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This dissertation uses various modelling approaches to evaluate methods to reduce 

shark bycatch in the U.S. Atlantic pelagic longline and Gulf of Mexico (GOM) bottom 

longline fisheries. Combinations of environmental and gear variables are used to 

parameterize models to predict where and under what conditions bycatch occurs and 

propose bycatch mitigation strategies. All work uses NOAA NMFS observer datasets for 

U.S. commercial longline fleets operating in the Atlantic and/or Gulf of Mexico (GOM). 

Several statistical models are used to identify environmental conditions, regions and 

fishing methods that favor high bycatch of the overfished shortfin mako shark, Isurus 

oxyrinchus, based on the outputs of the delta-lognormal model and quantile regression of 

the upper quantiles. The results suggest that using the binomial portion of the delta-

lognormal model, the probability of positive catch, to define a hot set basis for a “no fish” 

algorithm. Second, an individual based movement model is used to test three closure 

scenarios: stationary, seasonal, and moving weekly closures, for their ability to decrease 

shortfin mako incidental catch while minimizing the impact on the target fishery. Results 

suggest that any of the tested closures have potential to improve rebuilding when compared 

to the status quo. While the two moving closures give some reprieve to the population when 

compared to current fishing practices, the varying success and failure to surpass the 



stationary closure indicated that the time scale of a moving closure is very important, and 

a mismatch can dampen the benefits of the closure. The dissertation finishes with 

consideration of how to mitigate bycatch of 12 commonly caught shark species in the GOM 

reef bottom longline fishery including: blacknose, nurse, Atlantic sharpnose, scalloped 

hammerhead, sandbar, smooth dogfish, night, blacktip, silky, tiger, bigeye sixgill, and 

sevengill sharks. Catch rates of each species are modeled as a function of environmental 

and gear variables individually and all combined, as well as grouped by similar ecology. 

Gear and behavior variables were the most consistently retained in the best predictive 

models across all species and were the only variables with the potential to be used for a 

single rule that could decrease bycatch across all studied species. Patterns of environmental 

variables were only consistent across species with similar ecology and habitat. For both the 

shortfin mako shark and bottom longline examples, we found that environmental 

conditions and gear configurations can be used to predict shark bycatch well enough to 

suggest bycatch mitigation strategies that significantly reduce shark bycatch in longline 

fisheries; however, there are tradeoffs involved in minimizing bycatch of multiple species, 

and minimizing bycatch while not unduly restricting target species catch. 

 



 iii 

 
 

 
 

 
 

 
 

For Old Granny and Grampy Dude –  
for teaching me to never stop learning



 iv 

Acknowledgments 
 

My grandmother – Elaine Lerman 

While you were unable to be here physically through this part of my life, your 

unconditional love and support throughout my formative years has lived in my heart 

and carried me through the most difficult undertaking I have ever attempted. You 

taught me to open my mind and heart to new ideas, information, and people while 

choosing knowledge over ignorance, love over hate, and right over wrong 

regardless of what I encounter. I have spent my life trying to be the smart and kind 

woman you taught me to be. I hope I have made you proud. I will never stop trying. 

My parents – Jeri O’Farrell and Nando O’Farrell 

Thank you for your unending support not just through this journey, but through my 

entire academic career. You both have allowed me to study my passion and pursue 

my dreams without worry. Pop, thank you for taking me scuba diving and 

ultimately leading to my love of the ocean and every creature that resides there. 

Mom, thank you for helping me with my homework, preparing me for every test, 

proofreading my college admissions essay, and listening to every practice seminar 

presentation. 

Dr. Elizabeth Babcock 

I would like to thank you for your kindness and patience. You have supported me 

throughout this endeavor with compassion for me as a person, not just my work and 

academic responsibilities. You have been an outstanding mentor and I consider 

myself lucky to have been able to work with you. I am very proud to be able to 

claim to have been a part of your research lab. 



 v 

My committee members (in no particular order) - Dr. Enric Cortés, Dr. David Die, Dr.  

John McManus, and Dr. Donald Olson  

From valuable course content that allowed me to answer confidently during job 

interviews to providing me access to real-world stock assessments that gave me the 

hands-on experience employers desire, I thank you all for offering me the 

opportunities and assistance needed to successfully enter the work force. 

Funding Sources 

This project was funded by the NOAA Educational Partnership Program through 

the Living Marine Resources Cooperative Science Center (NOAA Award No. 

NA16SEC4810007). 

Parts of this project were also funded by NOAA via CIMAS. 

Florida Fish and Wildlife Research Institute 

Thank you for your flexibility and support while I simultaneously started my new 

job and finished my degree. 

NOAA Observers past and present 

Thank you for all of your hard work and labor. This project would not have been 

possible without the data you collected.



 vi 

TABLE OF CONTENTS 
 

Page 

LIST OF FIGURES ....................................................................................................... viii 

LIST OF TABLES ......................................................................................................... xiii 

CHAPTER 1: INTRODUCTION ................................................................................... 1 
The Problem of Bycatch ................................................................................................. 1 
Dissertation Approach .................................................................................................... 2 
Species and Fisheries Studied ......................................................................................... 5 
Scientific Objectives ....................................................................................................... 7 
CHAPTER 2: SHORTFIN MAKO HOT SETS-DEFINING HIGH BYCATCH 

CONDITIONS AS A BASIS FOR BYCATCH MITIGATION .................................... 8 
Background ..................................................................................................................... 8 
Methods......................................................................................................................... 12 
Model Goodness of Fit and Predictive Ability ............................................................. 13 
Results ........................................................................................................................... 20 
Model Selection and Comparison of Environmental Variables ................................... 21 
Model Comparison for Predicting Future Hot Spots .................................................... 30 
Discussion ..................................................................................................................... 39 
CHAPTER 3: POTENTIAL OF CLOSURE DESIGNS TO REDUCE SHORTFIN 
MAKO, ISURUS OXYRINCHUS, INCIDENTAL CATCH IN THE UNITED STATES 

PELAGIC LONGLINE FISHERY ............................................................................... 47 
Background ................................................................................................................... 47 
Methods......................................................................................................................... 51 
Purpose .......................................................................................................................... 51 
State Variables and Scales ............................................................................................ 52 
Process Overview and Scheduling ................................................................................ 52 
Design Concepts ........................................................................................................... 53 
Initialization .................................................................................................................. 55 
Input .............................................................................................................................. 55 
Submodels ..................................................................................................................... 59 
Results ........................................................................................................................... 65 
Discussion ..................................................................................................................... 74 



 vii 

CHAPTER 4: CONSIDERATION OF MULTIPLE COMMONLY CAUGHT SHARK 
SPECIES IN BYCATCH MITIGATION IN THE GULF OF MEXICO REEF 

BOTTOM LONGLINE FISHERY ............................................................................... 79 
Background ................................................................................................................... 79 
Methods......................................................................................................................... 83 
Results ........................................................................................................................... 91 
Discussion ................................................................................................................... 110 
CHAPTER 5: CONCLUSION ................................................................................... 117 
General Overview ....................................................................................................... 117 
Main Points ................................................................................................................. 117 
Limitations and Future Work ...................................................................................... 120 
Final Thoughts ............................................................................................................ 121 

REFERENCES ........................................................................................................... 123 
APPENDIX ................................................................................................................. 133 



 

 viii 

LIST OF FIGURES 
 

Figure 2.1 The fraction of all sets plotted against the number of shortfin mako sharks 
caught per set in the United States Pelagic Longline Observer Program (2003-2012)……21 

 
Figure 2.2 The fraction of the total shortfin mako bycatch against the number of sharks 

caught per set in the United States Pelagic Longline Oberserver Program (2003-2012)….21 
 

Figure 2.3 The estimated 95th-99th quantiles of the early 2003-2013 shortfin mako 
bycatches for models fit to the observer longline catch dataset plotted with the 1:1 line….24 

 
Figure 2.4 Smoothing curves for the sea surface temperature (SST) in degrees Celsius 

explanatory variable resulting from fitting the (a) binomial, (b) lognormal, and (c) quantile 
regression models to the 2003-2012 United States pelagic longline observer program. 

Density of data used to inform the model are displayed as a rug plot along the SST axis. 
All models perform poorly at extreme temperatures (SST < 10°C and SST > 32°C) and 

provide unreliable predictions due to insufficient data at these temperatures. Only 
predictions for SST between 10° and 32°C are considered……………………………….27 

 
Figure 2.5 Smoothing curves for the sea surface height (SSH) explanatory variable 

resulting from fitting the (a) binomial, (b) lognormal, and (c) quantile regression models to 
the 2003-2012 United States pelagic longline observer program. Density of data used to 

inform the model are displayed as a rug plot along the SSH axis. All models perform poorly 
at the higher extreme of SSH (SSH > 0.8) and provide unreliable predictions due to 

insufficient data at these temperatures. Only predictions at SSH less than 0.8 are 
considered………………………………………………………………………………..28 

 
Figure 2.6 Smoothing curves for the bathymetry (BATHY) in meters explanatory variable 

resulting from fitting the (a) binomial, (b) lognormal, and (c) quantile regression models to 
the 2003-2012 United States pelagic longline observer program. All models perform poorly 

at very deep waters (BATHY < -6000m) and provide unreliable predictions due to 
insufficient data at these depths. Only predictions in waters shallower than 6000m are 

considered………………………………………………………………………………..29 
 

Figure 2.7 The estimated 95th-99th quantiles of the early (2003-2008) and late (2009-2012) 
shortfin mako bycatches for models fit to the early half (2003-2008) of the observer 

longline catch dataset…………………………………………………………………….30 
 

Figure 2.8 The hot set minimum cut off value for each model prediction used to determine 
sets that should not be fished at each percent of the fishery closed from 0% to 50% closure 

(a) binomial model probability of positive catch and (b)lognormal and 95-99 quantile catch 
per unit effort……………………………………………………………………………..31 

 



 

 ix 

Figure 2.9 The average number of sharks avoided per set as a function of the percent of 
the fishery closed to fishing as determined by a binomial presence/absence GAM, a 

lognormal estimation of the mean shortfin mako bycatch if present, and quantile regression 
of the 95th to 99th quantiles for the early half (2003-2008) and the late half (2009-2012) of 

the dataset. All models were fit to the early half of the dataset……………………………33 
 

Figure 2.10 The fraction of shortfin mako sharks avoided out of the total shortfin mako 
bycatch in the time period as a function of the percent of the fishery closed to fishing as 

determined by a binomial presence/absence GAM, a lognormal estimation of the mean 
shortfin mako bycatch if present, and quantile regression of the 95th to 99th quantiles for 

the early half (2003-2008) and the late half (2009-2012) of the dataset. All models were fit 
to the early half of the dataset…………………………………………………………….34 

 
Figure 2.11 Coefficient values by environmental variable for prediction of the late dataset 

(2009-2012) using the binomial model fit to the early dataset (2003-2008)………………35 
 

Figure 2.12 Mosaic plot showing the proportion of US Pelagic Longline Observer Program 
sets in the early dataset (2003-2008) that are categorized as hot or not hot by fishing 

area……………………………………………………………………………………….36 
 

Figure 3.1 Flow chart of individual based model scheduling at each weekly time step…..52 
 

Figure 3.2 Mapping of the theoretical study space in real space. The theoretical study space 
is the one-dimensional angle along the depicted arc. This arc is meant to be a simplified 

depiction of the Gulf Stream……………………………………………………………...54 
 
Figure 3.3 Weekly temperature signal along the modeled spatial arc (theta, where 90 is the 
northeast end and 180 is the south end) over one year with the preferred temperature, 18°C, 

shown with a dashed line and the preferred temperature range (15°C, 21°C) shown with 
solid lines. The theoretical study space is the one-dimensional angle, theta along an arc on 

a polar coordinate system………………………………………………………………...56 
 
Figure 3.4 US pelagic longline hauls from 2003-2012 assigned to a 5° theta bin ranging 
90 (northeast) -180° (south) and assigned to a quarter of the year depending on the haul 

month; Jan.-Mar.= Quarter 1, Apr.-Jun.=Quarter 2, Jul.-Sept.=Quarter 3, Oct.-
Dec.=Quarter 4. The theoretical study space is the one-dimensional angle, theta along an 
arc on a polar coordinate system. The number of hooks in each bin per quarter is defined 

as the aggregation of all of the hooks set in each bin for each quarter. Bins without an 
assigned number of hooks indicate no data in that location and are subsequently set to zero 

hooks for further modeling……………………………………………………………….57 
 

Figure 3.5 Selectivity at age following a double normal distribution with a mean of 6.96, 
standard deviation of ascending limb of 5.12, and standard deviation of descending limb 

of 4.99 (ICCAT 2017)……………………………………………………………………60 
 



 

 x 

Figure 3.6 Northeast closure scenario with a stationary no take zone that corresponds to 
the statistical reporting region that the US NMFS calls Northeast Distant (Theta <110 

across all quarters of the year). The theoretical study space is the one-dimensional angle, 
theta along an arc on a polar coordinate system…………………………………………..64 

 
Figure 3.7 Seasonal closure scenario with the defined no-take arc locations changing in 

accordance with the preferred 15°-21°C preferred temperature signal within a 5-degree 
theta bin.  The temperature at each location is averaged across 5-degree theta bins quarterly. 

The theoretical study space is the one-dimensional angle, theta along an arc on a polar 
coordinate system………………………………………………………………………...64 

 
Figure 3.8 Moving closure scenario with the defined no-take arc locations changing in 

accordance with the preferred 15°-21°C preferred temperature signal within a 5-degree 
theta bin.  The temperature at each location is averaged across 5-degree theta bins weekly. 

The theoretical study space is the one-dimensional angle, theta along an arc on a polar 
coordinate system………………………………………………………………………...65 

 
Figure 3.9 Distribution of individual shortfin mako sharks in the study space in the second 

and last years of the simulations for each closure scenario with the 18°C preferred 
temperature signal curve. The theoretical study space is the one-dimensional angle, theta 

along an arc on a polar coordinate system. The base case scenario shows the effort 
distribution in number of hooks. For the other three alternative closure scenarios, the effort 

is depicted as the increase in hooks when compared to the base case with locations where 
effort removed depicted with an “X”……………………………………………………..68 

 
Figure 3.10 Mean total population in number of individual sharks for each closure scenario 

plus or minus standard error, across the 5 simulations, at each time step over the 50-year 
simulation time frame…………………………………………………………………….69 

 
Figure 3.11 Mean total population in number of individual sharks for each closure scenario 

relative to the base case plus or minus standard error, across the 5 simulations, scenario, at 
each time step over the 50-year simulation time frame…………………………………...69 

 
Figure 3.12 Mean number of mature individual sharks for each closure scenario plus or 

minus standard error, across the 5 simulations, at each time step over the 50-year simulation 
time frame………………………………………………………………………………..70 

 
Figure 3.13 Mean number of mature individual sharks for each closure scenario relative 

to the base case scenario plus or minus standard error, across the 5 simulations, at each 
time step over the 50-year simulation time frame………………………………………...70 

 
Figure 3.14 Mean number of individual shark pups for each closure scenario plus or minus 

standard error, across the 5 simulations, at each time step over the 50-year simulation time 
frame……………………………………………………………………………………..71 

 



 

 xi 

Figure 3.15 Mean number of individual shark pups for each closure scenario relative to 
the base case scenario plus or minus standard error, across the 5 simulations, at each time 

step over the 50-year simulation time frame……………………………………………...71 
 

Figure 3.16 Mean number of individual sharks caught for each closure scenario plus or 
minus standard error, across the 5 simulations, at each time step over the 50-year simulation 

time frame………………………………………………………………………………..72 
 

Figure 3.17 Mean number of individual sharks caught for each closure scenario relative to 
the base case scenario plus or minus standard error, across the 5 simulations, at each time 

step over the 50-year simulation time frame……………………………………………...73 
 

Figure 3.18 Mean harvest rate for each closure scenario plus or minus standard error, 
across the 5 simulations, at each time step over the 50-year simulation time frame………73 

 
Figure 3.19 Mean harvest rate for each closure scenario relative to the base case scenario 

plus or minus standard error, across the 5 simulations, at each time step over the 50-year 
simulation time frame…………………………………………………………………….74 

 
Figure 4.1 Number of observations in the Gulf of Mexico bottom longline fishery observer 

dataset for each combination of latitude and longitude…………………………………...87 
 

Figure 4.2 Distribution of the number of observations in the Gulf of Mexico bottom 
longline fishery observer dataset for fishing depth in meters……………………………..88 
 
Figure 4.3 Distribution of the number of observations in the Gulf of Mexico bottom 

longline fishery observer dataset for soak time in decimal hours. To display the distribution 
at low counts the left graph displays the soak times with less than 10 observations…….89 
 
Figure 4.4 Distribution of the number of observations in the Gulf of Mexico bottom 

longline fishery observer dataset for number of hooks in a set. To display the distribution 
at low counts the left graph displays the number of hooks with less than 70 

observations……………………………………………………………………………...90 
 

Figure 4.5 The total number of individuals encountered by observers in the Gulf of Mexico 
bottom longline fishery, 2009-2017, by species. Individuals encountered are defined as any 

shark that was hooked regardless of ultimate fate………………………………………...91 
 

Figure 4.6 Year coefficient value plus/minus standard error as determined by the final 
generalized additive model for each corresponding species or species group. The first year 

is the reference value and species with only the reference value have a final model without 
this variable………………………………………………………………………………99 

 



 

 xii 

Figure 4.7 Season coefficient value plus/minus standard error as determined by the final 
generalized additive model for each corresponding species or species group. The first 

season is the reference value and species with only the reference value have a final model 
without this variable…………………………………………………………………….100 
 
Figure 4.8 Hook shape coefficient value plus/minus standard error as determined by the 

final generalized additive model for each corresponding species or species group. Offset 
hook shape is the reference value and species with only the reference value have a final 

model without this variable……………………………………………………………..101 
 

Figure 4.9 Hook size coefficient value plus/minus standard error as determined by the final 
generalized additive model for each corresponding species or species group. Hook size 

<=11 is the reference value and species with only the reference value have a final model 
without this variable…………………………………………………………………….102 
 
Figure 4.10 Smoothing values for the combination of latitude and longitude as determined 

by the corresponding generalized additive models for each species and species group. 
Species with no contours did not select for this variable………………………………...103 

 
Figure 4.11 Depth smoothing values for depth 35m-420m as determined by the final 

generalized additive model for each corresponding species or species group. Species with 
no contours did not select for this variable………………………………………………104 

 
Figure 4.12 Soak time smoothing values for durations 0hrs-20hrs as determined by the 

final generalized additive model for each corresponding species or species group. Species 
with no contours did not select for this variable…………………………………………105 
 
Figure 4.13 Number of hooks smoothing values for sets with 19hooks-2300 hooks as 

determined by the final generalized additive model for each corresponding species or 
species group. Species with no contours did not select for this variable…………………106 

 
Figure 4.14 Boxplot of the mean absolute error (MAE) metric values from performing 10-

fold cross validation on the final model of each species and species group. The graph to 
the left is zoomed in to depict values less than 0.4………………………………………108 

 
Figure 4.15 Boxplot of the root mean square error (RMSE) metric values from performing 

10-fold cross validation on the final model of each species and species group. The graph 
to the left is zoomed in to depict values less than 5……………………………………...109



 

   xiii 

LIST OF TABLES 

Table 2.1 Factor levels used for fishing area, hooks between floats, sea surface 
temperature, sea surface height, and bathymetry predictor variables used in the generalized 

linear model and quantile regression approaches to predict shortfin mako bycatch rates…16 
 

Table 2.2 Tested models with their corresponding outputs and how those outputs are used 
to define hot sets, those that indicate high shortfin mako bycatch………………………...18 

 
Table 2.3 Variables retained under each combination of model type and variable type with 

the corresponding DAIC values within model type. Model types include a generalized linear 
model (GLM) lognormal, GLM binomial, and quantile regression (QR) at the 99th 

quantile. Variable types refer to how the environmental variables are treated: as factors, 
numbers, or as a generalized additive model (GAM) with smoothers…………………….23 

 
Table 2.4 Fraction of deviance explained by each variable separately for the binomial and 

lognormal models……………………………………………………………………...…23 
 

Table 2.5 Coefficient values for each factor value of fishing area, quarter, use of lights, 
and hooks between floats and the mean coefficient values for hot sets and not hot sets…..35 

 
Table 2.6 Conditions that lead to high shortfin mako bycatch. In the application of Strategy 

3 these combinations of conditions would avoid when fishing in the MAB (Mid-Atlantic 
Bight), NEC (Northeast Coastal), and NED (Northeast Distant) fishing areas. Unlisted 

combinations either have shown to have low shortfin mako bycatch or have no recorded 
effort in that area and time. The impact of fishing under those conditions is unknown based 

on the US Longline Observer data………………………………………………………..38 
 

Table 3.1 Definitions, units, and values of model parameters and variables……………..63 
 

Table 3.2 Summary values by scenario where values relative to Year 1 are determined by 
subtracting the initial year value from the terminal year value…………………………....74 

 
Table 4.1 Summary of stock status and ecology group for shark species included in this 

study. Updated September 30, 2020……………………………………………………...82 
 

Table 4.2 Factor levels used for season, hook shape, and hook size predictor variables 
considered in the generalized additive model approaches to predict commonly caught shark 

species’ bycatch per set. *Refers to the reference level for each factor variable………….85 
 

Table 4.3 Retained variables in models with BIC model weights greater than 0.01. Black 
boxes indicate the variable was not selected for while + indicates that the variable was 

selected for. * denotes species included in the combined small coastal sharks group, ** 
denotes species included in the combined large coastal sharks group, *** denotes species 

included in the combined deep-water sharks group, † denotes prohibited species………..97



 

   1 

CHAPTER 1: INTRODUCTION 
 
The Problem of Bycatch 

According to the National Bycatch Report (Karp et al. 2011), bycatch is the discarded catch 

of a living marine resource as a result of direct interaction with fishing gear. Because the 

gear is not selective enough to only catch the targeted species, fishing impacts more than 

just the target species. This becomes an additional source of mortality to these species 

which is of concern to their management, especially for species that may be overfished, 

endangered, or prohibited (Karp et al. 2011, Clarke et al. 2014). In the United States, 

reducing bycatch is one of the National Standards for fishery management under the 

Magnuson-Stevens Fishery Conservation and Management Act, and, for populations 

where bycatch is a substantial source of mortality, estimation of bycatch may be necessary 

to achieve the National Standards of using the best available science and ending overfishing 

(National Marine Fisheries Service 2020b). Recent efforts have used spatial models to 

predict bycatch rates (Cuevas et al. 2018, Stock et al. 2019, Stock et al. 2020). Circle hooks 

are used specifically to reduce the catch and mortality of bycatch species like marine 

mammals and sea turtles (Clarke et al. 2014). Depending on the type, configuration, and 

placement of longline gear, fisheries can have encounters with a variety of unintended 

species including turtles, marine mammals, sharks, and sea birds (Karp et al. 2011, Clarke 

et al. 2014).   

For the purposes of this dissertation, I will define bycatch as any unintended catch 

regardless of retention or discard fate and focus on shark bycatch in longline fisheries. 

Shark species make up a substantial portion of the catch in longline fisheries and require 

an expanded definition because, while they may not be intended catch, some species are 
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commercially valued and are therefore retained (Clarke et al. 2014). Shark life history is 

generally described by K-selection with late maturity, long gestation periods, few 

energetically demanding offspring, and a long lifespan when compared to bony fishes 

(Cortes 1998). This results in a low productivity making them particularly vulnerable to 

overfishing even at low levels of harvesting (Cortes 1998, 2002). The rate of exploitation 

exceeds shark productivity which is further complicated by the fact that mortality occurs 

even when sharks are not being targeted. Incidental shark catch is an important source of 

mortality that must be addressed in order to sustainably manage shark species (Karp et al. 

2011, McCully et al. 2013, Clarke et al. 2014). While descriptive shark bycatch studies on 

longline fisheries in the North Atlantic are plentiful (Molina and Cooke 2012) there is a 

lack of modeling studies, studies exploring time and area closures, and studies that consider 

a large number of species at once (Molina and Cooke 2012).    

Dissertation Approach 

NOAA NMFS observer programs place observers on commercial vessels to monitor and 

record data on activities that affect living marine resources (National Marine Fisheries 

Service 2018). Observers collect information such as species composition of catch, 

individual fish length, weight, and otoliths, as well as data regarding gear used and fishing 

methods for each set (National Marine Fisheries Service 2018). While catch should be 

reported by each vessel in their logbooks, sharks are known to be under-reported (Clarke 

et al. 2014) and fishers not able to collect the same amount of data that an observer is 

capable of recording (Liggins et al. 1997, Suuronen and Gilman 2019). Observer data are 

considered to be the most reliable because observers are autonomous with no personal stake 

in the fishing outcomes and are able to directly view and record bycatch (Karp et al. 2011, 
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National Marine Fisheries Service 2018, Suuronen and Gilman 2019). Observer coverage 

varies from year to year and from fishery to fishery depending on funding, legislation, and 

the number of commercial vessels registered to the fishery (Liggins et al. 1997, FAO 2002, 

Babcock et al. 2003, Bravington et al. 2003, Suuronen and Gilman 2019). 

In this dissertation observer data will be used to predict shark bycatch rates and 

form mitigation strategies from those predictions. This is particularly difficult for sharks 

because preliminary analysis of longline observer datasets (Beerkircher 2016, National 

Marine Fisheries Service 2018) show that catch events are generally rare which leads to a 

lack of information from positive sets in addition to zero-inflation. Furthermore, while 

catch events may be rare in their occurrence, they can consist of substantial and significant 

numbers of sharks removed. The traditional approach to relative abundance estimation is 

to predict mean catch per unit effort (Cortes 2007, 2013, Thorson et al. 2015). The 

existence of rare, very high catch events suggests that fitting to the mean may not be the 

most appropriate method for prediction. If so, is there a viable alternative and does it 

outperform fitting to the mean? 

Quantile regression is a method that allows for the fitting of a model to a desired 

quantile and is appropriate for abundance data with non-linear, non-symmetric, 

heterogenous scatter in response to a gradient (Koenker and Bassett 1978, Cade and Noon 

2003, Anderson 2008, Fukunaga et al. 2016). Sets with low catch per unit effort (CPUE) 

and ultimately the resulting low mean CPUE, have less potential to tell us about the 

conditions that lead to high bycatch events. Chapter 2 of this dissertation will explore the 

predictive ability of quantile regression of the upper extreme to the traditional approach of 

modeling mean bycatch per set. Because high catch events are rare, it is expected that the 
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traditional modelling approach of fitting to mean conditions will perform poorly when 

compared to the quantile regression modeling approach that is applied to the upper 

extreme. Models will be developed using both methods, then bycatch avoidance strategies 

built from those models will be tested for their efficacy. Models based on the first part of 

the time series will be applied to see how well they would have avoided shark bycatch in 

the second part of the time series. This will show which method is a better basis for bycatch 

mitigation and whether regulations based on existing data could be effective in reducing 

bycatch in the future.  It is expected that the traditional modelling approach of fitting to 

mean conditions will perform poorly when compared to a modeling approach that is 

applied to the upper extremes 

Time and area closures are a common approach to minimize bycatch. However, 

several sharks impacted by longline fisheries are highly migratory (Anadon et al. 2011, 

Campana et al. 2011, Jacoby et al. 2012, Carlson et al. 2014) going in and out of closed 

areas as well as in and out of management areas, moving between state managed areas as 

well as in and out of federally managed waters. Stationary time/area closures have been 

shown to have varying success in reducing the fishing mortality of highly migratory species 

(Little et al. 2009, Le Bris et al. 2013, Schofield et al. 2013, Maxwell et al. 2020). It is still 

unclear how to best design time/area closures for highly migratory species. 

The problem of movement is further complicated by variation between species and 

even between individuals within the same species (Jorgensen et al. 2012, Papastamatiou et 

al. 2013, Vandeperre et al. 2014). The degree of variation between individuals requires a 

complex model.  An individual-based population model (IBM) will provide the complexity 

needed to simulate the interaction between individuals and fisheries.  An IBM is a method 
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that uses information about individual “agents” (the lowest level of the system) and 

interactions between agents as the foundation of computer simulations (Grimm et al. 2005). 

Chapter 3 will develop an Individual Based Model (IBM), with individual sharks as the 

smallest unit, that models the seasonal movement of sharks following a preferred 

temperature signal (Humston et al. 2000). Alternative scenarios including stationary and 

moving closures based on the migratory pattern will be tested for their ability to reduce 

shark bycatch. I expect that a moving closure following the preferred temperature signal 

will be the effective closure design reducing incidental catch the most. 

The poor selectivity and variety of gear configurations for longlines leads to 

encounters with several species at once. This creates an issue where we have several shark 

species interacting with a set simultaneously that must be concurrently managed and 

mitigated. Chapter 4 considers 12 commonly caught shark species at once. Statistical 

models are used to determine gear configuration, fisher activities, and environmental 

conditions that contribute to shark bycatch. Each species is modeled individually and all 

combined, as well as grouped by similar ecology. For each species or species group, we 

explore which combination of variables is retained in the best predictive model. We will 

look for patterns across species, across similar species, and across groups of species for 

common conditions that could become the basis of a mitigation strategy for all 12 sharks. 

We expect there to be a difference in variable retention and predictive pattern for species 

with different ecologies.  

Species and Fisheries Studied 

Chapters 2 and 3 will focus on the shortfin mako incidental catch in the U.S. pelagic 

longline fishery. In the Atlantic, shortfin makos are caught as bycatch in commercial 
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longline fisheries targeting tunas and swordfish. They are assessed and monitored by the 

International Commission for the Conservation of Atlantic Tunas (ICCAT) and are one of 

the most commercially valuable sharks assessed (Levesque 2008). The population 

dynamics models used in the most recent stock assessment (Anonymous 2017b) and stock 

assessment update (Anonymous 2019a) found that the North Atlantic stock is overfished 

and experiencing overfishing. The ICCAT shark working group determined that the total 

shortfin mako catch needs to be reduced to less than 500t from the level of 3115 t in 2017 

to end overfishing and eventually rebuild (Anonymous 2019a). These findings contributed 

to the 2019 Convention on International Trade in Endangered Species of Wild Fauna and 

Flora (CITES) listing the shortfin mako under Appendix II (Anonymous 2019b). Shortfin 

mako are used as a case study because their  distribution is shown to have high overlap 

with longline fleets (Queiroz et al. 2016, Queiroz et al. 2019), they are a highly migratory 

species that displays seasonal migrations (Casey and Kohler 1992, Abascal et al. 2011, 

Queiroz et al. 2016), and their population is overfished with an urgent need for rebuilding 

(Anonymous 2017b, 2019a).  

The U.S. Gulf of Mexico (GOM) Reef Fish Bottom Longline fishery is comprised 

of Federally permitted commercial vessels that typically target groupers, Epinephelus spp., 

and snappers, Lutjanus spp. (Karp et al. 2011, Scott-Denton et al. 2011). Since 2006 a 

mandatory observer program jointly implemented by the GOM Fishery Management 

Council (GMFMC) and the National Marine Fisheries Service’s (NMFS) Southeast 

Fisheries Science Center (SEFSC) has monitored the commercial reef fishery in the GOM. 

This fishery catches 27 species of sharks (Scott-Denton et al. 2011) ranging from the 

common and not overfished Atlantic sharpnose (Cortés 2009, National Marine Fisheries 
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Service 2020b) to the depleted (National Marine Fisheries Service 2020b) and CITES listed 

scalloped hammerhead (Rigby et al. 2019). Collectively, sharks make up a significant 

portion of catch and discards indicating a need for a reduction in encounters (Scott-Denton 

et al. 2011).  

Scientific Objectives  

This dissertation aims to explore if and how shark bycatch can be reliably predicted 

and how the predictions can be employed to reduce interactions with longline fisheries. 

This is approached by identifying conditions that describe bycatch interactions, using this 

information to develop several mitigation strategies, and assess the potential of proposed 

strategies. First, we focus on describing U.S. pelagic longline sets and determining what 

combination of conditions lead to particularly high shortfin mako incidental catch. 

Strategies are developed to give fishers a set of rules that will help them reduce interactions 

with shortfin mako by altering their configurations rather than specifying physical 

locations. Then we directly consider the highly migratory nature of some shark species by 

modeling shortfin mako migration patterns and developing strategies utilizing moving and 

stationary no-fish zones designed to eliminate effort in spaces that correspond to where we 

expect high densities of shortfin mako. Lastly, we expand our scope to see if patterns and 

strategies can be used for multiple species at once in the GOM bottom longline fishery. By 

exploring no-fish conditions, no-fish locations, and our ability to mitigate bycatch of 

multiple species at once this dissertation is expected to provide practical solutions and tools 

for management decisions. 
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CHAPTER 2: SHORTFIN MAKO HOT SETS-DEFINING HIGH BYCATCH 
CONDITIONS AS A BASIS FOR BYCATCH MITIGATION 
 

Background 

The shortfin mako, Isurus oxyrinchus, is a pelagic, migratory shark from the family 

Lamnidae. Like other Lamnid sharks, they are fast, active swimmers that can retain 

metabolically created heat (Maia et al. 2007).  These sharks have a broad geographic 

distribution and are found throughout tropical and temperate regions in both hemispheres 

of the Atlantic, Pacific, and Indian Oceans (Casey and Kohler 1992, Abascal et al. 2011).  

They are sexually dimorphic; they have a similar growth rate until about age 11 (207cm 

fork length (FL), 212cm FL for males and females respectively) but females grow to a 

greater size than males (Natanson et al. 2006).   

Shortfin mako sharks are highly migratory, long-lived sharks that are not known to 

aggregate. A conventional tag recapture study on the North Atlantic shortfin mako 

population by Casey and Kohler (1992) showed that shortfin makos make seasonal 

migrations, spending the winter months offshore.  This has been further support by Queiroz 

et al. (2016) satellite tagging study that found shortfin makos moving further east into the 

pelagic habitat in the fall and winter. They have a preference for water temperatures 17-

22°C and appear to move inshore when the continental shelf waters warm, beginning in 

April and May. More satellite tagging studies have revealed that shortfin makos tagged off 

the US are distributed across the continental shelf and pelagic habitats following seasonal 

movements north and south seemingly dictated by seasonal patterns in ocean productivity 

(Queiroz et al. 2016, Vaudo et al. 2017). Satellite tags also showed that individual sharks 

exhibit high variability in their movements with some making long-distance migrations 

south into oligotrophic waters (Vaudo et al. 2017). Shortfin mako sharks’ distribution is 



 

 

9 

shown to have high overlap with longline fleets (Queiroz et al. 2016, Queiroz et al. 2019).  

In the Atlantic, shortfin makos are caught as bycatch in commercial longline 

fisheries targeting tunas and swordfish.  In the U.S. they are fished recreationally in the 

Atlantic and Gulf of Mexico (Babcock 2013). They are assessed and managed by the 

International Commission for the Conservation of Atlantic Tunas (ICCAT) and are one of 

the most commercially valuable sharks (Levesque 2008).  For the purposes of monitoring 

and assessment, the fishing grounds are divided by ICCAT into eleven geographical areas 

and extend from the Grand Banks to 5-10° south (Cortes 2013).  The population dynamics 

models used in the most recent stock assessment (Anonymous 2017b) and stock assessment 

update (Anonymous 2019a) agree that the North Atlantic stock is overfished and 

experiencing overfishing. The ICCAT shark working group determined that the total 

shortfin mako catch needs to be reduced to less than 500t from the current level of 3115 t 

in 2017 to eliminate overfishing (Anonymous 2019a). These findings contributed to the 

2019 Convention on International Trade in Endangered Species of Wild Fauna and Flora 

(CITES) listing the shortfin mako under Appendix II (Anonymous 2019b). CITES aims to 

ensure that international trade does not threaten the survival of vulnerable species. 

Appendix II limits international trade for listed species and will require that fishing nations 

demonstrate that fishing the shortfin mako would not threaten their chances for survival 

(Anonymous 1973). ICCAT recommendations and a listing under CITES acknowledge 

that shortfin mako sharks are not productive enough to rebuild without intervention. 

This work will look specifically at the US portion of the pelagic longline fishery 

where shortfin mako are considered a bycatch species. For the purposes of this study 

shortfin mako will be referred to as bycatch. The US Pelagic Observer Program started in 



 

 

10 

1992 and monitors the US pelagic longline fleet operating from Newfoundland to Brazil 

including the Caribbean and Gulf of Mexico (Beerkircher et al. 2004). The program is 

managed by the Southeast Fisheries Science Center and has covered about 5% (1992-2001) 

to 8% (2002-present) of the vessels operating in this fishery. Observers on selected vessels 

record information about gear configurations and the species, size, sex, dead/alive status, 

and the ultimate fate (kept or discarded) of fish caught (Beerkircher et al. 2004). Shark and 

ray bycatch comprises about 29% of the total longline catch (Beerkircher et al. 2004). 

Catches of shortfin mako sharks recorded by observers in the US pelagic longline fishery 

are typically zero, so the shortfin mako bycatch per set data are zero-inflated. When there 

is a positive shortfin mako bycatch, most of the time only 1 or 2 shortfin makos are caught 

per set. However, there are several events in the shortfin mako bycatch history that have 

caught upwards of 20 shortfin makos in one set. If we can identify the set of conditions that 

lead to sets with unusually high shortfin mako bycatch, hereafter referred to as “hot sets”, 

it may be possible to use this information to avoid high shortfin mako bycatch events and 

ultimately reduce the overall fishing mortality. 

In this study, a generalized linear modeling (GLM) approach was used to predict 

mean shortfin mako bycatch per unit effort (CPUE), similar to the standardization methods 

used to generate abundance indices for past stock assessments (Cortes 2007, 2013, Thorson 

et al. 2015).  Additionally, this study determined conditions favoring particularly high 

CPUE, where much of the fishing mortality occurs. Quantile regression was used to focus 

on the upper tail of the CPUE distribution, rather than the mean, to reveal what conditions 

predict higher CPUE.  Quantile regression is a method appropriate for abundance data with 

non-linear, non-symmetric, heterogenous scatter in response to a gradient (Koenker and 
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Bassett 1978, Cade and Noon 2003, Anderson 2008, Fukunaga et al. 2016). It addresses 

the scatter by allowing the coefficients to differ for the different parts of the abundance 

distribution (Koenker and Bassett 1978). It has been used in ecology particularly to test 

whether environmental predictor variables predict areas of high or low abundance (Cade 

and Noon 2003, Anderson 2008, Fornaroli et al. 2016, Fukunaga et al. 2016). Application 

of quantile regression to the upper extreme allows the independent environmental variables 

to be viewed more easily as boundaries to suitable habitat (Fornaroli et al. 2015). 

Development of both model types involved a model selection process that included trying 

categorical and numerical methods as well generalized additive models (GAMs) with 

smoothers on the environmental variables in an attempt to improve model fit and 

performance. 

The traditional delta-lognormal approach (predicted probability of positive shortfin 

mako bycatch multiplied by the predicted mean of the positive shortfin mako bycatch to 

get the overall predicted mean CPUE) is hypothesized to perform poorly compared to the 

quantile regression fit to the upper extreme when trying to predict hot sets. Quantile 

regression eliminates the need for a delta-lognormal approach and the difficulties in using 

zero-inflated data because the higher quantiles do not include zeros. For the purposes of 

determining conditions that favor a hot set, as opposed to standardized shortfin mako 

bycatch rates over time, quantile regression may be a better method.  Sets with low CPUE 

(which are the overwhelming majority in this dataset) and ultimately the mean CPUE, have 

less potential to tell us about the combination of conditions that lead to high shortfin mako 

bycatch. There is also more flexibility in model fit because there is no assumption of a 

normal distribution and the error distribution does not need to be specified. This method 
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may provide the tools necessary to best identify potential hot sets and design a bycatch 

mitigation strategy. 

This paper will present several ways to identify environmental conditions, regions 

and fishing methods that favor shortfin mako bycatch based on the outputs of the delta-

lognormal model and quantile regression of the upper quantiles. The analysis will then 

determine which definition of a hot set and model could be used as a dynamic “no fish” 

algorithm to avoid shortfin mako bycatch and lower fishing mortality. The ultimate 

objective is to determine whether identifying conditions that favor high shortfin mako 

bycatch has the potential to decrease shortfin mako fishing mortality substantially while 

maintaining catches of target species.  

Methods 

Data Preparation 

Sea surface temperature (SST), sea surface height (SSH), and bathymetry (BATHY) were 

considered as environmental variables. Catch and effort data were obtained from the US 

pelagic longline observer program (1992-2016) (Beerkircher 2016), while weekly sea 

surface temperature composites (2003-2016) and daily sea surface height (1992-2012) 

(Ducet et al 2000) were downloaded from the NOAA CoastWatch satellite database and 

bathymetry was downloaded from the Scripps Institute of Oceanography Geodesy satellite 

database (Smith and Sandwell 1997, Tozer et al., 2016). The shortfin mako bycatch dataset 

was reduced to those events in time for which environmental variables were available so 

there would be no null values. Environmental variable values were considered a match if 

the location was within 5 degrees in space and 15 days in time with the closest value in 

time and space ultimately being used. This resulted in a dataset spanning 2003 to 2012. All 
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of the following analyses were conducted in R version 3.1.2 (R Development Core Team 

2017) using the mgcv (Wood 2012), quantreg (Koenker and Hallock 2001), and qgam 

(Fasiolo et al. 2017) libraries. 

Environmental conditions were considered within the delta-lognormal and quantile 

regression as explanatory variables along with gear variables including the number of 

hooks between floats, the use of light sticks, and fishing areas. All independent variables 

were considered as fixed factors. The fishing areas are based on those used by ICCAT 

(Cortes 2013). Some areas had too few observations and were combined (Table 2.1). 

Model Goodness of Fit and Predictive Ability 

To define preferred environmental conditions, presence/absence of shortfin mako shark 

was modeled as a function of the environmental and gear variables using a fixed effect 

GLM or a GAM (Manel et al. 2001, Boyce et al. 2002, Guisan et al. 2002, Elith et al. 2006, 

Palialexis et al. 2011). GLMs are extensions of linear models that allow for non-linearity 

and variability in variance through the use of link functions and a specified error 

distribution (Guisan et al. 2002) and GAMs work similarly but also allow a smoothing 

function to be used to model the relationship between the environmental variable and the 

response variable. In the delta-lognormal approach the proportion of positive shortfin mako 

bycatch assumes a binomial error distribution with a logit link, while the mean shortfin 

mako bycatch rate for positive observations assumes a lognormal error distribution 

(Maunder and Punt 2004, Ortiz and Arocha 2004).  The predicted mean CPUE is then 

calculated as the probability of presence from the binomial model multiplied by the mean 

CPUE of positive catch from the lognormal model. Standard errors are calculated following 

the method of Lo et al. (1992). The variables year, fishing area, quarter, hooks between 
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floats, and the use of lights were considered in all models. Gear variables (hooks between 

floats, lights) were included to account for variation due to changes in catchability. The 

exact methods of inclusion are discussed further in the coming text. 

The quantile regression method analyzes patterns in the user-specified quantile 

rather than the mean and can be applied to the same kinds of explanatory variables as GLM 

and GAM including smoothed terms (Koenker and Bassett 1978). The quantreg R library 

fits to the specified quantile by minimizing the sum of the residuals distribution giving 

positive values a weight equal to the specified quantile and negative residuals a weight 

equal to 1 minus the quantile (Koenker and Bassett 1978, Cade and Noon 2003). The qgam 

library works to select the loss smoothness that minimizes the asymptotic mean square 

error of the estimated coefficient of the smoothed variable (Fasiolo et al. 2017). For this 

analysis, the interest was focused on particularly high values of CPUE; the 99th percentile 

was analyzed for the Akaike information criterion (AIC) best model by looking at different 

combinations of the environmental variables as numerical variables, including the 

interactions between all possible pairs in addition to quadratic terms for each variable, with 

the response variable being (log (CPUE + 1)). The gear variables, use of light sticks and 

hooks between floats, were also considered as gear differences that could influence shortfin 

mako bycatch rates even at the higher tails of the distribution (Table 2.1).  

For both methods, the models were run with the variables as factors (factor levels 

provided in Table 2.1), continuous, and as a generalized additive model (GAM) (Guisan et 

al. 2002, Drexler and Ainsworth 2013, Gruss et al. 2014, Grüss et al. 2016) with smoothers 

on the environmental variables. GAMS are “semi-parametric” expansions of GLMs that 

are based on additive smoothing functions (Guisan et al. 2002). GAMs are data-driven and 
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therefore require more data; however, they are better able to estimate spatial distribution 

over a broad area, potentially including areas that have not been sampled (Guisan et al. 

2002, Gruss et al. 2014). The stepAIC() function was used to consider all variable 

combinations and select the best model for each method (i.e. presence/absence binomial, 

lognormal positive shortfin mako bycatch, quantile 99) based on the AIC. Variable 

coefficients for those expressed as factors are all presented as difference to the reference 

level except for fishing area, for which the intercept is suppressed by subtracting 1 in the 

equation which gives each area its own value. The same variables chosen in the quantile 

99 regression were used when quantile regression was used for other quantiles.  

Predictive ability was tested by training each AIC best model with the data from 

the first half of the time series (2003-2008) to see if shortfin mako bycatch could be 

predicted in the second half of the time series (2009-2012). GLM/GAM results were 

assessed using the root mean square error (RMSE), mean absolute error (MAE), r2, and 

coverage estimates (Stow et al. 2009, Gruss et al. 2019). The coverage was determined by 

simulating CPUE values for 10000 random draws using the coefficients and their 

covariance matrix from the binomial and lognormal models fit to the training dataset. The 

simulated data was used to calculate a prediction interval with the upper and lower bounds 

representing the 2.5% and 97.5% quantiles of the simulated values for a 95% prediction 

interval. The coverage was estimated as the fraction of the real CPUEs calculated using the 

test data that were within the prediction interval (Gruss et al. 2019). A “perfect” model 

would have an RMSE and MAE equal to zero, an R2 equal to 1, and coverage equal to the 

specified coverage of the prediction interval (e.g.  0.95 for a 95% interval).  
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Table 2.1 Factor levels used for fishing area, hooks between floats, sea surface 
temperature, sea surface height, and bathymetry predictor variables used in the generalized 

linear model and quantile regression approaches to predict shortfin mako bycatch rates. 
Variable (n=7609) Number of Levels Levels 
Fishing Area 

GOM: 4565 

NED: 315 

NEC: 525 

MAB: 1062 

SAB: 309 

CARFEC: 435 

TUNNCASAR: 398 

7 GOM (Gulf of Mexico) 

NED (Northeast Distant) 

NEC (Northeast Coastal) 

MAB (Mid-Atlantic Bight) 

SAB (South Atlantic Bight) 

CARFEC (Caribbean and 

Florida East Coast) 

TUNNCASAR (Tuna North, 

North Central Atlantic, and 

Sargasso 

Quarter 

One: 1353 

Two: 3214 

Three: 1703 

Four: 1339 

4 1: January, February, March 

2: April, May, June 

3: July, August, September 

4: October, November, 

December 

Hooks Between Floats 

!"# = 2.0 

(̅ = 4.4 ± 0.80  

!-. = 4.0 

!/( = 9.0 

5 <3 

4 

5 

6 

>7 

Sea Surface Temperature 

(°C) 

!"# = 8.085 

(̅ = 24.403 ± 3.654 

!-. = 24.865 

!/( = 32.695 

5 <15° 

15°-<20° 

20°-<25° 

25°-<30° 

30°-<35° 

Sea Surface Height (m) 

!"# = −0.3189 

(̅ = 0.2308 ± 0.227  

!-. = 0.2183 

!/( = 1.1137 

4 <0m 

0m-<0.3m 

0.3m-0.6m 

>0.6m 

Bathymetry (m) 

!"# = −8400 

(̅ = −1993 ± 1282.3  

!-. = −1767 

!/( = −41 

7 0m-<800m 

800m-<1600m 

1600m-<2400m 

2400m-<3200m 

3200m-<4000m 

4000m-4800m 

>4800m 

 

For the quantile regression method, the distribution of CPUE at the 0.95, 0.96, 0.97, 

0.98, and 0.99 quantiles was estimated for the training and test data. Better specified 
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models predicted quantiles close to those calculated empirically from the test data. They 

were also assessed using a pseudo-R2 described by Koenker and Machado (1999). Pseudo-

R2 is similar to R2 in that it is between 0 and 1 and is interpreted the same way as a measure 

of goodness of fit but it measures the local fit to the given quantile rather than the global 

fit. It does so using the weighted sum of the absolute residuals at the specified quantile 

(Koenker and Machado 1999). R2 and pseudo-R2 cannot be directly compared to each 

other. The pseudo-R2 is a measure of the local goodness of fit dictated by the defined 

quantile while R2 measures across the entire distribution (Koenker and Machado 1999) 

therefore, the pseudo-R2 is used here only to compare across quantiles.  

Models were evaluated for their potential as tools for developing bycatch mitigation 

strategies. To identify which model output was the most effective for identifying conditions 

where high shortfin mako bycatch occurs, each of the following definitions was considered 

as a cutoff in model predictions: the 95th-99th quantile of predicted CPUE is greater than 

some x value (quantile regression output), greater than y probability of presence (binomial 

output), and more than z predicted mean CPUE if present (lognormal output) where 

multiple values of x, y, and z were tried to find an optimal value (Table 2.2). The 

distribution of the fitted values for each model type fit to the entire original dataset were 

used as the foundation for cutoff values. Percentiles 95th-99th were calculated for the fitted 

values of each model type and treated as potential hot set cutoff values. As the quantile 

increases the cutoff value to be considered a hot set increases and less of the fishery would 

be closed if the hot set definition was used to avoid potential shark sets. Then each model 

was fit to the early half of the data (2003-2008; n=3985 sets). The sets with predicted catch 

higher than that of the specified quantile (x), high predicted probability of presence (y), or 
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high predicted log positive shortfin mako bycatch (z), were classified as hot sets (Table 

2.2). The total actual number of sharks caught in a hot set was calculated, as a measure of 

how many sharks could have been avoided if this hot set definition was used to avoid sets. 

Finally, since any bycatch avoidance strategy is designed based on past data and applied to 

future sets, the model is fit to the early data to predict the later data (2009-2012; n= 3624 

sets) to identify hot sets in the same way and calculate how many sharks would be avoided 

if the hot sets were avoided. 

Table 2.2 Tested models with their corresponding outputs and how those outputs are used 
to define hot sets, those that indicate high shortfin mako bycatch. 

Model Output Definition of Hot Set 
Quantile 

Regression 

x= catch values that align with the 95
th

-99
th

 

percentiles 

Predicted catch quantile > x 

Binomial y= probability of shortfin mako presence Predicted probability of presence > y 

Lognormal z= catch if present Predicted catch if present > z 

 

Correlations between target species’ catch rates and shortfin mako bycatch rates are 

very low, with a range of -0.021 to 0.124 for whole logbook and observer datasets and -

0.002 to 0.145 for positive shortfin mako sets (Enric Cortes, SEFSC, Personal 

Communication) indicating that any reduction in fishing effort aimed at mitigating mako 

bycatch is an appropriate proxy for the reduction in target catch. The best model is 

considered to be the model that prevents the most shortfin mako shark bycatch for a 20% 

reduction in the number of longline sets. The choice of 20% is arbitrary, however, it was 

set to acknowledge that any reduction of fishing effort greater than 20% would lead to 

unacceptable levels of reduction in the target catch.  

Development of an operational algorithm for avoiding bycatch 

The best model was selected and subjected to further analysis to determine which 

variable(s) contributed most to determining hot sets vs not hot sets. The 20% closure cut 

off value corresponding to the best model trained by the early dataset was used to identify 
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hot sets in the full dataset. This analysis was intended to make the algorithm operational 

by identifying combinations of gear and environmental variables that are associated with 

hot sets and so could be avoided in a potential bycatch mitigation strategy. First the later 

dataset was predicted using the predict.gam() function with the corresponding distribution 

and with type=”terms” to get the contribution of each variable to the final value for each 

set.  The positive coefficients for each factor option of each categorical variable contribute 

to high probability of positive shortfin mako bycatch. Those variables imply conditions 

that favor shortfin mako bycatch. All variable contributions for hot and not hot sets were 

compared to narrow down the features that could be used to produce an operational 

algorithm that aims to maximize the identification of hot sets. To get further information 

the early dataset was put into a summary table showing the total number of hot sets and not 

hot sets fall under each combination of area, quarter, HBF (hooks between floats), and 

environmental variables using the ranges described in Table 2.1. Conditions that contained 

high proportions of hot sets were identified and combined with the information from the 

variable coefficient terms to develop potential mitigation strategies. 

To determine the potential effectiveness of each proposed strategy, the strategy 

algorithms were each applied to the late data set. Individual sets that met those defined by 

the different algorithms were considered “no fish” sets that would have been avoided under 

that particular rule. The known shortfin mako bycatch values were then used to determine 

how many sharks would be avoided, how much of the fishery would be closed, how many 

hot sets are encompassed by the algorithm, and how many not hot sets are impacted by the 

rule(s). The best strategy is considered to be the one that encompasses the most hot sets 



 

 

20 

and the least not hot sets impacted by the rule(s); i.e. maximizes the reduction in mako 

bycatch while minimizing the effort reduced impacted.  

The estimates of the effects of the strategies on total mako shark bycatch assume 

the effort affected by the strategy is reduced to zero. In reality, it is more likely that the 

effort will be redistributed to areas/conditions that are not impacted by the closure or 

restriction. While developing a model of where fishing effort would be reallocated based 

on fisher economic decisions was beyond the scope of this study, some alternative 

estimates were made to approximate the range of possible effects of effort reallocation. 

This analysis assumes that a fisher can go to any open area and that they will redistribute 

effort proportionally with the existing distribution. The relocated sets were multiplied by 

the mean catch in that area and time in the late dataset to estimate the catch of relocated 

fishers. Total catch under the combined strategy and effort reallocation was then compared 

to the total catch of the late dataset if there were no mitigation strategy. 

Results 

In the US pelagic longline observer data, shortfin mako bycatch per set is generally low 

with a median of 0.0 and a mean of 0.67 ± 2.17 shortfin mako sharks. Most sets catch no 

shortfin mako sharks, or at most one or two (Figure 2.1). However, sets that catch one 

shortfin mako shark account for less than 18% of the total shortfin mako bycatch and sets 

that catch two or fewer shortfin mako account for less than 35% of the total shortfin mako 

bycatch (Figure 2.2). Sets with shortfin mako bycatches greater than four shortfin mako 

cumulatively account for over half of the total shortfin mako bycatch (Figure 2.2). This 

indicates that while high shortfin mako bycatch sets are rare, the number of shortfin mako 
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caught during these uncommon events is a significant portion of the total shortfin mako 

bycatch.  

 
Figure 2.1 The fraction of all sets plotted against the number of shortfin mako sharks 
caught per set in the United States Pelagic Longline Observer Program (2003-2012). 

 

  

Figure 2.2 The fraction of the total shortfin mako bycatch against the number of sharks 

caught per set in the United States Pelagic Longline Oberserver Program (2003-2012). 
 

Model Selection and Comparison of Environmental Variables 

For the models fit to the complete dataset from 2003 to 2012, in all cases (lognormal GLM, 

binomial GLM, QR 99th percentile) the GAM with smoothers on the environmental 
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variables had the lowest AIC value (Table 2.3) compared to models where the 

environmental variables were factors or numbers; GAM models were therefore used in all 

subsequent analyses. In addition, all environmental explanatory variables were found to be 

statistically significant (p < 0.05) and were retained. All environmental variables appear to 

be important regardless of which part of the distribution is assessed. The following final 

models were used: 

Quantile Regression: 

log(*+,$ + 1)~(;<=> + ?@Aℎ@0C	1><= + DE=>F<> + ,A<	GH	I@CℎFA
+ JGGKA	L<FM<<0	?NG=FA + A(##O) + A(##J) + A(L1OJ;) − 1) 

 

GLM: 

+><P@QF<P	"<=0	*+,$
= (+>GR=R@N@FS	GH	+GA@F@T<	*=FQℎ) 	× ("<=0	*=FQℎ	@H	+><A<0F) 

 

where  

+>GR=R@N@FS	GH	+GA@F@T<	*=FQℎ: +><A<0Q<	~;<=> + ?@Aℎ@0C	1><= + DE=>F<>
+ ,A<	GH	I@CℎFA + JGGKA	L<FM<<0	?NG=FA + A(##O) + A(##J)
+ A(L1OJ;) − 1	) 

 

"<=0	*=FQℎ	@H	+><A<0F:	 log(*+,$ + 1)~(;<=> + ?@Aℎ@0C	1><= + DE=>F<>
+ ,A<	GH	I@CℎFA + JGGKA	L<FM<<0	?NG=FA + A(##O) + A(##J)
+ A(L1OJ;) − 1) 

 

The fishing area variable explains most of the variance in the probability of presence and 

the estimated CPUE if present (Table 2.4). Of the environmental variables, BATHY 

explains the most variance in the probability of presence (~2.3%) and the estimated CPUE 

if present (~7.1%) (Table 2.4). For the following results, we also ran QR models at the 95, 

96, 97 and 98th percentiles as well as at 99th, using the same variables that were chosen by 

the AIC for the 99th percentile. 
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Table 2.3 Variables retained under each combination of model type and variable type with 

the corresponding DAIC values within model type. Model types include a generalized linear 

model (GLM) lognormal, GLM binomial, and quantile regression (QR) at the 99th 
quantile. Variable types refer to how the environmental variables are treated: as factors, 

numbers, or as a generalized additive model (GAM) with smoothers. 
Model 
Type GLM lognormal GLM binomial QR 99th Quantile 
Variable 

Type Factors Numbers GAM Factors Numbers GAM Factors Numbers GAM 

DAIC 55 39 0 49 84 0 12511 12850 0 

Year X X X X X X X X X 

Area X X X X X X X X X 

Quarter X X X X X X X X X 

Light 

sticks    X X X X X X 

HBF X X X    X X X 

SST X X X X X X X X X 

SSH X X X X  X X X X 

BATHY X X X X X X X X X 

SST
2
 NA  NA NA  NA NA X NA 

SSH
2
 NA X NA NA X NA NA X NA 

BATHY
2
 NA X NA NA X NA NA X NA 

 

Table 2.4 Fraction of deviance explained by each variable separately for the binomial and 
lognormal models. 

Variable Binomial Lognormal 
Year 0.008689 0.026056 

Fishing Area 0.122025 0.088129 

Quarter 0.004748 0.047321 

Use of Light 0.012607 0.000777 

HBF 0.001275 0.027355 

SST 0.010889 0.014805 

SSH 0.012525 0.022749 

BATHY 0.022681 0.071169 

 
Delta Lognormal 

The RMSE and MAE values for the full delta-lognormal model are 2.87 and 1.01 

respectively. Both measures are in units of difference and a perfect performance would 

have a value of zero, indicating that values further from zero have poor model adequacy. 

In addition, the model does not explain much of the variation in the data with an R2 value 
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of 0.17. However, this does not necessarily mean the model is poorly specified. While the 

coverage at 0.98 is not equal to the expected 0.95, it does not deviate far and is higher than 

expected indicating that the confidence intervals are slightly too wide but reasonable. The 

model appears to be appropriately specified but the gear and environmental variables used 

are lacking in their predictive ability. 

Quantile Regression 

The quantile regression models overall have good predictive ability for the upper extremes. 

All of the predicted upper quantiles consistently under-estimate the observed upper 

quantile indicating a potential bias but consistent and smooth estimators (Figure 2.3). The 

pseudo-R2 values for the extreme quantiles are between 0.31 and 0.34 indicating similar 

variance explained with the value increasing with increasing quantile. Quantile regression 

of the upper quantiles appears to be appropriate for predictive purposes.  

 

Figure 2.3 The estimated 95th-99th quantiles of the early 2003-2013 shortfin mako 
bycatches for models fit to the observer longline catch dataset plotted with the 1:1 line. 
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SST Across Models 

The SST term appears to have a significant p-value for all models except at the 99th quantile 

(Tables A1-A7). All models perform poorly at extreme temperatures (SST < 10°C and SST 

> 32°C) and provide unreliable predictions due to insufficient data at these temperatures. 

Only predictions for SST between 10° and 32° C are considered. The shapes of the 

smoothing relationships are similar across models. They all have a general “U” shape 

(Figure 2.4) with the binomial model showing the most variation in the relationship 

between probability of positive shortfin mako bycatch and SST (Figure 2.4a). All models 

have the same minimum around 25-28°C and a local maximum at 15-20°C (Figure 2.3) 

The 95th-97th quantiles closely resemble the shape of the binomial model while the highest 

extremes are shaped more like the lognormal model (Figures 2.4b, 2.4c), which may be 

related to the fact that the mean shortfin mako bycatch when positive is influenced by very 

high shortfin mako bycatches. This indicates that there is a higher probability of positive 

shortfin mako bycatch and a higher predicted shortfin mako bycatch in 15-20°C colder 

waters.  

SSH Across Models 

The SSH term appears to be significant for all models except at the 98th and 99th quantiles 

(Tables A1-A7). All models perform poorly at the higher extreme of SSH (SSH > 0.9) and 

provide unreliable predictions due to insufficient data at these temperatures. Only 

predictions at SSH less than 0.9 and greater than -0.3 are considered. The 95th-97th quantiles 

(Figure 2.5c) have a bell shape similar to the lognormal model (Figure 2.5b) while the 98th 

and 99th quantiles more closely resemble a linear relationship with the estimated shortfin 

mako bycatch decreasing as SSH increases. The binomial model has the least variation 
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with a fairly equal probability of positive shortfin mako bycatch across the sampled range 

of SSH (Figure 2.5a). All plots except the 98th and 99th quantiles show a global maximum 

around 0.1 with the binomial model suggesting a slightly lower global maximum at 0.0. 

This indicates that SSH has little influence on the probability of presence but there is a high 

estimated shortfin mako bycatch around an SSH of 0.0 across the distribution until the 98th 

quantile. At the highest extremes, the highest estimated shortfin mako bycatch is at the 

lowest SSH values. 

BATHY Across Models 

The BATHY term appears to be significant for all models (Tables A1-A7). All models 

perform poorly at very deep waters (BATHY < -6000m) and provide unreliable predictions 

due to insufficient data at these depths. Only predictions in waters shallower than 6000m 

are considered. All models show a similar pattern being fairly flat across depth with a sharp 

peak in shallower waters (<1000m). The most variation occurs in the binomial model 

(Figure 2.6a) with a small increase in the probability of presence below 3000m that does 

not appear in the quantiles and lognormal models (Figures 2.6b, 2.6c). Shortfin mako are 

a pelagic species so predicting a high probability of presence in deeper waters is expected. 

The high probabilities across models in the shallower waters is more unexpected as they 

are not known to be a coastal species. 
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Figure 2.4 Smoothing curves for the sea surface temperature (SST) in degrees Celsius 
explanatory variable resulting from fitting the (a) binomial, (b) lognormal, and (c) quantile 

regression models to the 2003-2012 United States pelagic longline observer program. 
Density of data used to inform the model are displayed as a rug plot along the SST axis. 

All models perform poorly at extreme temperatures (SST < 10°C and SST > 32°C) and 
provide unreliable predictions due to insufficient data at these temperatures. Only 

predictions for SST between 10° and 32°C are considered.  

 

(a) (b) 

(c) 
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Figure 2.5 Smoothing curves for the sea surface height (SSH) explanatory variable 
resulting from fitting the (a) binomial, (b) lognormal, and (c) quantile regression models to 

the 2003-2012 United States pelagic longline observer program. Density of data used to 
inform the model are displayed as a rug plot along the SSH axis. All models perform poorly 

at the higher extreme of SSH (SSH > 0.8) and provide unreliable predictions due to 
insufficient data at these temperatures. Only predictions at SSH less than 0.8 are 

considered. 

(a) (b) 

(c) 
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Figure 2.6 Smoothing curves for the bathymetry (BATHY) in meters explanatory variable 
resulting from fitting the (a) binomial, (b) lognormal, and (c) quantile regression models to 

the 2003-2012 United States pelagic longline observer program. All models perform poorly 
at very deep waters (BATHY < -6000m) and provide unreliable predictions due to 

insufficient data at these depths. Only predictions in waters shallower than 6000m are 
considered. 

 

 

(a) (b) 

(c) 
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Model Comparison for Predicting Future Hot Spots 

The delta-lognormal model fit to the early dataset has an RMSE equal to 3.32 and an MAE 

equal to 1.12, both slightly higher than the corresponding values from fitting to the entire 

dataset (RMSE=2.87, MAE=1.01). Furthermore, only about 11% of the variance is 

explained in this model. However, the model has a coverage of about 0.96, not far from the 

expected 0.95. The model appears to be appropriately specified but the gear and 

environmental variables used are lacking in predictive ability. 

Quantile regression models overall have good predictive ability for the upper 

extremes. For all models the early data was predicted more accurately than the late data set 

as expected for a comparison between in-sample and out-of-sample prediction. Like the 

model fit to the entire dataset, this analysis consistently under-estimated the quantile 

(Figure 2.7). The estimation of the upper extremes explains increasingly more variance 

with the pseudo-R2 of the 0.95 quantile about 0.32 up to the 0.99 quantile of about 0.35.  

 
Figure 2.7 The estimated 95th-99th quantiles of the early (2003-2008) and late (2009-2012) 
shortfin mako bycatches for models fit to the early half (2003-2008) of the observer 

longline catch dataset. 



 

 

31 

For all models a higher cutoff corresponds to excluding fewer sets and therefore 

excluding a smaller percentage of the fishing effort. Potential cutoff values for the binomial 

model range from 0.14 to 0.95 predicted probability of a positive shortfin mako bycatch 

(Figure 2.8a). The following cutoff values, in number of sharks per set, represent closing 

50% decreasing to 1% of the fishery for the lognormal and 95-99 quantile regression 

models respectively: 2.85-7.31, 2.90-24.4, 3.12-28.3, 3.42-33.9, 3.89-42.1, 5.06-57.5 

(Figure 2.8b).  

 

Figure 2.8 The hot set minimum cut off value for each model prediction used to determine 
sets that should not be fished at each percent of the fishery closed from 0% to 50% closure 

(a) binomial model probability of positive catch and (b)lognormal and 95-99 quantile catch 
per unit effort.  

 
Management strategies are developed based on data from the past, and it is 

necessary to predict how much accuracy is lost when using that information to predict the 

performance of a bycatch reduction strategy into the future. To estimate the uncertainty 

involved in designing a bycatch avoidance strategy based on past data, fitted results for the 

“early” dataset are shown (Figures 2.9a, 2.10a). The “early” results show our performance 

with the best available knowledge while the “late” results show the effectiveness of the 

strategy applied into the future. Comparing the early and late results shows the degradation 

(a) (b) 
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of accuracy when attempting to avoid future shortfin mako bycatches. Performance is 

measured as the number of shortfin mako sharks avoided per set and as the fraction of the 

total shortfin mako bycatch avoided in the given time period (Figures 2.9, 2.10). 

When we closed more than 20% of the fishing effort (Figures 2.9, 2.10), all the 

models followed similar trends for both performance metrics. In the early scenario, when 

more than 20% of the fishery was closed, the quantile regression and binormal models 

generally agreed and performed equally well under both metrics (Figures 2.9a, 2.10a), 

while the lognormal model avoided fewer sharks per set (Figure 2.9a) and a smaller fraction 

of the total (Figure 2.10a). When we used the models to avoid future shortfin mako 

bycatches, while following a similar trend, there were large differences between the 

models’ performance (Figures 2.9b, 2.10b). The binomial model performed the best and 

the 99th quantile regression model performing the worst overall (Figures 2.9b, 2.10b).  

Ideally, we would want to close as few sets as possible to avoid foregoing catch of 

target species. The rate of increase in the fraction of the total shortfin mako shark bycatch 

avoided per percent fishery closed is highest between closing 1% and 20% of the fishery 

(Figure 2.10). When closing less than 20% of the fishery there also appear to be more 

differences in the number of sharks avoided per set between the models (Figure 2.9). For 

the early dataset, the lognormal and quantile regression models all have a similar avoidance 

rate with the binomial model performing poorly only at very small closures in comparison 

to the lognormal (Figure 2.9a). However, from a 5%-20% closure the binomial model 

performs the best for both performance metrics. Predicting into the future (the late data), 

the quantile regression models perform very poorly with small closures. The binomial 

model has the highest shark avoidance rate (Figure 2.9b) and avoids the highest fraction of 
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the total shortfin mako bycatch (Figure 2.10b) except at very low closure (<5%) where the 

lognormal model performs best. Overall, cut off values that correspond to closing about 

20% of the fishery appears to best balance model performance and keeping as much of the 

fishery open as possible. The binomial model appears to best manage minimizing bycatch 

and impact on target catches. For example, in the late dataset 2644 shortfin makos were 

caught from 2009-2012. Using a mitigation strategy that avoids 20% of the sets, a strategy 

based on the binomial model results in avoiding 1638 sharks, about a 62% reduction in 

shortfin mako bycatch, while the lognormal model results in avoiding 1387 sharks, about 

a 52% reduction with the quantile regression models falling in between (Figure 2.9b). 

While these are both substantial reductions in bycatch, the binomial model is better at 

identifying high bycatch sets using past data. 

 
Figure 2.9 The average number of sharks avoided per set as a function of the percent of 

the fishery closed to fishing as determined by a binomial presence/absence GAM, a 
lognormal estimation of the mean shortfin mako bycatch if present, and quantile regression 

of the 95th to 99th quantiles for the early half (2003-2008) and the late half (2009-2012) of 
the dataset. All models were fit to the early half of the dataset. 
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Figure 2.10 The fraction of shortfin mako sharks avoided out of the total shortfin mako 

bycatch in the time period as a function of the percent of the fishery closed to fishing as 
determined by a binomial presence/absence GAM, a lognormal estimation of the mean 

shortfin mako bycatch if present, and quantile regression of the 95th to 99th quantiles for 
the early half (2003-2008) and the late half (2009-2012) of the dataset. All models were fit 

to the early half of the dataset. 
 

Using the binomial model to design a bycatch avoidance algorithm 

Because the binomial model performed best at predicting hot sets, it was the only model 

considered for designing bycatch mitigation strategies. At a 20% closure binomial model 

identifies 725 of the 3624 sets in the time period as hot and avoids 1585 shortfin mako of 

the 2644 sharks caught 2009-2012 (about a 60% avoidance). Fishing area appears to be 

one of the strongest contributors, with many not-hot sets having a very strong negative area 

coefficient indicating that shortfin mako sharks are unlikely in those areas and hot sets 

having an area coefficient around zero. Yearly quarters one and two have very small 

positive coefficients close to zero indicating high probability of shortfin mako bycatch in 

that half of the year (Table 2.5). The use of lights favors a higher probability of positive 

shortfin mako bycatch (Table 2.5). The environmental variables vary more with positive 
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and negative coefficients (Figure 2.11); however, all three variables have quite different 

distributions of coefficient values between hot and not hot sets (Figure 2.11). Because 

fishing area appears to be the strongest contributor, we focused on this variable.  

Table 2.5 Coefficient values for each factor value of fishing area, quarter, use of lights, 
and hooks between floats and the mean coefficient values for hot sets and not hot sets.  

N=3624 Coefficient Value 
Hot Mean Coefficient Value 

(n = 725) 
Not Hot Mean Coefficient Value 

(n = 2899) 
Fishing 

Area 

CARFEC: -0.970 

GOM: -2.00 

MAB: -0.345 

NEC: 0.337 

NED: -0.564 

SAB: -1.62714 

TUNNCASAR: -1.08 

(̅ = −0.183 

!-."/# = −0.345 

 

(̅ = −1.67 

!-."/# = −2.00 

Quarter Jan-Mar: 0.00 

Apr-Jun: 0.00713 

July-Sept: -0.525 

Oct-Dec: -0.649 

(̅ = −0.424 

!-."/# = −0.523 

(̅ = −0.161 

!-."/# = 0.00713 

Use of 

Lights 

No: 0.00 

Yes: 0.582 

(̅ = 0.491 

!-."/# = 0.582 

(̅ = 0.390 

!-."/# = 0.582 

Hooks 

Between 

Floats 

<3: 0.00 

4: -0.294 

5: -0.336 

6: -0.645 

>7: -1.56 

(̅ = −0.339 

!-."/# = −0.337 

(̅ = −0.347 

!-."/# = −0.294 

 

 
Figure 2.11 Coefficient values by environmental variable for prediction of the late dataset 

(2009-2012) using the binomial model fit to the early dataset (2003-2008). 
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Hot sets appear to occur mainly in the NEC (Northeast Coast) and MAB (Mid-

Atlantic Bight) fishing areas together making up about 81% of the hot sets (about two thirds 

MAB and one third NEC) (Figure 2.12). While the next largest contributor, NED 

(Northeast Distant), only consists of about 12% of the hot sets (Figure 2.12), about 47% of 

the sets in NED are identified as hot (Figure 2.12). All of the sets in the GOM (Gulf of 

Mexico) are not hot, indicating that the GOM is not an area of concern when it comes to 

shortfin mako bycatch. Sets in the GOM represent 80% of all not hot sets. Like the GOM, 

the sets in the remaining areas are predominantly not hot with the CARFEC (Caribbean 

and Florida east coast), SAB (South Atlantic Bight), and TUNNCASAR (Tuna North, 

North Central Atlantic, and Sargasso) areas comprising of about 95%, 95%, and 81% not 

hot sets for each area, respectively (Figure 2.12).  

 
Figure 2.12 Mosaic plot showing the proportion of US Pelagic Longline Observer Program 

sets in the early dataset (2003-2008) that are categorized as hot or not hot by fishing area. 
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More in-depth analysis of the binomial model showed that hot sets are largely 

defined by fishing area and tend to occur in management areas NEC, MAB, and NED. 

These three areas make up about 25% of all the US observer longline sets from 2003 to 

2012. Furthermore, hot sets in these areas have positive contributions from the 

environmental variable coefficients. To make this algorithm operational we could start by 

only applying options to these areas.  

The most extreme mitigation strategy (Strategy 1) is to avoid all pelagic longline 

fishing in these three areas resulting in closing about 26% of the fished sets to avoid about 

70% of the shortfin mako shark bycatch. When applied to the late dataset, this would close 

off 92% of all hot sets while placing restrictions on about 9% of the not hot sets in the 

entire US fishing grounds. A pattern in the early sets indicates that the use of lights had a 

very strong impact on whether a set was hot or not in these areas, particularly in MAB and 

NEC. For example, in MAB, NEC, and NED areas during the early data set, 91%, 98%, 

and 51% of the hot sets in each respective area used light sticks. A mitigation strategy 

(Strategy 2) would be to not allow the use of light sticks in these areas. When applied to 

the late dataset, this would close off 17% of all the fished sets to avoid 55% of the shortfin 

mako bycatch. Furthermore, this would close off 76% of all hot sets while placing 

restrictions on 2% of all not hot sets. The most complicated approach (Strategy 3) would 

be a strategy targeting hot sets specifically as much as possible. Based on the model fit to 

the early dataset, hot sets can be described by the following 19 combinations of conditions 

in the MAB, NEC, and NED fishing areas shown in Table 2.6. These conditions can be 

used operationally as a mitigation strategy. Fishers in any of the MAB, NEC, and MED 

fishing areas would not set in spots that meet any of the combinations of conditions that 



 

 

38 

define hot sets. When all of the combinations are applied to the late dataset as a mitigation 

strategy, the entire set of rules closes about 17% of the fished sets and avoids about 47% 

of the total shortfin mako bycatch. This set of rules correctly restricts fishing on 79% of 

the hot sets in the combined MAB, NEC, and NED areas in addition to 73% of all hot sets 

over the entire US fishing grounds. Furthermore, the algorithm impacts 33% of the not hot 

sets in the combined MAB, NEC, NED areas and 3% of the total not hot sets. The 

individual results of each rule can be found in Table A8.  

Table 2.6 Conditions that lead to high shortfin mako bycatch. In the application of Strategy 
3 these combinations of conditions would avoid when fishing in the MAB (Mid-Atlantic 

Bight), NEC (Northeast Coastal), and NED (Northeast Distant) fishing areas. Unlisted 
combinations either have shown to have low shortfin mako bycatch or have no recorded 

effort in that area and time. The impact of fishing under those conditions is unknown based 
on the US Longline Observer data.  

Area Quarter Lights 

Hooks 
Between 
Floats 

Sea Surface 
Height 

Bathymetry 
(m) 

Sea Surface 
Temperature 

(°C) 
MAB 1 1 All All All All 

2 0 5 [0.0-0.3] <1600 [15-20] 

1 All All All All 

3 0 4-6 £0.0 <800 [20-25] 

5 £0.0 <800 [25-30] 

1 All All All All 

4 0 4-5 £0.0 <1600 [20-25] 

1 All All All All 

NEC 2 1 All All All All 

3 0 4 £0.0 <2400 [20-25] 

5 £0.0 (3200-4000) [25-30] 

1 All All All All 

4 1 All All All All 

NED 3 0 4 £0.3 All [20-25] 

1 4 £0.0 <800 £15 

£0.3 All [15-20] 

5 £0.0 All [15-20] 

4 1 4 <0.3 All [15-20] 

5 <0.0 3200-4000 [15-20] 



 

 

39 

Estimated effect of best strategy 

Strategy 2 appears to best balance the need to maximize the number of hot sets avoided 

and minimize the impact on fishers. Reallocation of effort in response to this strategy is 

assumed to either be a change in gear (switch to not using light sticks) or a spatial change 

to an area with no gear restrictions. If impacted fishers switched to not using light sticks in 

their current areas, they are estimated to avoid catching about 615 sharks based on the 

average catch for not using light sticks in each area (MAB, NEC, and NED) in the 

corresponding quarters, avoiding about a 23% of the total shortfin mako bycatch that would 

have been caught with no management strategy. If the fishers that would have used light 

sticks reallocated themselves spatially to the unimpacted areas, CARFEC, GOM, SAB, or 

TUNNCASAR, it is estimated that fishers would avoid catching about 1127 sharks based 

on the average catch in these areas in each quarter. Redistribution is space avoids 45% of 

the shortfin mako bycatch. 

Discussion 

In this paper we presented several ways to identify environmental conditions, regions and 

fishing methods that favor high shortfin mako bycatch based on the outputs of the delta-

lognormal model and quantile regression of the upper quantiles. We found that using the 

binomial portion of the delta-lognormal model, the probability of positive catch was the 

best way to define a hot set basis for a “no fish” algorithm. Three potential mitigation 

strategies were designed based on the identification of hot sets in the early half of the 

dataset (1. minimal targeting: MAB, NEC, and NED completely closed to longline fishing, 

2. intermediate targeting: no use of light sticks in MAB, NEC, and NED, 3. extreme 

targeting: rules for each combination of explanatory variables) and tested by applying them 



 

 

40 

to the later half of the dataset. The results suggest that an intermediate strategy best 

balanced the need for flexibility over time, maximizing the number of hot sets avoided, 

and minimizing the impact on the target fishery. 

The retention of all environmental variables in the lognormal, binomial, and 

quantile regression models contradicts our hypothesis that different parts of the distribution 

will be influenced by different environmental variables at least for the three variables 

considered. SST results are consistent with findings of shortfin mako tagging studies 

(Casey and Kohler 1992, Loefer et al. 2005, Abascal et al. 2011, Vaudo et al. 2017). 

However, for all models, the most important environmental variable is BATHY. Many 

catch events are located at or near the shelf edge in depths around 1500m or less which 

could account for a model predicting high shortfin mako bycatch in shallower waters in 

general. Also, this could be a result of catchability rather than abundance. Regardless of 

bottom depth, shortfin mako (Vaudo et al. 2016), usually stay above the thermocline 

(Anonymous 2019a) so that in shallower waters habitat compression might make them 

easier to catch. None of the gear or environmental variables explain much of the variation 

in CPUE regardless of the model. 

When exploring the use of the different models to estimate the effect of not fishing 

under those conditions, all the models have the potential to reduce the total shortfin mako 

bycatch significantly with relatively small reductions in effort. The binomial model 

performed the best giving the highest avoidance rate per set and total number of sharks 

avoided at a given closure percentage. We hypothesized that quantile regression models 

would be more effective at identifying hot sets, but their performance overall is not as good 

as that of the binomial model. The quantile regressions had the lowest average number of 
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sharks avoided per set and fell between the binomial and lognormal models in the fraction 

of total shortfin mako bycatch avoided.  

In all cases the estimated number of sharks avoided for all approaches is expected 

to be an overestimate. All method results assume that the effort is completely removed. 

However, in reality, no set conditions would be replaced with sets in other locations that 

do not fall under the no set conditions that should have a lower probability of positive 

shortfin mako bycatch and therefore catch fewer shortfin makos. It is important to 

remember that avoiding a hot set does not bring the potential shortfin mako bycatch to zero, 

it reduces it based on the new conditions the fisher sets in. Following any of the methods 

will displace the bycatch from areas where the catch would be high to locations where the 

catch should be lower.  A switch in gear was estimated to reduce catch by about 23% and 

a switch in spatial distribution was estimated to reduce catch by about 45%. These are 

promising numbers, but they are based on the proportional distribution of other fishers at 

the time and the corresponding mean catch. This gives us a rough idea of the performance 

under effort displacement. 

While the performance of the binomial model may be surprising, as it is the simplest 

model tested, requiring and providing the least information, the successful use of 

presence/absence models in hot set analysis has been shown before (Phillips and Dudik 

2008, Phillips and Elith 2010, McDonald et al. 2013, Stolar and Nielsen 2015). The 

binomial model has the potential to perform under limited data conditions, is less prone to 

bias caused by catchability, and can be more easily combined with multiple data sources 

(Gruss et al. 2014). Under the proposed bycatch mitigation strategies presented here, it is 

not necessary to accurately predict the shortfin mako bycatch but rather to accurately 
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predict if the probability of shortfin mako bycatch of a particular set will be above the 

defined hot set threshold. This is similar to work done in Cuevas et al. (2018) where 

scientists used a scale of zero to one to describe the potential interaction between fishing 

effort and sea turtles. Areas with higher values indicated a higher potential for sea turtle 

bycatch. Again, it was not necessary to predict the sea turtle bycatch to mitigate interactions 

between sea turtles and the fishery. 

Hot sets are found mostly in the MAB, NEC, and NED management areas, which 

allowed us to focus hot set criteria to a smaller area of the entire US fishing grounds. As 

expected, avoiding all longline fishing sets in these three areas avoids the most sharks 

(70%) and encompasses the most hot sets (92%) but has the greatest impact on not hot sets 

(9%). While this does support the idea of an area-based gear restriction, the amount of not 

hot sets impacted can be improved. We tried restricting the use of lights in the areas in 

addition to a very targeted approach requiring fishers to follow very specific rules with the 

idea that we could optimize the number of sharks avoided, hot sets avoided, and not hot 

sets impacted. It was surprising that Strategy 3, the most targeted towards avoiding hot 

sets, performed worse than just restricting lights. While both approaches close off about 

17% of all fished sets, the targeted approach only encompasses 73% of all hot sets and 

avoids 46% of the shortfin mako bycatch compared to the 76% of all hot sets encompassed 

and 55% of the shortfin mako bycatch avoided by the restriction of using lights. Creating 

a targeted operational mitigation strategy from past data appears to be too specific to hold 

true when applied to the future.  

Strategy 2 of closing the three areas to pelagic longline fishing entirely closes off 

too many opportunities for fishers to catch their intended target. Strategy 3 is so specific 
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that it cannot hold up to uncertainty and changes over time. Strategy 2 is an intermediate 

approach that best balances the need for flexibility while substantially reducing the shortfin 

mako bycatch. Furthermore, this strategy would be much easier for fishers to follow as it 

is simple and straightforward. In addition, when the effort was reallocated, instead of 

assumed to be zero, the strategy still performed well, potentially avoiding up to 46% of the 

bycatch. Strategy 3 aims to target the hot sets and is very complicated with no benefit to 

the added complexity. From this analysis, Strategy 2, avoiding sets that use light sticks, 

could be the basis of an effective bycatch mitigation strategy. Sets that use light sticks are 

typically targeting swordfish (Clarke et al. 2014) but there have not been studies looking 

at the interaction between shark species and the use of light sticks on tuna longlines (Clarke 

et al. 2014). 

This modeling exercise has shown that instances of high shortfin mako bycatch are 

important, impactful events that should be considered when assessing and managing the 

shortfin mako population. It is expected that avoiding these high shortfin mako bycatch 

sets would reduce the total mortality therefore complying with ICCAT recommendations 

(Anonymous 2017b, 2019a). The fishery data available to us combined with environmental 

data can be used to design effective shortfin mako bycatch mitigation strategies. 

Surprisingly, the binomial probability of positive shortfin mako bycatch model was the 

most effective in our tests and has allowed us to narrow down hot set areas and create 

several mitigation strategies. The full model allowed us to identify the combinations of 

gear and environmental variable values that have a high probability of positive shortfin 

mako bycatch and should therefore be avoided. This translated into an operational “no fish” 
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mitigation strategy that is simple, straightforward, and easily understood and implemented 

by all stakeholders. 

Closures based on conditions that favor high probability of shortfin mako bycatch 

rather than locations or seasons allow for management to adapt and follow variability in 

time as fisheries shift and change and as the effects of climate change take hold (Hazen et 

al. 2018). Even on smaller time scales, dynamic closures allow for management to respond 

to eddy and front formation and movement that is known to attract shark species (Block et 

al. 2002, Block et al. 2011, Rogers et al. 2015, Queiroz et al. 2016, Queiroz et al. 2019). 

These findings support that it is possible to have highly specific, dynamic, targeted 

management that hinders the longline fishery as little as possible if we can accurately 

identify conditions that favor shortfin mako presence and bycatch. The EcoCast models 

described by Hazen et al. (2018) showed that a dynamic closure required half the area to 

prevent bycatch numbers similar to a known seasonal closure thus achieving the same 

bycatch reduction with less reduction in fishing opportunity. The EcoCast models (Hazen 

et al. 2018) suggest closures by following suitable bycatch habitat and resulted in higher 

bycatch reduction rates at lower impediment to the fishery. Since correlations between 

target species’ catch and shortfin mako bycatch rates are very low, the proposed algorithm 

for avoiding shortfin mako bycatch should operate similarly to the EcoCast models. The 

algorithm follows conditions that favor high shortfin mako bycatch, which are also areas 

with low target catch suggesting this algorithm could minimally reduce fishing opportunity 

similarly to the EcoCast models.  

This study is limited by the data used. The US longline dataset is restricted to the 

western sub-population of the North Atlantic shortfin mako stock and should not be 
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extrapolated to the entirety of the North Atlantic stock nor the South Atlantic stock. The 

range of the shortfin mako population extends beyond the US Exclusive Economic Zone 

and other countries’ longline fleets operate and catch shortfin mako throughout their range. 

These have not been accounted for in this study. Inclusion of additional fleets and fishing 

operational variable could highlight additional shortfin mako bycatch hot sets or alter the 

distribution of shortfin mako bycatch hot sets across the whole north Atlantic fishery. In 

addition, this study did not include any fishery independent data, which could further 

inform the model on conditions that favor high numbers of shortfin mako which could 

translate to high CPUE. Despite the lack of variance explained by the gear and 

environmental variables, the models perform well enough at identifying hot sets to avoid 

half the shortfin mako bycatch with only a 20% reduction in effort and only a 17% 

reduction when converted to the recommended operational rule.  

Future studies should explore the interaction between the use of light sticks and 

shortfin mako shark bycatch rates. Specifically, to better target high catch sets scientists 

should analyze what about the use of light sticks attracts the shortfin makos and leads to 

hot sets. Are there specific gear configurations, along with the use of lights, that increase 

the catchability of shortfin makos in the North Atlantic? As the correlation between 

swordfish catch and shortfin mako catch is low but the use of lights indicates the targeting 

of swordfish, what makes the difference between a high shortfin mako bycatch set and a 

high swordfish catch set? The results suggest that light sticks increase the catchability of 

shortfin mako in addition to the targeted swordfish. Spatial and temporal relative densities 

of swordfish and mako should be compared to determine when and where swordfish 

densities are high while mako densities are low to allow for the use of light sticks 
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simultaneously decreasing shortfin mako bycatch and increasing swordfish catch. A more 

specific analysis of how the effort would be displaced, based on swordfish targeting and 

economics, should be explored to get a more detailed and accurate estimation of the true 

impact of the mitigation strategies (van Putten et al. 2012).  

The binomial model presented here can be re-run as new information arises and 

provide managers with an updated operational set of conditions that should be avoided. 

New conditions can be tested in this same framework to evaluate tradeoffs and find optimal 

foundations for bycatch mitigation strategies. In its current form, this could be provided to 

managers for immediate consideration in potential policy. All information required for the 

fishers to follow any of the proposed strategies can be obtained from knowledge of their 

own gear and from the instruments they already use to locate suitable set sites.  

The current stock will continue to decline until 2035 even under a zero TAC 

scenario according to the latest stock assessment conducted by ICCAT. This cannot be 

avoided, but if we can quickly start implementing effective measures to decrease shortfin 

mako bycatch we can help the population rebuild as quickly as possible and prevent further 

decline beyond 2035.  
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CHAPTER 3: POTENTIAL OF CLOSURE DESIGNS TO REDUCE SHORTFIN 
MAKO, ISURUS OXYRINCHUS, INCIDENTAL CATCH IN THE UNITED 
STATES PELAGIC LONGLINE FISHERY 
 
Background 

The shortfin mako, Isurus oxyrinchus, is a pelagic, migratory shark from the family 

Lamnidae. They are found throughout tropical and temperate regions in both hemispheres 

of the Atlantic, Pacific, and Indian Oceans (Casey and Kohler 1992, Abascal et al. 2011). 

Conventional and electronic tagging studies in the North Atlantic Ocean have shown that 

shortfin makos prefer water temperatures 15-22°C and follow seasonal migrations, 

spending fall and winters offshore in the pelagic habitat and the warmer months inshore 

over the continental shelf (Casey and Kohler 1992, Queiroz et al. 2016, Vaudo et al. 2017).  

Commercial longline fishing gear consists of a long mainline with floats evenly 

spaced along the length. Between floats, gangions attach baited circle hooks to the 

mainline. The depth, soak time, and hook depth vary depending on the target species 

(Beerkircher et al. 2002, Clarke et al. 2014). Circle hooks are used specifically to reduce 

the catch and mortality of bycatch species like marine mammals and sea turtles(Clarke et 

al. 2014). Mako sharks’ distribution is shown to have high overlap with longline fleets 

(Queiroz et al. 2016, Queiroz et al. 2019). In the Atlantic, shortfin makos are caught as 

incidental catch in commercial longline fisheries targeting tunas and swordfish. Shortfin 

mako are particularly unproductive while being highly susceptible to the fishery and 

experience high post capture mortality resulting in a large discrepancy between 

productivity and susceptibility to the fishery (Cortes et al. 2010). While they are not 

targeted, shortfin mako are considered to be one of the most important pelagic shark species 

affected by Atlantic Ocean pelagic longlines because they are listed as endangered on the 
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IUCN Red List (Rigby et al. 2019) and under Appendix II of Cites (Anonymous 1973) 

while being commercially valuable resulting in incidental catch being retained as well as 

discarded depending on regulations. The commercial value and conservation status of 

shortfin mako requires extra examination when considering management strategies. 

Shortfin makos are assessed and managed by the International Commission for the 

Conservation of Atlantic Tunas (ICCAT) (Levesque 2008).  The population dynamics 

models used in the most recent stock assessment (Anonymous 2017b) and stock assessment 

update (Anonymous 2019a) agree that the North Atlantic stock is overfished and 

experiencing overfishing. These findings contributed to the 2019 Convention on 

International Trade in Endangered Species of Wild Fauna and Flora (CITES) listing the 

shortfin mako under Appendix II (Anonymous 2019b). CITES aims to ensure that 

international trade does not threaten the survival of vulnerable species. Appendix II limits 

international trade for listed species and requires that fishing nations demonstrate that 

fishing the shortfin mako would not threaten their chances for survival if they want to allow 

trade (Anonymous 1973). ICCAT recommendations and a listing under CITES 

acknowledge that mako sharks are not productive enough to rebuild without intervention. 

Shortfin mako have a particularly low productivity, 0.31-0.60 per year (Cortés 

2017), and a long generation time of 25-26 years (Cortés 2017).  Harvest of such a slow 

growing, long lived species is likely to be unsustainable as the species may not be capable 

of compensating for the removal (Cortes 2002). ICCAT Recommendation 17-08 

(Anonymous 2017a) instructs all parties to require vessels to cause the least amount of 

harm when releasing live shortfin mako. Furthermore, large vessels must release all 

shortfin makos regardless of whether the individual is alive or dead when brought to the 
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boat. Smaller vessels may retain live shortfin makos provided they meet minimum size 

restrictions (Anonymous 2017a). Some shortfin makos are still retained by some fishers 

and this recommendation does not necessarily reduce shortfin mako interaction with 

fishing gear; those released alive are still subject to post-release mortality (Anonymous 

2017b, 2019a). The current non-retention policy does not adequately mitigate these 

remaining sources of mortality enough to allow the population to recover. Projections 

performed during the 2017 and 2019 ICCAT stock assessments (Anonymous 2017b, 

2019a) indicate that the population will continue to decline even under a complete non-

retention policy (Courtney et al. 2017, Vaughan et al. 2019, Courtney and Rice 2020). A 

substantial reduction in total mortality is essential for population recovery to the point that 

it is not overfished nor experiencing overfishing (Anonymous 2019a). Chapter 2 of this 

dissertation found that a combination of area closures and gear restrictions have the 

potential to reduce incidental catch substantially by targeting management to maximize 

avoiding incidental catch hotspots. ICCAT projections and the results of Chapter 2 indicate 

that population recovery depends on shortfin makos having reduced interactions with 

fishing gear in the first place. 

Here we explore a fishery closure as a potential strategy for incidental catch 

mitigation by way of reducing the interaction of shortfin makos with fishing gear. The 

previous dissertation chapter results suggest that high incidental catch events often happen 

in waters 15-20º and off the coast of north eastern North America (Chapter 2). Closures 

are implemented as defined areas in time and space where the species of interest cannot be 

fished with the idea that this will give the species a habitat free of fishing mortality allowing 

the population numbers to grow, functioning similarly to a marine protected area (MPA). 
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This study aims to determine if the implementation of a targeted longline closure can 

reduce shortfin mako incidental catch rates. Closures can be seasonal or all year as well as 

stationary or moving. A closure in the waters off the coast of north eastern North America 

would be stationary while a closure following the temperature would move with direct 

consideration of seasonal migration. Stationary MPAs have been shown to have varying 

success with reducing the fishing mortality of highly migratory species (Little et al. 2009, 

Le Bris et al. 2013, Schofield et al. 2013, Maxwell et al. 2020). This, combined with 

tagging study conclusions that shortfin makos migrate seasonally (Casey and Kohler 1992, 

Queiroz et al. 2016, Vaudo et al. 2017), suggests that mako movement could potentially 

follow a seasonal temperature signal. For these reasons, we hypothesize that a moving 

closure following the preferred temperature signal will be an effective closure design 

reducing incidental catch the most, allowing the population to rebuild while impacting the 

fishery the least. 

This study aims to explore the potential of several closure simulation scenarios to 

reduce shortfin mako incidental catch in a fishery loosely resembling the U.S. pelagic 

longline fleet targeting tuna and swordfish. We will present several closure designs, 

stationary and moving, designed relative to this theoretical fishery and test which (if any) 

can best target high incidental catch events and reduce incidental catch rates the most when 

compared to the status quo of no closure. All scenarios are simulated and assessed for their 

ability to reduce shortfin mako incidental catch while minimizing the impact on a 

theoretical fishery.  
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Methods 

An Individual Based Model (IBM), with individual sharks as the smallest unit, modeled 

the seasonal movement of sharks following a preferred temperature signal, aging, 

reproduction, and natural mortality, and fishing mortality. Fishing effort was distributed 

throughout the study space proportionally to the effort distribution of the US longline fleet. 

Individual fisher behavior is assumed to follow the distribution of the target species. For 

simplicity, fishing vessels were not modeled individually with an IBM but distributed in 

time and space consistent with the existing US pelagic longline fishery with modifications 

in accordance with the proposed closure scenarios, capturing the dynamics of the fishers’ 

seasonal fleet movements. The base case scenario used this spatial distribution while the 

alternative scenarios reduced the effort in a closed area and re-distributed it proportionately 

to the remaining open areas while keeping the total effort constant. Alternative scenarios 

included changing the effort to 0 in the area corresponding to waters off of the north east 

coast of North America, making the effort=0 in preferred temperature areas seasonally, and 

making the effort=0 in preferred temperature areas weekly. The presentation of the 

methods of this study follows the ODD protocol published by Grimm et al. (2006) in which 

I will present an overview of the IBM, then the design concepts, and finish with model 

details. 

Purpose 

The purpose of this model is to use simulations to evaluate the potential of a stationary 

closure, based on incidental catch hotspots, and moving closure scenarios, based on 

following shortfin mako seasonal movements to increase the shortfin mako population to 

the point that rebuilding and recovery is possible under constant total fishing effort. 



 

 

52 

State Variables and Scales 

The IBM has three hierarchical levels: individual, population, and environment. 

Individuals are all female and are described by state variables: shark number, age, 

reproductive ability, and location. The population consists of all of the living individuals 

grouped by age. The abiotic environment is characterized by its temperature as determined 

by the week number and location. The fishery is characterized by a distribution of fishing 

effort determined by week number and location. 

Process Overview and Scheduling 

This model has a weekly time step. Each week every surviving individual is allowed to age 

by one week and is then subjected to the rules governing natural mortality, movement, 

fishing mortality and reproduction, in that order (Figure 1). 

 
Figure 3.1 Flow chart of individual based model scheduling at each weekly time step. 
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Design Concepts 

All modeling was performed using R (R Core Team 2019) and is an adaptation of the 

individual-based kinesis model described by Humston et al. (2000). The Humston et al. 

(2000) two dimensional model depicts movement of bluefin tuna following a temperature 

orthokinesis, with random speed change in response to temperature stimulus. Each 

individual can detect its current temperature and respond but cannot detect the surrounding 

temperature gradient and therefore knows only that it is in an unfavorable habitat, not 

knowing the location of more preferable temperature.  The movement of an individual at 

any given time depends on the surrounding temperature and its location in the previous 

time step.  

This study simplifies their model to one dimension where individuals can move 

around an arc (Figure 3.2) and the seasonal temperature signal (Figure 3.3) moves along 

the arc with time. This study follows an initial population of 1000 female individuals over 

50 years. The temperature signal is mapped so that it corresponds to the waters off the east 

coast of the U.S. and is intended to resemble the Gulf Stream with theta=90° corresponding 

to the location 43.5336 latitude and -53.3961 longitude and theta=180°corresponding to 

24.0849 latitude and -76.0994 longitude (Figure 3.2). Because the seasonal trends in this 

region follow a strong latitude and inshore/offshore gradient, this arc is able to capture the 

seasonal temperature trends in time and space with sufficient resolution. When exploring 

the potential of moving closures based on temperature, only one dimension is needed. 

Added spatial complexity would introduce additional assumptions and uncertainty 

unnecessarily in the context of the goals of this study. Individual sharks are completely 

independent and do not have any interaction. Multiple individuals can occupy the same 
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theta location at any given time. The population is considered to be all living individuals 

at the end of that time step. All life history parameters are generally based on the statistical 

catch at age model from the 2017 ICCAT stock assessment (Anonymous 2017b). The 

fishery is based on the US pelagic longline fishery with total catch (retained, released alive, 

released dead, lost at surface, finned, and unknown) and effort data obtained from the US 

pelagic longline observer program (2003-2012) (Beerkircher 2016). During this period, 

there was no retention ban. As a result, when compared to current conditions, incidental 

catch during that time could have been either higher or about the same but with a higher 

retention. Projections performed in the 2019 stock assessment (Anonymous 2019a) showed 

that if catch remains similar, reducing retention does not decrease discard mortality enough 

to allow the population to rebuild. To focus on the potential effect of the proposed closures, 

this model does not include live releases and discard mortality and therefore depicts the 

worst-case scenario that every shark that encounters fishing gear dies. 

 

Figure 3.2 Mapping of the theoretical study space in real space. The theoretical study space 

is the one-dimensional angle along the depicted arc. This arc is meant to be a simplified 
depiction of the Gulf Stream. 

90° 

180° 
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Initialization 

The initial population of 1000 individuals all have the same arbitrary starting velocity, 1 

angular degree per day. The age for each individual is randomly assigned based on the 

proportion of the female population at age for year 2015, the terminal year in the stock 

synthesis 3 (SS3) run of the 2017 stock assessment (Anonymous 2017b, Courtney et al. 

2017). The starting location is randomly drawn from a preliminary run of the base case 

scenario for 10 years. Each scenario is run 5 times with different starting locations and ages 

with the starting populations the same across scenarios. 

Input 

The temperature signal is centered on the preferred temperature, Tm, and shifts seasonally 

following a simple wave equation that mimics the sea surface temperature values of the 

Gulf Stream in the study area. The period of the cycle is one year (52 weeks) with Week 1 

representative of the week of January 1 and Week 52 representative of the week of 

December 31 of an average year. The change in temperature with latitude and the change 

in temperature with time, Ts and Ta respectively, were determined through trial-and-error 

plotting of the equation so that in winter months the preferred temperature signal moves 

south and during summer months the signal moves further north mimicking the temporal 

temperature patterns of the Gulf Stream. Spatially, at any given time, the temperature 

increases as from north to south. The seasonal temperature signal on a weekly time step is 

described by the Equation 1 (Figure 3.3): 

O'(& = O) +	O* × sin
2[(\'(& − 135)

180 + O+ × sin
2[\'(&
180 × cos

2[F
52 																					(1) 
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Figure 3.3 Weekly temperature signal along the modeled spatial arc (theta, where 90 is the 

northeast end and 180 is the south end) over one year with the preferred temperature, 18°C, 
shown with a dashed line and the preferred temperature range (15°C, 21°C) shown with 

solid lines. The theoretical study space is the one-dimensional angle, theta along an arc on a polar coordinate system. 

 

Natural mortality M is constant, 0.08, while F varies in time and space following 

US pelagic longline effort and includes age dependent selectivity. The mean total F over 

the last 5 years of the SS3 simulations is 0.216 (Courtney et al. 2017). The spatial 

distribution of F was the same in all times steps and was based on a composite of US 

longline data from 2003-2012 to represent a typical recent year for this fleet. To distribute 

F spatially, catch and effort data were obtained from the US pelagic longline observer 

program (2003-2012) (Beerkircher 2016). Each haul was plotted with the arc and assigned 

to a 5° theta bin ranging 90-180°depending on where it fell along the arc (Figure 3.2) and 

assigned to a quarter of the year depending on the haul month; Jan.-Mar.= Quarter 1, Apr.-

Jun.=Quarter 2, Jul.-Sept.=Quarter 3, Oct.-Dec.=Quarter 4. The number of hooks in each 
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bin per quarter is defined as the aggregation of all of the hooks set in each bin for each 

quarter (Figure 3.4).  Movement of sharks is restricted to only the study area so the effort 

outside of the study area is not considered. Total F is assumed to be proportional to total 

effort. The number of hooks for each theta bin in each quarter was divided by the highest 

number of hooks to determine relative effort. F for each area and time are proportional to 

the relative effort at that area and time.  

 
Figure 3.4 US pelagic longline hauls from 2003-2012 assigned to a 5° theta bin ranging 

90 (northeast) -180° (south) and assigned to a quarter of the year depending on the haul 
month; Jan.-Mar.= Quarter 1, Apr.-Jun.=Quarter 2, Jul.-Sept.=Quarter 3, Oct.-

Dec.=Quarter 4. The theoretical study space is the one-dimensional angle, theta along an 
arc on a polar coordinate system. The number of hooks in each bin per quarter is defined 

as the aggregation of all of the hooks set in each bin for each quarter. Bins without an 
assigned number of hooks indicate no data in that location and are subsequently set to zero 

hooks for further modeling.  
 

All parameters regarding age structure, the instantaneous natural mortality rate (M), 

instantaneous fishing mortality rate (F), and reproduction (Table 3.1) are based on the stock 

synthesis (SS3) model performed during the 2017 ICCAT Shortfin Mako stock assessment 

(Anonymous 2017b, Courtney et al. 2017). However, the IBM is different in that it only 



 

 

58 

includes the US fleet in the Northwest Atlantic while the SS3 model applies to the entire 

North Atlantic for multiple fleets. This study assumes that the F imposed by the US fleet 

in the Northwest Atlantic portion of the stock is comparable to that imposed by all fleets 

on the entire stock. The model focuses on only the NW Atlantic region to evaluate how 

much a single fleet could reduce its impact on mako sharks. In practice, rebuilding mako 

sharks would require that mortality be reduced throughout the North Atlantic by all the 

fleets that catch makos.  

Simulation Scenarios 

Simulation scenarios are designed to determine the best way to remove fishing mortality 

and allow the shortfin mako population to rebuild. Each scenario starts with the same 

population but is governed by different fishing mortality scenarios. The baseline scenario 

mimics the current fishing effort distribution and an absence of no-take zones. Fishing 

mortality is proportional to the spatial distribution of the sharks and the US longline fleet, 

as described above. Alternative scenarios aim to determine if a moving closure has more 

potential than a traditional stationary closure by testing three different options with varying 

degrees of movement in time and space. The stationary closure is based on incidental catch 

hotspots and moving closure scenarios are based on following shortfin mako seasonal 

movements. Treatment scenarios include 1) NE: a stationary no take zone that corresponds 

to the statistical reporting region that the US NMFS calls Northeast Distant (Cortes 2013), 

2) Seasonal: no take zone that follows the preferred temperature signal quarterly and 3) 

Moving: no take zone that follows the weekly preferred temperature signal. The NE 

stationary closure follows the findings of Chapter 2 that concluded the NE region has a 

particularly high predicted probability of catching at least one mako and gear restrictions 
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in this particular area of the fishery could significantly reduce shortfin mako incidental 

catch. The seasonal and moving scenarios both assume that shortfin mako migrations are 

based on temperature and use different time scales to capture the uncertainty in how this 

assumption can be applied temporally.  

Submodels 

Mortality 

The natural survival of an individual shark is a Bernoulli random draw with the weekly 

probability of surviving natural mortality equal to Sm (Equation 2, Table 3.1). 

 

#) = <,(
.
/#)																																																																		(2) 

 

where M is taken from SS3. SS3 uses data from all fleets throughout the North Atlantic 

and does not take space into account. The weekly probability of surviving fishing is a 

function of relative effort ($1') in a given theta bin and week and selectivity at age (Sa). As 

a result, to determine Sf (Equation 3), the E must be multiplied by a constant, f. This 

constant, f=13, was determined by trial and error to result in a total annual harvest rate 

across all ages comparable to the assessment results (harvest rate = 0.061) (Anonymous 

2017b, Courtney et al. 2017).  
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Individuals are subjected to fishing mortality depending on their theta, time of the year, 

and age-based selectivity (Figure 3.5). The fishing survival of an individual shark is a 
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Bernoulli random draw with the probability Sf. The age-based selectivity curve (Sa) is the 

double normal distribution used in the SS3 model runs for the US fleet (Anonymous 

2017b). 

 

Figure 3.5 Selectivity at age following a double normal distribution with a mean of 6.96, 
standard deviation of ascending limb of 5.12, and standard deviation of descending limb 

of 4.99 (ICCAT 2017). 
 

Reproduction 

All sharks in the model are capable of reproducing regardless of age but the number of 

pups is determined by the fecundity curve resulting in immature sharks producing 0 pups 

while older mature sharks can produce several pups. This process results in an average of 

about 4 female pups per mature shark per year which is consistent with what we know of 

the biology (Mollet et al. 2000, Anonymous 2017b, Courtney et al. 2017). Each shark can 

reproduce once every year. At any time, t+1, given the individual did not reproduce in the 

current calendar year, each individual has an equal probability of reproducing based on the 

three-year reproduction cycle (1/3years/52days = 0.00641) and reproduction is an 

independent Bernoulli random draw. Those that do reproduce produce a number of pups 

specified by the equations in the SS3 models used in the 2019 Update to the Shortfin Mako 

Stock Assessment (Anonymous 2019a). Age is converted to fork length (cm) following the 
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Von Bertalanffy Growth Equation (VBGE) (Table 3.1) (Cortés 2017, Courtney et al. 2017), 

then converted to total length in meters (Table 3.1) (Cortés 2017, Courtney et al. 2017). 

The fraction mature (Mat), litter size (LS), and reproductive cycle (C) (Table 3.1) is used 

to calculate the deterministic annual pup production at age, LS*Mat/C. The total number 

of new sharks pupped in the time step is equal to the sum of the annual pup production at 

age for all individuals that undergo reproduction. The pups start at Age 0, have the same 

starting velocity and random component as the initial population, and inherit their location 

from their parent. 

Movement 

The location in angular degrees from 0 (\) at each time t+1 is a function of the location at 

time t, velocity at time t, and a random component at time t (Equation 4). Velocity (V) at 

time t+1is a function of velocity at time t reduced by a decay factor (Tg) and a random 

component at time t (Equation 5). The decay factor is an indication of how much of the 

previous time step’s velocity affects current movement. The surrounding temperature (T) 

at time t+1 is the value of the seasonal temperature function with the location of time t+1 

and time t (Equation 1). The random change in degrees (r) at time t+1 is a function of the 

difference between the surrounding temperature at time t+1 and the preferred temperature 

(Tm), a random number (X) between -100 and 100 drawn from a uniform distribution, and 

the strength of temperature perturbations as the maximum amplitude of the random step in 

degrees per day (ss) (Equation 6). This model assumes that individuals can sense the 

temperature they are in but cannot sense temperature at a distance. The more preferable the 

local temperature, the smaller the random component, lowering the velocity. The less 
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preferable the local temperature, the more random the response, increasing the velocity. 

Random behavior changes thus cause sharks on average to enter more favorable conditions.  

\'(& = \' + b' + >'																																																																					(4) 
b'(& = O5b' + >'																																																																									(5) 

>'(& = >6 d(O'(& − O)) e
f~ ∪ (−100,100)

100 i AAj																																							(6) 

 

Simulation Scenarios 

For all treatments, the fishing mortality is set to zero for a defined arc of the model’s circle 

landscape that represents the no take zone. Fishing effort is relocated outside of the no-take 

zone. The number of hooks that were actually in the corresponding no take zone is relocated 

to the other areas proportional to the existing effort in those areas. In treatment scenario 1, 

NE closure, the defined arc does not change with time (Figure 3.6), while in treatment 

scenarios 2, Seasonal, and 3, Moving, the defined no-take arc changes in accordance with 

the preferred 15°-21°C preferred temperature signal within a 5-degree theta bin.  The 

temperature at each location is averaged across 5-degree theta bins quarterly for the 

Seasonal scenario (Figure 3.7) and weekly for the Moving scenario (Figure 3.8). Any 

location with a seasonal or weekly average within the 15°-21°C preferred temperature 

signal is a no-take zone. 

Treatment scenarios are compared to the base scenario and each other using 

population size over time, change in incidental catch over time, harvest rate, and fraction 

of effort displaced. The best strategy will reduce incidental catch while minimizing the 

displaced effort and by extension minimize the effects on catch of target species. Displaced 

effort is measured by the fraction of hooks affected by the closure when compared to 

fishing in the base case scenario.  



 
 

   

Table 3.1 Definitions, units, and values of model parameters and variables. 
Variable Definition Value if Constant 
M Natural mortality 0.08 
Sm Weekly probability of an individual shark surviving natural mortality 0.998 
Sa Fishing selectivity at age 

See Figure 3.5 
Double normal distribution with 
mean 6.96, std dev of ascending limb 
5.12, and std dev of descending limb 
4.99 

E!" Fishing relative effort at location theta and time t  
f F Multiplier 13 
Sf Weekly probability of an individual shark surviving fishing  
Linf Asymptotic maximum length at which growth is 0 (cm) 350.6cm 
k Growth rate 0.064 
to Age at size zero (cm) -3.09cm 
LS Mean litter size (number of males and females, sex ratio 1:1) 12.5 
C Reproductive Cycle (years) 3 
Tt Temperature at time t (°C)  
Tm Preferred temperature (°C) 18°C 
Ts Spatial change in temperature with latitude (°C) 10°C 
Ta Amplitude of the seasonal temperature change (°C) 10°C 
"# Location along the arc at time t (angular degrees)  
Tg Decay factor: indication of how much of the previous time step’s velocity 

affects current movement 
0.75 

Vt Velocity at time t (angular degrees/day)  
rt Random component at time t  
ss Strength of temperature perturbations as the maximum amplitude of the 

random step (angular degrees/day) 
4 

Conversion Factors  
FL(cm)-
TL(m) 

Fork length (cm) to total length (m) 
 

TLm=(FLcm+1.7101)/0.9286/100 

TL(m)-Mat Total length (m) to fraction mature; maturity ogive Mat=1/(1+exp-(-27.81+9.332*TLm) 
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Figure 3.6 Northeast closure scenario with a stationary no take zone that corresponds to 

the statistical reporting region that the US NMFS calls Northeast Distant (Theta <110 

across all quarters of the year). The theoretical study space is the one-dimensional angle, 

theta along an arc on a polar coordinate system. 

 

 

Figure 3.7 Seasonal closure scenario with the defined no-take arc locations changing in 

accordance with the preferred 15°-21°C preferred temperature signal within a 5-degree 

theta bin.  The temperature at each location is averaged across 5-degree theta bins quarterly. 

The theoretical study space is the one-dimensional angle, theta along an arc on a polar 

coordinate system. 
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Figure 3.8 Moving closure scenario with the defined no-take arc locations changing in 

accordance with the preferred 15°-21°C preferred temperature signal within a 5-degree 

theta bin.  The temperature at each location is averaged across 5-degree theta bins weekly. 

The theoretical study space is the one-dimensional angle, theta along an arc on a polar 

coordinate system. 

 

Results 

Effort and Shark Spatial Distributions 

The scenarios result in very different areas being closed. The reduction in fishing effort by 

a closure is not proportional to the size of the area closed due to the patchy distribution of 

the fishery in time and space. For example, the NE scenario closed the entire NE region, 

theta 90-105, for all four quarters (Figure 3.6). However, when applied to the fishery the 

result is a closure in only the third and fourth quarters because the fishery does not exist in 

that area in the first two quarters (Figure 3.9) resulting in a displacement of about 13.6% 

of the total hooks annually (Table 3.2). The seasonal closure removed effort from the first 

and fourth quarters in theta 145-159 only (Figure 3.9) therefore displacing about 14.2% of 

the hooks (Table 3.2). The moving closure, which is coupled tightly to the temperature 

signal (Figure 3.8), most closely resembled the distribution of the fishery (Figure 3.9) 
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resulting in the largest impact on the fishery causing about 17.5% of the hooks to be 

displaced (Table 3.2). 

The shark population dispersed throughout the study area over the 50-year 

simulation (Figure 3.9). Throughout the simulation the individuals were symmetrically 

distributed north and south about the preferred temperature signal (Figure 3.9). Under the 

specified movement function the sharks took time to respond to the temperature signal 

causing the highest concentrations of individuals to lag behind the preferred temperature 

signal throughout each year (Figure 3.9). In the base case, areas of particularly high effort 

overlapped with areas of medium shark concentration. The NE scenario reallocated effort 

to an area with a comparable or slightly higher, concentration of sharks. The seasonal 

closure moved effort to a less concentrated area in the first quarter, but the reallocated 

effort encounters the lagging high concentration in Quarter 4 (Figure 3.9). The moving 

scenario reallocated effort for all four quarters and increased the effort in an area of higher 

shark concentration at the end of Quarters 1 and 4 (Figure 3.9). 

Population Abundance and Structure 

For all scenarios the total number of sharks started to rebuild over the first 10 years then 

decreased over the following 15 years (Figure 3.10). The SS3 projections in ICCAT (2019) 

show that the abundance of the mature population will decrease in the short term regardless 

of the total allowable catch, because overfishing of the immature animals in the recent past 

has left fewer sharks to age into the mature population. This study found the same short-

term pattern with the mature population decreasing and continuing to go down before the 

recovery period started around year 25 and total population decreasing along with the 

mature population as the smaller mature population produced fewer pups (Figure 3.12). 
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The IBM had similar dynamics to the SS3 projections indicating that this model adequately 

captured the overall population dynamics while integrating the assumed seasonal spatial 

movement.  

The population appeared to recover over the final 25 years for the NE and moving 

scenarios while the base and seasonal scenarios increased to a much lesser extent. While 

the seasonal scenario reached its previous peak, the base case never again reached the peak 

experienced in the first 10 years, and both scenarios decreased in the last 5-10 years of the 

simulations (Figure 3.10). The pup production followed a similar pattern to the total 

population, decreasing over the first 23 years, then increasing over the remainder of the 

simulation time frame (Figure 3.14). The base case and seasonal scenarios failed to recover 

over the last 25 years of the simulations (Figure 3.10, Table 3.2). The NE and the weekly 

moving closures both surpassed the status quo when rebuilding, did not decrease as much, 

and climbed to higher population numbers in the last 25 years than reached in the rebuilding 

period (Figure 3.10, Figure 3.11, Table 3.2). Over the later part of the simulation time 

frame the number of mature females and the number of pups increased (Figure 3.12, Figure 

3.14) particularly for the NE and moving scenarios (Figure 3.13, Figure 3.15). Across all 

measured metrics, the seasonal closure scenario performed the most similarly to the base 

case. 



 

 

 
Figure 3.9 Distribution of individual shortfin mako sharks in the study space in the second and last years of the simulations for each 
closure scenario with the 18°C preferred temperature signal curve. The theoretical study space is the one-dimensional angle, theta along an arc on a polar coordinate 

system. The base case scenario shows the effort distribution in number of hooks. For the other three alternative closure scenarios, the effort 
is depicted as the increase in hooks when compared to the base case with locations where effort removed depicted with an “X.” 68 
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Figure 3.10 Mean total population in number of individual sharks for each closure scenario 
plus or minus standard error, across the 5 simulations, at each time step over the 50-year 
simulation time frame. 
 

 
Figure 3.11 Mean total population in number of individual sharks for each closure scenario 
relative to the base case plus or minus standard error, across the 5 simulations, scenario, at 
each time step over the 50-year simulation time frame. 
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Figure 3.12 Mean number of mature individual sharks for each closure scenario plus or 
minus standard error, across the 5 simulations, at each time step over the 50-year simulation 
time frame. 
 

 
Figure 3.13 Mean number of mature individual sharks for each closure scenario relative 
to the base case scenario plus or minus standard error, across the 5 simulations, at each 
time step over the 50-year simulation time frame. 
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Figure 3.14 Mean number of individual shark pups for each closure scenario plus or minus 
standard error, across the 5 simulations, at each time step over the 50-year simulation time 
frame. 
 

 
Figure 3.15 Mean number of individual shark pups for each closure scenario relative to 
the base case scenario plus or minus standard error, across the 5 simulations, at each time 
step over the 50-year simulation time frame. 
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Incidental Catch and Harvest 

The base scenario exhibited higher shortfin mako incidental catch over the first 25 years 

while all of the alternative scenarios had higher shortfin mako incidental catch over the 

final 25 years (Figures 3.16, 3.17). The NE and moving alternative scenarios had a higher 

mean catch at the end of the simulation time frame because the total population was higher, 

so that catches increased (Figure 3.16, Table 3.2) even though the harvest rates for the 

northeast and moving scenarios were always lower than the base and seasonal scenarios 

(Figures 3.18, 3.19). Regarding catch, the seasonal scenario appears to bounce back and 

forth between whether it behaves more like the base case or more like the other two 

alternatives. The first half of the time series the seasonal scenario resembles the base case 

while over the later half of the time frame had values very similar to the other two 

alternatives cases for all of these metrics (Figures 3.16, 3.17, Table 3.2). However, the 

seasonal scenario harvest rate is consistently an intermediate between the base scenario and 

the other two alternatives (Figures 3.18, 3.19, Table 3.2). 

 
Figure 3.16 Mean number of individual sharks caught for each closure scenario plus or 
minus standard error, across the 5 simulations, at each time step over the 50-year simulation 
time frame. 
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Figure 3.17 Mean number of individual sharks caught for each closure scenario relative to 
the base case scenario plus or minus standard error, across the 5 simulations, at each time 
step over the 50-year simulation time frame. 
 

 
Figure 3.18 Mean harvest rate for each closure scenario plus or minus standard error, 
across the 5 simulations, at each time step over the 50-year simulation time frame. 
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Figure 3.19 Mean harvest rate for each closure scenario relative to the base case scenario 
plus or minus standard error, across the 5 simulations, at each time step over the 50-year 
simulation time frame. 
 
Table 3.2 Summary values by scenario where values relative to Year 1 are determined by 
subtracting the initial year value from the terminal year value. 

 Base NE Seasonal Moving 
Fraction Effort Displaced 0 0.136 0.142 0.175 

Population Relative to Year 1 356.0 929.0 588.6 715.6 

Catch Relative to Year 1 28.8 63.2 41.8 50.2 

Number Mature Relative to Year 1 -51.8 -2.9 -32.0 -19.4 

Pup Production Relative to Year 1 -95.0 -9.4 -37.4 -19.0 

 
Discussion 

Overview of Findings 

Results of our simulations indicate that no take scenarios in the north east and following a 

weekly temperature signal have the most potential for lowering shortfin mako incidental 

catch enough to allow the population to rebuild and recover. The current age structure 

causes the mature population to decrease before recovery under all scenarios. However, 

under the north east and moving scenarios, the population of mature individuals is able to 

recover to the point that pup production could overcome fishing pressures. The mature 

population increased, the pup production increased, allowing the whole population to 
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increase to the point that catch also increased without increasing the harvest rate. Under 

the status quo, the mature population does not increase enough to allow the pup production 

to compensate adequately for fishing pressures. 

Relationship to Other Studies 

The moving closure was designed to be more targeted, protecting the species of interest 

without the drastic impact of a permanent closure. The NE permanent closure displaces the 

effort at all times while the moving scenario may displace more total effort, at any given 

time a much smaller area is impacted. While the moving scenario performed well, contrary 

to the starting hypothesis, it did not perform as well as the north east scenario at allowing 

the overall population to grow the most. The results are consistent with Chapter 2, this 

dissertation, which found that the waters off of the north eastern coast of North America is 

home to sets with particularly high shortfin mako incidental catch and imposing restrictions 

in this area has the potential to reduce incidental catch with minimal impact to the target 

fishery. This is also consistent with Queiroz et al. (2019) whose analysis of spatial overlap 

of shark species and longline fisheries showed that shortfin mako have a high risk of fishery 

exposure in the waters off of North East North America.  

While the moving scenario displaces more total effort than the NE scenario the 

displacement does not yield a corresponding lower catch. Recent studies suggest that 

highly migratory species require dynamic spatial management without static boundaries 

(Hazen et al. 2018, Maxwell et al. 2020). The promising performance of the weekly moving 

scenario supports the idea that management should move with the animal. On the other 

hand, the seasonal scenario resulted in a population faring little better than the status quo 

of no restrictions. The comparatively poor performance of the seasonal scenario 
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demonstrates the importance of properly matching the time scale of dynamic management 

to the needs of the species and that incorrect assumptions have the potential to drastically 

impact the population. From all three alternative scenarios we see that basing closures on 

shark location, as assumed by temperature preference, the most successful options are those 

with the least and the most focus on mako movement. The intermediate option appears to 

redistribute the effort in a way that increases the interaction between sharks and fishers, 

increasing catch.  

The need for an all or nothing approach with regards to targeted management is 

consistent with Hazen et al. (2018), Maxwell et al. (2020) whose arguments for dynamic 

closures involve real-time monitoring of catches and updating of management. It is 

possible that the NE closure performed better than either of the moving closures reinforces 

that success is dependent on having the adequate information to manage at the correct scale 

(Schofield et al. 2013, Breen et al. 2015, Maxwell et al. 2020). Hazen et al. (2018), Maxwell 

et al. (2020) also stress that dynamic closures cannot address all issues and will not replace 

traditional stationary closures.  

Caveats and research recommendations 

This study assumes a closed system and is therefore limited to the US longline fleet and 

should not be extrapolated to the entire stock. It is unclear how connected the West Atlantic 

and East Atlantic subpopulations of the stock are and it is very possible that individual 

sharks migrate throughout the Atlantic basin spending significant portions of time outside 

of the study area (Queiroz et al. 2016, Anonymous 2019a). Furthermore, the study includes 

waters fished by other countries whose incidental catch, effort, and behavior are not 

considered.  
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Further research should focus on how fishers react to restrictions to more 

realistically estimate the impact of scenarios on fishers and their ability to catch their target 

species. Fishers would presumably shift their distribution based on the target species and 

not the distribution of shortfin mako. However, a review by van Putten et al. (2012) 

concluded that, while economic drivers are key determinants of behavior, other variables, 

such as habit, tradition, risk aversion, and reluctance to change are significant in the 

prediction of behavior. A model that explicitly included a range of socio-economic factors 

of individual fishers in the pelagic longline fishery could be combined with this model, or 

one similar, to more realistically model the effects of management on fisher behavior which 

in turn impacts shortfin mako incidental catch. This would give a more holistic analysis 

that would explicitly measure tradeoffs, especially applied to a non-target species. 

As dynamic closures still remain promising, further research should also focus on 

more accurately predicting shortfin mako distribution, migration, and habitat use. Fishery 

independent movement data exists but not at the sample sizes necessary to meet statistical 

requirements. However, ICCAT (Anonymous 2017b, a, 2019a) has recommended more 

satellite tagging efforts, and as more data becomes available it will become sufficient to 

incorporate into a similar study. Specifically incorporating variation by life stage may 

allow for better targeting and minimal disruption to the fishery as juveniles make up the 

vast majority of incidental catch. Including fishery independent data, especially by life 

stage, will improve movement modeling and better inform the time and space scales 

necessary for effective dynamic management strategies.  
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Management Recommendations and Conclusions 

The redistribution of effort in time and/or space has the potential to allow the mature 

population to increase and reproduce to the point that production surpasses catch, allowing 

the shortfin mako to rebuild and eventually recover. Even when the scale of the closure is 

poorly matched, closures decrease the catch in the short term enough to allow the 

population in the long term to grow to numbers higher than under current management. A 

management measure such as closure is needed to reduce interaction with the fishery; live 

release with some retention does not reduce mortality enough. This study supports the idea 

that areas with high probability of positive catch, like the waters off the north eastern coast 

of the US, should be avoided. Benefits are maximized when effort in these types of areas 

are eliminated, or at least reduced.  A stationary closure is simpler and easier to implement 

and enforce than regulations that change, especially a management plan that changes 

weekly. However, dynamic closures should not be abandoned; better matched scenarios 

could be more successful and there is the possibility of the shark distribution shifting as 

the ocean experiences climate change. Fishery independent data collection should be 

pursued and as more information becomes available, dynamic management must be 

reconsidered. At this point, until more information to accurately and precisely match the 

time/space scale needed, a stationary closure is the most promising move forward of the 

kinds of closures tested. 
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CHAPTER 4: CONSIDERATION OF MULTIPLE COMMONLY CAUGHT 
SHARK SPECIES IN BYCATCH MITIGATION IN THE GULF OF MEXICO 
REEF BOTTOM LONGLINE FISHERY 
 
Background 

The U.S. Gulf of Mexico Reef Fish Bottom Longline fishery (GOMRBLL) is comprised 

of Federally permitted commercial vessels that typically target groupers, Epinephelus spp., 

and snappers, Lutjanus spp. (Karp et al. 2011, Scott-Denton et al. 2011). Since 2006 a 

mandatory observer program jointly implemented by the Gulf of Mexico Fishery 

Management Council (GMFMC) and the National Marine Fisheries Service’s (NMFS) 

Southeast Fisheries Science Center (SEFSC) has monitored the commercial reef fishery in 

the Gulf of Mexico (GOM). NMFS observers were allocated to vessel-trips through several 

methods over the years including stratified random sampling, proportional (to effort) 

sampling, and voluntary cooperation (Scott-Denton et al. 2011, National Marine Fisheries 

Service 2018). Observers record information about the vessel, gear, and environment 

before each set and record the total time gear was in the water, condition of fish brought 

onboard, and fate of fish after release at the end of each set (Scott-Denton et al. 2011, 

National Marine Fisheries Service 2018). Analysis of observer data has shown that this 

fishery interacts with 27 species of sharks and collectively, sharks make up a significant 

portion of catch and discards indicating a need for a reduction in encounters (Scott-Denton 

et al. 2011). 

In this particular fishery, shark species are considered bycatch and reduction of 

shark bycatch is necessary to meet legislative mandates under the Magnuson-Stevens 

Fishery Conservation and Management Act (Karp et al. 2011, National Oceanic and 

Atmospheric Administration 2016) that state that conservation and management measures 
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must be in place to minimize bycatch. While not all of the species in this study are currently 

overfished or experiencing overfishing, sharks are particularly vulnerable to overfishing 

and being overfished due to their low productivity, slow growth, and late maturity coupled 

with increasing levels of exploitation (Cortes 1998, Baum and Myers 2004). The 

GOMRBLL fishery discards the majority of sharks encountered regardless of species, or 

condition of individuals caught (Scott-Denton et al. 2011). The high shark discards and the 

vulnerability of sharks makes shark bycatch reduction favorable regardless of the 

individual species’ current status. 

In this study we consider the 12 most commonly caught shark species (Table 4.1, 

Figure 1) including blacknose (Carcharhinus acronotus), nurse (Ginglymostoma 

cirratum), Atlantic sharpnose (Rhizoprionodon terraenovae), scalloped hammerhead 

(Sphyrna lewini), sandbar (Carcharhinus plumbeus), smooth dogfish (Mustelus canis), 

night (Carcharhinus signatus), blacktip (Carcharhinus limbatus), silky (Carcharhinus 

falciformis), tiger (Galeocerdo cuvier), bigeye sixgill (Haxanchus nakamurai), and 

sevengill (Heptranchias perlo). They are very different in terms of their ecology with some 

species being coastal while others are found in deeper waters off the continental shelf 

(Table 4.1). Some are highly migratory making pelagic movements, such as scalloped 

hammerhead (Wells et al. 2018), while others are reef associated, such as nurse (Carrier 

and Pratt 1998) and blacknose sharks (Compagno 1984). All species are in the family 

Carcharhinidae, except smooth dogfish, (Triakidae), bigeye sixgill and sevengill sharks 

(Hexanchidae).  

In addition to ecological differences, these species vary greatly in their current 

status (Table 4.1), management, and protections. The status of nurse, night, silky, tiger, 
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bigeye sixgill, and sevengill populations is unknown, but only bigeye sixgill, night, and 

sevengill sharks are prohibited in both recreational and commercial fisheries (National 

Marine Fisheries Service 2020b). Some shark populations that are not prohibited in the 

commercial fishery, sandbar (SEDAR 2016, 2017), blacknose (SEDAR 2012), and 

scalloped hammerhead (SEFSC Scientific Review), are overfished. While all three of these 

species have rebuilding plans, only the sandbar shark is no longer experiencing overfishing. 

Scalloped hammerhead sharks have additional protections including prohibition in the 

recreational fishery, and listing under CITES Appendix II (Anonymous 1973). A particular 

issue with smooth dogfish is that three species of Mustelus occur in the GOM and observer 

identification of the species is known to be unreliable (SEDAR 2015) which affects 

estimation of individual species’ stock status. Reducing shark bycatch is important 

regardless of current stock status. 

Although the observer program only covers about 1% of effort in this fishery 

(variable over time but 1% in 2018), it is a random sample, so the observer program can be 

used to evaluate which variables influence bycatch (National Marine Fisheries Service 

2020a). Foster et al. (2017) studied the effect of soak time on targeted red grouper catch 

per set as well as bycatch per set of shark species in the GOMRBLL fishery. They found 

that reducing soak time could reduce shark bycatch per set with minimal reduction in target 

catch per set. Modification of fishing gear and deployment methods has the potential to 

alter catchability of non-targeted species. Furthermore, Molina and Cooke (2012) who 

reviewed trends in shark bycatch research found a lack in modeling studies and those that 

look at multiple species concurrently. Molina and Cooke (2012) argue that filling these 

gaps would help to formally experiment with mitigation strategies and identify which 
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species are more susceptible and affected by interactions with the fishery. Several species 

commonly caught have an unknown status (Table 4.1). 

Table 4.1 Summary of stock status and ecology group for shark species included in this 
study. Updated September 30, 2020. 

Common 
Name 

Scientific 
Name Overfishing Overfished 

Ecology 
Group Management Notes 

Shark, 

Blacknose 

Carcharhinus 
acronotus 

Yes Yes Small 

Coastal 

In year 8 of 30-year 

rebuilding program 

IUCN Red List: Near 

Threatened 

Shark, Nurse Ginglymostoma 
cirratum 

Unknown Unknown Large 

Coastal 

IUCN Red List: Data 

Deficient 

Shark, 

Atlantic 

Sharpnose 

Rhizoprionodon 
terraenovae 

No No Small 

Coastal 

IUCN Red List: Least 

Concern 

Shark, 

Scalloped 

Hammerhead 

Sphyrna lewini Yes Yes Large 

Coastal 

In year 8 of 10-year 

rebuilding plan 

Recreationally 

prohibited 

CITES Appendix II 

(2014) 

IUCN Red List: 

Critically Endangered 

Shark, 

Sandbar 

Carcharhinus 
plumbeus 

No Yes Large 

Coastal 

In year 16 of 66-year 

rebuilding plan 

IUCN Red List: 

Vulnerable 

Shark, 

Smooth 

Dogfish 

Mustelus canis No No - IUCN Red List: Near 

Threatened 

Shark, Night Carcharhinus 
signatus 

Unknown Unknown Deep-

water 

Prohibited 

IUCN Red List: 

Vulnerable 

Shark, 

Blacktip 

Carcharhinus 
limbatus 

No No Large 

Coastal 

IUCN Red List: Near 

Threatened 

Shark, Silky 

Carcharhinus 
falciformis 

Unknown Unknown Large 

Coastal 

Listed under CITES 

Appendix II (2017) 

IUCN Red List: 

Vulnerable 

Tiger Galeocerdo 
cuvier 

Unknown Unknown Large 

Coastal 

IUCN Red List: Near 

Threatened 

Bigeye 

Sixgill 

Hexanchus 
vitulus or 
Hexanchus 
nakamurai 

Unknown Unknown Deep-

water 

Prohibited 

IUCN Red List: Data 

Deficient 

Sevengill 

Heptranchias 
perlo 

Unknown Unknown Deep-

water 

Prohibited 

IUCN Red List: Near 

Threatened 

 
This study considers multiple individual species at once as well as grouping those 

individuals by size (small vs large) and habitats (coastal vs deep-water) with the aim of 
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exploring gear modification and/or behavior modification based on environmental 

conditions that will reduce encounters for sharks as a whole. An optimal strategy to reduce 

shark bycatch per set would reduce catch per set of all shark species at the same time 

without reducing target species catch per set.  However, it is expected that bycatch per set 

of sharks in different species groups will have different important explanatory variables 

and trends. Bycatch per set of species that are modeled individually is expected to have 

explanatory variables and trends similar to the other species within their group but different 

to species in other groups.  We expect soak time and number of hooks in a set to be 

important explanatory variables with the same trends for all species and species groups 

because more hooks and more time in the water offers greater opportunity for catch per set 

in general. It is also expected that coastal and deep-water species and species groups will 

have opposing trends representing their preferred habitat. We expect there to be a 

difference in predictive pattern for small versus large species when it comes to hook size 

with large hooks predicting higher catch per set for large species and small hooks 

predicting higher catch per set for small species.  

The purpose of this study is to determine what gear and/or environmental variables 

best predict shark catch per set for commonly caught shark species in the U.S. GOMRBLL 

fishery. We hope to propose mitigation strategies based on the results that aim to 

collectively reduce interaction of commonly caught shark species with GOMRBLL lines. 

Methods 

Catch per set, effort, gear, and environmental data was taken from the NOAA NMFS 

observer dataset for the GOMRBLL fishery 2009-2017 (National Marine Fisheries Service 

2018). Only species that had at least one positive observation every year of the time series 
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were analyzed. This resulted in a total of 12 shark species (Figure 4.5). Catch per set is 

defined as the number of individual sharks caught in a set regardless of whether or not it 

was retained. Effort is defined as one set, as opposed to the more common hours or hooks, 

based on unpublished research showing that sets is the best unit of effort for matching 

observer to logbook effort (Steven Smith, personal communication NOAA). CPUE by 

species (or group of species) was modeled as a function of environmental and gear 

variables using a generalized additive model (GAM) (Guisan et al. 2002). GAMs are 

extensions of linear models that allow for non-linearity and variability in variance through 

the use of link functions and a specified error distribution (Guisan et al. 2002) in addition 

to allowing a smoothing function to be used to model the relationship between the predictor 

variable and the response variable. 

Delta-lognormal, delta-gamma, and negative binomial error distributions were 

explored, but the negative binomial distribution was ultimately used because it is most 

appropriate for data consisting of small counts that may be over-dispersed. Standard 

residual plots of equations with an integer response variable will have curved rows of 

residuals that correspond with the integer values of the y-variable, which would indicate 

model problems even if the model is correctly specified (Hartig 2017). To avoid 

misinterpreting residuals, we used the DHARMa R package (Hartig 2017) which uses a 

simulation-based approach to transform residuals into a standardized scale. New data are 

simulated from likelihood function of the fitted model, the empirical cumulative density 

function of the simulated data is calculated, and the residual is defined as the empirical 

density function’s value at the value of the observed data. The DHARMa residuals compare 

the data to the expected distribution under a negative binomial distribution and if the model 
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is properly specified, we expect residual distribution to be flat and uniformly distributed 

(Hartig 2017). Diagnostics plots of DHARMa residuals revealed that negative binomial 

was more appropriate than other distributions and adequate for all shark species (Figure 

A8). The negative binomial model was used in all further analysis to explore the selection 

of predictor variables. 

Candidate environmental variables include year, season, location (latitude and 

longitude), and fishing depth (m), while the candidate gear variables include soak time 

(hrs), hook shape, hook size, and number of hooks set (Factor levels in Table 4.2, 

continuous variable distributions in Figures 4.1, 4.2, 4.3, and 4.4). Smoothers were placed 

on continuous variables and categorical variables were treated as fixed effects. Variable 

coefficients for those expressed as factors were all presented as difference to the reference 

level which is defined as the first level of the factor (Table 4.2). 

!"#$~('()* + ,()-./ + 0((1)02034(, 1./62034() + -(8(90ℎ) + -(,.);	=2>()
+ ?..;	,ℎ)9( + ?..;	,2@( + -(?..;-	,(0)	 

 
Table 4.2 Factor levels used for season, hook shape, and hook size predictor variables 
considered in the generalized additive model approaches to predict commonly caught shark 
species’ bycatch per set. *Refers to the reference level for each factor variable. 

Variable (n=10,783 sets) Number of 
Levels 

Levels(n) 

Year 8 2010 (1370)* 

2011 (2332) 

2012 (524) 

2013 (2134) 

2014 (860) 

2015 (655) 

2016 (1695) 

2017 (458) 

Season 

  

3 1: January, February, March, April (4784)* 

2: May, June, July, August (2798) 

3: September, October, November, December (3201) 

Hook Shape 

 

2 Offset (5004)* 

Straight (5779) 

Hook Size 5 <=11 (432)* 

12 (653) 

13 (5728) 

14 (2216) 

>=15 (999) 
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The dredge function from the MuMin R package (Barton and Barton 2015) was 

used to test all possible variable combinations with the full model above. The Bayesian 

information criterion (BIC), maximum likelihood estimation and 10-fold cross validation 

were used to identify which combination of variables produced the best model performance 

balancing fitting and parsimony to optimize predictive ability. BIC was chosen specifically 

because it penalizes more complex models preventing over fitting (Schwarz 1978). Models 

with BIC determined weight greater than 0.01 were further considered as candidate models, 

where model weight A! for model i was calculated from the difference in BIC ∆! between 

model i and the best model as: A! = ("∆!/%/∑ ("∆!/% (Burnham and Anderson 2004). 

Cross validation of each candidate model was then used to determine the best predictive 

model of all candidate GAMS. A ten-fold cross validation procedure (Then et al. 2015) 

randomly allocated each data point to one of the ten folds. Nine tenths of the data were 

used for training while one tenth was used as the test dataset. GAM cross-validation results 

were assessed using the root mean square error (RMSE) and mean absolute error (MAE) 

calculated by comparing the CPUE predicted from the model fitted to the training dataset 

to the sets in the test dataset (Stow et al. 2009, Gruss et al. 2019). The best of several 

candidate models would have the smallest RMSE and MAE. These metrics can also be 

compared across models for different species to determine which species’ CPUE can be 

predicted most accurately and precisely from the models.  The equations are: 

FG,$ = 	H
∑ I!"#$! −	!"#$&K L

%'
!()

/
 

GM$ =
∑ N!"#$! − !"#$&K N'
!()

/
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where !"#$! refers to observed CPUE in the test dataset, !"#$&K  refers to CPUE predicted 

for the same set in the test dataset, and n is the number of sets in the test dataset. RMSE 

and MAE were calculated across all ten folds and the mean was used to select the best 

model.  

The fitting and cross validation procedures were performed for the CPUE of each 

species individually, CPUE of all small coastal species, CPUE of all large coastal species 

(as defined by NMFS), CPUE of deep-water species, and CPUE of all species combined. 

Final models were selected based on the results of the BIC ranking and cross-validation. 

Retained variables and their fitted coefficients were compared across species and species 

groups to look for broad patterns that can be used to design mitigation strategies that 

influence as many species as possible at once. 

 
Figure 4.1 Number of observations in the Gulf of Mexico bottom longline fishery observer 
dataset for each combination of latitude and longitude.  
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Figure 4.2 Distribution of the number of observations in the Gulf of Mexico bottom longline fishery observer dataset for fishing depth 
in meters.   
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Figure 4.3 Distribution of the number of observations in the Gulf of Mexico bottom longline fishery observer dataset for soak time in 
decimal hours. To display the distribution at low counts the left graph displays the soak times with less than 10 observations. 
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Figure 4.4 Distribution of the number of observations in the Gulf of Mexico bottom longline fishery observer dataset for number of 
hooks in a set. To display the distribution at low counts the left graph displays the number of hooks with less than 70 observations.
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Results 

Shark bycatch per set in the GOMRBLL fishery is primarily characterized by the following 

species, in order of decreasing total numbers encountered (Figure 4.5): Atlantic sharpnose 

sharks, smooth dogfish, blacknose sharks, tiger sharks, sandbar sharks, nurse sharks, silky 

sharks, scalloped hammerhead sharks, blacktip sharks, night sharks, bigeye sixgill, and 

sevengill sharks. Over two thirds, ~70%, of the most encountered species are made up of 

Atlantic sharpnose sharks and smooth dogfish. 

 
Figure 4.5 The total number of individuals encountered by observers in the Gulf of Mexico 
bottom longline fishery, 2009-2017, by species. Individuals encountered are defined as any 
shark that was hooked regardless of ultimate fate. 
 
Model Consideration 

All models with weight greater than 0.01 based on the BIC weight were considered to be 

candidate models and underwent a 10-fold cross validation procedure. This resulted in 41 

total candidate models with the number per species/group varying. R2 values ranged from 

0.04 for the tiger shark to 0.46 for the smooth dogfish (Table 4.3). Of the 41 candidate 

models, 66% explained less than 10% of the variation in catch per set. All of the candidate 
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models explain less than half of the variation in catch per set. Nurse and sandbar sharks 

only considered the BIC best model, which was therefore selected as the final model. 

Blacknose, Atlantic sharpnose, smooth dogfish, night, blacktip, tiger, small coastal 

combined, deep-water combined, and all species combined considered two models. 

Sevengill and large coastal sharks combined considered three potential models. Scalloped 

hammerhead, silky, and bigeye sixgill considered five models. When considering all 41 

candidate models, hook size was the most commonly excluded variable (excluded from 

71% of the considered models) followed by number of hooks set (excluded in 66%), hook 

shape (excluded from 61%), soak time and season (excluded in 56% each), 

latitude/longitude (excluded in 49%), and year (excluded in 29%) while depth was only 

excluded in 4 models (Table 4.3).  

Final Model Selection 

In all cases where more than one candidate model was being considered, the MAE values 

across candidate models were similar and the RMSE values were similar across candidate 

models within a species/species group. Candidate models within a species/species group 

therefore had similar predictive ability, so the BIC best model was selected as the final 

model for each species/species group. In the final 16 models, one per species or combined 

species, hook size was excluded the most, followed by hook shape, number of hooks set, 

and soak time, then season and latitude/longitude (Table 4.3). Year was excluded from four 

models while depth was only excluded from one model. All individual species in addition 

to large coastal, small coastal, and deep-water species excluded at least one variable, while 

all species combined was the only model to select the full model (Table 4.3). All individual 

deep-water species retained two variables with all retaining depth, night sharks additionally 
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retaining season, bigeye sixgill sharks additionally retaining year, and sevengill sharks 

additionally retaining latitude/longitude (Table 4.3). 

Year 

Year was included in the best model for all the species groups and all individual species 

except smooth dogfish, night, blacktip, and sevengill sharks. Predicted catch per set rate 

patterns were variable over time with few long-term patterns (Table 4.3, Figure 4.6). The 

large coastal group appears to have an approximately 6-year cycle. Bigeye sixgill predicted 

catch per set declined from 2015 until the end of the time series in 2017. Blacknose and 

Atlantic sharpnose sharks had similar prediction patterns, which remain when they are 

combined for the small coastal species group (Figure 4.6). The deep-water species group 

is most strongly influenced by bigeye sixgill, which was the only individual species of the 

deep-water group that retained year in the final model. When all species were combined, 

the year effect was significantly dampened and appeared cyclical (Figure 4.6). 

Season 

Seven individual species, nurse, Atlantic sharpnose, scalloped hammerhead, sandbar, 

smooth dogfish, night, and silky sharks, and the small coastal species group, deep-water 

species group, and all species combined retained the season explanatory variable in the 

BIC best model (Table 4.3, Figure 4.7). For all of these species except sandbar, smooth 

dogfish, and silky sharks, Season 2, which corresponds with the summer months May-

August, has a negative relationship with catch per set (Figure 4.7). Atlantic sharpnose, 

scalloped hammerhead, night, small coastals, large coastals, and all species combined had 

the highest predicted catch per set in Season 1, January-April (Figure 4.7). For sandbar 

sharks and smooth dogfish Season 2 had the highest predicted catch per set with Seasons 
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1 and 3 approximately equal for sandbar sharks (Figure 4.7). Nurse and silky sharks had 

the highest predicted catch per set in Season 3, September-December (Figure 4.7). The 

combined small coastal group followed the same pattern as Atlantic sharpnose; highest 

catch per set in Season 1 and lowest in Season 2. When all species are considered together, 

all three seasons had similar predicted catch per set. 

Hook Shape  

Atlantic sharpnose, sandbar, smooth dogfish, and blacktip sharks were the only individual 

species that retained hook shape as an explanatory variable in the BIC best model (Table 

4.3, Figure 4.8). Both large coastal species and all combined species groups also retained 

hook shape as an explanatory variable. For all four species and the two species groups, 

models suggest that offset hooks catch more sharks per set than straight hooks (Figure 4.8). 

Hook Size 

Only blacknose, nurse, Atlantic sharpnose, small coastal, large coastal and all species 

combined retained hook size as an explanatory variable (Table 4.3, Figure 4.9). Generally, 

hook size is important for individual small coastal species and the small coastal group while 

hook size is significant for only one species of large coastal shark, the nurse shark, and 

predicting catch per set for the large coastal shark group (Figure 4.9). The patterns for small 

coastals and large coastals oppose with the highest estimated catch per set for large coastals 

predicted for size 14, the hook size that predicts the lowest estimated catch per set for small 

coastals (Figure 4.9). However, none of the individual species or species groups show a 

discernable pattern. Across all species and species groups there is no single hook size that 

would minimize shark bycatch rates. Sizes 12 and 13 neither maximize nor minimize 
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predicted catch per set, thus this is an example of a possible option that balances all species 

at once. 

Latitude/Longitude 

For scalloped hammerhead, sandbar, night, tiger, bigeye sixgill, and deep-water species 

combined, latitude/longitude was not retained in the BIC best model (Table 4.3, Figure 

4.10). Blacknose and nurse sharks have the lowest predicted catch per set between 26- and 

28-degrees latitude in the western portion of the study area. This contrasts with smooth 

dogfish, blacktip, and sevengill sharks, which have their highest predicted catch per set in 

that same location (Figure 4.10). Smooth dogfish and silky sharks have their lowest 

predicted catch per set at and around the intersection of -82.5 degrees longitude 28 degrees 

latitude, which corresponds with Tampa Bay. When all the combined species groups are 

compared, they are very similar with an almost uniform prediction across the study 

latitudes and longitudes (Figure 4.10). 

Depth 

Silky shark was the only species that did not retain depth as an explanatory variable (Table 

4.3, Figure 4.11). Blacknose, nurse, Atlantic sharpnose, sandbar, and blacktip sharks all 

had a decrease in predicted catch per set with increase in depth with high catch per set 

predicted in shallow waters. The combined small coastal species followed the same pattern. 

Night, bigeye sixgill and sevengill sharks had an increase in predicted catch per set with 

an increase in depth, high catch per set in deeper waters. The combined deep-water species 

followed the same pattern. Scalloped hammerhead, smooth dogfish, silky, tiger sharks, and 

all sharks combined had relatively little variation in predicted catch per set with depth but 

some peaks in shallower waters (Figure 4.11). 
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Soak Time 

Blacknose, Atlantic sharpnose, sandbar, tiger, small coastal species grouped, large species 

grouped, and all species combined retained soak time as an explanatory variable (Table 

4.3, Figure 4.12). All species/species groups except blacknose had an overall increasing 

trend in catch per set rate with increasing soak time (Figure 4.12). Blacknose had a different 

pattern with a dome-shaped pattern peaking between 5 and 10 hours soak time and soak 

times less than 4 hours and greater than 12 hours negatively associated with catch per set 

(Figure 4.12). The decrease in catch per set after 5 hours could be due to depredation by 

larger sharks. 

Number of Hooks Set 

Smooth dogfish, blacktip, silky, tiger, large coastal species grouped, deep-water species 

grouped, and all species combined retained the number of hooks set as an explanatory 

variable (Table 4.3, Figure 4.13). For every species/species group that retained the variable, 

there is a clear increase in catch per set with an increase in the number of hooks. Increasing 

the number of hooks in a set increases shark catch per set. 



 

 

Table 4.3 Retained variables in models with BIC model weights greater than 0.01. Black boxes indicate the variable was not selected 
for while + indicates that the variable was selected for. * denotes species included in the combined small coastal sharks group, ** denotes 
species included in the combined large coastal sharks group, *** denotes species included in the combined deep-water sharks group, † 
denotes prohibited species. 

Species 
Hook 
Shape 

Hook 
Size 

Depth 
(m) 

Num. 
Hooks 

Set 

Soak 
Time 
(hrs) Season 

Latitude 
Longitude Year BIC ∆BIC R^2 logLik Weight 

Blacknose* NA + + NA + NA + + 9052 0.000 0.1363 -4392 0.9619 
NA + + + + NA + + 9059 7.008 0.1364 -4392 0.0289 

Nurse** NA + + NA NA + + + 3286 0.000 0.1247 -1509 0.9964 
Atlantic 
Sharpnose* 

+ + + NA + + + + 20784 0.000 0.2601 -10174 0.9655 
NA + + NA + + + + 20791 6.665 0.2589 -10182 0.0345 

Scalloped 
Hammerhead** 

NA NA + NA NA + NA + 2545 0.000 0.0733 -1191 0.6372 
NA NA + NA NA NA NA + 2547 2.020 0.0714 -1201 0.2321 
NA NA + NA + NA NA NA 2550 4.968 0.0713 -1202 0.0531 
NA NA + NA + + NA NA 2550 5.466 0.0730 -1192 0.0414 
+ NA + NA NA + NA + 2552 7.399 0.0734 -1190 0.0158 

Sandbar** + NA + NA + + NA + 6806 0.000 0.0656 -3295 0.9813 
Smooth Dogfish + NA + + NA + + NA 9609 0.000 0.4589 -4649 0.8970 

+ NA + NA NA NA + + 9613 4.529 0.4597 -4642 0.0932 

Night† NA NA + NA NA + NA NA 1521 0.000 0.0637 -711 0.9459 
+ NA + NA NA + NA NA 1527 6.172 0.0639 -709 0.0432 

Blacktip** + NA + + NA NA + NA 1354 0.000 0.0983 -610 0.5699 
NA NA + + NA NA + NA 1355 0.653 0.0965 -620 0.4112 

Silky** NA NA NA + NA + + + 3698 0.000 0.0539 -1706 0.5995 
+ NA NA + NA + + + 3700 1.380 0.0546 -1703 0.3006 
+ NA NA + NA NA + + 3703 5.028 0.0518 -1717 0.0485 
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+ NA + + NA NA + + 3705 6.256 0.0547 -1702 0.0263 
NA NA NA + NA NA + + 3706 7.996 0.0508 -1723 0.0110 

Tiger** NA NA + + + NA NA + 8000 0.000 0.0417 -3919 0.6234 
NA NA + NA + NA NA + 8001 1.219 0.0403 -3927 0.3390 
NA + + NA + NA NA + 8007 7.103 0.0427 -3914 0.0179 

Bigeye Sixgill† NA NA + NA NA NA NA + 1408 0.000 0.0821 -652 0.6785 
NA NA + NA + NA NA NA 1411 3.080 0.0783 -673 0.1454 
NA NA + NA NA + NA + 1413 4.386 0.0834 -645 0.0757 
NA NA + NA NA NA NA NA 1415 6.587 0.0758 -686 0.0252 
NA + + NA + NA NA NA 1415 6.854 0.0812 -657 0.0220 
NA + + NA NA NA NA + 1416 8.012 0.0847 -637 0.0124 
NA NA + NA + NA NA + 1416 8.071 0.0834 -645 0.0120 

Sevengill† NA NA + NA NA NA + NA 846 0.000 0.0800 -380 0.9698 
+ NA + NA NA NA + NA 855 8.671 0.0802 -379 0.0127 

Small Coastal* + + + NA + + + + 23374 0.000 0.2957 -11471 0.9965 

Large Coastal** + + + + + NA + + 16144 0.000 0.1748 -7834 0.9431 
+ + + NA + NA + + 16150 5.651 0.1735 -7841 0.0559 

Deep-water† NA NA + + NA + NA + 2908 0.000 0.1699 -1367 0.6290 
NA NA + NA NA + NA + 2909 1.129 0.1691 -1372 0.3577 

All + + + + + + + + 42882 0.000 0.3819 -21170 0.7525 
+ NA + + + + + + 42884 2.224 0.3795 -21190 0.2475 
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Figure 4.6 Year coefficient value plus/minus standard error as determined by the final generalized additive model for each corresponding 
species or species group. The first year is the reference value and species with only the reference value have a final model without this 
variable. 
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Figure 4.7 Season coefficient value plus/minus standard error as determined by the final generalized additive model for each 
corresponding species or species group. The first season is the reference value and species with only the reference value have a final 
model without this variable. 
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Figure 4.8 Hook shape coefficient value plus/minus standard error as determined by the final generalized additive model for each 
corresponding species or species group. Offset hook shape is the reference value and species with only the reference value have a final 
model without this variable. 
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Figure 4.9 Hook size coefficient value plus/minus standard error as determined by the final generalized additive model for each 
corresponding species or species group. Hook size <=11 is the reference value and species with only the reference value have a final 
model without this variable.  

_ _ _
_

_

_

_

_
_ _ _

_

_

_ _

_

_

_

_

_ _ _
_

_

_
_ _ _

_

_

_

_

_

_

_

_
_ _ _ _

SCS Species LCS Species Deep Water Species All Species

Shark, Silky Shark, Tiger Shark, Bigeye Sixgill Shark, Sevengill

Shark, Sandbar Shark, Smooth Dogfish Shark, Night Shark, Blacktip

Shark, Blacknose Shark, Nurse Shark, Atlantic Sharpnose Shark, Hammerhead Scalloped

<=11 12 13 14 >=15 <=11 12 13 14 >=15 <=11 12 13 14 >=15 <=11 12 13 14 >=15

−1

0

1

2

−1

0

1

2

−1

0

1

2

−1

0

1

2

Size

C
oe

ffi
ci

en
t V

al
ue

 +
/−

 S
ta

nd
ar

d 
Er

ro
r

102 



 

 

 
Figure 4.10 Smoothing values for the combination of latitude and longitude as determined by the corresponding generalized additive 
models for each species and species group. Species with no contours did not select for this variable. 103 



 

 

 
Figure 4.11 Depth smoothing values for depth 35m-420m as determined by the final generalized additive model for each corresponding 
species or species group. Species with no contours did not select for this variable. 
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Figure 4.12 Soak time smoothing values for durations 0hrs-20hrs as determined by the final generalized additive model for each 
corresponding species or species group. Species with no contours did not select for this variable. 
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Figure 4.13 Number of hooks smoothing values for sets with 19hooks-2300 hooks as determined by the final generalized additive model 
for each corresponding species or species group. Species with no contours did not select for this variable.
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Model Predictive ability 

All species and species groups had MAE and RMSE values less than 2.7 and 5.3 (aside 

from 2 outlier RMSE values), respectively (Figures 4.14, 4.15). Blacknose, nurse, 

scalloped hammerhead, sandbar, night, blacktip, silky, tiger, and bigeye sixgill have MAE 

and RMSE values all less than 0.37 and 2, respectively. Sevengill had the smallest median 

MAE and RMSE values while all species combined had the highest median MAE and 

RMSE values. Combined species groups had higher median MAE and RMSE values than 

the individual species that comprise each corresponding species group. Deep-water species 

combined had relatively low median MAE and RMSE values of 0.1 and 4 respectively, 

when compared to the other combined species groups and had lower medians than 

blacknose, Atlantic sharpnose, sandbar, and tiger sharks. However, the deep-water species 

group contained the highest single MAE and RMSE values with an outlier over 20 and 

over 600, respectively. The large coastal species group had a lower median MAE than the 

small coastal species group which is reflected by the corresponding individual species 

MAE medians. 

These MAE and RMSE values indicate that our ability to predict bycatch per set 

varies by species. Generally large coastal sharks are better predicted than small coastal 

sharks, deep-water species are better predicted than coastal species, and we have the worst 

predictive ability when all species are combined. 

 



 

 

 
Figure 4.14 Boxplot of the mean absolute error (MAE) metric values from performing 10-fold cross validation on the final model of 
each species and species group. The graph to the left is zoomed in to depict values less than 0.4. 
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Figure 4.15 Boxplot of the root mean square error (RMSE) metric values from performing 10-fold cross validation on the final model 
of each species and species group. The graph to the left is zoomed in to depict values less than 5.
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Discussion 

Overview of Findings 

All tested explanatory variables appear to have potential for predicting shark bycatch per 

set in the GOMRBLL fishery. It was expected that there would be differences across 

species and similarities within species groups. Findings from this study are largely 

consistent with other studies examining shark bycatch per set. We expected soak time and 

number of hooks to be retained with the same trends for all species and species groups. It 

was also expected that coastal and deep-water species and species groups would have 

opposing trends representing their preferred habitat. Lastly it was expected that there would 

be a difference in predictive pattern for small versus large species when it comes to hook 

size; smaller hooks catching smaller species and larger hooks catching larger species. In 

general, these patterns were seen as expected, although not all variables were retained for 

all species.  

Environmental variables largely showed variation across species and groups of 

species while gear/behavior variables largely showed consistency across species and 

groups of species. Catch per set predicted by environmental variables was consistent with 

species’/species group’s ecology. Coastal species are caught more in coastal locations with 

shallow waters while deep-water species are caught more in deep waters. No discernable 

yearly patterns are shown but some seasonal patterns within each year are apparent, which 

is fairly consistent across species and groups that retain the variable. Gear variables number 

of hooks and soak time all showed an increase in catch per set with an increase in each 

variable while hook shape was consistent across all species and groups. It was surprising 

that hook size did not clearly delineate between small and large species. However, habitat 
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is a key source of differentiation between species and species groups while the use of 

straight hooks, in the water for less time appears to uniformly reduce shark bycatch per set. 

Interestingly, the magnitude of each variable’s effect is largely lost when all species are 

combined even when the effects are consistent across species. Furthermore, the predictive 

ability of models is reduced when species are grouped and is the worst for all species 

combined.  

Relationship to Other Studies 

Foster et al. (2017) found that reducing soak time would reduce shark bycatch per set 

without affecting red grouper catch per set, supporting the patterns found in this study and 

suggesting that focusing on this variable would have minimal effect on target species catch 

per set. Further support is provided by the comprehensive global pelagic longline bycatch 

per set report of Clarke et al. (2014) which concludes that shark bycatch per set  in the 

pelagic longline fishery can be determined by bait type, soak time, hook shape, leader 

length and material, depth, and special shark targeting gear. Clarke et al. analyzed the body 

of mitigation strategies based on these gear configurations and variables had varying results 

and suggests that bycatch does not necessarily correspond to the species typical habitat 

depth, contrary to the current study. This discrepancy could be due to the difference in the 

type of longline studied, pelagic versus bottom longline, and the difference in scope of the 

two studies. Clarke et al.’s (2004) study included large variation over a large spatial area 

that is a result of very broad spatial and species groupings whereas the GOMRBLL study 

was very restricted spatially and found that grouping of species can mask the effect of 

environmental variables. 
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A recent study by Driggers and Hannan (2019) looking at the relationship between 

Atlantic sharpnose catch per set and bait type found that mackerel baited hooks had higher 

catch per set than squid baited hooks. It is possible that combining this finding with the 

findings of the current study could be a way to mitigate the tradeoffs between trying to 

reduce the bycatch per set of multiple species simultaneously. For example, if deep-water 

species were prioritized, encouraging fishers to shift to shallower waters and bait their 

hooks with squid could allow avoidance of deep-water sharks while reducing catch per set 

of Atlantic sharpnose.  

Caveats and Future Research  

This study was limited in temporal and spatial scope. It may not be applicable in the 

western GOM or the Atlantic coast. Interannual effects could be more variable, or cyclical 

if analyzed over a longer time series. This study was also unable to consider more rarely 

caught species due to data limitations. As demonstrated in Chapter 2 of this dissertation 

with the shortfin mako, rare occurrence of catch per set events does not equate to 

insignificant catch per set. Shortfin mako are highly migratory species that move in and 

out of the area and are caught in this fishery rarely, with only 31 caught in 2009-2017. 

Shortfin mako are overfished and experiencing overfishing (Anonymous 2019a). Other 

rarely caught sharks, dusky, Carcharhinus obscurus, angel, Squatina dumeril, and 

smalltail, Carcharhinus porosus, caught 37, 7, and 4 times, respectively, are prohibited 

species. These species are good examples to demonstrate the need to effectively manage 

species with rare catch per set events. 

Further research should directly examine tradeoffs and the consequences of 

prioritizing one shark group over another or attempting to balance the needs of multiple 
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groups at once. Because the species caught as bycatch in this fishery vary in their status, 

productivity, and whether bycatch is an important source of mortality, a management 

strategy evaluation could be used to weigh the tradeoffs involved in mitigation bycatch for 

multiple species simultaneously. Booth et al. (2020) have recently proposed a mitigation 

hierarchy for sharks designed to help make science-based management decisions at the 

fishery level. Step 2 explores management measures that could potentially meet specified 

goals and quantitative targets and includes specific consideration of options for avoiding 

encounters and minimizing capture. Step 3 assesses the hypothetical effectiveness of 

management options including a technical assessment of the degree to which the method 

in question can reduce risk. One potential method for this is implementing some of these 

measures within the mitigation hierarchy for sharks proposed by Booth et al. (2020). This 

study could fit into Steps 2 and 3 of this hierarchy as part of a larger formal decision-

making process. 

The impact of any proposed mitigation in this study does not consider the impact 

to any other bycatch species. Suuronen and Gilman (2019) reviewed several recent studies 

on approaches to monitoring and managing discards. While changing gear selectivity, e.g., 

hook shape, is a common and effective strategy for minimizing capture, they found that 

there is no single gear selectivity option that will reduce interactions with all bycatch 

species. While the current study only looked at sharks while Suuronen and Gilman (2019) 

looked across the bycatch literature, the current study also found that there is no one 

solution that will reduce interaction with all bycatch species. Furthermore, this indicates 

that changing the hook shape to reduce shark bycatch may have unintended consequences 
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for other bycatch species in this fishery. Tradeoffs and consequences for other species in 

the fishery should be incorporated in future studies. 

Results from this study could be combined with information from the GOM shark 

bottom longline fishery that targets shark species, research surveys, and other fisheries that 

catch sharks as bycatch to better define the habitats of species with fewer data, less 

knowledge of ecology, and those that are rarely caught as bycatch but are more prevalent 

in other fisheries. At that point, there may be enough observations of rare species to allow 

for comparison with common species for potential tradeoffs and consequences. Will the 

consistency of hook shape, hook size, and soak time remain? If rare species are grouped 

together will the integrity of the individual species pattern be maintained, or will they need 

to be further grouped by habitat and/or size?  

Recommendations and Final Conclusions 

Considerations of species ecology coupled with management targeting fisher choice of gear 

and methodology have the potential to reduce shark bycatch per set in the GOMRBLL 

fishery. Species vary in which specific environmental and gear variables will mitigate their 

bycatch per set. However, there are indicators that are consistent across all species and 

groups including hook shape, number of hooks set, and soak time. Focusing on gear 

modifications is the only way I found to reduce catch per set of all 12 species at once. 

Encouraging the use of straight hooks, rather than offset, could reduce the catch per set of 

several shark species without negatively affecting other shark species. The number of 

hooks and amount of time the hooks are in the water should be minimized. 

Environmental and location-based variables show more variation across species 

and appear to be consistent with the ecology of each species. A management plan to 
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minimize shark bycatch per set would need to manage tradeoffs and prioritize some species 

over others. For example, depth is important for all but one species/species group, but the 

coastal species show a pattern in direct opposition to the deep-water species. The 

environmental variable that appears the most consistent across species is season. For seven 

species/species groups Season 1 has the highest predicted CPUE. A time closure that 

corresponds to Season 1 could move effort to times of the year when these sharks are less 

susceptible to catch per set. However, this would potentially be detrimental to sandbar, 

smooth dogfish, and silky sharks. Incentives that encourage more effort in Season 2 rather 

than Season 1 move effort onto the highest catch per set time for sandbar and smooth 

dogfish while encouraging more effort in Season 3 rather than Season 1 or 2 moves effort 

onto the highest catch per set time for silky shark but could be beneficial for scalloped 

hammerhead. For the environmental conditions, Hazen et al. (2018) EcoCast integrated 

models suggest that avoidance of multiple bycatch species is possible using fine time/area 

scales. A fine scale, real-time approach like EcoCast, that predicts occurrence of multiple 

species on a probability surface could be the best implementation of measures with 

inconsistent results across species. Applied measures can be chosen based on which shark 

species have the highest probability of being in a given location. 

This study supports the importance of the observer program. While the observer 

program covers only about 1% of fishing effort (National Marine Fisheries Service 2020a), 

it remains the most accurate and reliable source of catch information (Suuronen and Gilman 

2019). Observer programs collect data at the set level while logbooks often report at the 

trip level and tend not to include fine-scale gear and environmental data. These set level 

variables are shown to be important in predicting shark bycatch. Focusing on gear rather 
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than environmental variables is the best apparent option to potentially reduce shark catch 

per set across commonly caught species. Other options based on environment and location 

force the acknowledgement of tradeoffs. Sharks as a group should not be lumped together 

as the signals become confounded and directly managing tradeoffs becomes impossible. 

At the very least, they should be analyzed in subgroups based on ecology; while predictive 

ability and magnitude of variable signals is reduced, the data requirements are minimized 

while still maintaining the integrity of the patterns for the species they represent. 
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CHAPTER 5: CONCLUSION 
 
General Overview 

This dissertation aimed to explore if and how shark bycatch can be reliably predicted and 

how such predictions can be employed to reduce interactions with longline fisheries. Two 

different longline fisheries, the U.S. Pelagic Longline (PLL) and Gulf of Mexico Reef 

Bottom Longline fishery (GOMRBLL), were explored to predict bycatch per unit effort. A 

focus on both single and grouped species that span across stock status, conservation needs, 

ecology, spatial movement, and size, allowed us to fill some of the gaps identified in shark 

bycatch mitigation research (Molina and Cooke 2012). Based on several quantitative 

modeling approaches, i.e. generalized linear models, generalized additive models, 

individual based models, delta lognormal distribution, and quantile regression, it can be 

concluded that environmental conditions and gear configurations can be used to predict 

shark bycatch well enough to suggest bycatch mitigation strategies that significantly reduce 

shark bycatch in longline fisheries. 

Main Points 

It was surprising that throughout the dissertation, simpler, intermediate strategies tended to 

perform better than those with more complicated structure. It was expected that specific 

methods and targeted mitigation strategies would most effectively predict bycatch rates, 

reduce bycatch, and minimally impact fishers. If mitigation could focus on particular catch 

events and particular conditions, we could target the problem and minimize unintended 

consequences. For example, the shortfin mako catch in the pelagic longline fishery is 

highly clumped and patchy, with many sets catching none or one shark while some sets 

catch over 50 individuals at once. If most sets are not contributing to the bycatch rates, a 
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method which focuses only on sets contributing to high bycatch rates would in theory be 

better, in spite of the added complexity. However, this was not the case, quantile regression 

a more complicated method which can focus on high catch rates did not perform better than 

simpler methods. While all approaches appeared to reduce shark bycatch, through all three 

studies, more complex approaches, models, and mitigation strategies appear to overfit and 

be too rigid to deal with the inevitable variation over time. More complex models and 

strategies performed poorly by comparison, even when looking at more commonly caught 

species like the Atlantic sharpnose shark. Very simple and easy to implement operational 

strategies such as not using light sticks in a certain area, a stationary area closure, or using 

straight over offset hooks have the most potential to reduce shark bycatch rates.  

Management can focus on broader trends across species with similar ecology. This 

finding, that comparatively minimal data are required for the development of promising 

bycatch mitigation strategies, offers optimism for other data limited species, which would 

include many sharks. While this study was limited in the number of species considered, it 

gives insight and a foundation for how to approach the bycatch problem for other 

overfished shark species, particularly those that are data limited. Findings suggest that 

more complicated strategies, like a moving closure, could be more effective but only if we 

have enough information to successfully capture spatio-temporal dynamics. There does not 

appear to be a buffer that allows for incorrect assumptions. Incorrect assumptions about 

such dynamics appear to lead to unintended impacts on the shark populations and fishers. 

The Hazen et al. (2018) EcoCast model for the U.S. west coast successfully models blue 

shark bycatch, along with two other bycatch species and the target species, in near real time 

suggesting that at fine scales and with enough information, bycatch mitigation can be 
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improved. There is a dichotomy where over generalizing and more complete knowledge 

can yield positive results but having incomplete information that forces assumptions can 

potentially be worse if those assumptions are incorrect. 

The results of this dissertation show promise for shark management in general. 

Adding detail and complexity may add realism, but this increases the number of parameters 

and need for more data (Plagányi 2007, Espinoza-Tenorio et al. 2012). Several species are 

data limited which can limit our ability to successfully manage them. This study shows that 

we can use simple models with few requirements. Furthermore, the inclusion of 

environmental factors in these models, takes a step toward ecosystem-based fisheries 

management (EBFM) via an ecosystem approach to fisheries management (EAFM). 

EAFM includes the addition of ecosystem factors, such as abiotic environmental factors, 

to a single species stock assessment to enhance our understanding of fishery dynamics 

(Patrick and Link 2015). This level of complexity balances the data requirements, 

uncertainty, and need for some degree of realism (Espinoza-Tenorio et al. 2012). 

According to the updated terminology for classifying ecosystem models, based on 

their structure and purpose, by O'Farrell et al. (2017), all the models presented here could 

be considered to be strategic extensions of single-species models. Currently the 

incorporation of ecosystem factors in the stock assessment process is limited and viewed 

with caution due to data limitations (Christensen and Walters 2011, Patrick and Link 2015, 

O'Farrell et al. 2017). This study shows that for some shark species, the environmental data 

from the observer datasets are sufficient to develop bycatch reduction strategies and assess 

bycatch rates particularly when it comes to considering habitat features. This may also ring 
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true for incorporating environmental factors into the development of abundance indices 

used in stock assessment process in the near future. 

Limitations and Future Work 

This study is limited to two U.S. fisheries operating in the Northwest Atlantic and the Gulf 

of Mexico and 13 species of sharks. While we attempted to represent the variation in shark 

species that interact with longlines, the results of this study may not be applicable to all 

U.S. longline fisheries and the sharks that encounter them. Furthermore, several of these 

species are highly migratory (Abascal et al. 2011, Block et al. 2011, Queiroz et al. 2016) 

and experience fishing pressures of other countries’ fleets (Clarke et al. 2014, Queiroz et 

al. 2019). To comprehensively address the stock status and conservation issues that 

surround these species, all sources of fishing mortality must be considered. This study has 

shown the while we have the ability to capture patterns by grouping similar species, the 

impact of generalized bycatch reduction strategies is limited when compared to treating 

species separately. 

Fisheries management could benefit from determining if this threshold of 

knowledge is persistent across species or groups of species. Further work could include 

predicting bycatch of a species with well-known dynamics and ecology modeled with the 

correct assumptions and again with incorrect assumptions. The efficacy of borrowing 

information from one species to another could be tested in the same framework by grouping 

two species that are known to be ecologically similar and then grouping two species that 

are known to be different. Comparing the model outputs to each other and what is known 

would show the consequences of an incorrect assumption, our ability to effectively use and 
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implement information in a management context, and the appropriateness and hazards 

associated with grouping similar and dissimilar species.  

The issue of tradeoffs could also be explored in a more encompassing ecosystem-

based fisheries approach. This dissertation does not directly measure or model fisher 

behavior. Many of the results of proposed mitigation measures would be greatly influenced 

by fisher operational responses in space/time (including gear changes), however, this study 

made broad assumptions about such responses to get a rough idea of the effectiveness of 

mitigation measures.  Future work could develop models that also simulate fisher decision 

making in longline fisheries. This could be achieved by linking a fisher decision module to 

the models presented in this dissertation, or to similar models. This would give additional 

information to management without requiring additional data and information about the 

shark species of interest although it would require more socioeconomic data about fisher 

decisions. Instead of adding complexity to the modeling of the sharks themselves, which 

has been shown to be potentially detrimental to bycatch reduction efforts, one could add 

complexity by incorporating fisher responses, thus eliminating some of the simplistic 

assumptions made. This would improve the assessment of the potential of these mitigation 

strategies and provide an additional measure of potential tradeoffs.  

Final Thoughts 

Shark management and conservation are challenged by our lack of ecological knowledge, 

the variation across species, and the fact that many are caught incidentally or as bycatch. 

No one method or strategy will affect all shark species that interact with longline gear. This 

study has shown that we have options even with our current lack of information for some 

species. Despite knowledge gaps there is enough information to use simple models and 
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simple mitigation strategies to reduce shark bycatch while we obtain more data and 

knowledge. There will be tradeoffs and all shark species will not be equally helped or 

harmed. The literature and the studies presented in this dissertation suggest that once we 

surpass the knowledge threshold, reliable and consistent bycatch mitigation with 

consideration of target species is possible. Observer programs are vital to supplying the 

data needed to attempt bycatch mitigation and expansion, or some other method of 

improving data limitations, could yield optimal results. In the meantime, the information 

we currently have is enough to substantially reduce shark bycatch in longline fisheries. 
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APPENDIX 
 
This appendix includes supplementary information at more detail than was required for the 

main body of work. This includes model diagnostic plots, summaries of model fit, and the 

specific outcomes of each proposed “no-fish” rule explored as Strategy 3 in Chapter 2 

(Figures A1-A7 and Tables A1-A7), as well as the residual plots for the models in chapter 

4 (Figure A8).  

 

 
Figure A1 Diagnostic plots of the fitted binomial generalized additive model of the 
probability of shortfin mako positive catch. Presence ~ (Year + Fishing Area + Quarter + 
Use of Light + Hooks Between Floats + s(Sea Surface Temperature) + s(Sea Surface 
Height) + s(Bathymetry) - 1). 
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Table A1 Summary of the fitted binomial generalized additive model of shortfin mako 
positive catch. Presence ~ (Year + Fishing Area + Quarter + Use of Light + Hooks Between 
Floats + s(Sea Surface Temperature) + s(Sea Surface Height) + s(Bathymetry) - 1) where 
R-sq.(adj) =  0.211 and deviance explained = 18.7% (n = 7609). Significance codes:  0 
‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.  

Coefficient Estimate Std. Error Z value Pr(>|z|) 
YEAR2003 -1.81117 0.27173 -6.665 2.64E-11*** 
YEAR2004 -1.41412 0.26386 -5.359 8.35E-08*** 
YEAR2005 -1.48016 0.26479 -5.59 2.27E-08*** 
YEAR2006 -1.62276 0.26916 -6.029 1.65E-09*** 
YEAR2007 -1.68083 0.26191 -6.417 1.39E-10*** 
YEAR2008 -1.75802 0.25206 -6.974 3.07E-12*** 
YEAR2009 -1.35803 0.25345 -5.358 8.40E-08*** 
YEAR2010 -1.73951 0.24769 -7.023 2.17E-12*** 
YEAR2011 -1.19915 0.24139 -4.968 6.77E-07*** 
YEAR2012 -1.28531 0.25107 -5.119 3.07E-07*** 
Fishing_AreaGOM -0.40909 0.19281 -2.122 0.03386* 
Fishing_AreaMAB 0.82402 0.21111 3.903 9.49E-05*** 
Fishing_AreaNEC 1.15048 0.23866 4.821 1.43E-06*** 
Fishing_AreaNED 0.49359 0.31601 1.562 0.11831 
Fishing_AreaSAB 0.2739 0.19935 1.374 0.16944 
Fishing_AreaTUNNCASAR -0.45602 0.23263 -1.96 0.04996* 
QUARTER2 0.02255 0.10601 0.213 0.83155 
QUARTER3 -0.06506 0.164 -0.397 0.6916 
QUARTER4 -0.40603 0.13229 -3.069 0.00215** 
Use_of_Light1 0.66664 0.08794 7.58 3.45E-14*** 
HBFfac>7 -0.42845 0.25707 -1.667 0.09559. 
HBFfac4 -0.2442 0.15 -1.628 0.10351 
HBFfac5 -0.2085 0.1631 -1.278 0.20111 
HBFfac6 -0.41293 0.18856 -2.19 0.02853* 
Smooth Terms edf Ref.df Chi.sq p-value 
s(SST) 5.553 6.777 60.96 1.21E-10*** 
s(SSH) 8.413 8.897 48.14 8.45E-07*** 
s(BATHY) 7.579 8.447 139 <2e-16*** 
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Figure A2 Diagnostic plots of the fitted gaussian generalized additive model of the mean 
shortfin mako catch if present. Log(Catch per Unit Effort) ~ (Year + Fishing Area + Quarter 
+ Use of Light + Hooks Between Floats + s(Sea Surface Temperature) + s(Sea Surface 
Height) + s(Bathymetry) - 1). 
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Table A2 Summary of the fitted gaussian generalized additive model of the mean shortfin 
mako catch if present. Log(Catch per Unit Effort) ~ (Year + Fishing Area + Quarter + Use 
of Light + Hooks Between Floats + s(Sea Surface Temperature) + s(Sea Surface Height) + 
s(Bathymetry) - 1) where  R-sq.(adj) =  0.267 and deviance explained = 86.4% (n = 1850). 
Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.  

Coefficient Estimate Std. Error t value Pr(>|t|) 
YEAR2003 1.608265 0.117104 13.734 <2e-16*** 
YEAR2004 1.836146 0.113401 16.192 <2e-16*** 
YEAR2005 1.617891 0.11478 14.096 <2e-16*** 
YEAR2006 1.733958 0.113002 15.345 <2e-16*** 
YEAR2007 1.585978 0.111945 14.167 <2e-16*** 
YEAR2008 1.492378 0.107312 13.907 <2e-16*** 
YEAR2009 1.675615 0.107885 15.532 <2e-16*** 
YEAR2010 1.582313 0.105744 14.964 <2e-16*** 
YEAR2011 1.710076 0.104103 16.427 <2e-16*** 
YEAR2012 1.710659 0.110038 15.546 <2e-16*** 
Fishing_AreaGOM -0.097639 0.082141 -1.189 0.234725 
Fishing_AreaMAB 0.421151 0.09252 4.552 5.67e-06*** 
Fishing_AreaNEC 0.34711 0.099767 3.479 0.000515*** 
Fishing_AreaNED 0.576055 0.124799 4.616 4.19e-06*** 
Fishing_AreaSAB 0.078126 0.086263 0.906 0.36523 
Fishing_AreaTUNNCASAR 0.104057 0.10699 0.973 0.330888 
QUARTER2 -0.023447 0.046342 -0.506 0.612954 
QUARTER3 -0.225448 0.067566 -3.337 0.000865*** 
QUARTER4 -0.279354 0.053424 -5.229 1.90e-07*** 
Use_of_Light1 -0.002016 0.039814 -0.051 9.60E-01 
HBFfac>7 -0.636156 0.107055 -5.942 3.36e-09*** 
HBFfac4 -0.430188 0.061748 -6.967 4.52e-12*** 
HBFfac5 -0.463346 0.065667 -7.056 2.43e-12*** 
HBFfac6 -0.510353 0.075097 -6.796 1.46e-11*** 
Smooth Term edf Ref.df F p-value 
s(SST) 4.214 5.284 4.231 0.000651*** 
s(SSH) 3.484 4.461 6.114 6.2e-05*** 
s(BATHY) 7.702 8.582 16.294 <2e-16*** 
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Figure A3 Diagnostic plots of the fitted generalized additive quantile regression of the 95th 
quantile shortfin mako catch. Log(Catch per Unit Effort) ~ (Year + Fishing Area + Quarter 
+ Use of Light + Hooks Between Floats + s(Sea Surface Temperature) + s(Sea Surface 
Height) + s(Bathymetry) - 1). 
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Table A3 Summary of the fitted generalized additive quantile regression of the 95th 
quantile shortfin mako catch. Log(Catch per Unit Effort) ~ (Year + Fishing Area + Quarter 
+ Use of Light + Hooks Between Floats + s(Sea Surface Temperature) + s(Sea Surface 
Height) + s(Bathymetry) - 1) where R-sq.(adj) =  -0.174 and deviance explained = 74.3% 
(n = 7609). Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

Coefficient Estimate Std. Error z value Pr(>|z|) 
YEAR2003 1.51162 0.16911 8.939 <2e-16*** 
YEAR2004 1.66462 0.17205 9.675 <2e-16*** 
YEAR2005 1.54765 0.15211 10.175 <2e-16*** 
YEAR2006 1.68094 0.16534 10.166 <2e-16*** 
YEAR2007 1.46755 0.15508 9.463 <2e-16*** 
YEAR2008 1.37044 0.14278 9.598 <2e-16*** 
YEAR2009 1.58103 0.14684 10.767 <2e-16*** 
YEAR2010 1.35609 0.157 8.638 <2e-16*** 
YEAR2011 1.78405 0.14302 12.474 <2e-16*** 
YEAR2012 1.69187 0.15243 11.099 <2e-16*** 
Fishing_AreaGOM -0.29491 0.11358 -2.596 0.009420** 
Fishing_AreaMAB 0.80539 0.14074 5.723 1.05e-08*** 
Fishing_AreaNEC 0.87574 0.16825 5.205 1.94e-07*** 
Fishing_AreaNED 1.32178 0.20962 6.306 2.87e-10*** 
Fishing_AreaSAB 0.22373 0.14436 1.55 0.121169 
Fishing_AreaTUNNCASAR -0.10545 0.15079 -0.699 0.484348 
QUARTER2 -0.01449 0.06751 -0.215 0.830069 
QUARTER3 -0.30732 0.10169 -3.022 0.002509** 
QUARTER4 -0.29625 0.07469 -3.966 7.30e-05*** 
Use_of_Light1 0.19419 0.04797 4.048 5.16e-05*** 
HBFfac>7 -0.49132 0.18714 -2.625 0.008655** 
HBFfac4 -0.30698 0.09197 -3.338 0.000844*** 
HBFfac5 -0.2966 0.0996 -2.978 0.002902** 
HBFfac6 -0.42799 0.12977 -3.298 0.000974*** 
Smooth Term edf Ref.df Chi.sq p-value 
s(SST) 5.088 6.257 46.27 4.61e-08*** 
s(SSH) 3.881 4.912 25.24 0.000162*** 
s(BATHY) 7.155 8.101 251.5 <2e-16*** 

 



 

 

139 

 
Figure A4 Diagnostic plots of the fitted generalized additive quantile regression of the 96th 
quantile shortfin mako catch. Log(Catch per Unit Effort) ~ (Year + Fishing Area + Quarter 
+ Use of Light + Hooks Between Floats + s(Sea Surface Temperature) + s(Sea Surface 
Height) + s(Bathymetry) - 1). 
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Table A4 Summary of the fitted generalized additive quantile regression of the 96th 
quantile shortfin mako catch. Log(Catch per Unit Effort) ~ (Year + Fishing Area + Quarter 
+ Use of Light + Hooks Between Floats + s(Sea Surface Temperature) + s(Sea Surface 
Height) + s(Bathymetry) - 1) where R-sq.(adj) =  -0.195 and deviance explained = 78.4% 
(n = 7609). Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

Coefficient Estimate Std.Error zvalue Pr(>|z|) 
YEAR2003 1.67356 0.18675 8.961 <2e-16*** 
YEAR2004 1.87321 0.19457 9.628 <2e-16*** 
YEAR2005 1.69254 0.18121 9.34 <2e-16*** 
YEAR2006 1.84958 0.18625 9.931 <2e-16*** 
YEAR2007 1.62597 0.18882 8.611 <2e-16*** 
YEAR2008 1.52825 0.17222 8.874 <2e-16*** 
YEAR2009 1.72553 0.17322 9.962 <2e-16*** 
YEAR2010 1.5413 0.1765 8.732 <2e-16*** 
YEAR2011 1.91045 0.17299 11.044 <2e-16*** 
YEAR2012 1.82577 0.18008 10.138 <2e-16*** 
Fishing_AreaGOM -0.32195 0.12519 -2.572 0.010120* 
Fishing_AreaMAB 0.76136 0.16267 4.68 2.86e-06*** 
Fishing_AreaNEC 0.82586 0.18851 4.381 1.18e-05*** 
Fishing_AreaNED 1.24035 0.23114 5.366 8.04e-08*** 
Fishing_AreaSAB 0.2917 0.17685 1.649 0.099056. 
Fishing_AreaTUNNCASAR -0.14092 0.175 -0.805 0.420674 
QUARTER2 -0.02505 0.07546 -0.332 0.73993 
QUARTER3 -0.32607 0.11431 -2.852 0.004338** 
QUARTER4 -0.31824 0.08305 -3.832 0.000127*** 
Use_of_Light1 0.16531 0.05993 2.759 0.005806** 
HBFfac>7 -0.52537 0.22141 -2.373 0.017655* 
HBFfac4 -0.31271 0.11236 -2.783 0.005385** 
HBFfac5 -0.29262 0.12027 -2.433 0.014974* 
HBFfac6 -0.45047 0.1466 -3.073 0.002121** 
Smooth Term edf Ref.df Chi.sq p-value 
s(SST) 4.364 5.417 34.9 3.17e-06*** 
s(SSH) 3.403 4.33 16.19 0.0031** 
s(BATHY) 6.844 7.862 192.06 <2e-16*** 
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Figure A5 Diagnostic plots of the fitted generalized additive quantile regression of the 97th 
quantile shortfin mako catch. Log(Catch per Unit Effort) ~ (Year + Fishing Area + Quarter 
+ Use of Light + Hooks Between Floats + s(Sea Surface Temperature) + s(Sea Surface 
Height) + s(Bathymetry) - 1). 
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Table A5 Summary of the fitted generalized additive quantile regression of the 97th 
quantile shortfin mako catch. Log(Catch per Unit Effort) ~ (Year + Fishing Area + Quarter 
+ Use of Light + Hooks Between Floats + s(Sea Surface Temperature) + s(Sea Surface 
Height) + s(Bathymetry) - 1) where R-sq.(adj) =  -0.233 and deviance explained = 82.8% 
(n = 7609). Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

Coefficient Estimate Std. Error z value Pr(>|z|) 
YEAR2003 1.87438 0.25317 7.404 1.33e-13*** 
YEAR2004 2.12243 0.23697 8.957 <2e-16*** 
YEAR2005 1.90358 0.25456 7.478 7.55e-14*** 
YEAR2006 2.04929 0.25053 8.18 2.84e-16*** 
YEAR2007 1.86001 0.25449 7.309 2.69e-13*** 
YEAR2008 1.77211 0.24228 7.314 2.59e-13*** 
YEAR2009 1.91522 0.24023 7.972 1.56e-15*** 
YEAR2010 1.75177 0.21566 8.123 4.56e-16*** 
YEAR2011 2.09955 0.23979 8.756 <2e-16*** 
YEAR2012 2.01412 0.24661 8.167 3.16e-16*** 
Fishing_AreaGOM -0.35275 0.17006 -2.074 0.038059* 
Fishing_AreaMAB 0.73614 0.20667 3.562 0.000368*** 
Fishing_AreaNEC 0.7635 0.23032 3.315 0.000916*** 
Fishing_AreaNED 1.21418 0.29346 4.137 3.51e-05*** 
Fishing_AreaSAB 0.34353 0.21958 1.564 0.117702 
Fishing_AreaTUNNCASAR -0.1449 0.21747 -0.666 0.505235 
QUARTER2 -0.03943 0.0946 -0.417 0.676861 
QUARTER3 -0.34614 0.14278 -2.424 0.015335* 
QUARTER4 -0.31649 0.10574 -2.993 0.002762** 
Use_of_Light1 0.10421 0.07292 1.429 1.53E-01 
HBFfac>7 -0.50568 0.48659 -1.039 0.298698 
HBFfac4 -0.32647 0.15784 -2.068 0.038612* 
HBFfac5 -0.28877 0.16418 -1.759 0.078601. 
HBFfac6 -0.5334 0.19329 -2.76 0.005787** 
Smooth Term edf Ref.df Chi.sq p-value 
s(SST) 3.864 4.795 19.079 0.00165** 
s(SSH) 2.938 3.716 8.698 0.04691* 
s(BATHY) 6.024 7.116 141.558 <2e-16*** 
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Figure A6 Diagnostic plots of the fitted generalized additive quantile regression of the 98th 
quantile shortfin mako catch. Log(Catch per Unit Effort) ~ (Year + Fishing Area + Quarter 
+ Use of Light + Hooks Between Floats + s(Sea Surface Temperature) + s(Sea Surface 
Height) + s(Bathymetry) - 1). 
 



 

 

144 

Table A6 Summary of the fitted generalized additive quantile regression of the 98th 
quantile shortfin mako catch. Log(Catch per Unit Effort) ~ (Year + Fishing Area + Quarter 
+ Use of Light + Hooks Between Floats + s(Sea Surface Temperature) + s(Sea Surface 
Height) + s(Bathymetry) - 1) where R-sq.(adj) =  -0.37 and deviance explained = 87.7% (n 
= 7609). Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

Coefficient Estimate Std. Error z value Pr(>|z|) 
YEAR2003 2.13583 0.31383 6.806 1.01e-11*** 
YEAR2004 2.39832 0.28689 8.36 <2e-16*** 
YEAR2005 2.21849 0.32524 6.821 9.03e-12*** 
YEAR2006 2.32255 0.31015 7.489 6.96e-14*** 
YEAR2007 2.15547 0.30493 7.069 1.56e-12*** 
YEAR2008 2.10524 0.28494 7.388 1.49e-13*** 
YEAR2009 2.20917 0.29306 7.538 4.76e-14*** 
YEAR2010 2.02665 0.28278 7.167 7.67e-13*** 
YEAR2011 2.34548 0.29244 8.02 1.05e-15*** 
YEAR2012 2.26687 0.30442 7.447 9.58e-14*** 
Fishing_AreaGOM -0.31565 0.17269 -1.828 0.067572. 
Fishing_AreaMAB 0.78869 0.22077 3.572 0.000354*** 
Fishing_AreaNEC 0.83865 0.25011 3.353 0.000799*** 
Fishing_AreaNED 1.3716 0.38725 3.542 0.000397*** 
Fishing_AreaSAB 0.37609 0.21479 1.751 0.079946. 
Fishing_AreaTUNNCASAR -0.06949 0.32695 -0.213 0.831675 
QUARTER2 -0.06538 0.12104 -0.54 0.589107 
QUARTER3 -0.43111 0.18071 -2.386 0.017049* 
QUARTER4 -0.32568 0.13102 -2.486 0.012930* 
Use_of_Light1 0.06299 0.07485 0.842 4.00E-01 
HBFfac>7 -0.57775 0.30224 -1.912 0.055930. 
HBFfac4 -0.4412 0.20876 -2.113 0.034566* 
HBFfac5 -0.38073 0.22167 -1.718 0.085886. 
HBFfac6 -0.68643 0.27921 -2.459 0.013951* 
Smooth Term edf Ref.df Chi.sq p-value 
s(SST) 3.355 4.214 10.664 0.0357* 
s(SSH) 2.038 2.612 3.902 2.60E-01 
s(BATHY) 5.553 6.618 116.332 <2e-16*** 
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Figure A7 Diagnostic plots of the fitted generalized additive quantile regression of the 99th 
quantile shortfin mako catch. Log(Catch per Unit Effort) ~ (Year + Fishing Area + Quarter 
+ Use of Light + Hooks Between Floats + s(Sea Surface Temperature) + s(Sea Surface 
Height) + s(Bathymetry) - 1). 
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Table A7 Summary of the fitted generalized additive quantile regression of the 99th 
quantile shortfin mako catch. Log(Catch per Unit Effort) ~ (Year + Fishing Area + Quarter 
+ Use of Light + Hooks Between Floats + s(Sea Surface Temperature) + s(Sea Surface 
Height) + s(Bathymetry) - 1) where R-sq.(adj) =  -0.502 and deviance explained = 93.2% 
(n = 7609). Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

Coefficient Estimate Std. Error z value Pr(>|z|) 
YEAR2003 2.446608 0.427188 5.727 1.02e-08*** 
YEAR2004 2.644425 0.395238 6.691 2.22e-11*** 
YEAR2005 2.630077 0.410091 6.413 1.42e-10*** 
YEAR2006 2.716223 0.389055 6.982 2.92e-12*** 
YEAR2007 2.413323 0.415862 5.803 6.51e-09*** 
YEAR2008 2.559711 0.393287 6.509 7.59e-11*** 
YEAR2009 2.519736 0.376568 6.691 2.21e-11*** 
YEAR2010 2.325321 0.370312 6.279 3.40e-10*** 
YEAR2011 2.643396 0.383187 6.898 5.26e-12*** 
YEAR2012 2.517404 0.398491 6.317 2.66e-10*** 
Fishing_AreaGOM -0.223785 0.219029 -1.022 0.30692 
Fishing_AreaMAB 0.884287 0.302457 2.924 0.00346** 
Fishing_AreaNEC 0.736717 0.326992 2.253 0.02426* 
Fishing_AreaNED 1.314825 0.417846 3.147 0.00165** 
Fishing_AreaSAB 0.410903 0.244293 1.682 0.09257. 
Fishing_AreaTUNNCASAR 0.008614 0.272204 0.032 0.97475 
QUARTER2 -0.070257 0.135569 -0.518 0.60429 
QUARTER3 -0.369058 0.223045 -1.655 0.09800. 
QUARTER4 -0.388786 0.16411 -2.369 0.01783* 
Use_of_Light1 0.093256 0.104602 0.892 3.73E-01 
HBFfac>7 -0.89251 0.410706 -2.173 0.02977* 
HBFfac4 -0.628367 0.285217 -2.203 0.02759* 
HBFfac5 -0.539178 0.298366 -1.807 0.07075. 
HBFfac6 -0.819812 0.32755 -2.503 0.01232* 
Smooth Term edf Ref.df Chi.sq p-value 
s(SST) 2.785 3.514 6.373 1.34E-01 
s(SSH) 1.018 1.036 2.496 1.20E-01 
s(BATHY) 4.484 5.369 88.004 <2e-16*** 

 
 
 
 



 

 

Table A8 Individual results of each rule of a potential operational strategy avoiding hot sets. Based on the binomial model fit to the 
early dataset, hot sets can be described by the following 19 combinations of conditions. These conditions can be used operationally as a 
mitigation strategy. Fishers in any of the MAB, NEC, and MED fishing areas would not set in spots that meet any of the combinations 
of conditions that define hot sets.  

Area Quarter Lights HBF SSH BATHY SST 
Num Sets 
Avoided 

Num Sharks 
Avoided 

Num Hot Sets 
Avoided 

Num Not Hot 
Impacted 

MAB 

1 1 all all all all 26 131 22 4 

2 

0 5 0-0.3 <1600 15-20 0 0 0 0 

1 all all all all 68 90 42 26 

3 

0 

4-6 <0 <800 20-25 6 6 5 1 

5 <0 <800 25-30 21 16 5 16 

1 all all all all 57 74 30 27 

4 

0 4-5 <0 <1600 20-25 2 4 2 0 

1 all all all all 159 327 151 8 

NEC 

2 1 all all all all 53 101 51 2 

3 

0 

4 <0 <2400 20-25 1 0 1 0 

5 <0 3200-4000 25-30 0 0 0 0 

1 all all all all 164 383 163 1 

4 1 all all all all 37 62 37 0 

NED 
3 

0 4 <0.3 all 20-25 2 22 2 0 

1 

4 

<0 <800 <15 5 14 5 0 

<0.3 all 15-20 12 3 12 0 

5 <0 all 15-20 0 0 0 0 

4 1 

4 <0.3 all 15-20 0 0 0 0 

5 <0 3200-4000 15-20 0 0 0 0 

TOTAL      613 1233 528 85 
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Figure A8 DHARMa residuals diagnostic plots by species/species group BIC best negative 
binomial model for the bycatch models in chapter 4 (Hartig 2017). 
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Figure A8 Continued DHARMa residuals diagnostic plots by species/species group BIC 
best negative binomial model for the bycatch models in chapter 4 (Hartig 2017). 
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Figure A8 Continued DHARMa residuals diagnostic plots by species/species group BIC 
best negative binomial model for the bycatch models in chapter 4 (Hartig 2017). 
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Figure A8 Continued DHARMa residuals diagnostic plots by species/species group BIC 
best negative binomial model for the bycatch models in chapter 4 (Hartig 2017). 
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Figure A8 Continued DHARMa residuals diagnostic plots by species/species group BIC 
best negative binomial model for the bycatch models in chapter 4 (Hartig 2017). 
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Figure A8 Continued DHARMa residuals diagnostic plots by species/species group BIC 
best negative binomial model for the bycatch models in chapter 4 (Hartig 2017). 
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