmen-
tation approaches because (1) olive ridley bycatch is in
fact a rare event in these particular fisheries (Gilman
et al., 2016) and (2) SMOTE-based class-imbalance
adjustment is of questionable benefit for ML approaches
(Blagus & Lusa, 2013). Again, all modeling workflows
were applied within the tidymodels meta-learning frame-
work for R (Kuhn & Wickham, 2020).

We used SHAP-based summary and SHAP-based
dependence plots to help explain model performance and
derive insight into the predictor functional form and any
informative interactions with other predictors. SHAP is
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an acronym of sorts for Shapley additive feature values
(Lundberg et al., 2020) where “feature” is an ML term
synonymous with the term “predictor.” A SHAP value is
the average or expected marginal contribution of that
predictor value to the predicted model outcome while
averaging over all other predictors in the model. SHAP
values have many desirable properties including being
additive so that they sum to the total model output where
a higher SHAP value is unambiguously indicative of
a more important predictor. So, in our context, higher
SHAP values imply greater contribution of a specific pre-
dictor to the catch rate.

A SHAP-based summary plot then comprises a den-
sity summary of the predictive contribution of each predic-
tor included in a model—it is a more robust form of the
commonly used variable importance plot (Janitza et al.,
2018) but is a marginal effect with the density summarizing
the entire 1683 set-specific values. SHAP values account for
all predictive information in a specific feature that results
from interactions and dependencies with other features or
predictors in the model. A SHAP dependence plot is the
ML equivalent of an average marginal effect summary in
inferential-based modeling that shows the apparent func-
tional form of the selected predictor and interaction with
the most important conditioning variable found for that
selected predictor. It provides insight into any complex
nonlinear effect of that predictor on the pelagic longline
catch for that species.

These two tools (SHAP summary and dependence)
are both necessary and sufficient to help interpret and
understand the main drivers of the predictive performance
of each species-specific catch model and were derived using
(1) the kernelshap R package (Mayer & Watson, 2023) to
calculate model-agnostic SHAP values for each of the 1683
sets in each of the seven species-specific predictive
models and then (2) SHAP summary and dependence
visualization using the shapviz R package (Mayer, 2023).

Spatial ML models

All ML models fitted in the previous section included the
georeferenced location of each set—so longitude and lati-
tude were included as specific predictors. This approach
is a common practice in ML-based species distribution
models to identify for instance apparent regional hotspots
for interactions between marine species of concern and
fishing gears (Burns et al., 2023). However, this approach
does not explicitly account for potential local neighborhood
effects or covariance structure between the georeferenced
locations. Nonetheless, it has been shown recently
that SHAP-augmented ML approaches such as xgboost
can indeed perform as well as more conventional

spatially explicit statistical models to account for
explicit spatial effects and provide robust spatial pre-
dictions (Li, 2022). Nevertheless, we conducted exten-
sive spatial cross-validation using nearest neighbor
distance matching-based resampling strategies (Milà
et al., 2022) to determine whether predictive model
performance would be improved by accounting for
explicit spatial structure in all our ML models (see
Appendix S1: Section S1, Geospatial Model Evaluation
Approach, which shows that accounting more explic-
itly for spatial structure could be beneficial for predic-
tive model performance).

There are several spatial regression type ML methods
to explicitly account for spatial covariance (see Georganos
& Kalogirou, 2022), including spatial RF with eigenvector
spatial filtering (Liu, Jin, et al., 2022; Liu, Kounadi,
et al., 2022; Reisinger et al., 2022)—an approach also used
in a more conventional GLM(M)-based model of coral
bleaching on the Great Barrier Reef (Hughes et al., 2021).
We used the spatialRF R package (Benito, 2021) with
eigenvector spatial filtering (Dray et al., 2006) and a
matrix of the distance (in kilometers) between all sets to
further explore species-specific spatial effects using the
top 10 SHAP summary predictors determined previously
using the species-specific ML models. The distance matrix
was calculated using the geodist package for R (Padgham,
2021). This approach was used for the six species with a
continuous catch response variable (yellowfin, bigeye,
pelagic stingray, billfish, blue shark, and silky shark) since
it turns out that all species are best fit using an RF algo-
rithm. The distance thresholds for spatialRF model fits
ranged from 0 to 1000 km to assess potential spatial auto-
correlation using Moran’s I metric (Pebesma & Bivand,
2023). We can also assess which of the predictors contrib-
ute more importantly to supporting model transferability
(see Ludwig et al., 2023) using spatialRF with spatial
cross-validation.

However, the response variable for the olive ridley
turtle was binary and was best fit using a gradient
boosting machine not RF. So, for the olive ridley, we
used a mixed-effects spatial gradient boosting machine
ML model (GPBoost) to explicitly account for spatial
effects and nonlinear predictor functional form
(Sigrist, 2023). We fitted this spatial ML model using
the gpboost R package (Sigrist, 2023), which uses the
LightGBM algorithm (Ke et al., 2017), and the struc-
tured spatial effects are modeled using Gaussian pro-
cesses with a Matérn covariance kernel (Gelfand &
Schliep, 2016). See Zhou et al. (2022) for a recent exam-
ple of using GPBoost with SHAP-based explanations to
predict and interpret manual car driver fatigue or
Sokhansanj and Rosen (2022) for predicting COVID-19
disease severity.
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The spatially explicit models for each of the seven
species were then used to derive a species-specific spa-
tial prediction for each of the 1683 sets. Then these
set-specific predictions were used to derive spatially
resolved species-specific prediction surfaces to support
evidence-informed marine spatial planning. So, we
rasterized the spatialRF- and gpboost-derived set-specific
predictions for each species but limit the spatial surface
predictions within close proximity of the set geolocations
used in training the ML models in the first place (Meyer &
Pebesma, 2022).

We do that spatial interpolation (Pebesma &
Bivand, 2023) using a generalized additive model
or geoGAM(M) (Kammann & Wand, 2003) with
response-specific likelihood and georeferenced set loca-
tions modeled as a 2D Gaussian process surface with
Matérn covariance kernel (Gelfand & Schliep, 2016).
These models were fit using the Stan computation engine
(Carpenter et al., 2017) via the brms R interface with
the cmdstanr backend (Bürkner, 2017). A similar
two-step ML-based modeling process for spatially
explicit data to derive prediction surfaces can be found
in modeling of wind speeds (Li, 2019) and bike-sharing
activities (Schimohr et al., 2023).

Throughout the entire workflow, we used the
tidyverse R meta-package (Wickham et al., 2019) for
data pre- and post-processing, terra R package for spa-
tial data processing (Hijmans, 2023), sf R package for
vector-based mapping (Pebesma, 2018), and ggplot2 R
package (Wickham, 2016) for visualizations with the
viridis color palette from the colorspace R package (Zeileis
et al., 2020) that was used for the SHAP summary and
dependence plots and the mapped spatial prediction sur-
faces. The patchwork R package (Pedersen, 2022) was used
for multi-panel plot layouts.

RESULTS

Appropriate ML algorithm for each species

The most appropriate ML algorithm to be applied to each
species-specific dataset identified using AutoML was (1)
distributed RF (Breiman, 2001) for six species (yellowfin
tuna, bigeye tuna, pelagic stingray, billfish, blue shark,
and silky shark) and (2) a gradient boosting machine
such as XGBOOST (Chen et al., 2023) or LightGBM
(Ke et al., 2017) for the olive ridley model with Bernoulli
likelihood. The AutoML performance metric ranking
plot for yellowfin tuna is shown as one species-specific
example in Figure 1. RF predictive performance for
all four metrics was ranked very close to that for
stacked ensembles (comprising a complex mix of both

best-in-each-algorithm-class and all algorithms) and
far better ranking than for gradient boosting machines
(including XGBOOST) and substantially better than a
GLM or neural net. A similar pattern of comparative RF
predictive performance was apparent for the other five
species.

Species-specific interpretable ML models

ML models with RF-based regression using the ranger
(Wright & Ziegler, 2017) engine were then applied to
each data catch set for the six species (yellowfin tuna,
bigeye tuna, pelagic stingray, billfish, blue shark, and
silky shark) that were identified as best modeled using
RF by AutoML. The olive ridley turtle model was fit using
XGBOOST-based classification with Bernoulli likelihood
using the H2O engine (LeDell et al., 2023). All workflows
were applied within the tidymodels meta-learning frame-
work for R (Kuhn & Wickham, 2020) to ensure consistent
application of each algorithm and derive the output suit-
able for calculating Shapley values for the SHAP Summary
and Dependence plots.

The mean absolute SHAP values for each of the 28 pre-
dictors for each of the seven species are summarized in
Appendix S1: Table S3. We show the SHAP summary plots
for two target species (yellowfin tuna and bigeye tuna) and
two at-risk bycatch species (silky shark and olive ridley tur-
tle) to help identify the most important marginal predictor
effects of catch for those specific species. SHAP summary
plots for billfishes, pelagic stingray, and blue shark are
included in Appendix S1: Section S3. SHAP values indicate
the species-specific relative effect (rank order) on catch rate
(catch per set) conditioned on 28 potentially informative
predictors. We refer to the top five predictors with the
highest SHAP value for each species as having important
marginal predictor effects of species-species catch rate,
where the SHAP values indicate the species-specific rank
order on catch per set conditioned on 28 potentially infor-
mative predictors.

Commercial species

The SHAP summary plot for the predicted yellowfin tuna
catch is shown in Figure 2 where the top five predictors in
descending order of importance were latitude, longitude,
soak duration, fishing year, and month of fishing year.
Higher yellowfin tuna catch was predicted at lower lati-
tudes, more westward longitudes, at longer soak durations,
later in the season (month) and in more recent years. The
“fleet origin” predictor shows that predicted yellowfin catch
was higher in the distant-water fleet than the local fleet.

ECOSPHERE 7 of 31
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The SHAP summary plot for the predicted bigeye
tuna catch is shown in Figure 3 where the top five predic-
tors in descending order of importance were soak dura-
tion, use of lightsticks, fleet origin, vessel flag state,
and hooks between float. Higher bigeye tuna catch was
predicted at longer soak durations, when lightsticks were
used, in the distant-water Japanese-flagged fleet, and for
the locally based Chinese-flagged vessels, and for higher
number of hooks between floats. Spatial predictors
(longitude and latitude) were in the top 10 but not as impor-
tant predictors of bigeye catch compared with yellowfin
tuna catch (Figure 2).

Appendix S1: Figure S8 shows the SHAP summary
plot for billfishes. The top five predictors of the

28 predictors in descending order of importance were the
fishing year, number of hooks between float, vessel flag,
MEI in the most recent previous month of set deploy-
ment (no lag), and latitude. Billfish catch was lower
(<0 SHAP value) in recent years, higher for sets with
fewer hooks between floats (>0 SHAP value), and higher
for Taiwanese-flagged vessels.

At-risk species

The SHAP summary plot for the predicted silky shark
catch is shown in Figure 4. The main predictors were,
in descending order, the vessel flag state (vessels),

mae mean_residual_deviance

r 2 rmse
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Performance Assessment Metrics and Algorithm Ranking

F I GURE 1 Machine learning algorithm selection based on four performance assessment metrics for the yellowfin tuna catch data

series. The distributed random forest class has the best ranking relative to the stacked ensemble class and also shows little variability.

GLM, generalized linear model; MAE, mean absolute error; RMSE, root mean square error.
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F I GURE 2 Legend on next page.
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PDO in the recent month, bait type, and the two spatial
predictors. Higher silky shark catch was predicted for the
Taiwanese-flagged vessels, at negative PDO index values
reflecting cooler regional sea surface temperatures (SST)
(Houk et al., 2020), and more westward but for a range of
latitudes. Lower silky shark catch was predicted for sets
deployed with fish bait compared with sets using squid or
a mix of squid and fish for bait.

The SHAP summary plot for the predicted olive ridley
turtle bycatch is shown in Figure 5. The top five predic-
tors in descending order of importance were latitude,
bathymetric depth, intensity of lunar illumination, hooks
per set, and longitude. Higher bycatch was predicted at
lower latitudes and more westward, and higher moon-
light intensity was predicted for the set-specific
date:time and higher fishing effort (hooks per set). The
bathymetric depth marginal effect is a more complex
nonlinear effect and best revealed with a SHAP depen-
dence plot (see below).

The SHAP summary plot for the predicted pelagic
stingray catch is shown in Appendix S1: Figure S9. Only
the top 10 of the 28 predictors are included in
Appendix S1: Figure S9. The top five of the 28 predictors
in descending order of importance were monitoring
method (EM or observer), time of day of the start of the
set, latitude, MEI 12 months prior, and season (month).
Stingray catch was lower for observer recorded catch
than for EM-based records (EM recorded higher catch).
Catch was higher earlier in 24-h cycle, higher for those
sets deployed at lower latitudes, and higher later in the
season.

The SHAP summary plot for the predicted blue shark
catch is shown in Appendix S1: Figure S10. The top five
of the 28 predictors in descending order of importance
were latitude, monitoring method, time of day of the start
of the set, season, and number of hooks between floats.
Blue shark catch was higher at higher latitudes, higher
for observer program recorded catch than for EM system
records, higher later in 24-h cycle, lower later in the sea-
son, and higher with more hooks between floats.

SHAP dependence plots

Now we consider SHAP dependence plots for the two
target species and two selected at-risk bycatch species to
further clarify marginal predictor functional form and
predictor interaction effect on predicted catch or bycatch.

The SHAP dependence plot for the predicted
yellowfin tuna catch is shown in Figure 6 where panels
a–c show the top three SHAP-based predictors (latitude,
longitude, and soak time) conditioned by the most impor-
tant interaction predictor. Figure 6a shows the predicted
nonlinear relationship between the predicted catch
(SHAP value on the y-axis) and latitude and the predicted
interaction with longitude: each dot in the plot is the
predicted set-specific catch summarized as a SHAP value.
It is evident here that yellowfin tuna catch was highest at
low latitudes eastward of 132� E—other more nuanced
trends are also apparent. Catch decreases westward
(Figure 6b) and shows a stronger relationship with soak
time for the distant-water fleet (Figure 6c). Figure 6d
shows that while predicted catch for yellowfin tuna was
not only higher for the distant-water fleet (see Figure 2)
but the higher catch for this fleet occurred at lower lati-
tudes (Figure 6d). Other effects are apparent in all panels
of Figure 6 that reflect the discovery of nuanced interac-
tions between the predictors.

The SHAP dependence plot for the predicted bigeye
tuna catch is shown in Figure 7 where panels a–c show
the top three SHAP-based predictors (soak time, lightsticks,
and fleet origin) conditioned by the most important inter-
action predictor. Figure 7a shows a similar pattern for
soak time effect on predicted bigeye catch as found for
yellowfin tuna (Figure 6c)—a stronger soak time effect
for the distant-water fleet. Catch was higher when
lightsticks were used and lightstick catch itself was lower
for sets that occurred at higher MEI values (warm ENSO
phase) and perhaps similar to the effect for the
distant-water fleet shown in Figure 7c. Figure 7d shows
that predicted bigeye catch was higher for the vessels
flagged to China, the Cook Islands, and Japan and that

F I GURE 2 SHAP summary plot for the yellowfin tuna random forest model. The beeswarm density polygon for each predictor

(or feature) shows a dot for each of the 1683 set-specific Shapley values. The predictors, shown on the left-hand side of the plot panel, are

arranged in descending order of relative importance based on the mean absolute Shapley value of each beeswarm density polygon. SHAP

values to the left of the zero SHAP value centerline show predicted negative effect of that predictor on yellowfin tuna catch (catch decreases)

and to the right show positive impact (catch increases). The color legend shows the direction of the predicted impact of that predictor or

feature. For example, there was higher yellowfin tuna catch at lower latitudes (latitude), in more recent years (fishing year) and later in the

season (month), and lower catch expected from the local longline fleet and higher catch for the distant-water fleet (fleet origin). For this

latter predictor, fleet origin, with categorical and not numerical values, the alphabetical order of the first letters of the two predictor

categories of locally based and distant water is used to assign which category is low and high on the color legend, where, in this case, distant

water is low/purple and locally based is high/yellow. EM, electronic monitoring; MEI, Multivariate El Niño Southern Oscillation Index;

PDO, Pacific Decadal Oscillation; SHAP, Shapley additive feature explanations.
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F I GURE 3 SHAP summary plot for the bigeye tuna random forest model. EM, electronic monitoring; MEI, Multivariate El Niño

Southern Oscillation Index; PDO, Pacific Decadal Oscillation; SHAP, Shapley additive feature explanations.
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the predicted catch for the Taiwan flag vessels shows
some influence of recent PDO (higher predicted bigeye
tuna catch with negative PDO index values, lower catch
with positive values) that perhaps reflects nuanced
vessel flag operational decisions in space and time.
These nonlinear and complex interaction effects are
what ML approaches are especially able to capture and
SHAP-based diagnostic plots are able to reveal.

The SHAP dependence plot for the predicted silky
shark catch is shown in Figure 8 where panels a–c show

the top three SHAP-based predictors (vessel flag, recent
PDO, and bait type) conditioned by the most important
interaction predictor. Figure 8a shows that
Taiwanese-flagged vessels not only had higher silky shark
catch but that highest catches occurred in the most recent
year or so while the lowest predicted catches were for
Chinese-flagged vessels that operated in the earlier years
prior to around 2010. The higher silky shark catches by
the Taiwanese-flagged vessels occurred during negative
PDO (cooler regional SST) and again perhaps reflective
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F I GURE 4 SHAP summary plot for the silky shark random forest model. PDO, Pacific Decadal Oscillation; SHAP, Shapley additive

feature explanations.
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of flag-specific coordinated operational decisions in
space and time.

The SHAP dependence plot for the predicted olive
ridley turtle bycatch is shown in Figure 9 where panels a
and b show SHAP-based predictors (latitude and bathy-
metric depth) conditioned by the most important interac-
tion predictor. Figure 9a shows the decreasing catch with
increasing latitude effect was most evident for the sets
deployed with a higher number of hooks between floats.
Figure 9b shows that the bathymetric depth effect identified

in the SHAP summary plot (Figure 5) was highest around
a depth of 4000 m and occurred later in the year.

Spatial prediction surfaces for marine
spatial planning

Different predictor effects were apparent for all seven
species revealed using SHAP summary and dependence
plots. But marginal spatial effects (latitude and longitude)
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F I GURE 5 SHAP summary plot for the olive ridley turtle gradient boosting machine (XGBOOST) model. SHAP, Shapley additive

feature explanations.
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were important predictors (though not necessarily the
most important) of species-specific catch or bycatch.
Hence, spatially explicit RF (spatialRF) models for six
species and a spatially explicit gradient boosting machine
model (gpboost) for olive ridley turtles were fitted to
the species-specific data sets to support spatially explicit
prediction surfaces or maps. The set-specific predictions
derived from these spatial ML models for each species
are shown in Appendix S1: Figure S5 for six species
(yellowfin bigeye, billfish, silky shark, and blue
shark) and Appendix S1: Figure S6 for the olive ridley

turtle—the catch is here converted for convenience to a
catch-per-unit-effort prediction of catch per 1000 hooks.
We also found using spatialRF that the predictors that
contribute most to spatial model prediction transferabil-
ity were (1) soak time for the yellowfin tuna set-specific
predictions, (2) both soak time and number of hooks
between set for bigeye tuna set-specific predictions, and
(3) the PDO for silky shark set-specific predictions.

Figure 10a–d shows the mean field prediction sur-
faces for yellowfin tuna, bigeye tuna, pelagic stingray,
and silky shark catch. Predicted catch was highest for
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F I GURE 6 SHAP dependence plot for the yellowfin tuna random forest model. SHAP, Shapley additive feature explanations.
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both yellowfin and bigeye tuna in the southwestern
region of the EEZ, where mainly the distant-water fleet
operated between 1999 and 2020 (Appendix S1: Figure S1).
On the other hand, predicted pelagic stingray and silky
shark catch was highest in the eastern central region of
the EEZ, where mainly the locally based fleet operated
between 1999 and 2020 (Appendix S1: Figure S1). There is
a predicted secondary hotspot (a warmspot) for pelagic
stingray catch in the southwestern region.

Figure 11a,b shows the prediction surfaces for
billfishes and blue shark catch. Predicted catch was

highest for blue sharks in the northwestern region of the
EEZ, where only the distant-water fleet operated between
1999 and 2020. On the other hand, predicted billfish
catch was highest in the eastern central and southeastern
regions of the EEZ, where mainly the locally based pelagic
longline fleet operated between 1999 and 2020.

Figure 12 shows the prediction surface for olive ridley
turtle bycatch. Predicted bycatch was highest in three areas:
(1) in the southwestern region where mainly the
distant-water fleet operated, and (2) central eastern and
(3) southeastern regions, where only the locally based fleet
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F I GURE 7 SHAP dependence plot for the bigeye tuna random forest model. MEI, Multivariate El Niño Southern Oscillation Index;

PDO, Pacific Decadal Oscillation; SHAP, Shapley additive feature explanations.
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operated between 1999 and 2020. The southeastern region
hotspot is attributable entirely to the local-based fleet operat-
ing during the 5-year period from 2006 to 2010. As a sanity
check, we can fit a similar rasterizing or spatial interpolation
model of the gpboost set-specific predictions (Appendix S1:
Figure S7) using the sdmTMB package for R, which is an
interface to template model builder (TMB) to fit spatial
GLMMs with gradient boosting machine (SPDE)-based
Gaussian Markov random fields (Anderson et al., 2022).
This spatial GLMM regression modeling approach has been
used recently for species distribution models of commer-
cially exploited groundfish species (Commander
et al., 2022). The sdmTMB-rasterised spatial map for
olive ridley bycatch based on a GLMM with Beta likeli-
hood is shown in Appendix S1: Figure S7. Both
rasterised prediction maps (Figure 12; Appendix S1:

Figure S7) are similar using either approach for the
mean field predicted olive ridley bycatch spatial effect.

DISCUSSION

Evidence supporting static area-based
management

The spatial prediction maps of expected catch rates iden-
tify options for spatial management approaches to sepa-
rate static target bigeye tuna and yellowfin tuna catch
rate hotspots (areas of highest catch per set conditioned
on 28 potentially informative predictors) in the southwest
portion of Palau’s EEZ from at-risk species bycatch
hotspots to the east (silky shark, olive ridley, and stingray),
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F I GURE 8 SHAP dependence plot for the silky shark random forest model. PDO, Pacific Decadal Oscillation; SHAP, Shapley additive

feature explanations.
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and northwest (blue shark). There were overlapping olive
ridley and billfish hotspots to the southeast of the Palau
EEZ (high seas pocket and Indonesia EEZ). One yellowfin
hotspot overlaps with a warmspot or secondary, moder-
ately high area of stingray catch rate, and the southern
yellowfin and bigeye hotspots overlap with an olive ridley
warmspot.

Overall, there would be limited ecological tradeoffs
from zoning the Palau EEZ to focus fishing effort within

the tuna hotspots. However, additional research on socio-
economic effects of alternative area-based management
strategies is a priority. For instance, research is needed to
determine the economic viability of alternative fishing
grounds, where ex-vessel revenue might be influenced by
the seafood products being supplied, distance from port,
and trip duration. For example, if a vessel makes only a
few sets per trip to fill up the fish hold, and must land
catch within a few days to meet product quality
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F I GURE 9 SHAP dependence plot for the olive ridley XGBOOST model. SHAP, Shapley additive feature explanations.
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F I GURE 1 0 Rasterized spatial prediction maps over the 22-year period (1999–2020) highlighting the expected catch for (a) yellowfin

tuna, (b) bigeye tuna, (c) pelagic stingray, and (d) silky shark, showing the seaward margin of the Palau exclusive economic zone.
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requirements for fresh chilled product for the Japan
sashimi market, then fishing at grounds close to port,
despite lower target species catch rates than would occur

at more distant fishing grounds, might optimize revenue.
Another priority is to investigate the potential economic
cost that would be caused by introducing a condition in
license agreements to restrict fishing in the olive ridley
hotspot zone outside the Palau EEZ due to the exclusion of
the overlapping billfish hotspot. The local fleet would tar-
get billfishes during seasons with relatively low tuna catch
rates (Gilman et al., 2016); however, billfishes were a rela-
tively small proportion of the local fleet’s commercial catch
(1.1 billfish per 1000 hooks compared with 4.0 yellowfin
and 2.7 bigeye tuna per 1000 hooks).

Another priority is to explore differences in the fish-
ing modes and technical capacities of the two fleet seg-
ments, which might inform the evaluation of alternative
management strategies, including alternative area-based
and bycatch management approaches. Might some infor-
mative predictors represent barriers for the locally based
fleet to viably fish in the target tuna hotspot—where it
might be necessary to fish deep to achieve high bigeye
and yellowfin tuna catch rates? For example, referring to
nominal catch rates shown in Appendix S1: Figure S5
(catch per set without conditioning on various informa-
tion predictors that significantly explain species-specific
catch rate), the local fleet had the highest bigeye catch
rates in the core of their fishing grounds to the southeast
of port (yellowfin tuna catch rates tended to be higher
along the southern and western margins of their fishing
grounds). The Okinawa fleet predominantly made night-
time deep sets with a mean of 22 hooks between floats,
while the locally based fleet predominantly made shallow
sets with a mean of 10 hooks between floats, both at
night and during the day (Gilman et al., 2016). Discussed
below, hooks between floats (an indicator for relative
fishing depth) was an informative predictor of catch rates
for bigeye tuna, blue shark, pelagic stingray, and
billfishes. In the 1980s, the Okinawa-based fleet success-
fully converted from making shallow sets to target
yellowfin tuna to a deep-set bigeye tuna targeting fishery
(Palau Conservation Society, 1999). In 2016, The Nature
Conservancy and Palau government initiated a similar
effort for the Palau locally based fleet (Beverly, 2016;
TNC, 2016). This technical assistance initiative could be
resumed to enable shallow-setting vessels to develop the
capacity to fish deeper like the Okinawa fleet so that fish-
ing in the tuna hotspot, and avoiding threatened bycatch
hotspots, is economically viable.

Jaiteh et al. (2021) used Palau longline observer data
to compare catch rates of blue sharks, pelagic stingrays,
and silky sharks within and outside of the area where the
Palau National Marine Sanctuary allows pelagic longline
fishing. Their findings on predicted spatial effects were
similar to this study’s findings, except that they predicted
some catch rate hotspots that were not found in the

F I GURE 1 1 Rasterized spatial prediction maps over the

22-year period (1999–2020) highlighting the expected catch for

(a) billfishes and (b) blue shark, showing the seaward margin of the

Palau exclusive economic zone.
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current study, located in the Indonesia EEZ and high seas
outside of areas with observed effort. Using a shorter time
series (beginning in 2010) and excluding the Palau EM
datasets, Jaiteh et al. (2021) employed a regression-based
modeling approach that included a small set of poten-
tially informative predictors (year, month, and fleet) to
condition catch rates. Jaiteh et al. (2021) made spatial
predictions outside of actual fishing set geolocations
for which no predictor estimates were available—an
issue that was explicitly addressed in this study, discussed
in Appendix S1: Section S1. Regression-based modeling
evaluation and predictive spatial validation were not
undertaken, and the model fits for the three species had
low apparent predictive performance (Jaiteh et al., 2021).

Globally categorized as Vulnerable (IUCN, 2023), the
most recent assessment of the western and central Pacific
Ocean silky shark stock found the stock to not be
overfished but is subject to extensive overfishing
(Clarke et al., 2018). Recent fishing mortality was

substantially higher than the fishing mortality rate
(F) predicted to produce maximum sustainable yield
(MSY) (Frecent/FMSY = 1.6) such that if silky shark
catches remain at recent levels, then there is a high proba-
bility that the stock will become overfished (Clarke
et al., 2018). However, there was large uncertainty with the
stock assessment, and findings are considered indicative
and unreliable for management decisions (WCPFC, 2019).

Globally categorized as Vulnerable (IUCN, 2023), the
Palau EEZ overlaps with a low risk and high threat olive
ridley Regional Management Unit (Wallace et al., 2010,
2011). Despite removals being from a low-risk unit, the
potentially high cumulative magnitude of mortalities of
olive ridleys in regional longline fisheries might be a
concern.

The most recent assessment of the north Pacific
Ocean blue shark stock, which used an ensemble of
modeling approaches, concluded that the stock is neither
overfished nor is overfishing occurring (ISC, 2022). The

F I GURE 1 2 Rasterized spatial prediction map over the 22-year period (1999–2020) highlighting the expected (mean) encounter

probability for the olive ridley marine turtle, showing the seaward margin of the Palau exclusive economic zone.
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species has a relatively low predicted probability of occur-
rence in the Pacific tropical equatorial waters (ISC, 2022;
Kaschner et al., 2019). The global species is categorized
as Near Threatened (IUCN, 2023) and is less vulnerable
to over-exploitation compared with other pelagic shark
species (Smith et al., 1998).

There have been no stock assessments of Pacific
Ocean pelagic stingrays. The global species is categorized
as Least Concern (IUCN, 2023). A regional assessment
found that pelagic stingray relative abundance in the
tropical Pacific Ocean increased between 1950 and 1990
(Ward & Myers, 2005a). Consistent with the regional
assessment, a previous study of observer program data
from the Palau locally based fleet found increasing rela-
tive abundance of pelagic stingrays (Gilman et al., 2016).
The authors hypothesized that this might be due to
mesopredator release, including from reductions in the
abundance of some shark species that prey on pelagic
stingrays and reduced local abundance of some sympatric
competitors (Gilman et al., 2016).

Evidence supporting dynamic area-based
management

Results identify opportunities for temporally dynamic
area-based management of target and bycatch catch
rates. First assessing diel-scale temporal dynamics, blue
shark catch rates were highest with sets that were initi-
ated later in the 24-h cycle, while pelagic stingray catch
rates exhibited the opposite response. This predictor was
marginally important (sixth highest predictor) for both
billfishes and yellowfin tuna with the same effect as for
pelagic stingray, with higher catch rates in sets that
began earlier in the 24-h cycle. When combined with
management of fishing depth, particularly relevant when
fishing in the blue shark hotspot in the northwestern
zone of the Palau EEZ, initiating setting earlier in the
24-h cycle would reduce blue shark catch risk and
increase yellowfin tuna and billfishes catch rates, but
with a trade-off of an increased pelagic stingray catch
rate. The interacting effect of the time of day and depth
of fishing on species-specific catch rates is discussed in
the following section.

Considering temporal dynamics at a scale of within a
month, olive ridley turtle catch rates were higher during
periods of higher moonlight intensity. Reduced effort
around the full moon would reduce the risk to olive rid-
ley turtles, particularly in the olive ridley catch rate
hotspot. Moonlight intensity is an informative predictor
of catch rates of some species in pelagic longline fisheries
(Bromhead et al., 2012; Hoyle et al., 2022; Kot
et al., 2010; Poisson et al., 2010). This is inferred to be a

result of the effect of moon phase on night-time ambient
light levels, which affects the diel vertical migration of
some species susceptible to capture in pelagic longline
fisheries and their prey, occurring shallower at night
around a new moon and deeper at night with increased
lunar illumination around the full moon (Gilly
et al., 2006; Hoyle et al., 2022; Prihartato et al., 2016).
The effect of moonlight intensity on turtle catch risk
might also be due to turtles being more capable of visu-
ally detecting baited hooks (Kot et al., 2010), which is
also apparent for bycatch risk of some seabird species
during longline night-time sets (Cherel et al., 1996;
Jiminez et al., 2020).

At a seasonal scale, blue shark catch rates were
higher earlier in the year, while yellowfin tuna and
pelagic stingray catch rates were higher later in the year,
and olive ridley catch rates were also higher later in the
year when at locations with a depth of about 4000 m.
Hence, reduced fishing effort earlier in the year, particu-
larly in the blue shark catch hotspot in the northwest
zone, would reduce blue shark catch with minimal effect
on commercial species catch rates. Reduced effort later
in the year in the pelagic stingray hotspot in the western
zone and in the olive ridley bathymetrically defined
hotspot could reduce the catch risk of these at-risk spe-
cies but with a potential trade-off of reduced yellowfin
tuna catch rates. Season can have a large effect on
species-specific local abundance and catch rates due to
monthly variability in environmental conditions, prey
distributions, and other factors (Kot et al., 2010;
Rodrigues et al., 2022).

At an interannual scale, billfish catch rates were
higher with lower MEI values corresponding with cooler
regional SST, and pelagic stingray catch rates showed the
opposite effect with higher catch rates with higher MEI
values with a one-year lag during warmer ocean temper-
atures. Positive MEI values represent El Niño phase-like
conditions, and negative values represent La Niña
phase-like conditions. In the western and central Pacific
Ocean, ENSO phases are associated with large-scale
east–west shifts in the warm pool and the highly pro-
ductive convergence zone between the warm pool and
cold tongue. This variability in the spatial occurrence and
temporal occurrence of areas of high productivity causes
variability in the distributions, recruitment, and biomass
of pelagic predators (Bjorndal et al., 2017; Free et al., 2019;
Lehodey et al., 1997, 2006; Newman et al., 2016).

At a decadal scale, silky shark catch rates were higher
with negative PDO index values, both during the most
recent month and with a one-month lag, reflecting cooler
regional SST (Houk et al., 2020). The PDO is associated
with north-to-south variability in SST and productivity
across the tropical and temperate Pacific Ocean, which can
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strengthen and weaken responses to ENSO phases (Houk
et al., 2020; Newman et al., 2016). Lags in responses in
species-specific catch rates to these climate cycles are likely
due to delays in ocean productivity, recruitment, and bio-
mass responses to ocean temperature effects (Lehodey
et al., 1997, 2006; Saba et al., 2007). These climate cycle
phase effects on Palau billfishes, stingray, and silky shark
longline catch rates might reflect changes in local abun-
dance, changes in absolute abundance, or both. Additional
research could assess whether locations of species-specific
catch rate-defined hotspots and coldspots vary by climate
cycle phase, which could inform the design of spa-
tially mobile area-based management strategies where
fishery-closed areas might vary in location during different
climate cycle phases in order to best meet management
objectives. Indirectly related, and not explored in this
study, outcomes of climate change are causing shifts in the
distribution, phenology, population dynamics, and bio-
mass of pelagic marine species (Bjorndal et al., 2017; Free
et al., 2019; Lehodey et al., 2015; Poloczanska et al., 2013).
For example, distributions of Pacific Ocean tunas are
shifting eastward, reducing their local abundance and
hence catch rates in the Palau EEZ (Bell et al., 2021),
which could be accounted for in the evaluation of alterna-
tive area-based management strategies.

Dynamic area-based fisheries management may be
more effective and efficient at achieving bycatch manage-
ment objectives compared with static ABMTs (Dunn
et al., 2016; Hazen et al., 2018; Pons et al., 2022).
However, compared with static ABMTs, dynamic fisher-
ies management, including temporally dynamic measures
that restrict fishing by the time of day or part of a month,
and particularly quasi real-time approaches, requires rel-
atively more robust enabling environment conditions for
effective compliance monitoring (Gilman et al., 2006;
Gilman, Hall, et al., 2022; Little et al., 2015).

EM versus observer monitoring

Monitoring method of observer or EM program was an
important predictor of catch rate for two of the at-risk
bycatch species, with a higher stingray catch rate for sets
monitored with EM compared with sets with an onboard
human observer, and the opposite effect for blue sharks.
While not one of the top SHAP-based predictors of
species-specific catch rate, catch rates were higher for sets
with observers than sets with EM for silky shark, olive
ridley turtles and billfishes, with the opposite effect for
yellowfin tuna. It is unclear whether this was caused by a
deficit with a monitoring system. It is a research priority
to investigate the EM and observer programs of the
distant-water and locally based fisheries to determine

potential causes of poor data quality, such as by
conducting trips with both monitoring methods to
enable an assessment of precision.

Studies comparing the precision between observer
and EM systems on pelagic longline fisheries, where both
monitoring methods were employed simultaneously,
found that causes of low precision were due to inade-
quate EM camera setups, where the camera fields of view
did not include the outboard side of the rail near the
hauling station, preventing the EM analyst from viewing
the area where crew release non-retained catch in the
water (Emery et al., 2018; Gilman, Castejon, et al., 2020;
Piasente et al., 2012; Stahl & Carnes, 2020). Too fast EM
playback review speeds and inadequate attentiveness of
EM analysts to detect when crew discard catch in the
water were additional causes of low precision between
EM and observer data for discarded catch (Stahl &
Carnes, 2020). Poor species identification skills have also
been proposed as a cause for low precision between EM
and observer estimated catch (Brown et al., 2021).
Another identified cause was inattentive observers who
did not consistently record discarded catch (Gilman,
Castejon, et al., 2020). Statistical sampling bias faced by
observer programs but not EM programs is also a poten-
tial cause of low precision between EM and observer
data. This includes an observer effect, observer displace-
ment effect, and observer coercion and corruption
(Babcock et al., 2003; Benoit & Allard, 2009; Cahalan &
Faunce, 2020). Other data quality issues that were
encountered in the study are discussed in Appendix S1:
Section S2.

Operational predictors

The bigeye tuna and blue shark SHAP values plots show
higher catch rates with more hooks between floats,
with the opposite effect for billfishes. Discussed above,
time-of-day of fishing was also an important predictor of
pelagic stingray and blue shark catch rates. The
time-of-day of fishing operations and fishing depth can
affect the vertical overlap (encounterability) and catch
risk of some pelagic marine predators whose vertical
distributions can vary temporally due to diel vertical
migration cycles that mirror the movements of their
prey, time of day of foraging and temporal variability in
diving behavior (Gilman, Chaloupka, et al., 2019; Musyl
et al., 2011; Rodrigues et al., 2022). These two variables
also affect species-specific at-vessel mortality rates
(whether catch are alive or dead when retrieved during
the gear haulback before being handled by crew) (Ellis
et al., 2017; Gilman, Chaloupka, et al., 2022; Orbesen
et al., 2017). The number of pelagic longline hooks that

22 of 31 GILMAN and CHALOUPKA

 21508925, 2024, 2, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.4751 by M

inistry O
f H

ealth, W
iley O

nline L
ibrary on [19/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



are attached between two floats is an approximate index
for relative but not absolute fishing depth. The more the
hooks that are deployed between two floats, the deeper the
depth range of the hooks along a catenary curve if all
other variables are constant (Rice et al., 2007; Ward &
Myers, 2005b). Variables other than number of hooks
between floats that explain actual fishing depth include
shoaling from ocean currents and wind, and various gear
designs such as the length of mainline between floats,
mainline diameter and material, distance between
floats, distance between the point of attachment to the
mainline of the first branch line and the point of attach-
ment of the nearest float line, distance between branch
lines, and length of branch lines and float lines (Rice
et al., 2007; Ward & Myers, 2005b). Managing the depth
and time-of-day of fishing can result in tradeoffs for threat-
ened bycatch species. For instance, deeper fishing reduces
the catch risk of epipelagic threatened species such as silky
and oceanic whitetip sharks and hard-shelled marine tur-
tles but increases the catch of mesopelagic species such as
thresher sharks (Gilman, Chaloupka, et al., 2019). Fishing
depth, as indicated by number of hooks between floats,
very likely explains why the shallow-set Palau locally
based fleet (with a mean of 10 hooks per float) had higher
nominal catch rates of epipelagic species, including a
ca. 6 times larger olive ridley turtle, 3.7 times larger silky
shark, and 2.3 times larger pelagic stingray catch per 1000
hooks, than the deep-set distant-water fleet (with a mean
of 22 hooks per float), and the distant-water fleet had a
ca. 1.5 times larger blue shark catch per 1000 hooks, a
mesopelagic species (Musyl et al., 2011).

Sets with longer soak durations had higher bigeye
and yellowfin tuna catch rates. Sets with lightsticks had
higher bigeye catch rates than sets without lightsticks,
sets with squid or a mix of fish and squid used for bait
had higher silky shark catch rates than sets with only fish
bait, and sets with more hooks had higher olive ridley
turtle catch rates than sets with fewer hooks. These latter
three predictors were heavily imputed, creating uncer-
tainty in these findings.

These four predictors are known to significantly
explain species-specific catch rates in pelagic longline fish-
eries. Longer soaks might increase catch rates as organ-
isms have a longer time period and hence risk of capture,
with an increased probability that a school of pelagic pred-
ators will encounter a section of a pelagic longline
(Capello et al., 2013; Ward et al., 2004). However, longer
soak duration might also result in sections of the gear
becoming saturated with catch, higher bait loss rates,
higher depredation rates, falloff due to mechanical action,
and higher escapement rates (for species that have a high
probability of surviving the gear soak and in particular
when monofilament nylon and not more durable mate-
rials are used for leaders), and thus beyond some

threshold, longer gear soaks might result in lower catch
rates for some species (Poisson et al., 2010; Ward
et al., 2004; Ward & Myers, 2007).

The number of hooks deployed per set is frequently
included in longline catch rate standardization models as
a measure of relative fishing effort (Brodziak &
Walsh, 2013; Hoyle et al., 2014). With increasing baited
hooks per set, catchability might increase due to
increased area fished, increasing the probability that a
school will encounter the gear, and reduced probability
of gear saturation, but this also might increase the com-
petition for catch by adjacent hooks and thus reduce
catch rates (Ward & Hindmarsh, 2007). Increasing hooks
per set might result in increasing soak times, or might
result in crew increasing setting and haulback speeds and
reduced duration between the end of a haul and start of
the next set (Ward & Hindmarsh, 2007). Because longline
vessels typically retrieve gear in the reverse order that it
was deployed, the number of hooks per set might affect
the soak time of different sections of the gear.

Lightsticks (chemiluminescent and battery-powered
light-emitting diode fishing lights), mainly used in
shallow-set pelagic longline fisheries, can increase catch
rates of pelagic predators susceptible to longline capture
by directly attracting predators or attracting their prey
and might increase predators’ ability to visually detect
prey (Hazin et al., 2005; Poisson et al., 2010;
Witzell, 1999). Lightstick wavelength and flicker rate can
affect species- and ontogenetic stage-specific catch rates
of fishes and marine turtles (Afonso et al., 2021; Crognale
et al., 2008; Wang et al., 2007). Battery-powered fishing
lights can increase the sink rate of baited hooks, reducing
seabird catch risk (Gianuca et al., 2016)—primarily prob-
lematic at higher latitudes, seabird bycatch is not
documented to occur in the Palau fishery.

Different species and sizes of marine predators have
different prey and hence preferences for different types of
longline bait. This preference is a function of a bait’s
chemical, visual, acoustic and textural characteristics,
and size (Gilman, Chaloupka, Bach, et al., 2020; Hall
et al., 2017). Using only fish for bait, and banning the use
of squid, would reduce silky shark catch rates and, from
results from a global meta-analysis, would also reduce
marine turtle and blue shark catch rates but might also
reduce catch rates of tunas and istiophorid billfishes
(Gilman, Chaloupka, Bach, et al., 2020).

Management strategy of input or output
control and area-based management
implications

The Palau longline fisheries are subject to an input con-
trol (an effort limit under the Parties to the Nauru
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Agreement Longline Vessel Day Scheme, PNA, 2022).
However, it is likely that the vessel day scheme, which
started in 2015 in Palau, has not constrained longline
effort in the Palau EEZ, especially since 2020 when most
locally based vessels departed when the Palau National
Marine Sanctuary Act came into effect (down to
1 locally based vessel in 2021, Republic of Palau, 2022).
Therefore, the catch rate employed in this study (catch
per set conditioned by all predictors) is appropriate
for informing spatial management options. Given an
objective of minimizing threatened bycatch, selecting
commercial fishing zones with lowest threatened spe-
cies captures per unit of effort would be a suitable
area-based management approach under the current
management framework. If output controls were used
for either or both target species and threatened bycatch
species, then the ratio of threatened to target species
catch would be a more appropriate catch rate unit to
identify commercial fishing zones (Dagorn et al., 2013;
Gilman et al., 2018). With a bycatch threshold, zones
with the lowest ratio of threatened species bycatch to
commercial species catch would maximize target catch
within the constraints of the bycatch limit. With a tar-
get species cap, zones with this same low ratio would
minimize threatened species catch.

CONCLUSIONS

Static and dynamic ABMTs hold substantial potential
to balance socioeconomic benefits derived from fisheries
and ecological costs to threatened species exposed to
bycatch fishing mortality. The Palau longline fisheries
have high bycatch of at-risk species such as the olive rid-
ley marine turtle and silky and blue sharks (Gilman
et al., 2016; Jaiteh et al., 2021). Area-based management
of blue water fisheries has relatively high promise to miti-
gate bycatch of at-risk species (Gilman, Chaloupka,
et al., 2019).

The study analyzed observer and EM datasets for
1638 sets by distant-water and locally based pelagic long-
line fishing vessels conducted within and adjacent to the
Palau EEZ over two decades, between 1999 and 2020.
The distant-water fleet predominantly made night-time
deep sets while the locally based fleet predominantly
made shallow sets both at night and during the day.

We used recent advances in interpretable or explainable
ML-based modeling approaches (Scholbeck et al., 2020;
Wikle et al., 2023) to derive robust spatial predictions of
species-specific catch rates suitable for supporting informed
marine spatial planning. These models were conditioned on
a suite of potentially informative environmental, bathymet-
ric, ocean-climate metric, vessel, and set-specific operational

predictors of catch rate. ML algorithms can learn complex
relationships between the response or outcome and the
predictors including nonlinear and interaction and spatial
effects. The interpretable ML methods that we used, includ-
ing SHAP summary and SHAP dependence graphical tools
(Lundberg et al., 2020), helped to derive a deeper under-
standing of predictor functional forms and the spatially
resolved predicted species-specific catch rates. We contend
that interpretable ML approaches hold great promise to
improve both predictive modeling and understanding of
pelagic longline fishing catch rates of target species and
bycatch of threatened species.

Mean field prediction surfaces define primary catch
rate hotspots for silky shark, olive ridley turtle, and pelagic
stingray, which did not overlap hotspots for target species
(bigeye and yellowfin tunas). A predicted target species
catch rate hotspot was in the southwestern region of
Palau’s EEZ, overlapping secondary olive ridley and
pelagic stingray hotspots. Overall, there would be lim-
ited ecological tradeoffs from zoning the Palau EEZ to
focus fishing effort within the tuna hotspot. Additional
research is needed on socioeconomic effects of alterna-
tive area-based management strategies.

Results also identify opportunities for temporally
dynamic area-based management of target and bycatch
catch rates. Particularly within the blue shark hotspot,
initiating setting earlier in the 24-h cycle would reduce
blue shark catch risk and increase yellowfin tuna and
billfishes catch rates, but with a trade-off of increased
pelagic stingray catch rate. Reduced fishing effort earlier
in the year, particularly in the blue shark hotspot, would
reduce blue shark catch with minimal effect on commer-
cial species catch rates. Additional research could assess
whether locations of species-specific catch rate hotspots
and coldspots vary by interannual and decadal climate
cycle phase, which could inform the design of spatially
mobile, dynamic area-based management strategies.

EM and observer monitoring systems had low
precision in estimated catch rates for two at-risk bycatch
species (blue shark and pelagic stingray). It is a research
priority to investigate the EM and observer programs to
determine potential causes of poor data quality, such as
deficits with species identification skills, the EM camera
setup and fields of view, inattentiveness of observers
or EM reviewers, and sources of statistical sampling
bias (observer effect, observer displacement effect, and
observer coercion and corruption) (Babcock et al., 2003;
Stahl & Carnes, 2020). In addition to low precision
between EM and observer program data, other data qual-
ity issues were encountered in the study (missing values,
invalid records, and missing priority data fields), which if
investigated and addressed could improve the certainty of
future studies that employ analyses of these datasets.
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ABMTs are one of an ensemble of available
approaches for fisheries management. A suite of mea-
sures is often needed for fisheries management strategies
to achieve objectives (Selig et al., 2017). This includes
whether input controls on effort or fleetwide and
vessel-based output controls on target or bycatch species
are employed and are set at levels that effectively con-
strain the fishery. A transition to employing fleetwide or
vessel-based catch rate output controls that effectively
constrain the fishery would alter the spatial management
strategy to focus on zones with the lowest ratio of threat-
ened bycatch to commercial catch. In addition to ABMTs
and input and output controls, other bycatch manage-
ment approaches include reduced vertical overlap, gear
designs, and fishing methods that increase selectivity,
mitigation of ghost fishing, handling and release practices,
offsets, trade restrictions and bans, and market-based
mechanisms such as ecolabeling (Gilman, Chaloupka,
et al., 2022; Hall et al., 2017; Selig et al., 2017). This
includes fishing depth, which, when combined with
the time-of-day of fishing, affects the vertical overlap
and catch risk of some species. SHAP summary plots
found hooks between floats, an index for relative fish-
ing depth, was a main predictor of catch rate for bigeye
tuna, blue shark, and billfishes. Fishing depth very
likely explains why the shallow-set locally based fleet
had higher catch rates of olive ridley turtle, silky shark,
and pelagic stingray epipelagic species and lower catch
rates of blue shark, a mesopelagic species, compared
with the deep-set distant-water fishery. Palau could
require deep-fishing to reduce costs to threatened epipelagic
species but with trade-offs of increased catchability of
at-risk mesopelagic species. Management of operational
predictors soak duration and hooks per set, which affect
effective fishing power (Poisson et al., 2010; Ward &
Hindmarsh, 2007), and lightstick use and bait type, which
affect species selectivity (Afonso et al., 2021; Gilman,
Chaloupka, Bach, et al., 2020; Hall et al., 2017; Poisson
et al., 2010), provide additional opportunities to balance
threatened bycatch and target catch rates. Findings sup-
port evidence-informed policy for the Palau government to
apply ABMTs and complementary management measures
to meet objectives for balancing benefits from target spe-
cies catch with costs to threatened species.
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