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Abstract: Despite different approaches used to assign the risk scores for missing information in
productivity susceptibility analysis (PSA)—a widely used semi-quantitative risk assessment tool
for target and non-target fisheries stocks—for the selected attributes of a given species, no formal
comparison has been made between scoring approaches in terms of how well they can predict
species vulnerability. The present study evaluated the PSA findings of 21 bycatch stocks of the Hilsa
(Tenualosa ilisha) gillnet fishery of Bangladesh using two different scoring approaches (the conservative
scoring approach, CSA; and the alternative scoring approach, ASA) to determine the most reliable
approach to minimize false estimates of species vulnerability. Our analysis revealed that the V scores
increased by 0.0−0.20 with a mean value of 0.09 for 21 selected bycatches when CSA was applied. The
inconsistency between the vulnerability (V)-score-suggested fishing status (V ≤ 1.8 = underfishing,
V > 1.8 = overfishing) and the fishing status defined by exploitation rate (E > 0.5 = overfishing,
E < 0.5 = underfishing) were 38.1% and 19.0% under CSA and ASA, respectively. Likewise, the
consistency between the V-score-suggested fishing status and fishers’ perceived catch trends was
found to be higher when using ASA than when using CSA. Our analysis suggests that CSA could
overestimate species vulnerability. Therefore, ASA is more reliable than CSA in PSA, which may
increase the confidence of fisheries stakeholders in PSA.

Keywords: Tenualosa ilisha; Indian shad; gillnet fishery; data-limited fishery; bycatch stock; risk
assessment; precautionary approach; life-history parameters

1. Introduction

The sustainable management of fisheries resources is a challenging issue for fisheries
managers across the world [1]. Fisheries management benefits from accurate stock status
estimates to apply harvest control rules and meet management objectives [2,3]. The stock
status compared to different biological reference points (e.g., maximum sustainable yield)
can be adequately made by conventional quantitative stock assessment method, particularly
in data- and capacity-rich settings [4,5].

Generally, large-scale fisheries target species with high commercial value. These
species are subject to more detailed analyses of their life-history traits, productivity, etc., and
are recognized as data-rich stocks. In contrast, the majority of small-scale fisheries, which
account for half of the global fishery catches, are treated as data-limited fisheries [6,7]. These
small-scale fisheries lack the biological and catch data, resources, and expertise required
to estimate stock status using conventional quantitative stock assessment techniques [6].
Therefore, the actual statuses of most global fish stocks from small-scale fisheries remain
unknown [8]. Such fisheries remain unmanaged or managed with insufficient scientific
guidance, leading to suboptimal catch rates and adverse social and economic consequences
for those who depend on fishing [9]. These cases are particularly evident in tropical and
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subtropical regions where multi-species and multi-gear fisheries exist, and diverse groups
of species are often discarded or retained as bycatches with low commercial value [10].

Fishing activities, by definition, have a direct effect on the abundance of targeted
fish stocks and populations and may also have a negative effect on the status of bycatch
stocks [11]. While bycatches are recognized as an important biological component of the
ecosystem, bycatch stock status is insufficiently assessed using traditional quantitative
stock assessment methods [12] due to a lack of information (e.g., time series catch and
effort data, life history data, etc.) [13,14]. Following the increased need to address fish-
ing’s impacts on the whole range of exploited stocks, including bycatch species, fishery
scientists have sought to develop comprehensive methods to assess the potential risk of
various fishing types (gillnet fishing, seine net fishing, longline fishing, etc.) in data- and
capacity-constrained situations where quantitative assessment is not feasible due to data
scarcity [15,16].

Risk or vulnerability assessment typically follows a semi-quantitative approach for
data-limited stocks [3]. The semi-quantitative methods designed for evaluating fisheries’
impacts on target or bycatch stocks [17,18], extinction risk [19,20], and impacts on ecosystem
sustainability [21,22] typically facilitate the inclusion of both qualitative and quantitative
information and a wide range of variables. One of the most widely recognized and
used semi-quantitative assessment tools is called Productivity Susceptibility Analysis
(hereafter referred to as PSA) [23,24]. The PSA is currently being used and recommended
by several fisheries management agencies, including the AFMA (Australian Fisheries
Management Authority), ICCAT (The International Commission for the Conservation
of Atlantic Tunas), IOTC (Indian Ocean Tuna Commission), MSC (Marine Stewardship
Council), NMFS (National Marine Fisheries Service, USA), and WCPFC (Western and
Central Pacific Fisheries Commission) [14,23–25]. Thousands of stocks and populations
across the world, including target and bycatch fish stocks, sea birds, sea turtles, squids,
octopus, and marine mammals, have already been assessed by PSA [26,27].

The most general feature of PSA is that it compares the inherent recovery potential
of species once depleted (i.e., productivity attributes) with the attributes of susceptibility
(i.e., the impact of the fishery on fish stock) to fishing activities in elucidating overall
vulnerability [18,24]. Since its first use in 2001 for evaluating the risk of an Australian
Prawn fishery in terms of bycatch stocks, different modifications and improvements have
been made to the PSA tool. These include increases in the number of attributes rated,
the development of additive methods for calculating the weighted average score for
productivity and susceptibility attributes, the inclusion of a five-tier data quality index,
and the ability to test a range of alternative approaches for missing data [23]. Different
scoring approaches, moreover, have been used by scientists to treat the missing data in
PSA. One approach is to assign a score representing high risk when the data for a particular
attribute is missing. This approach is known as the “precautionary or conservative scoring
approach” in PSA [24]. In contrast, some authors have removed the missing attributes
from PSA, and finally, PSA findings were interpreted using data-quality ratings [3,23].
Most recently, different empirical equations have been used to derive data from correlated
life-history attributes when scoring the missing data for a particular attribute [14,28]. For
instance, the von Bertalanffy growth coefficient (k; how rapidly a fish reaches its maximum
size) tends to be strongly related to fish’s maximum age. Stocks with a long lifespan and
low productivity tend to have a high k-value [29]. In this way, it is possible to obtain the
values for the growth coefficient of fish (if data on the growth coefficient is missing) by
using an empirical relationship between the growth coefficient and the maximum age
of the fish. While different approaches have been used to assign the scores for missing
data for the attribute(s), to the best of our knowledge, no formal comparison has been
made between the different scoring approaches for evaluating how well these approaches
predict species vulnerability to fishing activities by judging the PSA outcomes through
other analytical assessments (e.g., the exploitation rate, which indicates the overfishing or
underfishing status of stocks, catch trends, etc.)
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Under this background, the present study compared the results of PSA for the bycatch
stocks of the Hilsa (Tenualosa ilisha) gillnet fishery of Bangladesh using two different scoring
approaches to determine a more reliable and advisable approach that can reduce false
estimates of species vulnerability. Two scoring approaches used in the PSA analysis were
designated as conservative scoring approaches (CSAs), which assign the highest risk
score based on missing information, and alternative scoring approaches (ASAs), which
include expert opinions and/or the usage of an empirical relationship equation to derive
missing data when the values of the correlated parameters are known, particularly for
productivity attributes.

2. Materials and Methods
2.1. Selection of Bycatch Species from the Hilsa Gillnet Fishery in Bangladesh

Hilsa shad (Tenualosa ilisha), which constitutes the important fishery in the Bay of Ben-
gal and Persian Gulf region, is the single most dominant species in Bangladeshi waters [30].
This transboundary species largely migrates from seawater to the estuarine and riverine
ecosystem during its spawning time, and it is largely captured mostly by gillnets [31].
Gillnet fishing accounts for over 95% of the Hilsa catch in Bangladesh, which supports over
2.5 million peoples’ livelihoods [32].

Hilsa fishers mainly focus on Hilsa as their target species. However, many other fishes
are being captured by their gillnets due to the less selective nature of the gillnet itself
and the multi-species characteristics of Bangladeshi fisheries. Faruque and Matsuda [33]
have recently identified and reported 129 bycatch species from Hilsa gillnet fishing in
Bangladesh. This study considered 21 bycatch species from the Hilsa gillnet fishery for
their vulnerability analysis with PSA in two different scoring approaches. The species we
have selected for PSA are given in Table 1.

Table 1. List of bycatch species from the Hilsa gillnet fishery of Bangladesh for vulnerability assessment with PSA.

Scientific Name FAO
Species Code Common Name Family Order Environment

Preference

Clupisoma garua LUG River catfish Ailiidae Siluriformes Freshwater, brackish

Coilia ramcarati ZZU Ramcarat grenadier
anchovy Engraulidae Clupeiformes Marine, brackish

Harpadon nehereus BUC Bombay-duck Synodontidae Aulopiformes Marine, brackish

Ilisha filigera PIF Coromandel ilisha Pristigasteridae Clupeiformes Marine, freshwater,
brackish

Lates calcarifer GIP Giant perch Centropomidae Carangiformes Marine, freshwater,
brackish

Lepturacanthus savala SVH Savalani hairtail Trichiuridae Scombriformes Marine, brackish
Megalaspis cordyla HAS Torpedo scad Carangidae Carangiformes Marine, brackish

Mystus gulio BMG Long whiskers catfish Bagridae Siluriformes Freshwater, brackish

Nemipterus japonicus NNJ Japanese threadfin
bream Nemipteridae Perciformes Marine

Netuma thalassinus AUX Giant catfish Ariidae Siluriformes Marine, freshwater,
brackish

Otolithoides pama OTD Pama croaker Sciaenidae Perciformes Marine, freshwater,
brackish

Pampus argenteus SIP Silver pomfret Stromatidae Scombriformes Marine

Pampus chinensis CPO Chinese silver
pomfret Stromatidae Scombriformes Marine, brackish

Parastromateus niger POB Black pomfret Carangidae Carangiformes Marine, brackish
Pennahia argentata CRV Silver croaker Sciaenidae Perciformes Marine

Polynemus paradiseus ONU Paradise threadfin Polynemidae Carangiformes Marine, freshwater,
brackish

Pomadasys argenteus GRL Silver grunt Haemulidae Perciformes Marine, freshwater,
brackish

Rastrelliger kanagurta RAG Indian mackerel Scombridae Scombriformes Marine
Rhinomugil corsula RIC Corsula mullet Mugilidae Mugiliformes Freshwater, brackish
Scoliodon laticaudus SLA Spadenose shark Carcharhinidae Carcharhiniformes Marine, brackish

Scomberomorus guttatus GUT Indo-Pacific king
mackerel Scombridae Scombriformes Marine, brackish
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The selected bycatch species belong to eight different orders in 17 families and most
commonly inhabit marine and brackish water ecosystems, with some from freshwater
habitats. We selected these 21 bycatch stocks for vulnerability evaluation because the
exploitation status of these species from Bangladeshi waters was previously assessed from
length-based data using a quantitative stock assessment tool (FAO-ICLARM stock assess-
ment tools) (Table S1). We compared this formal assessment outcome (i.e., exploitation rate,
E) with our PSA assessment outcome to determine the consistency or inconsistency rate
between two outcomes under two different scoring approaches, as described in Section 2.6.

2.2. Selection of Productivity (P) and Susceptibility (S) Attributes for PSA

Flexibility in selecting the number of attributes makes the PSA more compatible than
other semi-quantitative vulnerability assessment tools [23]. The selection of attributes for
productivity or susceptibility scoring mainly depends on the availability of the data and its
ability to represent vulnerability. However, a greater selection of attributes can help ensure
that a sufficient number of attributes are rated [3]. We considered 12 productivity attributes
(Table 2) and 10 susceptibility attributes (Table 3) in our study.

Table 2. Productivity attributes and their scoring criteria were used to determine the productivity of the selected bycatch
stocks from the Hilsa gillnet fishery in Bangladesh (adopted from Faruque and Matsuda, 2020).

Productivity Attributes Low Risk (3) Moderate Risk (2) High Risk (1)

Maximum age (tmax, year) <4 4–8 >8
Maximum size (Lmax, cm) <38 38–85 >85
Von Bertalanffy growth coefficient (k, yr-1) >0.78 0.33–0.78 <0.33
Estimated natural mortality (M, yr-1) >1.21 0.74–1.21 <0.74
Measured fecundity (MF) >64136 10663–64136 <10,663

Breeding strategy (BS) Release eggs into the
water column

Lay eggs in a nest and
guard those eggs until

hatching

Internal fertilization
(/Livebearer) mouth

brooding or other
strategies that involve full

parental care
Age at first maturity (tmat, years) <1.0 1–2 >2
Mean trophic level (MTL) <3.50 3.50–3.90 >3.90
Size at first maturity (Lmat, cm) <19 19–38 >38

Breeding cycle (female)
Annual cycle with

protracted breeding
season

Annual cycle with a
seasonal peak Bi/Triennial

tmat/tmax <0.25 0.25–0.30 >0.30
Lmat/Lmax <0.52 0.52–0.59 >0.59

The productivity of a species or population is heavily influenced by its intrinsic
characteristics [24]. Among the 12 selected productivity attributes, the first eight attributes
(e.g., maximum age, growth coefficient, and natural mortality) were taken from Patrick
et al. [3]. These eight attributes are commonly used in PSA. Each of the selected attributes
has an influence on species productivity. The remaining four productivity attributes—size
at maturity [24], breeding cycle [34], maturity–size ratio, and maturity–age ratio [35]—were
obtained from other works because of their strong correlation with the productivity of the
stocks. Some attributes (maximum age, maximum size, and age and size of fish at maturity)
are negatively correlated with species productivity, which means that species that attain a
larger size, longer lifespan, and slower growth rate are less productive. Conversely, some
attributes are positively correlated with population productivity (e.g., species with greater
natural mortality tend to spawn more eggs to replenish the loss) [36]. Likewise, among
the 10 susceptibility attributes, the first eight attributes, which are commonly used in PSA
(e.g., vertical overlap, seasonal migrations, management strategy, etc.), were chosen from
Patrick et al. [23]. The market value of fish (USD/kg) and the market demand for fish were
taken from Faruque and Matsuda [33].
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Table 3. A set of attributes and their scoring criteria were used to determine the susceptibility of the selected bycatch stocks
from the Hilsa gillnet fishery in Bangladesh (adopted from Faruque and Matsuda, 2020).

Susceptibility
Attributes High Risk (3) Moderate Risk (2) Low Risk (1)

Areal overlap >50% of the stock occurs in
the area fished

Between 25% and 50% of the
stock occurs in the area fished

<25% of stock occurs in the
area fished

Vertical overlap >50% of the stock occurs in
the depths fished

Between 25% and 50% of the
stock occurs in the depths

fished

<25% of stock occurs in the
depths fished

Seasonal migrations Seasonal migrations increase
overlap with the fishery

Seasonal migrations do not
substantially affect the

overlap with the fishery

Seasonal migrations decrease
overlap with the fishery

Schooling,
aggregation, and other
behavioral responses

Behavioral responses increase
the catchability of the gear

Behavioral responses do not
substantially affect the
catchability of the gear

Behavioral responses decrease
the catchability of the gear

Morphological characteristics
affecting capture

Species shows high selectivity
to the fishing gear (e.g.,

torpedo-shaped or bilaterally
flattened with deeper

girth fishes)

Species shows moderate
selectivity to the fishing gear

(e.g., elongated body
shaped fishes)

Species shows low selectivity
to the fishing gear

(e.g., flatfishes)

Management strategy

Stocks do not have input
and/or output control

measures, and target and
bycatch species are not

monitored

Stocks have input and/or
output control measures, and
measures in place to conserve

the stocks occasionally
monitored and enforced

Stocks have input and/or
output control measures, and
measures in place to conserve

the stocks regularly
monitored and enforced by
balancing carrots and sticks

Survival after capture
and release Probability of survival <33% Between 33% and 67%

probability of survival Probability of survival >67%

Market value of fish
(USD / kg) >3.5 1.5–3.5 <1.5

Market demand for fish High Moderate Low
Fishing rate relative to

natural mortality >1 0.5–1.0 <0.5

Some biological parameters (e.g., maximum age and age at first maturity, maximum
size, and size at first maturity) are highly correlated with each other. Therefore, the possibil-
ity of autocorrelation among the selected attributes cannot be ignored [28]. The weighting
for the biological parameters of the fish defined primarily by the productivity attributes can
be increased implicitly if double counting occurs. It was previously suggested to exclude
the attributes where correlation exists, and the value of the correlation coefficient is as high
as 0.90 [24]. Our correlation matrix among the attributes showed no set of attributes for
which the correlation coefficient was greater than 0.90, except for the attributed maximum
size and size at first maturity. However, the exclusion of either of these two attributes
did not significantly change the vulnerability score or category. Therefore, we left both
attributes in our analysis.

2.3. Data Collection for Attribute Scoring

Data on the productivity attributes (e.g., Lmax, k, M, MF, and BS) were mostly col-
lected from published journal articles, grey literature, and books (see Table S3). We
prioritized species-specific data collection from Bangladeshi water areas wherever pos-
sible. We also considered the attribute information, especially for information on the
MF and BC attributes of some species, for members of the same genus in Bangladesh
or the Indian subcontinent, or globally as appropriate, when species-specific data were
unavailable [37]. In cases where information was unavailable for some particular at-
tributes, such as tmax, tmat and Lmat, of a given species, we considered the empirical re-
lationships [29,38] between the attributes to calculate the missing attribute values from
the values of known attributes of same species based on the assumption that some bi-
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ological parameters of fish are highly correlated [39–41]. Lin et al. [28] and Faruque
and Matsuda [33] used similar types of approaches in their assessments. For exam-
ple, the equation of tmax = 3/k (tmax = maximum age; k = the von Bertalanffy growth
coefficient) was used to estimate tmax from the available data on k. We also consid-
ered the following equations to calculate the age at first maturity (tmat) and length at
first maturity (Lmat): tmat = -loge (1-Lmat/L∞)/k (L∞ = asymptotic maximum length) and
Lmat = L∞10 (0.8979−0.0782T) (T = water temperature), respectively. Information on the “mean
trophic levels” of all assessed bycatch stocks was borrowed entirely from the online open-
access library FishBase [42].

The information on the susceptibility attributes was also collected from published
articles, reports, and books (Table S4). In addition, data on the market demand and
selling prices of bycatch species, gillnet selectivity to bycatch species, fishing areas and
times, gillnet-deployed water depth, gillnet dimensions and mesh sizes, the tendency
of fishers to release non-target species back into the water, fishery rules and regulations
and their effectiveness, and the fishery’s degree of compliance with fishery laws were
mainly collected directly from field observations, in-person interviews, and focus group
discussions with experienced and knowledgeable Hilsa fishers (i.e., those with at least
10 years of Hilsa fishing experience). The bycatch species data considered for the PSA
in our study were reported from the inland and marine Hilsa habitats of Bangladesh. In
total, 50 Hilsa gillnet fishers from an inland habitat adjacent to the Hilsa hotspot rivers
(e.g., Meghna, Padam, Tetulia, Andharmanik, and Galachipa) and 50 Hilsa gillnet fishers
from a marine habitat (e.g., Bay of Bengal) were selected using the judgmental sampling
technique [43], also known as purposive sampling, for face-to-face interviews and focus
group discussions, mainly to gather information on the Hilsa fishery of Bangladesh. Specific
survey points of the inland and marine habitats are provided in Table S2. The information
gathered on the Hilsa fishery and its bycatch stocks from interviews and direct observations
was used to score some of the susceptibility attributes (vertical overlap, management
strategy, bycatch species survival after release, management strategies, etc.).

The yearly catch data for the selected bycatch species were not available, except for
data on Harpodon nehereous [32] from Bangladeshi waters. Therefore, to obtain qualitative
information on the bycatch species’ catch trends, we asked the Hilsa fishers to score the
bycatch species on a scale of 1–3, with “1”, “2”, and “3” denoting decreasing, stable, and
increasing trends, respectively (Table S1). This species catch trend information was used to
compare the vulnerability scores, as described in Section 2.6 (comparison of the species V
score with E and the catch trend).

2.4. Conservative Scoring and Alternative Scoring Approaches

Typically, in PSA, all the productivity and susceptibility attributes are ranked on an
ordinal scale. In this ordinal scale (i.e., a 1–3 scale), the scores “1”, “2”, and “3” represent
the “low”, “moderate”, and “high” productivity and susceptibility of stocks. Bycatch
stocks with low P and high S scores represent high vulnerability due to Hilsa gillnet fishing,
whereas bycatch stocks with high P and low S scores indicate low vulnerability. In the
conservative scoring approach, we assigned the lowest score to P and the highest score to S
(i.e., the highest risk) when data were missing, as done in Hobday et al. [24].

Alternatively, to collect missing information, we incorporated expert opinions (e.g.,
local fishery officials through key informant interviews) and used the empirical relation-
ships (described in Section 2.3) between the productivity attributes (see Tables S3 and S4).
The use of this approach for treating missing data while scoring the attributes was called
the “alternative scoring approach” in our PSA. The scoring thresholds for quantitative
data (tmax, M, etc.) and scoring criteria for qualitative data (management strategy, market
demand for fish, etc.) were retained from Faruque and Matsuda [33] (Tables 2 and 3). All
the attributes were equally weighted with default values of 2, as in Patrick et al. [24]. We
referred to Faruque and Matsuda [33] for further details on how to determine scoring
thresholds and set criteria for the bycatch stocks of the Hilsa gillnet fishery in Bangladesh.



Fishes 2021, 6, 33 7 of 15

The data used for scoring each of the productivity and susceptibility attributes and the
assigned scores with the data references are provided in the Supplementary Materials
(Tables S3 and S4).

2.5. Determination of Bycatch Stocks’ Vulnerability (V)

Vulnerability (V) refers to the degree to which a species’ biological capacity to regen-
erate is outstripped by its fishing mortality [18]. V is the result of combining productivity
(P) and susceptibility (S) attributes to build a specific score that quantifies the vulnera-
bility associated with a stock. Stocks found to be the most vulnerable to fishing were
considered low in productivity and high in susceptibility, while stocks high in productiv-
ity and low in susceptibility were deemed the least vulnerable. The Euclidean distance
of the weighted average 3–P and S–1 scores from the origin of a biplot of the equation

V=
√
(3− P)2 + (S− 1)2 [23] was used to quantify species vulnerability. In this equation,

the weighted average P scores are shown on the x-axis using a high to low (3→1) scale,
and the weighted average S scores are plotted on the y-axis using a low to high (1→3)
scale. Finally, the vulnerability categories of the bycatches were defined based on the
vulnerability scores (V < 1.8 = Low, 1.8 ≤ V < 2 = Moderate, V ≥ 2 = High) proposed by
Faruque and Matsuda [33].

2.6. Comparison of Species V Score with the Exploitation Rate (E) and Catch Trend

The credibility issues of PSA have been addressed by some authors by comparing
their PSA findings with the outcomes of other benchmark methods. PSA findings were
previously confirmed, for example, by comparing them to the IUCN Red-List categories,
under the premise that species with higher risk ratings belong to these categories (e.g.,
vulnerable, endangered, critically endangered) [5,26,44]. In addition, PSA results were
compared to a proxy of the stock abundance (e.g., catch per unit effort) [45] and stock
status based on the ratio of actual fishing mortality to the fishing mortality that yields
the maximum sustainable yield [14,44] and historical catch trends (e.g., increasing and
decreasing) under the assumption that species with higher risk ranks/values suffer from
overfishing or stock depletion [46].

Most of the bycatch species that we selected for our analysis lack national or regional
IUCN assessments, although global IUCN risk ranks exist. However, the global IUCN
assessment does not always correspond to the national IUCN Red List, and many global
IUCN assessments downgraded the species threat rank compared to the national IUCN
Red List [33,47]. In the present study, we did not compare our PSA results with the IUCN
Red List since the evaluated species did not have national IUCN Red List ranks. Instead,
the findings of our PSA (V score) were primarily compared with one empirically derived
quantitative assessment outcome (i.e., exploitation rate, E). This kind of comparison is
needed to minimize the uncertainty of PSA outcomes, which will eventually increase the
confidence of knowledgeable stakeholders in PSA [5]. This comparison also supports a
better understanding of the relative risks confronted by bycatch species due to particular
fishing activities. According to Gulland’s approximation, the estimated values of the
exploitation rate (i.e., the ratio of fishing mortality to total mortality) can be used to assess
the overfishing status of a given stock (i.e., when E > 0.5) [48]. It was previously suggested
that the vulnerability of a stock is directly related to overfishing, and a stock with a V score
above 1.8 is likely to be associated with an overfishing problem [33,44]. However, it is not
always necessarily true that stocks with V > 1.8 are overfished or undergoing overfishing
conditions as the V score is a relative measure of risk rather than an absolute one and may
vary across fisheries [23]. We found a direct relationship between the exploitation rate of
the stocks (which quantitatively defines overfishing and underfishing condition) with their
corresponding V score; therefore, in this analysis, we intuitively assumed that a V score of
1.8 is a critical value for the bycatch stocks of Hilsa gillnet fishery of Bangladesh.

The E value is typically calculated based on all gear types and thus describes the total
fishing mortality of all gear types relative to total mortality. However, the V score for a
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given species is specific for a particular gear type (Hilsa gillnet in our case). Therefore,
some inconsistency between the two outcomes (the V score and E) is inevitable. We also
compared our V score with another qualitative indicator, the catch trends of bycatch stock.
Species–species catch statistics are unavailable for the majority (20 species out of 21) of
the selected bycatches in Bangladesh. Therefore, during the interviews with individual
fishers, we asked each of the interviewees about the catch trends of the selected bycatch
species. We presumed that experienced fishers’ perceptions of catch trends for a given
stock would reflect the relative status with greater certainty than other methods. If over
30 Hilsa gillnet fishers (a statistically meaningful majority of 5%) perceived the catch trend
for a particular bycatch species to be “decreasing (−1)”, “increasing or steady (1)”, or
“increasing (2)”, then we ranked that species as “decreasing”, “stable” or “increasing”,
respectively (Table S1). Any category that did not achieve the consensus of 31 fishers was
defined as “not significant (0)”. To compare the V scores with the catch trends, we assumed
that bycatch stocks with “stable”, “increasing”, or “not significant” trends were subject to
underfishing or sustainable fishing, whereas bycatch stocks with “decreasing” catch trends
overtime had an overfishing problem.

Finally, we assumed that the higher consistency between the pairs of outcomes (V
score and E; V score and catch trends) under two different scoring approaches for PSA
would be a useful method in determining the reliable scoring approach for PSA that could
be able to minimize the overestimation of species vulnerability.

3. Results

The vulnerability scores (V) for the 21 bycatch species of the Hilsa gillnet fishery
ranged 1.08–2.32 and 1.16–2.38 in ASA and CSA, respectively (Figure 1). The resulting
vulnerability scores were used to categorize the bycatch stocks into three distinct vulnerable
categories. In CSA, the number of highly vulnerable bycatches increased from two to three
compared to ASA (Figure 2). In addition, for two bycatch species (i.e., Mystus gulio, BMG;
Pampus chinensis, CPO), the risk category changed from low to moderate. Ultimately, when
CSA was applied to the 21 bycatches, the V scores increased by 0–0.20, with a mean value
of 0.09 (Figure 1).

Figure 1. Vulnerability (V) scores (left y-axis) for the selected bycatch species of the Hilsa gillnet fishery in Bangladesh
using conservative and alternative scoring approaches. Values on the right y-axis indicate an increase in the V score after
applying the conservative scoring approach in PSA.
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Figure 2. Two-dimensional productivity–susceptibility plot for the selected bycatches of the Hilsa gillnet fishery in
Bangladesh using an alternative (a) and conservative (b) scoring approach. The dashed contour lines define the boundaries
of the vulnerability categories (V < 1.8 = low, 1.8 ≤ V < 2 = moderate, V ≥ 2 = high). The 3-alpha FAO species identification
codes are provided in Table 1. The species codes in italic font (Figure 2b) indicate changes in the species vulnerability ranks
between the two scoring approaches.

Figure 3 illustrates a comparison between the V score and E in ASA and CSA, re-
spectively. Based on the formal stock assessments for the 21 selected bycatch stocks,
eight bycatch species (38%) were found to suffer from overfishing, while the remainder
62% (13 in number) suffer from underfishing (when E > 0.5, overfishing; E < 0.5, un-
derfishing). Following the V score and its likely association with the exploitation status,
six bycatch species (28.6%) were suggested to have overfishing status, while the remainder
of the 15 bycatch species (71.4%) were suggested to have underfishing status when we
considered ASA (Figure 3a). Despite being classified as overfished by previous studies
based on exploitation rate (E > 0.5), our analysis suggests that Coilia ramcarati (ZZU),
Harpadon nehereus (BUC), and Rastrelliger kanagurta (RAG) are found to suffer from over-
fishing. In contrast, our PSA results suggested an overfishing status for Lates calcarifer
(GIP), but this species was instead given an underfishing (E < 0.5) classification based on
the exploitation rate. The inconsistency between these two outcomes was 19.0% (four cases
out of 21).

On the contrary, when we applied CSA, a total of ten bycatch species (47.6%) were
suggested to suffer from overfishing, and the underfishing stock decreased from 15 to
11 (Figure 3b). Our results also suggest that CSA overclassified the fishing status for an
additional four species—Clupisoma garua (LUG), Mystus gulio (BMG), Otolithoides pama
(OTD), and Pampus chinensis (CPO). Eight inconsistent cases (38.1%) were found when we
compared the fishing statuses determined by the E score and the likely association of V
with the fishing statuses of the selected bycatch species.

While comparing the V scores of the bycatch stocks of our PSA with the catch trends,
our analysis indicated species with a V score above 1.8 to have a decreasing catch trend in
the ASA scenario (Figure 4a). However, species with V ≤ 1.8 largely presented a stable
catch trend. We presumed that species with decreasing catch trends suffer from overfishing
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(when V > 1.8). Indeed, the consistency levels between the V-score-derived fishing status
and fishers’ perceived catch trends were found to be high in PSA under ASA. However,
some inconsistent cases were observed when CSA was applied. For instance, two species
with stable catch trends (Otolithoides pama and Pampus chinensis) and one bycatch with not
significantly changed catch trend (Mystus gulio) were suggested to be at an overfishing
state based on the V scores in our PSA (Figure 4b). However, it is reasonable to assume that
species with stable catch trends or catch trends without significant changes are sustainably
fished or undergoing underfishing but do not suffer from overfishing problems.

Figure 3. A comparison of the exploitation rates (E) and vulnerability scores (V scores) for the selected bycatches of the Hilsa
gillnet fishery in Bangladesh, where the V scores were derived from the productivity susceptibility analysis (PSA) under the
alternative scoring approach (a) and conservative scoring approach (b). Blue- and red-colored solid points represent the
consistent and inconsistent cases, respectively, between the E and V scores (when V > 1.8 and E > 0.5 = overfishing, and
V ≤ 1.8 and E < 0.5 = underfishing). The 3-alpha FAO species identification codes are presented in Table 1.

Figure 4. A comparison of the catch trends and vulnerability scores (V scores) for the selected bycatches of the Hilsa gillnet
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fishery in Bangladesh, where the V score is derived from productivity susceptibility analysis (PSA) using the alternative
scoring approach (a) and conservative scoring approach (b). The red-colored dashed line represents the demarcation
between overfishing and underfishing based on the V score (where V > 1.8 = overfishing and V ≤ 1.8 = underfishing). The
points (circle) indicate the V score corresponding to each of the assessed stocks, and the letter inside the circle defines the
catch trend (D = decreased, NS = not significant, S = stable). Figure 4a indicates that species with a V score above 1.8 shows
the decreasing catch trend. Figure 4b indicates that the CSA in PSA over-classified the fishing status (i.e., underfishing
status to overfishing status) for Mytus gulio with a non-significant catch trend and for Otolithoides pama and Pampus chinensis
with stable catch trends (shaded circle).

4. Discussion

In response to rising concerns about the impacts of target fisheries on bycatches and
associated species, fishery scientists have sought to develop comprehensive risk assessment
and management tools for all exploited fishery stocks. PSA is one such tool that can include
a large number of exploited stocks in an assessment framework to evaluate the relative risk
among species interacting with particular gear types [23]. Despite its extensive usage in
fishery sciences for risk assessment, there is no standardized framework for PSA [27]. As a
result, risk assessors can tailor the PSA tool in a variety of ways (e.g., for determination
of the scoring threshold and treatment of missing information) based on the assessment
objectives, fishery characteristics, and data availability [3]. In general, when precise data
for the attribute scoring of a species is unavailable (e.g., the tmax of a fish determined from
otolith or scale methods), PSA may use the imprecise data (e.g., adopting tmax data for a
species from the same genus or family) and thereby predict species vulnerability. Thus, the
uncertainty in PSA outcomes cannot be avoided when low-quality data is used or when
the highest score is assigned in the case of unavailable information [5,24]. In the present
study, we calculated the vulnerability for the 21 bycatch stocks of the Hilsa gillnet fishery in
Bangladesh using two different scoring approaches. Finally, our PSA outcomes were tested
against other assessment outcomes to verify which scoring approach is most appropriate
in PSA.

Our findings of an increased V score and a greater number of moderate and high-risk
species under the conservative scoring approach of PSA are consistent with the findings
of Osio et al. [44]. Osio et al. applied two scoring approaches—the best guess scoring
approach (e.g., using missing information for attributes derived from expert knowledge)
and the conservative scoring approach—to study 151 Mediterranean demersal stocks. The
authors found that the conservative scoring approach tended to over-classify the risk for
many species. The conservative scoring approach generally produced more false positives
(i.e., overestimation of risk) than false negatives (i.e., underestimation of risk) [5,49]. We
did not find large differences in vulnerability scores between CSA and ASA in our analysis.
This result is likely because most of the species-specific information on the life history
parameters for the selected bycatch species are available in the existing literature. In the
case of data unavailability for 3 (out of 12) particular attributes (Lmat, tmat, tmax) for some
selected bycatches, the assigned scores were changed between the two scoring approaches.
However, the resulting vulnerability scores in CSA showed greater inconsistency when
compared with other assessment outcomes. Since the contribution of each of the attributes
to the overall vulnerability score is minimal [50], it is expected that increasing the number
of attributes treated with CSA (for missing information) would result in larger differences
in vulnerability scores, especially for data-limited bycatch stocks.

Hobday et al. [24] developed a three-tier hierarchical ecological risk assessment frame-
work (three-tier approach) in which PSA was used to screen out low- and moderate-risk
species, with high-risk species suggested for quantitative risk assessment at a higher level.
The authors determined that species with over-classified risk ranks (false-positive results)
due to the assignment of conservative risk scores would eventually be screened out during
higher-level assessments. However, quantitative assessment at a higher level in the authors’
proposed framework entails higher data requirements, which are difficult to manage for
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a large number of species if many false cases occur in PSA. The data needed for higher-
level assessments of a large number of species would take several years to complete and
implement [49]. However, Rosenberg et al. [50] argued that the underlying benefit of CSA
in PSA is that it provides an incentive to gather more information, and new robust data
can only ever decrease the risk score, not raise it.

In PSA using the alternative scoring approach, we found a greater consistency between
our V-score-suggested fishing status and the fishing status determined from the exploitation
rate, with only a few inconsistent cases. Lucena-Frédou et al. [14] found a similar level of
consistency between their PSA findings and exploitation status (fishing mortality relative
to fishing mortality that gives the maximum sustainable yield) for finfish caught by pelagic
tuna longline fleets in the South Atlantic and Western Indian Oceans. Overall, 75% of
stocks with a higher risk score (V = 1.96–2.64) were found to be overfished or subjected
to overfishing conditions. Since PSA does not provide any absolute stock estimates, the
values of V scores and their likely association with exploitation status can vary between
fisheries [23,44]. Osio et al. [44] reported that unsustainable exploitation was mostly
observed for Mediterranean demersal stocks with higher V scores (≥1.8). Patrick et al. [3]
also observed vulnerability ratings greater than 1.8 in 50 American fish populations that
had previously been overfished or were presently being overfished.

Fishing mortality varies across gear types, which has a direct influence on the exploita-
tion rate (i.e., fishing mortality relative to total mortality) [48]. Therefore, the inconsistent
instances of Coilia ramcarati (ZZU), Harpadon nehereus (BUC), and Rastrelliger kanagurta
(RAG) could be explained by a lack of compatibility [51,52]. The majority of the aforemen-
tioned species are obtained using other types of fishing gear, such as set bag nets and trawl
nets, with different levels of fishing mortality [53]. The disparity for the Lates calcarifer, on
the other hand, could be explained by the prior study’s limited coverage in its sample ar-
eas [54]. In contrast, when using PSA with the conservative scoring approach, we observed
lower consistency in the V-score-suggested fishing status and the absolute fishing status
determined by the E score from the formal assessment.

The stock status for Otolithoides pama, Pampus chinensis, and Mystus gulio remained
stable and did not significantly change the catch trend, which suggests that these species
do not suffer from overfishing problems despite being classified as overfished by their
V scores under the conservative scoring approach. Although using qualitative catch trend
analysis (i.e., the fisher’s perceived stock status) to determine the stock status for fishery
stocks or populations is not as robust as other quantitative indices such as catch per unit
effort [44], the catch trend has been used for many years in fishery science to determine the
stock status when there are no quantitative data [55,56].

The PSA results are less precise than those obtained from fully quantitative stock
assessments. However, when comprehensive data on stock abundance, catch levels, or
other conventional fisheries indicators are lacking, PSA offers a helpful starting point for
identifying the relative risk of a species due to fishing, thus prioritizing data collections,
future research needs, and management activities. A higher level of agreement between
PSA outcomes and the results obtained from other reliable quantitative assessments may
increase stakeholders’ confidence in PSA’s outcomes. The PSA approach performed on
21 bycatch species from the Hilsa gillnet fishery in Bangladesh does not replace the con-
servative scoring method in PSA but instead provides aid for PSA users to determine
which scoring approach is most reliable in PSA. Our PSA outcomes for the two different
scoring approaches suggest that the conservative scoring approach could overestimate
vulnerability. In contrast, the alternative scoring approach is comparatively more reliable
in PSA, which could minimize false estimates of species vulnerability and thus increase the
credibility of PSA’s application in data-limited situations.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/fishes6030033/s1, Table S1. Exploitation rate (E) of and catch trend of the selected bycatch
of Hilsa gillnet fishery of Bangladesh. Species listed in bold text are from inland habitat (river)
and the rest of the species are reported from marine habitat, Table S2. Study districts including
the survey points details. Values inside the parenthesis indicates the number of participants in
each FGD, Table S3. Productivity attributes with values (e.g., tmax value), scores (e.g., tmax score)
and corresponding references used in the productivity susceptibility analysis (PSA) for the selected
bycatch of Hilsa gillnet fishery of Bangladesh. Each of the attribute’s names in full form is provided
in the main text (Table 2). Attributes values have mainly complied from existing literature (normal
text). In absence of information for particular attributes (bold italic text), we have assigned scores in
both the conservative and alternative scoring methods. Score inside the parentheses is being assigned
considering conservative scoring approach, whereas value outside the parentheses is assigned based
on corresponding attribute value calculated from empirical relationship equations (described in
the main text), Table S4. Susceptibility attributes with scores (e.g., AO score) and corresponding
references used in the productivity susceptibility analysis (PSA) for the selected bycatch of Hilsa
gillnet fishery of Bangladesh. Each of the attribute’s names in full form is provided in the main text
(Table 3). Attributes values have mainly complied from existing literature, focus group discussion
(FGD) and direct field observation (DO) (normal text). In absence of information for particular
attributes (bold italic text), we have assigned scores in both the conservative and alternative scoring
methods. Score inside the parentheses is being assigned considering conservative scoring approach,
whereas value outside the parentheses is assigned based on expert opinion from key informant
interview (KII).
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