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Abstract 

Fisheries bycatch, the incidental mortality of non-target species, is a global threat to seabirds and 
a major driver of their declines worldwide. Identifying the most vulnerable species is core to 
developing sustainable fisheries management strategies that aim to improve conservation 
outcomes. To advance this goal, we present a preliminary vulnerability framework that integrates 
dimensions of species’ exposure, sensitivity, and adaptive capacity to fisheries bycatch to 
classify species into five vulnerability classes. The framework combines species' traits and 
distribution ranges for 341 seabirds, along with a spatially resolved fishing effort dataset. 
Overall, we find most species have high vulnerability scores for the sensitivity and adaptive 
capacity dimensions. By contrast, exposure is more variable across species, and thus the median 
scores calculated within seabird families is low. We further find 46 species have high exposure 
to fishing activities, but are not identified as vulnerable to bycatch, whilst 133 species have lower 
exposure, but are vulnerable to bycatch. Thus, the framework has been valuable for revealing 
patterns between and within the vulnerability dimensions. Still, further methodological 
development, additional traits, and greater availability of threat data are required to advance the 
framework and provide a new lens for quantifying seabird bycatch vulnerability that 
complements existing efforts, such as the International Union for Conservation of Nature 
(IUCN) Red List.
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Introduction 1 

As of 2018, the global fishing fleet is estimated at 4.56 million fishing vessels of various sizes 2 

(FAO 2020). Fisheries bycatch, the incidental mortality of non-target species, is a serious threat 3 

to seabirds, driving seabird population declines worldwide (Dias et al. 2019). Thus, key goals for 4 

successful fisheries management and conservation are to identify vulnerable non-target species 5 

and develop bycatch mitigation strategies. Yet, these goals pose global challenges because 6 

seabirds are wide ranging and encounter fishing activities in various national and international 7 

waters at different stages of their life history (Komoroske and Lewison 2015). Better 8 

understanding of the factors affecting vulnerability of species to bycatch is an essential step 9 

towards predicting which species are most at risk and working to mitigate bycatch threats. 10 

 11 

While seabird bycatch is widespread, a global quantification of seabird vulnerability to fisheries 12 

bycatch in multiple gear types (e.g. longline, trawl and purse seine) is lacking because bycatch 13 

data are scarce (Anderson et al. 2011, Hedd et al. 2016, Suazo et al. 2017, Zhou et al. 2019). 14 

There is very low observer coverage aboard fishing vessels, and existing data has poor species 15 

discrimination and only coarse quantification (Bartle 1991, Weimerskirch et al. 2000, Sullivan et 16 

al. 2006, Anderson et al. 2011, Hedd et al. 2016, Suazo et al. 2017). Thus, bycatch mortality of 17 

high-risk species may be undetected by on board vessels by fishers and observers, and therefore 18 

under- or unreported to databases that collate species’ threat data such as the International Union 19 

for Conservation of Nature (IUCN) Red List (iucnredlist.org). Coupling traits with fisheries 20 

exposure information could offer a complementary lens to existing methods and provide insights 21 

into different dimensions of seabird bycatch vulnerability.   22 

 23 

Trait-based approaches have emerged as being important for advancing conservation efforts 24 

(Miatta et al. 2021), where traits represent fundamental biological attributes of organisms 25 

measured at the individual level (Violle et al. 2007, Gallagher et al. 2020). Furthermore, 26 

selecting ecologically meaningful and interpretable traits can relate to species’ vulnerabilities to 27 

threats (Zhou et al. 2019, Richards et al. 2021). As an exceptionally well-studied group, detailed 28 

information is available on the life history, behavioural and ecological traits of seabirds for 29 

predictive trait-based analyses (Tavares et al. 2019, Richards et al. 2021). Thus, integrating 30 
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freely available global threat datasets with species traits in a vulnerability framework may be a 31 

valuable tool to identify the seabird species most vulnerable to gear-specific bycatch.  32 

 33 

A species’ vulnerability to bycatch is determined by both extrinsic (threats) and intrinsic (traits) 34 

factors. Specifically, such factors include the interplay between a species’ exposure, sensitivity, 35 

and capacity to adapt in response to bycatch (Foden et al. 2013, Potter et al. 2017, Butt and 36 

Gallagher 2018). Firstly, exposure encompasses the extent to which species’ ranges overlap with 37 

fishing activities and the magnitude of activities experienced. For example, wide-ranging pelagic 38 

foragers, such as albatrosses, overlap with a variety of fishing gears and fleets throughout their 39 

lives (Clay et al. 2019). Secondly, sensitivity traits represent a species’ likelihood of bycatch 40 

mortality when it interacts with fisheries. For example, large seabirds have a greater risk of 41 

bycatch mortality than smaller seabirds (Zhou et al. 2019). Finally, adaptive capacity traits 42 

describe the ability for populations to adapt and recover from bycatch mortalities. For example, 43 

bycatch will have a greater impact on seabirds with slow reproductive rates, such as albatross 44 

and auks, which lay a single egg per season and reach sexual maturity after five to ten years.  45 

 46 

Coupling a dataset of traits with seabird global range maps and a spatially resolved gear-specific 47 

fishing dataset could provide a new lens for quantifying seabird bycatch vulnerability that would 48 

complement existing efforts, such as the IUCN Red List. Here we (1) develop a framework for 49 

quantifying seabird bycatch vulnerability to multiple gear types; (2) analyse the emerging 50 

patterns of seabird bycatch vulnerability based on available data and traits; and (3) discuss future 51 

directions and visions for the vulnerability framework. 52 

Building a vulnerability framework 53 

Here we modify a framework that has previously been applied to a diversity of species from 54 

birds and trees to amphibians and corals (Foden et al. 2013, Potter et al. 2017), with the goal to 55 

identify the seabird species most vulnerable to gear-specific bycatch (Fig. 1). Our intention is for 56 

the vulnerability framework to be built upon and improved as more trait and threat data become 57 

available in the future. 58 

 59 
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60 

 61 

Figure 1 |  Framework to quantify species’ vulnerability to bycatch. The combination of 62 

three dimensions: exposure, sensitivity and adaptive capacity, characterise five distinct species’ 63 

vulnerability classes (Box A). Six traits associated with five overarching vulnerability attributes 64 

(Boxes B-D: Size, Feeding, Range, Magnitude, and Population) are used to quantify each 65 

vulnerability class. Black arrows indicate the direction of increased vulnerability. Modified from 66 

Foden et al. (2013) and Potter, Crane & Hargrove (2017). 67 

 68 

 69 
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The trait-based framework integrates three dimensions of bycatch vulnerability based on 70 

exposure, sensitivity, and adaptive capacity. Each dimension encompasses a set of vulnerability 71 

attributes (Size, Feeding, Range, Magnitude, Population) that in turn are represented by species’ 72 

traits (Fig. 1). The framework can be used to classify species into five vulnerability classes: high 73 

vulnerability, potential adapters, potential persisters, potential future vulnerability, and low 74 

vulnerability. Each has implications for conservation prioritisation and strategic planning (Foden 75 

et al. 2013). 76 

 77 

Assessing sensitivity and adaptive capacity to bycatch 78 

We selected body mass and foraging guild to infer the framework’s sensitivity dimension (Fig. 79 

1C), and used generation length and clutch size to quantify the adaptive capacity dimension (Fig. 80 

1D). All traits were extracted from a recently compiled dataset of seabird traits (Richards et al. 81 

2021). 82 

 83 

Assessing exposure to bycatch 84 

To estimate the framework’s exposure dimension, we quantified (1) overlap with fisheries 85 

activities as the percentage of 1° global grid cells shared between species’ ranges and each gear-86 

specific fishing activity, and (2) fishing intensity as the sum of all fishing hours in the 87 

overlapping grid cells (Fig. 1B). To achieve this, we first extracted distribution polygons for 341 88 

seabirds (BirdLife International, 2017) which represent the coarse distributions that species 89 

likely occupy, and are presently the best available data for the seabird global ranges. We created 90 

a 1° resolution global presence-absence matrix based on the seabird distribution polygons using 91 

the package ‘letsR’ and function lets.presab (Vilela and Villalobos 2015). Second, we 92 

downloaded the daily fishing effort data for longlines, trawls, and purse seines from Global 93 

Fishing Watch, which classifies vessel activity based on vessel type and movements (Kroodsma 94 

et al. 2018). For each gear type, fishing effort was summed per 1° global grid cell between 2015 95 

and 2018. Finally, to ensure consistency between the species’ distribution and gear-specific 96 

fishing activity layers, we re-projected all spatial data to a raster format with the same coordinate 97 

reference system (WGS84), resolution (1° x 1° global grid cells) and extent (± 180°, ± 90°). To 98 

achieve this, we used the package ‘raster’ and function rasterize (Hijmans 2020). 99 
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 100 

Trait Scoring and Weighting 101 

Each trait, attribute and dimension were scored between 0 and 1, with 1 indicating the greatest 102 

vulnerability to bycatch (Potter et al. 2017). This was achieved through a stepwise process. First, 103 

all continuous traits from the vulnerability dimensions (body mass, clutch size, generation 104 

length, overlap with fisheries, and fishing intensity) were broken into categories using the 105 

Sturges algorithm which bins the traits based on their sample size and distribution of values 106 

(Sturges 1926). All trait categories were then scored from high to low with ordinal variables 107 

based on increased vulnerability to bycatch (Appendix 1-3). To ensure the prioritisation analysis 108 

predictably weights the criteria (Mace et al. 2007), all scores were scaled between zero and one 109 

and weighted by the frequency of trait occurrence (Potter et al. 2017). 110 

 111 

The following worked example represents the scoring and weighting steps for a trait with four 112 

categories: 113 

  114 

Trait category 1 (lowest vulnerability) = 0 115 

Trait category 2 = (n1 + n2)/ntotal 116 

Trait category 3 = (n1 + n2 + n3)/ntotal 117 

Trait category 4 (highest vulnerability) = (n1 + n2 + n3 + n4)/ntotal = 1 118 

  119 

Where n is the number of species per trait category and ntotal is the total number of species.  120 

 121 

For example, foraging guild contains four categories: ground forager (category 1 = 13 species), 122 

generalist forager (category 2 = 63 species), diving forager (category 3 = 121 species) and 123 

surface forager (category 4 = 144 species), and ntotal for this study is 341 species. Ground forager 124 

has the lowest conservation priority therefore is given a score of 0. All other foraging strategies 125 

are weighted proportionally based on the number of species within that category and the lower 126 

categories (Potter et al. 2017). Therefore, generalist forager’s score is (13 + 63) / 341= 0.22, 127 

diving forager’s score is (13 + 63 + 121)/ 341 = 0.58 and surface foragers, with the greatest 128 
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conservation priority, have a score of (13 + 63 + 121 + 144)/ 341 =1. These equations are applied 129 

to each trait independently, and the number of trait categories varies between 3 to 5 per trait. 130 

 131 

Vulnerability Classes 132 

We categorise species into vulnerability classes (Fig. 1A) based on a dimension score threshold 133 

of 55%. This threshold was decided from a sensitivity test by balancing between excluding all 134 

vulnerable species because thresholds were too high, and ensuring minimal species changes 135 

between threshold levels across all gear types (Fig. A4.1). If all dimensions (exposure, 136 

sensitivity, and adaptive capacity) have a score greater or equal to 55%, species are highly 137 

vulnerable to bycatch, therefore, were classified into the “high vulnerability” class. If the scores 138 

of sensitivity and exposure were greater or equal to 55%, but adaptive capacity was less than 139 

55%, species were considered to have high vulnerability with potential adaptive capacity, and 140 

were assigned to the “potential adapters” class. If the scores of adaptive capacity and exposure 141 

were greater or equal to 55%, but sensitivity was less than 55%, species were considered to have 142 

high vulnerability with potential to persist and were assigned to the “potential persisters” class. 143 

Species were classified into the “potential future vulnerability” class if the scores of adaptive 144 

capacity and sensitivity were greater or equal to 55%, but exposure was less than 55%. If all 145 

dimensions have a score less than 55%, or if only one dimension has a score greater or equal to 146 

55%, species had low overall vulnerability and were assigned to the “low vulnerability” class. 147 

This approach was repeated for the three gear types (longline, trawl and purse seine). Thus, all 148 

species received vulnerability scores and classes associated with each gear type. 149 

 150 

All analyses were performed in R version 4.0.2 (R Core Team 2020). 151 

Emerging patterns of species’ vulnerability to bycatch 152 

Our preliminary vulnerability framework revealed emerging patterns within the vulnerability 153 

dimensions and classes, with species’ vulnerability varying across the three gear types and 154 

dimensions (Fig. 2 & 3; Appendix 5). Albatrosses have the highest overall vulnerability followed 155 

by frigatebirds, petrels, and shearwaters, while gulls, terns, and cormorants have the lowest 156 
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overall vulnerability (Fig. 2). All seabird families have relatively high sensitivity (median = 0.70)157 

and little capacity to adapt (median = 0.74) in response to bycatch (Fig. 2). By contrast, exposure 158 

is more variable and has emerged as an important vulnerability dimension. While the median 159 

exposure across families is low (median = 0.17; Fig. 2), a number of families and individual 160 

species have high exposure scores. For example, the Wedge-tailed Shearwater 161 

(Ardenna pacifica) has a longline exposure score of 0.95, the Northern Fulmar (Fulmarus 162 

glacialis) has a trawl exposure score of 0.90, and the Black-tailed gull (Larus crassirostris) has a 163 

purse seine exposure score of 0.97.  164 

 165 

166 

Figure 2 |  Median overall vulnerability, adaptive capacity, exposure, and sensitivity scores 167 

of all seabird families to longline, purse seine, and trawl gear types. 168 

 169 

Furthermore, we find 46 species have high exposure (score ≥ 75%) to at least one gear type, but 170 

are not identified as vulnerable to bycatch by the IUCN threat classification scheme (threats 5.4.3171 

& 5.4.4 from https://www.iucnredlist.org/resources/threat-classification-scheme). These species 172 

were predominantly gulls and terns (n = 16), petrels and shearwaters (n = 13), and storm-petrels 173 

8
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(n = 7). A total of 133 species have lower exposure (score < 75%) to at least one gear type, but 174 

are identified as vulnerable to bycatch by the IUCN. These species were predominantly petrels 175 

and shearwaters (n = 31), albatrosses (n = 22), auks (n = 19), and gulls and terns (n = 19). 176 

 177 

178 

 179 

Figure 3 |  The number of species falling into each vulnerability class for longline, purse 180 

seine and trawl gear types. Charadriiforms encompass gulls, tern, skuas, auks, jaegers; 181 

Pelecaniformes are pelicans; Phaethontiformes are tropicbirds; Procellariiformes encompass 182 

albatross, petrels, shearwaters; Sphenisciformes are penguins; Suliformes encompass gannets, 183 

boobies, cormorants, frigatebirds.  184 

 185 

 186 

We further find taxonomic differences between the five vulnerability classes. Specifically, 187 

species falling into the high vulnerability class (highest scores across all three dimensions) were 188 

predominantly albatrosses, petrels, and shearwaters (Fig. 3; Appendix 5). The most frequent 189 

species within the potential adapters class (high sensitivity and exposure scores, but do have 190 

adaptive capacity due to low scores) were gulls and cormorants (Fig. 3; Appendix 5). Potential 191 

persisters (low sensitivity score, high adaptive capacity and exposure scores) were typically 192 

9
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storm-petrels and shearwaters (Fig. 3; Appendix 5). The potential future vulnerability class (high 193 

scores for sensitivity and adaptive capacity, low score for exposure) was commonly composed of 194 

albatrosses, petrels, and shearwaters (Fig. 3; Appendix 5). Finally, species classified with low 195 

vulnerability (low scores across all dimensions, or a high score for only one dimension) were 196 

predominantly gulls and terns (Fig. 3; Appendix 5). 197 

Vulnerability framework limitations 198 

The vulnerability framework identified 62% (n = 32) more species that may be vulnerable to 199 

bycatch (those falling into the high vulnerability class), but are not currently recognised by the 200 

IUCN threat classification scheme as threatened from bycatch. Furthermore, it is important to 201 

note that in its present form, the framework miss-classified 36% (n = 70) of the species identified 202 

as threatened from bycatch by the IUCN into the low vulnerability class and 44% (n = 64) into 203 

the potential future vulnerability class. These differences are likely attributed to limitations in 204 

trait selection within the vulnerability framework’s dimensions. For example, we do not include 205 

a species’ boldness or propensity to interact with vessels because these traits are not available for 206 

all seabirds. To increase the framework’s value, we encourage its further development in the 207 

future with suggestions listed below. 208 

Future directions for the vulnerability framework 209 

While the framework has been valuable for revealing patterns between and within the 210 

vulnerability dimensions, data limitations are presently impeding its full functioning to 211 

effectively classify species into their vulnerability classes. However, we believe the framework 212 

could become a valuable tool in the future as additional and finer-scale traits and threat data 213 

become available because the framework is highly adaptable to spatial and temporal variations in 214 

traits and threats. To aid in its replication and development in future analyses, we provide the R 215 

code used to build the framework. 216 

 217 

Trait and dimension improvements 218 

While an array of traits are available for seabirds, to strengthen the vulnerability framework’s 219 

dimensions, additional efforts are required to compile traits that are not currently available for all 220 
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seabirds. For example, to improve the sensitivity dimension, future studies may include traits that 221 

capture a species’ likelihood of interacting with fishing vessels e.g., boldness, opportunism, 222 

competitive ability, and whether they follow ships or not (e.g., Orben et al. 2021). To advance 223 

the adaptive capacity dimension, adding additional metrics that relate to breeding and population 224 

responses may be important, such as breeding frequency, productivity, and adult survival. 225 

Finally, taking advantage of extensive seabird biologging data (e.g. seabirdtracking.org) will be 226 

imperative to refine the spatiotemporal resolution of the exposure dimension, through shifting 227 

the current fishing overlap metric to a quantification of fishing interaction rate. Moreover, adding 228 

information on species abundance distributions and clustering behaviour may further improve 229 

the exposure dimension.  230 

 231 

Fishing activity data improvements 232 

Fishing activity and seabird distributions vary daily, seasonally and annually. We therefore 233 

acknowledge the limitation of using four years of aggregated fishing activity data. Future 234 

modifications of the vulnerability framework may consider integrating the dynamic changes in 235 

fishing activity. Moreover, including more gear types could further refine the approach. For 236 

example, gillnets fisheries cause an estimated 400,000 seabird mortalities annually (Žydelis et al. 237 

2013). However, we excluded this gear type from our analyses because it presently has poor 238 

coverage within the Global Fishing Watch dataset. Finally, distributions of small-scale 239 

subsistence, and illegal, unreported, and unregulated (IUU) fishing activities were unavailable, 240 

and therefore not included in our vulnerability framework. Incorporating IUU fishing activities 241 

in future studies could reveal species with unidentified vulnerability to bycatch.  242 

A future lens for conservation 243 

Few management actions have incorporated trait-based analyses into conservation strategies 244 

(Miatta et al. 2021). However, we suggest that coupling species’ traits with fisheries exposure 245 

data within a vulnerability framework could offer an additional lens to advance ongoing 246 

conservation measures and policy, such as the IUCN Red List. For example, there is very low 247 

observer coverage aboard fishing vessels, and existing data has poor species discrimination and 248 

only coarse quantification (Bartle 1991, Weimerskirch et al. 2000, Sullivan et al. 2006, Anderson 249 

et al. 2011, Hedd et al. 2016, Suazo et al. 2017). Thus, bycatch mortality of high-risk species 250 
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may be undetected by on board vessels by fishers and observers, and therefore unreported to the 251 

IUCN. The framework could complement vessel-based observations through identifying 252 

vulnerable species for which little is known e.g., revealing high vulnerability of gadfly petrels 253 

(Pterodroma sp.) to longline fleets. 254 

 255 

Local management 256 

This framework could further be extended to inform local management actions. For example, the 257 

framework can be easily updated based on interannual and seasonal variation in fishing activity, 258 

additional gear types, and reapplied at local scales. We therefore highly recommend future 259 

studies couple extensive seabird tracking data with colony-specific trait information and regional 260 

fisheries patterns to provide a powerful and informative tool for local management.  261 

Conclusions 262 

We combined fine-scale fisheries data with seabird traits and distribution data to build a 263 

preliminary vulnerability framework that has the potential to identify species at risk from 264 

bycatch and help set conservation priorities. Overall, we find most species have high 265 

vulnerability scores for the sensitivity and adaptive capacity dimensions. Yet, the framework 266 

revealed that species’ exposure to fisheries was highly variable, suggesting that vulnerability to 267 

bycatch may be dynamic and rapidly change with future developments in fishing. The 268 

framework is highly flexible to trait changes within each vulnerability dimensions, therefore we 269 

recommend that future studies compile the additional traits that are required before the 270 

framework can be used as a tool to classify species into the five vulnerability classes. Thus, 271 

coupling species’ traits with fisheries exposure data within a vulnerability framework could be 272 

used as an additional lens to aid ongoing conservation measures and policy. For example, 273 

through supporting the efforts of the IUCN Red List and threat identification by suggesting 274 

which species need to be especially well investigated and protected.  275 

Data Sharing and Accessibility 276 

Seabird traits were extracted from (Richards et al. 2021), specifically 277 

https://doi.org/10.5061/dryad.x69p8czhd. Species distribution polygons are available upon 278 
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request from http://datazone.birdlife.org/species/requestdis. Fishing effort data for 2015 and 279 

2016 are available for download, and data for 2017 and 2018 are available upon request from 280 

https://globalfishingwatch.org/. Please contact Cerren Richards (cerrenrichards@gmail.com) for 281 

access to R code. 282 
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