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A B S T R A C T   

Indices of abundance based on fishery catch-per-unit-effort (CPUE) are important components of many stock 
assessments, particularly when fishery-independent surveys are unavailable. Standardizing CPUE to develop 
indices that better reflect the relative abundance requires the analyst to make numerous decisions, which are 
influenced by factors that include the biology of the study species, the structure of the fishery of interest, the 
nature of the available data, and the objectives of the analysis such as how standardized data will be used in a 
subsequent assessment model. Alternative choices can substantially change the index, and hence stock assess-
ment outcomes and management decisions. To guide decisions, we provide advice on good practices in 16 areas, 
focusing on decision points: fishery definitions, exploring and preparing data, misreporting, data aggregation, 
density and catchability covariates, environmental variables, combining CPUE and survey data, analysis tools, 
spatial considerations, setting up and predicting from the model, uncertainty estimation, error distributions, 
model diagnostics, model selection, multispecies targeting, and using CPUE in stock assessments. Often the most 
influential outcome of exploring and analysing catch and effort data is that analysts better understand the 
population and the fishery, thereby improving the stock assessment.   

1. Introduction 

Indices of abundance based on fishery catch-per-unit-effort (CPUE) 
are important components of many stock assessments for fish and other 
marine species, particularly when fishery-independent sources of in-
formation about population trends, such as research surveys, are un-
available (Maunder and Punt, 2004). This is the case, for example, in 
many fisheries for pelagic or lower value species where surveys are too 

costly or impractical (Bishop, 2006). In such situations, the main 
approach is to develop models that standardize fishery-dependent catch 
and effort data to produce an index of abundance (often simply referred 
to as the ‘index’) that better reflect the relative abundance by accounting 
for the other factors that influence catch rates (Maunder and Punt, 2004; 
Ye and Dennis, 2009). This practice dates at least to Beverton and Holt, 
Section 12) (1957). 

CPUE standardization requires the analyst to make numerous 
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decisions. These decisions are influenced by factors that include the 
biology of the study species, the structure of the fishery of interest, the 
nature of the available data, and the objectives of the analysis (including 
how standardized data will be used in a subsequent assessment model). 
Alternative choices can change the indices and, consequently, the stock 
assessment outcomes and resulting advice to fishery managers. To guide 
decisions and choices, in this paper we provide advice on good practices 
in 16 areas for analysts who develop indices of abundance for use in 
stock assessments (Table 1, Fig. 1). For each of the 16 areas, we focus on 
decision points – occasions where analysts need to select an approach – 
particularly on instances where those choices can affect the resulting 
index. Analysts are encouraged to consider the proposed good practices 
and apply them where practical. It is important for the analyst to un-
derstand the implications of applying or not applying these practices and 
to be able to justify their decisions. 

We begin by considering the fishery definition in the stock assess-
ment – i.e., for what stock component are we estimating CPUE? Next, we 
consider the available data, including issues associated with data 
preparation, quality, misreporting, resolution, and aggregation. We then 
discuss processes that can affect catch rates, such as variables associated 
with catchability versus density. We then move to aspects of the analysis 
itself, including the tools used, methods to identify fishing fleet targeting 
strategies, issues associated with space, setting up and predicting from 
the model, error distributions and uncertainty estimation, model di-
agnostics, and model selection. Finally, we consider approaches for 
employing CPUE in stock assessments, including the use of index fish-
eries, splitting the time series, selectivity changes, and catchability 
change. 

The advice provided in this paper can be implemented using various 
software packages. However, given their free availability and wide-
spread use, we primarily focus on examples using the R software envi-
ronment and its associated libraries (R Core Team, 2022). 

2. Basic equations and definitions 

The relation between catch rates (CPUE) and stock abundance is 
based on the catch equation which, as a first order approximation, re-
lates the number of fish in the catch, C, fishing effort, E, and the average 
fish population density, D, on the fishing grounds: 

C = qED  

where q is a fixed constant of proportionality known as the catchability 
coefficient and is related to the efficiency of the fishing gear (i.e., the 
proportion of the stock removed by one unit of effort). From this 
equation: 

CPUE =
C
E
= qD =

qN
A  

where N is the number of fish on the fishing grounds (a three- 
dimensional volume, usually defined by the two-dimensional surface) 
and A is the spatial area of the fishing grounds. It follows that changes in 
CPUE are due either to changes in the stock density or to changes in the 
catchability coefficient. If the changes in q can be accounted for (‘filtered 
out’), then the remaining changes in CPUE can be related to those in 
stock density. This is the basic idea underlying what is known as the 
standardization of catch rates. 

The concept of abundance needs some elaboration, particularly in 
relation to the concept of availability. Following the definitions pro-
posed by Marr (1951), true abundance is the absolute number of in-
dividuals in a population, availability is the degree (a percentage) to 
which a population is accessible to the efforts of a fishery, and apparent 
abundance is the abundance as affected by availability, or the absolute 
number of fish accessible to the fishery. The concept of availability can 
be further decomposed into two components: one that is directly under 
the influence of the fishing gear (i.e., the selectivity of the gear defined 
as the probability of capture of any fish dependent on individual traits 
such as size) and one which is influenced by factors other than the 
fishing gear (see below). 

From these definitions, if M represents the true abundance, N mea-
sures the apparent abundance, s measures the selectivity of the fishing 
gear, and a represents the other component of availability, then N = saM 
and substituting into the above equation gives: 

CPUE =
saqM

A 

From this equation, it is seen that the relationship between CPUE and 
the true abundance of fish within a given spatial region is influenced by 
both the selectivity (s) and other components of availability (a) of the 
fish to the fishing gear, and the efficiency of the fishing gear (q); thus, to 
adequately standardize CPUE, the analyst needs to understand what 
influences each of these factors. Note, in most of the fishery literature, 
the selectivity parameter combines the two parameters selectivity and 
availability as defined here (i.e., the distinction between the s and a 
terms is rarely made). Selectivity and availability often differ by factors 
such as age, size, sex, and stage and can be informed by the composition 
data based on these characteristics. To simplify the following de-
scriptions and discussions, we simply refer to selectivity, availability, 
and composition data in the following without specifically referring to 
these characteristics. 

Availability will be influenced by the environmental conditions 
prevailing at the time of the fishing operation and/or behavioural at-
tributes of the species being targeted. For example, oceanographic 
conditions may influence the vertical distribution of the habitats 
preferred by both pelagic and semi-demersal target species and, conse-
quently, the overlap of these habitats with the fishing gear (Hinton and 
Nakano, 1996; Maunder et al., 2006; Monnahan et al., 2021). Behav-
ioural characteristics of a species, such as diurnal vertical migrations, 
may also influence the vertical availability of fish to the gear (Abascal 
et al., 2010; He et al., 1997). Covariates describing environmental 
conditions that likely impact local availability to fishing gear are one 
type of ‘catchability covariate’. Alternatively, oceanography can also 
affect the local density, i.e., by causing fish to move outside of the fished 
area and these covariates are often referred to as habitat or ‘density’ 
covariates (O’Leary et al., 2020). The distinction between ‘catchability’ 
and ‘density’ covariates is discussed more thoroughly in Sections 4.4 and 
5.8. 

In addition to localized environmental conditions, catchability will 
be influenced by the types of fishing gear used and how they are 
deployed. The effectiveness of a given fishing gear (i.e., its ability to 
catch the available fish being targeted) will also depend upon a range of 
factors that are under the influence of the fisher. For example, the catch 

Table 1 
The 16 areas of good practices in catch-per-unit-effort (CPUE) standardization 
discussed in this paper.  

Section/subsection Area of good practices 

Section 3 Fishery definitions 
Subsection 4.1 Exploring and preparing data 
Subsection 4.2 Misreporting and biases 
Subsection 4.3 Data aggregation 
Subsection 4.4 Density and catchability covariates 
Subsection 4.5 Environmental variables 
Subsection 4.6 Combining fishery and survey data 
Subsection 5.1 Model fitting methods 
Subsection 5.2 Spatial considerations 
Subsection 5.3 Multispecies targeting 
Subsection 5.4 Error distributions 
Subsection 5.5 Uncertainty estimation 
Subsection 5.6 Model diagnostics 
Subsection 5.7 Model selection 
Subsection 5.8 Assembling an index from a fitted model 
Section 6 Using CPUE indices in stock assessments  
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of broadbill swordfish (Xiphias gladius) increases with the use of light- 
sticks and squid bait on shallow sets deployed in the afternoon, while 
albacore tuna (Thunnus alalunga) prefer pilchard baits on deep sets 
deployed in the morning (Campbell, 2019; Campbell et al., 2017). In-
dividual fishers will also strive to improve the effectiveness of the fishing 
operations to increase the catch rates, and the combined effects of 
learning and improving technology over time lead to a phenomenon 
commonly known as ‘effort creep.’ Towards this end, fishers will often 
‘experiment’ with the way the fishing gear is deployed to maximize its 
effectiveness. To understand this variability and allow analysts to 
standardize the resulting CPUE for these differences, it is important that 
the details of how the fishing gear is deployed are fully recorded in the 
vessel logbook. 

3. Fishery definitions 

A CPUE index in any stock assessment is associated with the part of a 
stock sampled by a specific fishery (termed a ‘fleet’ or sometimes 
‘métier,’ defined here as a specific fleet deploying a specific fishing 
method). The assessment model defines the relationship between the 
index and the overall stock via the catch equation (catchability coeffi-
cient and the selectivity function in age/length/sex/stage structured 
assessment models), and for multi-region models, the spatial structure. 

Defining the fishery (and its representation as a fleet in the assess-
ment model) is, therefore, a fundamental aspect of CPUE standardiza-
tion, requiring a detour into the discussion of selectivity for structured 
assessment models. Most structured stock assessments make the sepa-
rability assumption, i.e., that fishing mortality is the product of catch-
ability, annual fishing effort, and selectivity (Quinn and Deriso, 1999). 
As shown above, selectivity is a combination of availability and contact 

selectivity, and many assessments assume that selectivity is constant 
through time, even though in practice it tends to vary over time 
(Sampson and Scott, 2012). Wrongly assuming constant selectivity can 
bias the assessment results (Hilborn and Walters, 1992; Martell and 
Stewart, 2014), although so can time-varying selectivity in the presence 
of unbalanced composition sampling, substantial data gaps, and/or 
model misspecification. These biases are driven in three main ways: (1) 
by affecting the proportion of the population abundance vulnerable to 
the fishery, which will affect model results via the fit to the CPUE; (2) by 
affecting removals from the population and, therefore, the population 
structure; and (3) by affecting the composition data, resulting in a 
mismatch between the observed and expected size/age/sex composition 
which can substantially affect results (particularly population scaling) 
via the composition likelihood. Joint modelling can be used to ensure 
that CPUE and composition data are set up consistently in the model (see 
below). 

To reduce these biases, fisheries should be defined in ways that 
minimize selectivity change through time. An important source of 
selectivity variation is changing spatial and seasonal distribution of 
fishing effort through time and its interaction with spatiotemporal 
variation in population structure and availability. 

The analyst should explore spatial and seasonal patterns in avail-
ability by size, age, and/or maturity to identify fishery definitions that 
will be robust to changing effort distribution. Tree-based analytical 
methods can be used to identify optimal spatial arrangements for fish-
eries by exploring spatial variation in composition and CPUE trends 
(Lennert-Cody et al., 2013). Similarly, generalized additive models 
(GAMs) can be employed to identify spatial, seasonal, and environ-
mental patterns in length, maturity, and sex ratio which are then used to 
define fisheries for CPUE standardization (Devine et al., 2022; Hoyle 

Fig. 1. Flow chart summarizing the stages of an analysis of catch per unit effort data.  
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et al., 2017). Care needs to be taken when the spatial definition does not 
include the whole population (see below). 

Such exploratory analyses are also an effective way to improve un-
derstanding of the biological structure of the stock and the fisheries. This 
understanding is often more important for assessment outcomes than 
changes in trends of the indices themselves. 

Gear selectivity can also change through time, the effect of which can 
be minimized by separating gear types with different selectivity into 
different fisheries. For example, a change from J-hooks to circle-hooks in 
the Australian longline fishery for broadbill swordfish resulted in fewer 
larger fish being caught (Campbell et al., 2019; Pilling and Brouwer, 
2017). Managing selectivity variation with fishery definitions is a useful 
way to account for the major sources of selectivity variation and to 
predict catch and CPUE with plausible selectivity for strata with gaps in 
the composition data time series. However, the number of fishery defi-
nitions can be limited by the difficulty of managing them with the stock 
assessment package being used, and by the information available to 
distinguish them and to estimate selectivity. 

An alternative or complementary approach to account for selectivity 
variation is to jointly model the CPUE and composition data (Maunder 
et al., 2020) using a spatiotemporal model (STM) to create a joint index 
of relative abundance and stock composition. The approach augments 
the standardization with the observed composition data to generate two 
sets of predicted composition data: one to estimate the index fleet 
selectivity and the other to estimate the extraction fleet selectivity. The 
index composition data are spatially weighted by the predicted stan-
dardized abundance (the index), while the extraction fleet composition 
data are spatially weighted by the catch. The index fleet can be designed 
to have stable selectivity through time by accounting for spatial and 
seasonal covariate effects on availability, as well as catchability varia-
tion associated with vessels, equipment, and fishing technique. In 
contrast, extraction fleet selectivity will vary through time. Some con-
straints with the joint modelling approach are that STMs can be data 
hungry and computationally slow and that their implementation re-
quires more expertise than traditional approaches to set up and run. 
These factors have tended to limit their application, but simplifications 
are available to reduce computational demands (e.g., don’t model the 
composition data but use the raw compositions). In addition, complex-
ities such as spatial variation in covariate effects may be difficult to 
parameterize. This approach will be further discussed in Sections 5 and 
6. 

It is important to consider the spatial domain of the stock assessment: 
how this domain relates to the population domain of the species, how 
this domain can be subdivided into a hypothetical ‘stock-wide sampling 
frame’ composed of spatial sampling units, and what portion of the 
sampling frame is informed by CPUE data for a given fleet. If the fleet 
samples only a small proportion of this stock-wide sampling frame, then 
there is likely to be substantial non-random variation through time in 
the proportion of the assessed stock available to that fleet. This variation 
in availability through time is represented as variation in catchability for 
a standardized index from the fleet if it is used to represent changes in 
stock-wide abundance or size/age/sex composition (Wilberg et al., 
2009). 

The best approach to define fisheries and their associated CPUE will 
depend on the specifics of each stock assessment, the available data, and 
the analyst’s skills and time. Indices that represent a higher proportion 
of the stock are more likely to be representative (i.e., fewer processes 
could drive changes in availability that are confounded with density). 
However, there may be constraints that restrict the components that can 
be included in a representative index such as spatiotemporal patterns or 
covariate effects that are too complex to include in a single STM. It may 
be useful to combine the use of fishery definitions to account for large 
and stable effects on selectivity with STMs to account for remaining 
variation within each fishery. On the other hand, it may be better to 
combine multiple fisheries by calibrating them (with catchability and 
selectivity estimated) in an STM to try and span the spatial range of the 

stock. Such choices are a topic for ongoing research. 

4. Data issues 

4.1. Exploring and preparing data 

Before standardizing CPUE it is essential to thoroughly explore the 
catch and effort dataset, to develop understanding of the data, generate 
hypotheses, and inform the standardization strategies to consider. Un-
derstanding can be developed by graphically summarising the data 
(both the response variable and covariates), exploratory modelling (e.g., 
using random forest (RF) models), and by consulting with key stake-
holders. There should be special focus on identifying changes in the 
distributions of covariates through space or time, as covariates that 
change are the most likely to affect the index (Bentley et al., 2012). This 
preliminary exploration will also allow the analyst to anticipate issues 
with model variables such as data entry errors, missing data, and 
outliers. 

Exploratory analyses should consider the sources of the data and the 
constraints imposed by data collection and storage methods through 
time. Logbooks and observer forms often change through time in ways 
that affect data quality, such as in the recording of spatial and temporal 
resolution, which covariates are reported, the precision and detail re-
ported, species resolution, whether catches are recorded in number or 
weight, whether a species is recorded, and reporting of sex and size. Data 
storage methods may also be influential. 

Graphical summaries can be undertaken in consecutive steps from 
low-to-high resolution. Aggregated summaries (e.g., histograms or 
density plots) of each variable across the full dataset provide an overall 
description of the response variable and potential covariates. These 
explorations should consider the proportions of zeroes (where relevant) 
and the range of the data prior to cleaning. Response variable summaries 
will inform the set of error distributions to consider (Campbell, 2015; 
Hoyle et al., 2014b); see also Section 5.4, including delta (hurdle) and 
mixture models (Langley, 2019). Aggregated summaries also help 
identify outliers and data entry errors (see below) and the need for 
possible data transformation. Examining individual values taken by 
continuous variables is often necessary to identify and remove outliers. 

Spatial and temporal trends in the catch data and candidate cova-
riates should be described through, for instance, time-series of boxplots 
and maps of summary metrics (mean, median, upper and lower quan-
tiles). Where possible, maps of the variable of interest should be dis-
aggregated by temporal strata to help detect any spatiotemporal trends. 
Spatial GAMs can be useful for exploring patterns and identifying sta-
tistically meaningful trends (see Section 5.2). 

To help identify factors that may influence catch rates, relationships 
between nominal CPUE and candidate covariates should be explored. 
These data analyses will inform the type of modelling framework to use 
for continuous covariates, as not all model types allow non-linear re-
lationships (see Section 5.1). Exploratory modelling using a flexible 
modelling framework such as RFs or boosted regression trees (BRTs) 
could also be undertaken to identify covariates explaining the highest 
proportion of the variability in the nominal CPUE and the potential 
shape of the relationship (e.g., linear or quadratic). 

Analysts should maximize the number of records available for the 
standardization to improve model performance and estimates of un-
certainty. As such, the treatment of missing data in covariates needs 
careful consideration as most standardization methods can only include 
records that have values for all the model covariates (Forrestal et al., 
2019). Analysts should tabulate missing values for each covariate and 
try to identify causes and correlates of missingness. Options for records 
with missing values include dropping the full record, dropping the co-
variate, inferring the value from other information (e.g., a missing 
fishing gear value may be inferred from the gear typically used by the 
fisher), or imputation (e.g., median values per vessel). Approaches for 
imputing values range from simple rule-based procedures (Walters, 
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2003) to more sophisticated geostatistical (Munoz et al., 2010; Thorson 
et al., 2015) and Bayesian algorithms (Shemla and McAllister, 2006). 
When including a covariate with a high proportion of missing entries 
(>5–10%) that changes the standardized index, the analyst should 
confirm that the change is due to the covariate itself (e.g., by using in-
fluence plots) and not due to the removal of records where the covariate 
was missing. 

The identification of outliers and their treatment is a key step in 
preparing data for CPUE standardization. Model predictive performance 
is likely to be poorer in the lower and upper tails of covariates given 
insufficient data, and outlying values are more likely to be reporting 
errors. Common approaches include omitting values outside ranges that 
are either fixed or pre-determined based on quantiles. The analyst 
should also check whether outliers are true records of infrequent fishing 
behaviour (for instance) or data entry mistakes. 

Lastly, stakeholder engagement is an important, yet often over-
looked, component of developing a CPUE standardization. It supports all 
the steps outlined above. Fishers, fishery observers, and even fish sellers 
can provide valuable insights to clarify potential data entry issues, 
confirm or invalidate data trends identified in exploratory analyses, 
advise on key covariates to include and their bounding values (e.g., net 
length, number of hooks per line), and explain motivations for changes 
in fishing behaviour (Tesfamichael et al., 2014). When detailed logbook 
data are available, fishers can also highlight the targeting and gear 
setting practices they consider will influence the catch rates of the 
species being targeted. Importantly, engagement can improve trust in 
the analysis as well as facilitate constructive dialogue when the final 
indices are considered for management. 

4.2. Misreporting and biases 

Misreporting catch of the species of interest is a consistent and 
sometimes major problem in many fisheries (Pitcher et al., 2002; Rudd 
and Branch, 2017), which can affect the data used in CPUE standardi-
zation. Indices are more prone to bias when rates of misreporting are 
higher or change through time. To understand the potential for bias, the 
analyst needs to become familiar with fishing industry dynamics and the 
data collection processes and to explore the data. It is useful to construct 
a timeline of changes (e.g., regulations, gear specifications, logbook 
forms, observer training, market conditions etc.) that may affect 
reporting for the species and fishery being evaluated. This can help to 
generate hypotheses to consider while modelling, particularly when a 
sharp change is observed between time periods. 

One cause of misreporting is errors in species identification, which is 
particularly important for bycatch species. Such errors can also affect 
target species in both commercial (e.g., Beerkircher et al., 2009; Peat-
man et al., 2019; Webber and Starr, 2022) and recreational (Jones, 
2004) fisheries. The ways species are reported can also vary. For 
example, sharks can be recorded either at the species level or at a more 
generic grouping level. CPUE indices may need to be restricted to pe-
riods with reliable species identification (e.g., Noriega et al., 2011). 

Sampling bias can affect catch estimates based on estimates of spe-
cies composition made by both fishers and observers. Examples include 
biases associated with grab sampling (Peatman et al., 2019), inconsis-
tent reporting and possible layering in the catch (Webber and Starr, 
2022), and the stratification used for statistical analysis (Duparc et al., 
2020). 

Changes in misreporting can also be linked to administrative factors 
such as changes in logbooks, regulations, the introduction of e-moni-
toring, or observer training. Both under-reporting and over-reporting 
can result from attempts to avoid quota limits, such as when the har-
vest location is misreported (e.g., Hoyle et al., 2015b). Deliberate 
over-reporting can be linked to attempts to establish a catch history in 
anticipation of future quota allocation (Buck, 1995). Under-reporting 
can be a feature of a management system, such as when only the top 
N captured species are reported (e.g, New Zealand inshore trawl 

fisheries, Langley, 2019). 
Bycatch species are more likely to be under-reported when they are 

of little interest to the crew (due to their low commercial value), and 
rates may vary between vessels and change through time. For example, 
rates of shark bycatch reporting in Japanese southern bluefin tuna 
(Thunnus maccoyii) longline fisheries varied substantially between ves-
sels and increased substantially in 2008 for reasons that remain unclear 
(Hoyle et al., 2017). When rates of misreporting vary between vessels, 
analysts can focus on vessels that report more reliably (Grüss et al., 
2022). It should be noted that not all data may be needed to estimate a 
precise index. Limiting the analysis to reliable data that has less vari-
ability in catchability and selectivity will be adequate if they have suf-
ficient spatial, temporal, and covariate coverage. 

Under-reporting can also occur due to discarding or high-grading, 
which can be based on size or relative commercial value (e.g., tuna 
discards in the Indian Ocean, Huang and Liu, 2010), or on prescribed 
conservation measures. The stage in the fishing process when discarding 
occurs can affect whether it is recorded as part of the catch. Analyses 
may need to be adjusted to account for changes in discard rates (e.g., 
Hoyle et al., 2019b). Changes in reporting procedures, such as the 
introduction of electronic monitoring, may also change the rates of 
reporting of discard species (Emery et al., 2019). This is important if 
discards are included in the total catch used in CPUE analyses. Depre-
dation of fishing sets by large marine predators (e.g., Peterson et al., 
2014; Roche et al., 2007) can also result in under-reporting or 
zero-inflation of catch and may require additional modelling or adjust-
ment of the data. 

Misreporting is difficult to address but there are options in some 
circumstances. If available, analysts can compare catch rates between 
data types to identify groups of unreliable records, such as comparisons 
between observer data and logbook data (Hoyle et al., 2017), or between 
logbooks before and after the introduction of electronic monitoring 
(Emery et al., 2019). Since catch rates vary with covariates and target-
ing, predicting expected logbook catch rates based on models fitted to 
observer data is more reliable and powerful than simply comparing raw 
catch rates between datasets (Hoyle et al., 2017; Kai, 2019). 

4.3. Data aggregation 

Analysis of aggregated CPUE data may be required or convenient 
given the availability and quality of data. Due to privacy concerns, 
public domain fisheries data are often available only at aggregated 
spatial and temporal scales (Hinz et al., 2013). Aggregation may begin 
with the fishing logbook, e.g., with effort reported at the day or even the 
trip level. Data may also be aggregated across species due to identifi-
cation problems or for convenience. Although analyses of aggregated 
data may be the only option when finer-scale data (e.g., set-by-set or 
species level data) are unavailable, their results should be treated with 
caution and critically evaluated given the issues raised in the following 
paragraphs. 

Indices derived from data aggregated spatially, temporally, or across 
species may not vary in proportion to the target stock (or complex). 
Covariates that affect catch rates at the set or vessel level (e.g., gear 
settings) or summarize the effects on catchability of multiple factors (e. 
g., vessel IDs) are often unavailable when CPUE data are aggregated to 
coarser spatial or temporal strata. This loss of information may limit the 
ability of CPUE standardization to correct for changes in catchability 
over time (e.g., effort creep: Kleiven et al., 2022; Palomares and Pauly, 
2019). Aggregating data temporally and using a coarser temporal defi-
nition of effort (e.g., day, trip, quarter) than the higher-resolution 
effective unit of effort (e.g., fishing sets, pot throws, or hours 
searched) can change the relationship between CPUE and abundance (i. 
e., the covariate changes over a smaller temporal or spatial scale, often 
intentionally to improve catch rates, but these changes are not apparent 
in the aggregated data). For example, defining CPUE as catch per day 
could mask a population decline if search time within each day or the 
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number of schools fished changes to maintain stability in catch magni-
tude (Ducharme-Barth et al., 2022; Hsu et al., 2022). Spatial and tem-
poral aggregation of CPUE data may create a mismatch between the 
actual oceanographic conditions and the oceanographic covariate 
associated with the aggregated CPUE data. If oceanographic covariates 
are modelled as density covariates (see Section 4.4), this mis-match 
could lead to spurious estimated relationships between predicted den-
sity and the covariate and, if using STMs, could result in inappropriate 
spatial imputations of density (Ducharme-Barth et al., 2022). For 
example, fishers may move to find a specific habitat type within a larger 
spatial stratum to increase catch rates of a certain species. If fishers 
target fish aggregations or areas of preferred fish habitat such as eddies 
or seamounts at a finer resolution than the spatial scale of the aggregated 
CPUE data, then localized, sequential depletion of aggregations could 
introduce hyperstability into the index (Cardinale et al., 2011; Sadovy 
and Domeier, 2005). Lastly, aggregating CPUE data across species is 
likely to exaggerate fishery-induced changes to the combined abun-
dance, given that catchability varies across species (Kleiber and 
Maunder, 2008). Similarly, if productivity varies across the aggregated 
species, fishery-induced decline in abundance of the less productive 
species might be masked by the abundance trend of the more productive 
species (Dulvy et al., 2000). 

In addition to the risk of bias, analysing aggregated data poses sta-
tistical modelling challenges, such as applying an appropriate variance 
structure. Commonly used error structures (e.g., Lognormal and Pois-
son) for CPUE standardization models are generally robust to hetero-
scedastic data (e.g., non-constant variance assumption where, typically, 
the variance increases in proportion to the mean). However, this mean- 
variance relationship is inverted in aggregated data if areas of high catch 
rates also attract higher concentrations of effort, thus reducing the 
variance and violating distributional assumptions (e.g., Hoyle, 2021). 
Furthermore, spatially aggregating data makes it difficult for models to 
accurately represent the spatiotemporal correlation structure. For 
instance, in GAMs, where the spatial correlation is modelled implicitly 
by varying the degree of the spatial smoothing applied, aggregating data 
spreads the spatial and temporal extent of abundance hotspots, and 
generates less flexible spatial smooths (e.g., fewer degrees of freedom) 
which may further inappropriately ‘smear’ the hotspots when making 
spatial predictions. 

Perhaps most importantly, aggregating data can remove fine-scale 
information that allows analysts to understand fishing behaviour. The 
key process of data exploration is limited by loss of information about, 
for example, individual vessel behaviour, fine-scale fish and vessel dis-
tributions, and movement patterns. Analysis methods to identify tar-
geting strategy based on species composition (see Section 5.3) may 
remain possible (e.g., Fu et al., 2016), but with less resolution and 
sensitivity than with operational data. 

Although they do not balance the concerns above, there can also be 
advantages associated with aggregating data before standardization, 
particularly for fisheries where pseudo-replication and serial autocor-
relation are issues. For example, a vessel that obtains high CPUE along 
an oceanic front may continue to fish the front for as long as high catches 
persist, so that sets cannot be considered independent. Similar effects are 
known from sequential trawl hauls. It is often computationally chal-
lenging to apply the appropriate autocorrelation or random effect 
structure to address the consequent violation of independence, espe-
cially for large datasets. Given the risks of bias due to aggregation on the 
one hand, and pseudo-replication on the other, aggregation by vessel, 
month, statistical cell and/or other factors may in some cases be the 
lesser of two evils. A further option is to subsample the data in a random 
or structured way to reduce pseudo-replication. Trade-offs can be 
explored through simulation, or by working with more computationally 
tractable subsets of the operational data. 

4.4. Density and catchability covariates 

Since Beverton and Holt, Section 12) (1957), stock assessment sci-
entists have standardized fishery CPUE to remove the confounding ef-
fects of vessel size and power. For example, Maunder and Punt (2004) 
state “Explanatory variables should, however, be considered in an analysis 
only if there is an a priori reason that they may influence catchability.” 
However, spatial ecologists do the exact opposite by including cova-
riates and then conditioning upon their effect when predicting densities 
across space. To alleviate this confusion, Thorson (2019a) distinguishes 
between ‘catchability’ and ‘density’ covariates: both are included in a 
linear predictor to explain catch-and-effort data, but only density (and 
not catchability) covariates are conditioned upon when predicting 
densities across space. The index is constructed by aggregating pre-
dictions across a specified spatial and temporal domain such that the 
effect of catchability is removed from the index. 

Distinguishing between catchability and density covariates leads to 
the question: how does the analyst know whether a covariate affects 
density, catchability, or both? For example, species might migrate to 
maintain a desired daytime foraging temperature (Lehodey et al., 1997) 
such that local temperature predicts population densities. Simulta-
neously, temperature might affect digestion and metabolic rates, leading 
to a greater attraction towards a baited fishing hook (and hence a higher 
CPUE for a given density and soak duration). In this case, an argument 
could be made that temperature affects both catchability and density. To 
resolve these hypothesized mechanisms, an analyst could combine 
fishery CPUE with auxiliary information, e.g., by measuring behaviour 
directly using satellite and/or conventional tags. Similarly, analysts can 
make inferences about density, catchability, and availability via:  

1. Local depletion: In freshwater sampling, analysts can sample and 
remove individuals in multiple survey passes, using the decline and 
quantity of removals to identify catchability. Similarly, in sessile 
marine organisms, a decline in fishery CPUE over a short season can 
be compared with preceding fishery removals to estimate 
catchability.  

2. Paired sampling: Similarly, bottom trawl data can be paired with 
vertically disaggregated acoustical backscatter to identify vertical 
distribution and infer availability to gear operating at a given vertical 
layer (Monnahan et al., 2021).  

3. Process studies: Finally, an analyst might use a small-scale experiment 
(e.g., temperature-dependent feeding experiments) to identify how 
temperature might affect bait attraction and then assume this rela-
tionship to ‘subtract out’ this effect. 

Regardless of the process, we recommend that analysts explicitly 
outline their rationale when specifying that a covariate affects density or 
catchability. In cases where the correct process is difficult to determine, 
analysts should explore the implications of excluding the covariate from 
the index and including it as either density or catchability. These 
alternative hypotheses can form the basis of alternative CPUE index 
scenarios considered in the stock assessment. 

4.5. Environmental variables 

As noted in Section 4.4, aspects of the aquatic environment, such as 
water temperature, surface chlorophyll-a concentration, oxygenation, 
and light at depth, affect both fish density and catchability. The task of 
CPUE standardization is to eliminate the effect of catchability variables 
so the analyst can employ CPUE data to infer differences in fish density 
across time and space. Given this estimate of density across time and 
space, the analyst can then sum density in each area to generate an 
abundance index for use in stock assessment, or average over years to 
get an estimate of habitat utilization for use in spatial management. 

Regardless of whether analysts specify a covariate as affecting either 
density or catchability, all covariates are used to inform model fit to 
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observations. Treatment between the two types of covariates differs at 
the prediction stage. Catchability covariates are fixed at a base value 
when predicting density across space and time, thereby ‘filtering out’ 
variation associated with different values in the fitted data. By contrast, 
a density covariate has an assigned value at every location across a 
modelled spatial and temporal domain, and the analyst conditions upon 
these values when predicting densities. It should be noted that catch-
ability covariates are only needed for catch events, while density 
covariates are needed for all temporal and spatial strata included in the 
index irrespective of whether there is catch. Including a variable that 
affects density as a catchability covariate can result in biased inference. 
For example, if recruitment decreases as the average temperature in-
creases (e.g., due to climate change), including annual water tempera-
ture as a catchability covariate in an index-standardization model and 
subsequently using a constant value in the prediction will mask the true 
abundance decline over time. However, including average temperature 
as a density covariate (and using its value when predicting densities) can 
result in improved estimates and forecasts (e.g., O’Leary et al., 2020). 
The converse is also true — wrongly attributing to density an effect that 
is linked to catchability will introduce bias. 

Several environmental variables are commonly used in CPUE 
models. Variables such as sea surface temperature, sea surface salinity, 
sea level height, chlorophyll-a concentration, and dissolved oxygen 
concentration have been found to be significant predictors of spatial 
distribution for some species (Campbell, 2015; Han et al., 2022; Liu 
et al., 2022; Tian et al., 2009), particularly for pelagics. Some environ-
mental variables, such as moon phase, eddies, water turbidity, and cloud 
cover, may affect the availability and/or catchability of certain species 
and gear types. 

Environmental variables are often not recorded by fishers at the time 
of fishing, but rather obtained from other sources such as meteorological 
organisations. This is particularly true for density covariates, which 
must be available for all locations and time periods. Variables with a 
long time-lag (e.g., temperature in the months preceding the fishing 
event) should be used with caution in CPUE models. They may affect 
productivity during the period leading to fishing and therefore local 
density (a density covariate), but are often autocorrelated, where cur-
rent values may affect catchability (a catchability covariate). Similarly, 
analysts sometimes use covariates that are derived from a large spatial 
area or obtained from satellite or regional ocean modelling systems (e.g., 
Phillips et al., 2014). In all cases, it is important to provide some 
ecological justification for (1) whether those variables are affecting 
density or catchability and (2) why those are better than using 
vessel-based measurements of environmental conditions, if available. 
The error in measuring the covariates may also need to be considered in 
the model, particularly if the error varies among spatiotemporal strata. 

Despite being important factors affecting fish distribution, many 
environmental variables are confounded with spatial and seasonal co-
ordinates that are often employed as predictors in CPUE models. Hence, 
spatial-temporal effects can act as proxies for comprehensive dynamic 
environmental variables, especially if interactions between these effects 
are included to help account for temporal changes in environmental 
conditions at any spatial location. If the environmental conditions 
generally exhibit consistent spatial and temporal patterns, which is often 
the case, explicitly including these environmental variables may explain 
little additional variation. In the cases where using environmental var-
iables does increase accuracy, their inclusion may also increase the 
annual coefficients of variation (CVs) compared to the models without 
the environmental variables, likely due to the added requirement of 
estimating a relatively imprecise relationship between catch rates and 
environmental variables (Forrestal et al., 2017; Forrestal et al., 2019). 

Goodyear (2016) explored relationships between environmental 
factors, three-dimensional variation in habitat, and longline CPUE in a 
case study for blue marlin (Makaira nigricans). Results of analysing data 
generated from this model generally favoured the inclusion of envi-
ronmental and habitat variables but were affected by the approaches 

taken by each analyst, particularly for variable categorization and model 
selection (Forrestal et al., 2017; Forrestal et al., 2019). 

Two research areas closely related to CPUE standardization are 
species distribution modelling (SDM) and habitat suitability modelling 
(HSM). Both SDM and HSM heavily use environmental variables to 
model fish distributions and their habitat preferences (Bosch et al., 
2018; Lee and Terrell, 1988; Maunder et al., 2006; Pickens et al., 2021; 
Rowden et al., 2017; Zhang and Li, 2017). These studies involve similar 
data and modelling techniques to CPUE analyses. They also often 
consider a third spatial dimension, depth, which can be particularly 
important for some gears such as pelagic longline or for bottom-fish 
species. (see also Hinton, 1996); Hinton and Nakano (1996) developed 
a method to calculate indices of abundance for pelagic longline that 
match the spatiotemporal-vertical habitat with the longline gear and 
species habitat preference. This method was extended into a statistical 
framework by Maunder et al. (2006). 

4.6. Combining fishery and survey data 

In some jurisdictions, analysts produce a separate CPUE index for 
each fishery fleet or métier. This then results in a multitude of abun-
dance indices, and equally weighting these indices implicitly results in 
the assessment model averaging them. To resolve and simplify this sit-
uation, Conn (2010) used a state-space model to combine multiple 
indices into a single ‘consensus’ index, an approach that has been refined 
using Dynamic Factor Analysis (DFA) (Peterson et al., 2017; Peterson 
et al., 2021). However, DFA has several drawbacks, including that: (1) it 
must assign some implicit weight to each constituent index when 
combining them, and these constituent indices representing small or 
large areas are often given equal weight; and (2) residual variation in 
constituent indices is ignored, and the analyst must make some decision 
about which DFA index represents changes in the stock or is attributed to 
correlated variation in catchability. 

Given the difficulty of reconciling differences in multiple indices 
within an assessment, or pre-processing using DFA, analysts increasingly 
seek to include data from multiple fisheries and/or surveys during index 
standardization. Joint analysis expands data coverage spatially and 
temporally. It also ensures consistency of analytical methods, thereby 
removing a key source of differences between indices. This occurs, e.g., 
in combining nearshore and offshore survey data (Perretti and Thorson, 
2019), combining multiple surveys to achieve a basin-scale index 
(Maureaud et al., 2021; Ono et al., 2018), or fleets from multiple nations 
to increase the spatial and temporal coverage of an index (Ducharme--
Barth et al., 2020; Hoyle et al., 2019a; Hoyle et al., 2015b). Prior to joint 
analyses of data from multiple fleets, individual national datasets should 
be thoroughly explored (e.g., Hoyle et al., 2015a; Hoyle and Okamoto, 
2015; Hoyle et al., 2015c) to identify and eliminate sources of data 
conflict. Joint indices for Atlantic tropical tunas (Hoyle et al., 2019a; 
Hoyle et al., 2019c) were judged to have improved the resulting stock 
assessments (Anonymous, 2019; Walter et al., 2020) by reducing data 
conflicts, improving model diagnostics, and ensuring broad and 
consistent spatial and temporal coverage. 

However, there is less research regarding how to combine data from 
multiple fisheries and/or surveys. As one exception, Grüss and Thorson 
(2019) combined data from different surveys to generate an abundance 
index for Gulf of Mexico red snapper (Lutjanus campechanus). Notably, 
the authors first analysed each data source individually to confirm that 
any apparent conflict in the indices could be explained by differences in 
the spatial extent of each fleet. Rufener et al. (2021) combined fishery 
and survey data, after confirming minor apparent data conflict. 

Given these successes, we suspect that there will be ongoing efforts to 
combine CPUE from multiple fisheries and/or surveys. We recommend 
the following good practices:  

1. The analyst should standardize each dataset individually using 
broadly consistent methods and compare resulting density maps and 
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abundance indices both visually and using goodness-of-fit criteria (e. 
g., Alglave et al., 2022; Rufener et al., 2021);  

2. Differences between dataset should be explained mechanistically 
where possible, such as by including covariates that can explain the 
differences in catchability. 

These recommendations arise from the expectation that data con-
flicts imply model misspecification (the “Law of Conflicting Data”, 
Maunder and Piner, 2017). The analyst should also consider that 
selectivity differences between surveys and fisheries may require 
simultaneously modelling the catch rate and length composition data to 
estimate differences in selectivity, in which case calibrating catchability 
and selectivity may require spatial overlap. 

5. Analysis 

5.1. Modeling framework 

As outlined in previous sections, the objective of CPUE standardi-
zation is to remove the effects of changes in fishing practice through 
time (i.e., changes to catchability) from observed catch rates such that 
the trend in standardized CPUE reflects the true relative abundance of 
the stock component selected by the fishery. In practice, this is accom-
plished by building a statistical model that predicts CPUE as a function 
of a set of variables thought to impact local abundance (density) or 
catchability. Recent standardizations mostly use generalized linear 
models (GLMs) or an expansion thereof, implemented in the R Statistical 
Computing system (R Core Team, 2022); this section focuses on tools 
available within this framework. 

There are five key factors to consider when selecting a modelling 
framework which will limit the set of approaches available to the ana-
lysts: (1) the form of the relationship between CPUE and candidate 
explanatory variables; (2) the probability (error) distribution of the 
CPUE; (3) the type of correlation that might be present within the CPUE 
dataset; (4) whether CPUE will be jointly standardized with composition 
data; and (5) how results are processed to yield an overall index of 
abundance. Often, the analyst will have to prioritize one of these five 
factors, as different software packages do not always allow the imple-
mentation of all modelling structures jointly. There are also logistical 
considerations (e.g., computational power) for large datasets that may 
prevent the implementation of some features. 

A CPUE standardization will likely consider both categorical and 
continuous covariates. Vessel identity, bait type, and area are examples 
of categorical covariates; hooks-between-floats, net length, and sea 
surface temperature are examples of continuous covariates. Continuous 
covariates can sometimes be implemented as categorical, depending on 
the desired statistical treatment (e.g., Grüss et al., 2019). In the GLM 
framework and its relatives, categorical covariates are typically 
modelled as deviates from a ‘baseline’ intercept level. In a conventional 
GLM, categorical covariates are estimated as fixed effects, that is, there 
are no constraints on the value of the coefficient assigned to each level. 
This is the default treatment for a categorical covariate and will be 
available in most modelling frameworks. 

An alternative is to fit categorical covariates as random effects. In a 
mixed-effect (or hierarchical) framework (e.g., generalized linear mixed 
model (GLMM); generalized additive mixed model (GAMM)), categori-
cal covariates can be fitted as fixed or random effects. With random 
effects, level coefficients are constrained to belong to a distribution 
(usually Gaussian) of the expected values of the coefficients (Thorson 
and Minto, 2015). This results in the ‘shrinkage’ of covariate levels to-
wards an overall mean, with more shrinkage for values less informed by 
data, which are otherwise more likely to be extreme. Mixed effects are 
now available in an increasing number of R packages, including nlme, 
lme4, glmer, glmmTMB, and mgcv (see also Bolker, 2022), and are 
straightforward to implement in bespoke Template Model Builder 
(TMB) code (see below). 

Random effects have limited application for categorical covariates 
with too few levels to estimate the shape of the distribution, e.g., bait 
type. However, they can be useful for covariates with multiple (> 12) 
levels that may be expected to belong to a common, normal distribution, 
such as a vessel effect. In these instances, some levels might have too few 
records to reliably estimate their model coefficients as fixed effects. 
Poorly sampled levels are not an issue in a mixed-effect framework as 
they are shrunk towards the coefficients of better-informed levels. 
Nevertheless, fixed effect levels with very low record numbers often 
have minimal influence on the indices if retained and may be omitted if 
they cause model convergence problems. Note also that vessel effects 
will not be normally distributed if, for example, there are groups of 
vessels with similar catchability or if there are temporal trends in the 
catchability of vessels joining and leaving the fishery. In such cases, the 
analyst may add structure to the random effects model or may prefer to 
use fixed effects. Simulation testing is useful for selecting a strategy that 
provides a reliable index. 

A common strategy for vessels is to define a ‘core fleet’ comprised of 
vessels meeting an arbitrary set of activity thresholds (e.g., as a function 
of catch and/or time present in the fleet; (Kendrick and Bentley, 2011; 
McKenzie and Parsons, 2012). The core vessels are more likely to have 
characteristics, such as consistent targeting strategies and reporting 
behaviour, that indicate stable catchability. Treating vessel ID as a 
random effect can be an alternative to defining a core fleet since it avoids 
making arbitrary decisions about threshold rules for the core fleet and 
expands the number of records available to the analysis (Grüss et al., 
2023a). Care should be taken when defining a ‘core fleet’ as more 
experienced operators may be able to maintain high catches even if 
abundance declines. 

The relationship between CPUE and continuous covariates can take a 
variety of shapes, including linear, saturating, and dome shaped. In most 
instances, the relationship can be assumed to be non-linear as a starting 
point, as linearity is a strong constraint. Non-linear relationships are best 
implemented via splines, which are a useful improvement over poly-
nomials as they are not constrained in the shapes they can take. Poly-
nomials have other undesirable properties such as the fit in one data 
range being affected by data in other parts of the range (Harrell, 2001; 
Magee, 1998). The splines library (e.g., via the ns function) allows GLMs 
to include splines with a user-specified number of knots, including in 
base-R packages such as stats::glm. 

A preferred alternative for fitting non-linear relationships is the R 
package mgcv which implements GAMs using penalized splines (Wood, 
2017). With penalized splines, the analyst specifies a maximum of knots, 
and the algorithm attempts to maximize fit to the data while minimising 
spline ‘wiggliness.’ The inclusion of splines has improved the perfor-
mance of CPUE standardization models by predicting more realistic 
relationships between CPUE and continuous covariates. However, care 
must still be taken to prevent overfitting or extrapolating far beyond the 
range of available data. If the splines are allowed to be too flexible, the 
CPUE standardization model could be capturing noise. In mgcv, the 
default optimization method GCV tends to overfit, and REML is rec-
ommended instead (Wood, 2017). The relative penalty on ‘wiggliness’ 
can be controlled via the gamma parameter which scales the effective 
sample size. Even with data that are independent and identically 
distributed (i.i.d.), it is recommended to increase gamma to 1.4 from the 
default mgcv value of 1 when using method=GCV (Wood, 2017). The 
analyst can also elect to allow for fewer knots, e.g., for one-dimensional 
splines; three to four knots will be enough to realistically represent most 
relationships between CPUE and a continuous covariate (Grüss et al., 
2019; Roberts et al., 2016). However, restricting the number of knots 
will worsen the fit to the data and may increase the number of covariates 
retained in the model. The mgcv package implements many other useful 
features, such as cyclic (a.k.a. periodic) regression splines (see `?mgcv:: 
smooth.terms’) which constrain the effects fitted to the minimum and 
maximum values of a continuous covariate to be equal. This is useful 
when (for example) time of day or month of year are included as 

S.D. Hoyle et al.                                                                                                                                                                                                                                 



Fisheries Research 269 (2024) 106860

9

continuous covariates. 
It is up to the analyst to select a probability distribution for the 

response variable (see Section 5.4). The choice of distributions depends 
firstly on whether the response variable is discrete (e.g., catch occur-
rence, catch in number of individuals) or continuous (e.g., catch in 
weight, the ratio of catch to a measure of effort). Common modelling 
frameworks (GLMs, GAMs) can now handle most standard error distri-
butions, including the normal, log-normal, Gamma, binomial, Poisson, 
and negative binomial distribution models. For the Tweedie distribution 
(see Section 5.4), an additional R package (Tweedie: Dunn, 2017) may 
be needed, or it can be approximated using a Poisson-linked delta model 
(Thorson, 2018). The Weibull distribution, a positive continuous dis-
tribution that can handle overdispersion in the data, can be imple-
mented in the R package survival (Therneau et al., 2022). The R package 
gamlss allows the analyst to fit a diverse set of error distributions 
(including zero-inflated applications of more common distributions and 
some that are less commonly available such as the beta distribution) and 
specify model structure explicitly for the different distribution param-
eters (Rigby and Stasinopoulos, 2005). Alternatively, the R package brms 
(see below) allows the analyst to specify custom distributions (e.g., 
Tremblay-Boyer and Neubauer, 2019). The choice of error distribution 
should be validated by inspecting residual diagnostics (See Section 5.6). 

Most statistical frameworks assume by default that residuals are i.i.d. 
However, correlation between records in fisheries datasets arises from 
multiple sources. Spatial correlation can be handled implicitly by 
specifying a two-dimensional spline for longitude and latitude in a GAM, 
or explicitly in a geostatistical or spatiotemporal modelling framework 
by estimating the Matérn covariance function, for example, using the R 
packages VAST (Thorson, 2019a). The R-INLA package (Lindgren and 
Rue, 2015) can also be used for other geostatistical or spatiotemporal 
modelling applications (e.g., Cosandey-Godin et al., 2015; Pinto et al., 
2019; Zhou et al., 2019) and provides additional options to account for 
assumptions about spatial and/or temporal correlation. Correlation 
structure between records belonging to the same strata (e.g., fishing trip, 
observer) can also be specified with generalized estimating equations (e. 
g., Coelho et al., 2020; Peatman and Nicol, 2021) using the R package 
geepack (Højsgaard et al., 2006). 

Model fitting can be implemented in a frequentist or Bayesian sta-
tistical framework using maximum likelihood estimation (MLE) or 
Markov Chain Monte Carlo (MCMC), respectively. Most GLM/GAM tools 
are implemented via MLE or some derivation thereof. TMB (library 
TMB: Kristensen et al., 2016) can be employed for large datasets as 
model fitting will be considerably faster due to automatic differentiation 
and Laplace approximation; but the analyst will have to specify the 
CPUE model manually (e.g., model matrix, likelihood function) in the 
C+ + code embedded in TMB files, unless appropriate code is already 
available (e.g., VAST; Thorson, 2019a). An alternative is to fit CPUE in a 
Bayesian framework using MCMC with the R package brms (Bürkner, 
2017). Key advantages of this approach include (1) the option to specify 
priors to inform or constrain effects, and (2) a more intuitive and better 
integrated estimate of index uncertainty. One downside is that model 
fitting will be slower, especially for large datasets with complicated 
covariate structures and may be less stable if some relationships are 
poorly informed by the available data. 

Machine learning methods such as artificial neural networks 
(Maunder and Hinton, 2006), support vector machines (Li et al., 2015), 
regression trees (Watters and Deriso, 2000), and RFs (Chambers and 
Hoyle, 2015; Li et al., 2015) have been used to model CPUE but rela-
tively infrequently to date. They can achieve high predictive perfor-
mance due to their flexibility, but results may be difficult to interpret, 
and they are prone to overfitting. 

5.2. Spatial considerations 

All fish populations and fisheries exhibit spatial structure to some 
extent. Nevertheless, the introduction of spatial considerations into 

CPUE standardization raises several issues. First comes the question of 
how exactly space should be considered in a model and whether a 
complex model (e.g., an STM) will necessarily perform better than a 
simpler model (e.g., a GAM). Second comes the question of how to factor 
in the existence of sub-stocks (i.e., stock components that are distin-
guished for management purposes and whose productivities may differ). 

Classically, CPUE standardization is performed using a GLM, which 
is very often a two-step, delta GLM to account for the presence of many 
zeros in the data (Lo et al., 1992; Stefansson, 1996). The simplest way to 
consider space in a GLM consists of dividing the study region into area 
strata and including the fixed effect of area stratum – a categorical co-
variate – in the GLM (e.g., Forrestal et al., 2017). The inclusion of area 
strata in a model aims to account for spatial heterogeneity in stock 
density, and stock density is assumed to be homogeneous within each 
area stratum (Bishop, 2006); areas should be sufficiently small and 
numerous to accommodate strong spatial patterns in CPUE. A time 
+ area model assumes that the temporal variability is the same in each 
area and only the means differ. We refer to this approach as the ‘GLM’ 
approach (Table 2). Often, the GLM employed for CPUE standardization 
includes a time-area interaction to account for potentially different 
temporal trends among area strata (e.g., Campbell, 2004; Carruthers 
et al., 2011; Nakano, 1998). The resulting index should be calculated by 
weighting the effect for each area by the size of that area. However, 
different trends among areas (i.e., the year-area interaction is signifi-
cant) may imply that a spatial stock assessment model is required. 
Alternatively, the time-area interaction can be integrated into a GLMM 
as a random effect (Chang, 2003; Maunder and Punt, 2004; Miyabe and 
Takeuchi, 2003), which treats it as a nuisance parameter; we refer to this 
approach as the ‘GLMMint’ approach. 

Even though the ‘GLM’ and ’GLMMint’ approaches represent (sim-
ple) ways to consider space in CPUE standardization, they come with the 
issue of defining the area strata, which can substantially affect model 
performance. Ideally, data are rich enough to define fine-scale spatial 

Table 2 
Overview of the catch-per-unit-effort (CPUE) standardization approaches with 
spatial considerations, along with a selection of R packages mentioned in the 
text.  

Approach Overview R packages 

GLM Method using generalized linear 
models (GLMs) that integrate fixed 
year and area effects. 

stats::glm, mgcv, brms, 
TMB 

GLMMint Method using generalized linear 
mixed models (GLMMs) that integrate 
fixed year and area effects and a 
random year-area interaction term. 

TMB, brms, nlme, 
lme4, glmer, 
glmmTMB, mgcv 

Spatial GAM Method using generalized additive 
models (GAMs) that integrate an 
interaction term between longitude 
and latitude representing spatial 
variation (long-term latent variation) 
at a broad spatial scale. 

mgcv, brms, TMB 

Spatiotemporal 
GAM 

Method using GAMs that integrate an 
interaction term between longitude, 
latitude and year representing 
spatiotemporal variation (latent 
variation that changes over time) at a 
broad spatial scale, in addition or in 
lieu of an interaction term between 
longitude and latitude. 

mgcv, brms, TMB, R- 
INLA 

STM Method using models that explicitly 
specify a correlation or semi-variance 
function for latent variables 
representing unmeasured processes 
that vary over space and time. These 
can be specified with similar structure 
to a spatio-temporal GAM but also 
allow more flexibility for explicit 
movement, size/age structure, or 
other ecological mechanisms. 

TMB, R-INLA, VAST, 
sdmTMB  
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strata that do not constrain estimates. For example, tuna longline fishery 
CPUE analyses usually define spatial strata as 5◦ cells (Anon, 2013). 
However, some degree of aggregation is often required and there are 
several approaches that can be used. In the ‘ad hoc’ approach, area strata 
are the management areas employed in the study region or are based on 
environmental layers such as bottom depth contours (Forrestal et al., 
2019; Huang et al., 2020; Huang et al., 2007). In the ‘binary recursive 
partitioning approach,’ an algorithm is used to divide the study region 
into several area strata in a sequential and recursive manner (Ichino-
kawa and Brodziak, 2010). Finally, in the ‘spatial clustering’ approach, a 
k-medoids algorithm is employed to partition a spatial grid covering the 
study region into several area strata based on the proximity and mean 
value of CPUE in each spatial grid cell (Ono et al., 2015). Using a 
simulation experiment based on Pacific saury (Cololabis saira) data, Hsu 
et al. (2022) found that the GLMM relying on the ad hoc approach had 
the poorest performance and that the GLMMs relying on the spatial 
clustering approach had the best performance. Moreover, regarding the 
spatial clustering approach, Hsu et al. (2022) found that, under prefer-
ential sampling (a classical situation with CPUE data), assigning equal 
weights to spatial proximity and mean CPUE values in the k-medoids 
analysis was preferable to giving more weight to mean CPUE values. 

A more flexible approach than the ‘GLM’ and ’GLMMint’ approaches 
to considering space in CPUE standardization is the ‘spatial GAM’ 
approach, which consists of fitting a GAM including an interaction term 
between longitude and latitude (Braccini et al., 2021; Grüss et al., 2019; 
McKechnie et al., 2013). The spatial interaction term (e.g., a tensor 
product smooth) depicts spatial variation (long-term latent variation) at 
a broad scale (Denis et al., 2002; Grüss et al., 2021). The spatial GAM 
approach can be extended to a ‘spatiotemporal GAM’ approach via the 
inclusion of an interaction term between longitude, latitude, and time, 
which represents spatiotemporal variation (latent variation that changes 
over time) at a broad scale (Hoyle, 2020; Zhou et al., 2019). By ac-
counting for spatial and/or spatiotemporal variation at a broad scale, 
such GAMs can generate more stable predictions for spatial areas where 
data are sparse (Hoyle, 2020; McKechnie et al., 2013). Using a simula-
tion experiment based on blue marlin data from the Atlantic Ocean, 
Grüss et al. (2019) found that spatial GAMs tended to outperform 
simpler CPUE standardization models. 

STMs constitute an even more flexible approach for CPUE stan-
dardization by depicting spatial and spatiotemporal variation at a very 
fine scale, thereby yielding very precise estimates (Anderson et al., 
2022; Shelton et al., 2014; Thorson et al., 2015). Over the recent years, 
STMs implemented with R package VAST (Thorson, 2019a) have been 
increasingly employed to standardize CPUE data (e.g., Cao et al., 2017; 
Ducharme-Barth et al., 2022; Grüss et al., 2019; Kanamori et al., 2021; 
Xu et al., 2019). Because STMs represent latent spatial and spatiotem-
poral variation at a very fine scale, the inclusion of habitat variables that 
are inherently spatial or spatiotemporal (e.g., sea surface temperature) 
in these models generally does not improve their predictive capabilities 
(e.g., Han et al., 2021; Hsu et al., 2022; Thorson, 2015). Using a simu-
lation experiment based on skipjack tuna (Katsuwonus pelamis) data for 
the western and central Pacific, Ducharme-Barth et al. (2022) found that 
including local environmental covariates or regional oceanographic 
indices in STMs did not meaningfully improve model performance 
beyond what was achieved using spatiotemporal random effects, and 
even degraded model performance in some cases. However, we note that 
other STM case studies have suggested small but important improve-
ments resulting from including density covariates (Thorson, 2019b). 
They may have the most influence when predicting into areas with poor 
sampling coverage. 

The simulation experiment conducted by Grüss et al. (2019) indi-
cated that, overall, the STM approach implemented using VAST per-
formed better than simpler approaches, including the spatial GAM 
approach. However, in some instances, the VAST and spatial GAM ap-
proaches performed similarly or the spatial GAM approach performed 
slightly better (Grüss et al., 2019). Spatiotemporal GAMs are often easier 

to apply for exploration and may have the flexibility to fit model 
structures that are unavailable in the VAST framework. Thus, we suggest 
that the analyst should not assume a priori that STMs will outperform 
the spatial or the spatiotemporal GAM approach, or even the GLMMint 
approach, in their case study. Instead, the analyst should ideally carry 
out a simulation experiment to better understand the capabilities of 
STMs in their case study under different scenarios. Such simulation ex-
periments permit evaluation of the accuracy, error, and confidence in-
terval coverage of STMs compared to simpler approaches. When 
operating models are not available to generate simulated data, the fish 
abundances needed for the simulation experiment can be obtained by 
fitting an STM without any vessel effect or other catchability effects, as 
in Thorson et al. (2015) and Hsu et al. (2022). 

When the stock of interest is made of several sub-stocks, analysts may 
develop a separate CPUE standardization model for each one (McKenzie 
and Parsons, 2012). This approach is not necessarily warranted with 
STMs. Specifically, the fine-scale spatial areas occupied by each 
sub-stock can be identified in the STM input, and the STM can then 
compute an abundance index for each sub-stock (Grüss et al., 2023a; 
Thorson, 2022). Even in the presence of stock-structure, a single STM 
that appropriately weights composition data spatially by the estimated 
CPUE may be able to implicitly adjust for any spatial structure in the 
stock and the fishery (Maunder et al., 2020). However, further research 
is needed to explore this issue. 

If covariate effects or data availability vary spatially or through the 
time series, it may be difficult to develop a single STM that includes all 
influential covariate effects. It is important to include relevant covariate 
effects since models that fail to include them will often produce biased 
indices of abundance. In general, analysts should explore multiple 
modelling approaches to ensure that the resulting indices are consistent 
with the best available information about abundance trends. 

Interestingly, instead of being employed for standardizing CPUE, 
STMs can instead be used to identify stock structuring (Lindegren et al., 
2022), investigate existing stock structure hypotheses (Grüss et al., 
2023a), or evaluate the impacts of modifying sub-stock spatial bound-
aries. They can also be applied to estimate relative population scale 
across regions for use in multi-region stock assessments (Ducharme--
Barth et al., 2020; Hoyle and Langley, 2020). Inclusion of density 
covariates when using an STM to develop relative population scale 
across regions (i.e., ‘regional scaling’) should be carefully considered 
given that they can influence predicted values in poorly sampled areas of 
the model domain (Ducharme-Barth et al., 2020). Given the influence of 
‘regional scaling’ in multi-region, spatially explicit stock assessments, 
we recommend developing and exploring alternative CPUE index sce-
narios with different implied ‘regional scaling’. 

When choosing the sampling frame for the CPUE analysis, analysts 
must consider whether to include regions at the edge of the fishery that 
are fished infrequently. It may be uncertain whether these regions are 
unfished due to low CPUE or for unrelated reasons (e.g., they are too far 
from port). They may also be subject to spatial changes in stock distri-
bution due to environmental events. Including such regions in the 
modelling frame will increase uncertainty, as the abundance in such 
regions will be inferred from limited information. One option is to limit 
the spatial domain to a ‘core’ fishery defined as those regions where 
most of the catch is taken, or that are fished for a majority of the 
modelling period (Campbell, 2015; Grüss et al., 2023b; Xu and 
Lennert-Cody, 2022). For example, Campbell (2015) limited the spatial 
domain to those one-degree squares where the total catch of swordfish 
was greater than 500 fish over the period modelled, while Xu and 
Lennert-Cody (2022) defined a core fishing ground for skipjack for the 
floating object and unassociated fisheries in the eastern Pacific Ocean as 
all one-degree squares with at least 11 and 6 years of CPUE data between 
2000 and 2021, respectively. Sensitivity of the resulting abundance 
index to different spatial domain definitions should be considered, as 
limiting the analysis only to a core region could mask hyperstability, or 
changes in the species’ range. 
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Non-stationarity of the spatiotemporal correlation also needs to be 
considered. Rates of spatiotemporal correlation are unlikely to be con-
stant either within habitat types or between them. However, approaches 
that allow nonstationary spatiotemporal correlation are rare, and it may 
be more practical to do separate analyses for different areas (i.e., habitat 
types) and subsequently compare the estimates of correlation structure 
to determine whether combining them with a stationary correlation 
structure is appropriate. If not, then the results of the separate analyses 
may need to be appropriately combined. 

With fishery-dependent data, there is a growing need to account for 
preferential sampling (the likely correlation between sampling location 
and abundance) which can bias indices that fail to account for it 
(Ducharme-Barth et al., 2022). Preferential sampling can be accommo-
dated using joint models for sampling intensity and density (Alglave 
et al., 2022; Conn et al., 2017; Pennino et al., 2019; Rufener et al., 2021) 
which make the strong assumption that abundance should approach 
zero in un-sampled areas. Research is needed to develop approaches for 
modelling preferential sampling in a CPUE standardization framework 
either as an inhomogeneous Poisson process (Diggle et al., 2010) or 
using random-utility models to consider fisher sampling location due to 
economic or regulatory factors (Girardin et al., 2017). 

Finally, the spatial dynamics of a fishery may change significantly 
over time (for example, effort may contract spatially in response to 
economic or management factors while the stock may spatially contract 
in response to overfishing) and relative abundance indices based on 
catch and effort data can become biased unless consideration is given to 
such changes. Campbell (2016) developed a general framework for 
indices of stock abundance which uses alternative hypotheses to 
consider uncertainty about how to structure the analysis, particularly 
concerning the spatiotemporal dynamics of the fishery. 

5.3. Multispecies targeting 

CPUE standardization aims to account for the non-random catch-
ability change caused by targeted fishing operations, which typically 
seek to optimize their profits. This is further complicated in multispecies 
fisheries in which fishers can make discrete operational choices to in-
crease the catchability of specific species or species complexes. Allo-
cating targeted effort to one species over another can be related to the 
choice of fishing-ground, habitat-type, fishing-technique, or the way the 
gear is deployed (Palmer et al., 2009; Pelletier and Ferraris, 2000; 
Winker et al., 2013). In the best case, unaccounted variation in targeting 
only inflates the uncertainty in the index of abundance, but large 
short-term shifts or long-term trends in targeting can systematically 
change catchability and, therefore, severely bias abundance indices. The 
effects on CPUE of variability in targeting must be accounted for to 
stabilise catchability and estimate reliable abundance indices for 
multispecies fisheries. Targeting may include the choice to fish at the 
season and locations in which high catches of a sought-after target 
species are expected. Such target changes can be effectively accounted 
for with adequate STMs (Thorson et al., 2016b). However, other oper-
ational adjustments are non-spatial (e.g., bait type, fishing depth, gear 
deployment) or occur at much finer spatiotemporal levels (e.g., dynamic 
temperature gradients, time of day, or habitat features) than are re-
ported. For example, many small-scale and recreational hook and line 
fisheries report spatial information at the coarse scale of a single loca-
tion, whereas multiple fishing locations and fishing techniques may 
have been employed during the same trip. Information about targeting 
strategies may be unreported, or reported infrequently and inconsis-
tently among skippers, locations, and time periods. In other words, the 
factors that might indicate the target/fishing strategy are latent vari-
ables. Consequently, finer scale variations in targeting are often unob-
servable and are hereafter referred to ‘fishing tactics’ (Okamura et al., 
2017; Thorson et al., 2016b; Winker et al., 2013). The principal idea 
behind the various approaches employed to account for these latent 
changes in fishing tactics is to make use of the multispecies information 

contained in the catch and effort data. 
Subsetting approaches aim to select records where effort was likely 

allocated towards the species of interest (Hoyle et al., 2022; Stephens 
and MacCall, 2004). These include using catch proportions by species to 
determine a threshold for subsetting the data (Biseau, 1998; Helle et al., 
2015; Klaer and Smith, 2012) to only include records from a core area or 
specific fishing season (Hoyle et al., 2022). However, such subsetting 
can be sensitive to the subjective choice of the threshold and associated 
with risks introducing hyperstability into the standardized index. For 
example, the effect of subsetting to non-zero catches can be illustrated 
via a delta-lognormal model in which the binomial distribution model is 
used to estimate the encounter probability, and the lognormal model is 
employed to estimate the scale of positive catch rates. For any situation 
in which the estimated indices from both model components show a 
unidirectional trend, an index based on a subset of positive CPUE alone 
would be hyperstable relative to standardized CPUE from the 
delta-lognormal model. Unsurprisingly, simulation experiments yield 
biased abundance trends when zeros are excluded, with the exception of 
those species that are ubiquitous and occur in almost all (> 95%) of the 
CPUE records (Langley, 2019). This bias is likely increased if thresholds 
are set higher (e.g., 30–50% of the catch weight) and most severe for less 
abundant species given that encounter probabilities below 30% become 
approximately proportional to abundance (Kerwath et al., 2019). 
Similarly, a species with declining abundance may contract towards its 
core area where CPUE may then remain hyperstable compared to the 
overall decline (Harley et al., 2001; Thorson et al., 2016c). Optimally, 
the target species would be known for a random subset of the data, and 
this could be used to determine the best model to predict targeting for 
the trips with unknown target. 

Stephens and MacCall (2004) applied a logistic regression of multi-
species presence–absence information to subset trip records to locations 
(habitats) where the species under assessment was likely to be present 
but may not have been caught (‘true’ zeros) and locations where the 
species was unlikely to occur (‘false’ zeros). This approach therefore 
aims to retain ‘true’ zeros in the abundance trend. By design, this 
approach is most suitable for species that co-occur within multispecies 
assemblages, where the mere presence-absence of co-occurring species 
can provide a strong predictor of habitat suitability. Another approach is 
to identify ‘indicative’ vessels based on vessel characteristics and catch 
history of the species of interest (Helle et al., 2015; Punt et al., 2000). 
This approach requires a detailed understanding of the fleet and assumes 
that the indicative vessels employ consistent fishing tactics. The selec-
tion criteria for indicative vessels rely on a degree of subjectivity which 
may affect the CPUE indices (Helle et al., 2015). Using indicative vessels 
alone may be insufficient for CPUE standardization if vessels change 
targeting over time. For example, skipper behaviour may be more 
influential than the vessel effect (Palmer et al., 2009), but economic (e. 
g., fish price, market demands, fuel costs) or regulatory factors (e.g., 
quota limitations, area closures, or by-catch restrictions) may also lead 
to changes in targeting (Abbott et al., 2015). 

As an alternative to subsetting, several approaches have been pro-
posed that use covariates to account for variations in fishing tactics. One 
approach is to use the catch rates of alternative target or bycatch species 
as covariates to correct for the effort directed away from the target 
species or species under consideration (Glazer and Butterworth, 2002; 
Su et al., 2008). Although the catch rates of alternative species do not 
hold direct information about the catch of the species of interest, the 
information in the predictor variables derived from these covariates is 
not entirely independent of the response CPUE and may have unpre-
dictable impacts on the standardized CPUE trends. Another approach is 
to derive categorical covariates from ranked catch ratios of two species 
as an indicator of targeting strategy. These catch ratios, which often 
include the species of interest, are then grouped by percentile frequency 
in descending order, either over the entire time series (e.g., Mejuto et al., 
2009) or by year (e.g., Hiraoka et al., 2012). Each percentile group 
represents a factor level of the categorical variable. However, if the 
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ratios are grouped over the entire time series, then there will inevitably 
be confounding effects between changes in abundance and the catch 
ratio grouping. If the abundance of the species of interest changes over 
time, the true trend abundance tends to be removed from the CPUE 
index, but if the other species changes, this can introduce a biased trend 
into the abundance index for the species of interest (Chang et al., 2011). 
Further, such bias is likely to be aggravated if individual CPUE records 
are aggregated. However, if the ratios are grouped by year, it can be 
demonstrated that the catch ratio covariate has no influence on the 
year-effect of interest and is, thus, completely ineffective for removing 
targeting-induced variation from the index of abundance (Hoyle et al., 
2014b). 

If discrete fishing tactics result in distinctive species composition in 
the catch, one can employ clustering techniques to categorize multi-
species CPUE records into groups with similar catch compositions (He 
et al., 1997). The identified clusters are assumed to represent fishing 
tactics which may be treated as categorical variables in the standardi-
zation model to adjust for differences in catchability associated with 
each cluster (He et al., 1997). This two-stage approach has been widely 
applied for tuna CPUE standardization of large pelagic longline fisheries 
(Carvalho et al., 2010; Hoyle et al., 2022; Hoyle et al., 2015b). A related 
two-stage ordination approach is the ‘Direct Principal Component’ 
(DPC) procedure (Winker et al., 2013; Winker et al., 2014), which uses 
continuous principal component scores (PCS), derived from a Principal 
Component Analysis (PCA) of the catch composition data, as either 
linear or nonlinear predictor variables to adjust for the effect of varia-
tions in fishing tactics. The DPC method relaxes the assumption of 
fishing tactics being discrete and simulations indicated that the DPC can 
also perform adequately if CPUE records originated from mixtures of 
fishing tactics (Winker et al., 2014). Both ordination approaches can 
provide valuable insights into the targeting dynamics. For example, 
clusters or PCA species loadings can be visually explored at different 
spatiotemporal scales (e.g., seasons, area) or by individual vessels. 
However, several statistical caveats require careful consideration. If the 
species of interest represents a dominant component of a fishing tactic, it 
typically needs be included in the catch composition used to identify 
targeting, and the information contained in the resultant predictor 
variables composition is not entirely independent from the response in 
the standardization model and is, thus, not strictly orthogonal. There-
fore, additional transformations (e.g., arcsine-square-root or fourth 
root) of the species composition data have been recommended (Camp-
bell et al., 2017; He et al., 1997; Winker et al., 2014). Simulation testing 
has indicated that this confounding effect was not a major concern for 
multispecies scenarios of moderate complexity (He et al., 1997; Winker 
et al., 2014). A drawback of this non-independence is that model se-
lection criteria (e.g., AIC, Bayesian Information Criterion (BIC)) are 
unlikely to be appropriate since they select too many non-meaningful 
targeting signatures, leading to confounding and over-precision in the 
abundance trend (Winker et al., 2014). This makes it generally chal-
lenging to identify meaningful interactions between targeting effects 
and other covariates. Considering that several subjective decisions must 
be made (Campbell et al., 2017), the identified targeting signatures 
should be consistent with prior knowledge that distinct targeting prac-
tices exist. Otherwise, there is a risk of mistaking spatiotemporal 
abundance patterns for targeting, 

Recently, two approaches have been proposed to overcome the 
confounding effects of the approaches discussed above (Okamura et al., 
2017; Thorson et al., 2016b). Both infer the latent fishing tactic from the 
residual structure. Okamura et al. (2017) proposed the two-stage 
‘directed residual mixture’ (DRM) approach which entails first fitting 
a standardization model to each species with all covariates other than 
fishing tactics, then applying a Gaussian mixture model to estimate 
discrete latent factors for fishing tactics from the resulting mixing pro-
portions of residuals. In the third stage, the estimated components are 
included as additional factorial covariates in a final standardization 
mode for the individual species. DRM provided an unbiased estimator 

for a deterministic proof-of-concept scenario under somewhat idealized 
conditions with two species and two fishing tactics for which previous 
approaches failed (Okamura et al., 2017). However, there is a lack of 
follow-up case studies on the efficiency of the DRM in the presence of 
zeros and over-dispersion, which are common features of real-world 
datasets. Moreover, the ‘spatial dynamic factor analysis’ (SDFA) 
(Thorson et al., 2016b), which is now embedded in the R package VAST, 
presents a statistically coherent method for simultaneously estimating 
spatial-temporal variation, random vessel effect, fishing tactics, and 
relative fish abundance for multispecies species within a single model 
where the latent fishing tactic effect is estimated from remaining un-
explained residual correlations among the multispecies catch rates. 
Simulations demonstrated that SDFA performs well when targeting is 
linked to the spatial allocation of fishing effort. However, the fishing 
tactics model showed limited ability to correct for targeting effects in 
cases where spatial reporting was aggregated to a coarser resolution 
than the ‘true’ simulated dynamics or if spatial information was absent. 
Further research is needed to better understand the data requirements 
for SDFA and to evaluate the impacts of missing covariates on DRM’s 
ability to account for fishing tactics. 

5.4. Error distributions 

As described in the Maunder and Punt Sections 2.1, 3.1, 3.3 and 4.3) 
(2004) review, it remains important to select an error distribution and a 
modelling approach that match the structure of the data. The analyst 
should first determine an appropriate class of error distribution for the 
data. An appropriate error structure is needed to accurately represent 
variance around the standardized index and to determine the trend 
(Dick, 2004) and scale (Thorson et al., 2021) of the standardized index. 

For discrete observations (e.g., catches recorded as counts), the 
Poisson distribution may be suitable if the variance is approximately 
equal to the mean although, in practice, this is rarely the case. If variance 
is larger than the mean, then the negative binomial distribution may be 
appropriate (Walsh and Brodziak, 2015), while the flexible 
Conway-Maxwell-Poisson distribution can account for either over- or 
under-dispersed data (Lynch et al., 2014). Additionally, if data are 
collected discretely, then effort can be included as an offset (Maunder 
and Punt, 2004), or the numerical catch can be converted to catch rate 
(e.g., number of fish caught per 1000 hooks), which can be modelled 
continuously. If the numbers of individuals caught per observation are 
large, then they can be approximated as continuous variables (Maunder 
and Punt, 2004). 

Continuous observations (e.g., catch per unit effort or catch recorded 
as biomass) are typically right-skewed; an appropriate distribution 
choice can be informed using Taylor’s power law (Taylor, 1961), 
var(Y) = αμp

Y . If the variance is proportional to the square of the mean 
(p = 2), then the lognormal or Gamma distribution may be appropriate 
and, if proportional to the cube of the mean (p = 3), the data might be 
fitted using the inverse Gaussian distribution model (Dick, 2004). 
However, a recent study tested the different distribution models in STMs 
and found that the Gamma and Tweedie distributions provided the best 
performance for estimating index scale, followed by the lognormal, and 
the inverse Gaussian performed worst (Thorson et al., 2021). Alternative 
distributions may be distinguished using residual analysis, 
mean-variance plots, and Akaike’s Information Criterion (AIC) (Dick, 
2004). 

When selecting the error distribution, the proportions of zero ob-
servations in the data should be scrutinized. If there are more zeros than 
predicted by the distribution, they may be dealt with using a mixture 
modelling approach. A discrete variable with excess zeros is typically 
fitted with a zero-inflated model which uses a separate likelihood 
component to account for the extra probability of a zero observation 
(Lambert, 1992; Minami et al., 2007; Walsh and Brodziak, 2015; Zuur 
et al., 2012). Given a continuous response variable, excess zeros can be 
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accommodated using a two-stage hurdle or delta modelling approach 
where catch-rate is modelled conditional on a positive encounter (Lo 
et al., 1992). The Tweedie distribution can take the shape of several 
distributions in the exponential family depending on the value of p. 
When p is in the range (1 < p < 2), then the Tweedie is equivalent to a 
compound Poisson-Gamma distribution which can simultaneously ac-
count for zero observations and positive catch (Shono, 2008a). Applying 
either a Poisson-link delta-gamma or Tweedie model structure may be a 
sensible default option (Thorson et al., 2021). 

In recent years, research has focused on more appropriately model-
ling and accounting for correlation in the data generation process. These 
approaches should be incorporated into routine CPUE standardization 
analyses where appropriate. ‘Poisson-link delta models’ represent a 
computationally efficient alternative to the compound Poisson-gamma 
distribution and can explicitly account for potential positive correla-
tion between encounter rate and positive catch (Thorson, 2018). 

Newly developed flexible modelling approaches (e.g., VAST; Thor-
son 2019) more readily model multivariate data within a CPUE stan-
dardization framework. Multivariate approaches can account for 
correlation between modelled categories such as species (Thorson and 
Barnett, 2017; Thorson et al., 2016a); or age/length/sex/stage cate-
gories (Kai et al., 2017; Maunder et al., 2020). Accounting for correla-
tion between species can improve predictions of spatial density for rare 
species (Thorson and Barnett, 2017), and accounting for correlation 
across size classes can allow for size-class specific indices (Kai et al., 
2017) or the standardization of composition data (Maunder et al., 2020; 
Thorson and Haltuch, 2019). 

5.5. Uncertainty estimation 

The uncertainty associated with the CPUE indices used in a stock 
assessment includes observation error associated with the estimated 
time effects in the index and process error associated with variation in 
catchability (the relationship between the time effect and abundance) 
(Francis et al., 2003). 

Observation error in the temporal effects can be estimated as part of 
the model fitting process and constructing the index, as discussed in 
Section 5.8. Many GLM analyses estimate categorical time effects rela-
tive to the base time (e.g., the first year in the time series). These can be 
recalculated as canonical confidence intervals to associate uncertainty 
with all temporal effects (Francis 1999). Observation error for two-step 
delta or hurdle models can be estimated using parametric (Shono, 
2008b) or bootstrap (Ichinokawa and Takeuchi, 2012) methods, and 
subsequently applied within the predict-then-aggregate process. Alter-
natively, uncertainty can be characterised by draws from the posterior 
predictive distribution if the model is fitted in a Bayesian framework (e. 
g., using the R package brms; (Bürkner, 2017)). 

However, standardization usually underestimates observation error 
in the temporal effects because it does not fully account for de-
pendencies in the input data (Hoyle et al., 2014b). Dependencies occur 
among consecutive sets by a vessel and among sets by vessels from the 
same company which may communicate with one another. There is also 
overdispersion due to both aggregation of fish and the unavailability to 
the analyst of important factors affecting catch rates, such as local 
environmental factors that affect fish distribution. Some of this over-
dispersion can be accounted for by including random effects in the CPUE 
standardization model (Rufener et al., 2021; Thorson and Minto, 2015; 
Xu et al., 2019). Many sources of catchability variation are not amenable 
to standardization (Wilberg et al., 2009). As a result, uncertainty esti-
mates from CPUE standardization models (observation error) are often 
seen as, at best, useful for suggesting relative uncertainty among year 
effects. They can also be useful as an estimate of the minimum uncer-
tainty, and to determine relative uncertainty between indices. 

Process errors occur when the average catchability across the fleet 
varies between time intervals. Effectively, the relationship changes be-
tween the abundance index and the true abundance leading to more 

uncertainty in the abundance index than predicted by the observation 
error. This variability cannot be measured directly but can be estimated 
indirectly with stock assessment models (Francis et al., 2003). This 
variation is often estimated or assumed to be larger than the observation 
error in the time effects (Maunder and Punt, 2004), particularly for large 
industrial fisheries with low observation error due to high effort data 
sample sizes. 

5.6. Diagnostics 

Traditional model validation diagnostics such as residual analysis are 
important for determining if the analyst has specified the model 
correctly, treated zero observations appropriately, and selected the 
proper error distribution (i.e., the model assumptions are not violated). 
However, non-Gaussian error structures, mixture (e.g., delta or zero 
inflated) distributions, and/or mixed-effects frameworks commonly 
applied in contemporary CPUE standardization analyses complicate 
using traditional diagnostic approaches. One solution is to define re-
siduals as probability-integral-transform (PIT) residuals (Warton et al., 
2017). PIT-residuals are generated in a ‘model-free’ bootstrap by 
comparing observations to a distribution of predicted values for the 
given observation generated from the fitted model. Prior to calculating 
the PIT-residual, a simple check of the distribution of the observations 
against the distribution of the bootstrapped/predicted values (e.g., 
Parker et al., 2017) can be used to identify if the distributional as-
sumptions are being met (e.g., are coverage levels similar?). R package 
DHARMa (Hartig, 2020) is useful for calculating PIT-residuals and has 
several tests for assessing if observations match the distributional as-
sumptions of the model, outlier detection, identification of over- or 
under-dispersion, and zero-inflation. In a mixed effects framework, if 
models are solved using the Laplace approximation to integrate across 
the random effects (e.g., TMB; Kristensen et al., 2016), the reduced 
Laplace approximation for strongly non-linear models may limit the 
utility of PIT-style residuals (Thygesen et al., 2017). Accuracy of the 
Laplace approximation can be determined by refitting the model to 
simulated data (Rufener et al., 2021; Thygesen et al., 2017). Alterna-
tively, residuals can be calculated using the posterior estimate from 
MCMC samples (Rufener et al., 2021) or by using one-step predictions 
(Thygesen et al., 2017). One-step prediction residuals are a useful tool 
for validating modelʻs fit to sequential data such as CPUE analyses, 
where an observation Yt is compared to a prediction in time t, Ŷt|t− 1 , 
conditioned on data up to t − 1. 

In addition to model validation, diagnostics can be used to develop 
intuition on how the CPUE standardization model is transforming the 
nominal index. Step plots (sequentially plotting how the index changes 
with each additional covariate or model component) show incremental 
changes to the index (Bentley et al., 2012). However, if there are in-
teractions between covariates, then their impact could be masked within 
a step plot. Influence and coefficient-distribution-influence (CDI; Bent-
ley et al., 2012) plots are useful in combination with step plots. CDI plots 
quantify the relative influence of each covariate on the final fitted model 
by incorporating both the estimated coefficients for individual cova-
riates and the sampling across covariate levels each year. Influence and 
CDI plots can be readily created for fixed effect GLMs using the influ 
package (https://github.com/trophia/influ) in R. Hsu et al. (2022) 
extended the influ package to STMs implemented with the R package 
VAST. Applied in a spatial or spatiotemporal modelling framework, a 
large annual influence value for the year-area interaction term could 
indicate a misspecification of the spatial structure that failed to account 
for a large shift in spatial sampling (Hsu et al., 2022). Counterfactual 
analyses (Hansell et al., 2022; Pearl, 2009) can also be employed to 
evaluate the impact of key structural assumptions (e.g., fitting a model 
with spatial random effects held at zero and comparing the resultant 
index with a model freely estimating spatial effects in order to identify 
their impact on the standardized index). 

S.D. Hoyle et al.                                                                                                                                                                                                                                 

https://github.com/trophia/influ


Fisheries Research 269 (2024) 106860

14

Additional diagnostics can be applied to specifically interrogate 
STMs. Calculated residuals should be evaluated for temporal, spatial (i. 
e., Moran’s I test), and spatiotemporal patterns. In addition to being 
useful for evaluating model performance, cross-validation can be used to 
identify spatial outliers (Conn et al., 2018; Marshall and Spiegelhalter, 
2003). Spatial and spatiotemporal random effects are often assumed to 
be normally distributed with mean-zero. The estimated random effects 
should be checked to ensure that they match the assumed distributions. 
Lastly, STMs can predict abundance (or density) into un-sampled areas. 
Predictions in un-sampled areas will be influenced by adjacent obser-
vations given the modelled spatial/spatiotemporal covariance structure, 
and by any modelled relationships with density covariates. These pre-
dictions should be scrutinized for consistency with ‘common sense’ ex-
pectations of what abundance should be given understanding of the 
species biology and fishery dynamics. Departures from expectations may 
indicate the need to change how the model makes predictions into 
unfished areas, such as by applying a preferential sampling model or 
changing other aspects of the model structure to account for unfished 
areas caused by economic or regulatory factors (e.g., with the use of a 
random utility model). 

Hinton and Maunder (2004) propose an ‘omnibus test’ that simply 
compares the total likelihood from the stock assessment model for all 
data types combined and uses one index of abundance versus using an 
alternative index of abundance. This test measures which index of 
abundance is most consistent with the stock assessment model and the 
other data. We recommend further research regarding omnibus-tests 
when specifying CPUE standardization models. 

5.7. Model selection 

Model selection is an important part of the analysis process. Analysts 
often employ automated procedures such as stepwise forward or back-
ward selection algorithms, although these can be problematic (Sribney, 
1996; Wiegand, 2010). Throwing all covariates into an automated se-
lection procedure is unlikely to identify the most appropriate model and 
neglects an opportunity to generate useful understanding. Henderson 
and Velleman (1981) noted that automated techniques often hide 
important features of the data from the analyst and provided the axiom 
that “the data analyst knows more than the computer.” Modelling data 
interactively can change understanding and lead to different inferences. 

The analyst should first consider the objective of their CPUE stan-
dardization. When generating an index rather than making inferences 
about the covariates themselves, the goal is to correct for covariate in-
fluence and avoid potential bias in the index (i.e., covariates that explain 
annual variation in abundance should not be used to explain catch-
ability). The focus on prediction rather than estimation has implications 
for model selection, making AIC an appropriate tool if statistical as-
sumptions are met (Aho et al., 2014; Akaike, 1973). CPUE analyses for 
understanding are also important for stock assessment but have different 
objectives and may use different analytical approaches. 

Model selection and inference based on information criteria are well- 
established with clear guidelines available (e.g., Burnham and Ander-
son, 2004). These include identifying plausible predictor variables and 
combinations thereof, evaluating model performance, and averaging 
across plausible models. Evaluating model performance should include 
considering the goodness of fit of the selected models (Mac Nally et al., 
2018). 

The analyst should determine whether a parameter is likely to affect 
CPUE, a priori, and whether it affects density or catchability. Starting 
with a set of plausible models saves analysis time and reduces the risk of 
overfitting (a.k.a. data dredging or p-hacking). 

Predictive cross-validation methods can be useful for selecting be-
tween models with different structures (e.g., Charsley et al., 2022; 
Maunder and Hinton, 2006; Shono, 2008a). They can be 
time-consuming but are very flexible and broadly applicable. 

Model selection based on likelihood is affected by lack of 

independence. Operational data usually represent a time series of fishing 
events by the same vessels, and there may be information sharing be-
tween vessels. The ‘intra-vessel’, ‘intra-trip’, or other correlation can be 
represented by treating that factor (e.g., vessel or trip) as a random ef-
fect. Such a treatment is appropriate to account for the reduction in 
effective sample size resulting from simple correlation in the observa-
tions. However, random effect distributional assumptions may be inac-
curate given, for example, trends in fishing power or targeting through 
time. 

Operational datasets can have very high sample sizes, and that 
combined with lack of independence can make almost any variable 
statistically significant based on likelihood, even if it has negligible in-
fluence on the year effect. Since the goal is to obtain an index of abun-
dance, including a covariate that neither explains much deviance nor 
influences the index of abundance is not usually a problem. However, 
alternative data selection criteria are often used to help develop models 
that are simple, manageable, and fast to compute. 

When the objective is accurate prediction for the year effect, a pri-
mary consideration for variable selection is influence. Influence is 
affected by a combination of the extent to which the covariate affects the 
response and the extent to which its value changes through time. For 
example, a variable that affects catch rates but is completely balanced 
(such as moon phase in many cases) may have no influence on the 
resulting abundance index. Such variables can be useful nonetheless if 
they improve precision and help estimate other effects. They are also 
useful for understanding the biology of the species and the nature of the 
fishery, an important benefit of modelling CPUE. 

One commonly employed criterion is the proportion of deviance 
explained by a variable (R2). This criterion is useful because it is related 
to influence and robust to lack of independence, but the appropriate 
threshold level will be case-dependent. For example, covariates will 
explain a higher proportion of residual variance when data are more 
aggregated, allowing the threshold to be set at a higher level. However, 
conditional R2 (and consistent AIC) showed inconsistent model selection 
in the simulation experiment conducted by Hsu et al. (2022). 

Sometimes it is important to retain covariates that do not meet se-
lection thresholds because it is clear a priori that they will affect CPUE. 
For example, catch rates almost always vary consistently between ves-
sels, and the vessels in the fleet usually change through time. Analysts 
may, therefore, assume that catchability varies among vessels even if it 
does not reach the model selection threshold and should confirm that 
vessel ID is not influential before dropping it from a model. 

Some tools have internal automatic variable selection, such as the 
GAMs implemented with R package mgcv, which can automatically 
choose the degrees of freedom for a spline and can be configured to 
shrink effects to zero simultaneously without the need for a stepwise 
process (Marra and Wood, 2011). Model selection in R package mgcv is 
based on prediction error criteria or likelihood-based methods, with the 
likelihood-based methods less prone to local minima (Wood, 2017). 

5.8. Assembling an index from a fitted model 

Previous reviews of CPUE standardization typically assumed that the 
index is constructed by first fitting a statistical model to available data 
(see Section 5.1) and then extracting a coefficient that represents the 
partial effect of year to use as the index; we call this the ‘year-effect as 
’index’ method in the following. For example, Maunder and Punt (2004) 
state: “Most methods used to standardize catch and effort data estimate a 
year effect on which an index of abundance can be based.” However, the 
‘year-effect as index’ method has many limitations. Most generally, 
treating the partial effect of year as the index does not include the effects 
of other covariates that vary among years. One interpretation of this 
practice is that all the other covariates are implicitly treated as ‘catch-
ability covariates’, and their effect is filtered out when treating the year 
effect as the abundance index. 

One special case of concern arises when including a year x area 
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interaction as a predictor variable in the CPUE-standardization model. 
Maunder and Punt (2004) dealt with this topic in detail and outlined a 
few alternative treatments, including averaging across year x area esti-
mates or fitting separate models to different areas. However, research 
since then has converged upon a generic approach which we here call 
the ‘predict-then-aggregate’ method for index construction (Walters, 
2003 provides a good foundation for the method). This approach is 
based on sampling theory and involves the following steps.  

1. Explicitly define a sampling frame that ideally corresponds to the 
stock being assessed. Sampling units in the frame might be defined 
spatially (i.e., subdividing the stock range into a set of non- 
overlapping strata) or via other partitions (i.e., port).  

2. Predict CPUE that would have occurred for each sampling unit, 
conditioning upon values of density covariates that occur at each 
sampling unit and dropping the partial effect of catchability cova-
riates (e.g., by setting them at a defined reference level). Note that 
predictions of CPUE into un-sampled sampling units should be 
carefully scrutinized and considered (see McKechnie et al., 2013; 
Walters, 2003). For example, predictions may need to use one 
approach for areas that are un-sampled because low catch rates make 
fishing uneconomic and a different approach for areas where man-
agement measures exclude fishing effort.  

3. Aggregate across sampling units which can often be done by taking 
the area-weighted (i.e., the area of available habitat) sum of CPUE 
across these units.  

4. Calculate the variance of the aggregate, either using the delta 
method, quantiles from MCMC samples in a Bayesian model, 
nonparametric bootstrapping of the data, or other methods. We 
expect that these methods will generally give similar results (Mag-
nusson et al., 2013), but emphasize that it is necessary to propagate 
information about covariance among predictions to correctly calcu-
late the variance of the ‘predict-then-aggregate’ approach. 

For examples of this approach see Campbell (2004) and Campbell 
(2015). 

Area weighting should, where possible, use the area of available 
habitat in each spatial cell (Maunder and Punt, 2004), assuming that 
density is uniform within each cell. For pelagic fishery CPUE, approxi-
mate ocean areas are often determined from the area of grid cells at a 
latitude, after subtracting any land area. However, the habitat available 
to individual species in the pelagic ocean can vary seasonally, with 
environmental variables, and long-term with climate change (Goodyear, 
2016). Inclusion of oceanographic ‘density’ covariates in the standard-
ization model and or applying a post-hoc environmental filter can be 
used to restrict index calculation to viable cells/spatial areas. Methods 
for determining these areas are an area of active research. Similarly, 
cells that are too large can cause bias when they include areas of both 
high and low density, with fishing concentrated in the high-density 
areas. Uncertainty about habitat areas is not often considered but can 
be included via alternative scenarios or Monte Carlo simulation. 

Habitat areas in benthic and reef fisheries are often difficult to 
determine, and uncertainty can be large. As a result, strata are some-
times weighted by catch (aggregated across the time series), as a proxy 
for relative area (e.g., Ralston, 1999). Catch weighting tends to intro-
duce bias because fishing intensity always varies spatially. Higher effort 
usually occurring in areas with higher catch rates, but some areas may 
be closed to fishing and others less fished because they are harder to 
access. Catch weighting is likely to give more weight to areas that are 
more heavily fished, so will tend to exaggerate depletion. 

When the index-standardization model does not include any in-
teractions of year with other covariates, we expect that the ‘predict- 
then-aggregate’ method will provide the same index as the ‘year-effect 
as index’ method (Campbell, 2015). However, when a density covariate 
interacts with the year effect (e.g., year x area), or the value of a density 
covariate varies through time (e.g., temperature), the 

predict-then-aggregate method is required. 
For a response variable that was transformed before fitting the 

model, predictions must be back transformed before aggregating. For 
two-stage approaches such as hurdle models, sampling unit predictions 
are obtained by combining predictions from both stages before 
aggregating. 

For a hurdle model with the binomial component fitted using a logit 
transformation, the reference levels of the catchability covariates affect 
the predicted annual probabilities of non-zero catch. This in turn affects 
the final index because the probability of non-zero catch is constrained 
by a maximum of 1. When binomial predictions are back-transformed, 
index variability can be reduced depending on the reference level 
selected for the catchability covariates. To avoid bias in index trends and 
variability, analysts can adjust the mean of the index either via the 
choice of reference levels or preferably by adding a constant to the logit- 
scale predictions before back-transforming to the probability scale 
(Hoyle et al., 2022). In most situations, we recommend adjusting the 
scale so that the annual mean of the binomial component of the index 
equals the mean of the annual proportions of nonzero catch. The pre-
dicted probabilities of non-zero catch may themselves be used in some 
cases to indicate abundance after transforming (Hoyle et al., 2011). 

6. Using CPUE indices in stock assessments 

As discussed earlier, each CPUE index in a stock assessment is 
associated with a fleet. Section 3 mentioned an approach described by 
Maunder et al. (2020) to jointly standardize CPUE and composition data 
and use the results to define two separate fleets in the model with 
different purposes. One fleet is associated with the CPUE index and is 
assigned composition data weighted by the spatial distribution of the 
CPUE (representing abundance) and (usually) time-invariant selectivity 
so that changes in these composition data represent changes in the 
composition of the underlying population. The other fleet (not associ-
ated with an index) is assigned composition data weighted by the 
time-varying spatial distribution of the catch so that time-varying 
selectivity can be employed to extract fish of the appropriate size/age 
composition. 

Often two or more indices or other datasets provide information that 
is to some extent in conflict. The ‘law of conflicting data’ (Maunder and 
Piner, 2017) states that since data are facts, conflict between datasets 
implies model misspecification. If information from different sources is 
in conflict, the analyst should try to identify the cause and resolve it. If 
resolution is not possible, the analyst should create a set of alternative 
models that omit conflicting datasets; in each model the remaining 
datasets are well fitted (Francis, 2011; Schnute and Hilborn, 1993). 
When conflicts occur, there may be a need to weight the alternative 
hypotheses, which introduces some subjectivity. In general, information 
about population trends in CPUE should have priority over information 
in the composition data (Francis, 2011) because it is usually more 
reliable. 

It is a relatively common practice in some assessment cultures to split 
CPUE series by time into separate non-overlapping sections and to 
include each index in a separate fishery. Splitting can occur in response 
to changes in availability of species-specific catch data (e.g., North Pa-
cific blue shark, ISC Shark Working Group, 2022), evidence of changing 
operational patterns that potentially change catchability or selectivity 
that can’t be included in the CPUE standardisation, or changes to log-
books such as the addition of new data fields (e.g., North Pacific striped 
marlin, ISC, 2019). However, splitting is often counterproductive and 
should be avoided where possible unless there is another reliable index 
of abundance to cover the gap (e.g., Hoyle et al., 2012; Hoyle, 2011). 
Splitting the time series can waste much of the abundance information 
in the CPUE data and often substantially changes model outcomes. At 
best, it increases uncertainty, but it can introduce considerable bias. This 
should only be the case if something in the model is misspecified (e.g., 
misspecification of growth and the associated fits to the length 
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composition data which affect model scaling). However, in practice, 
assessment models always include some degree of misspecification, such 
as conflict across the time series between different periods of composi-
tion data. Without the stabilizing constraint through time provided by 
the continuous index, the model estimates abundance scale indepen-
dently before and after the split by adjusting catchability. Splitting the 
time series therefore often results in abundance changes that reduce the 
internal data conflict but may be inconsistent with expectations about 
long-term catchability. At minimum, analysts should consider whether 
the implied catchability change at the split is consistent with 
expectations. 

There are usually better alternatives to splitting a CPUE series. If the 
split is due to data availability, analysts should strive to retain the same 
or similar catchability and selectivity for both indices since there is no 
evidence that either has changed. If the split is due to catchability 
changes linked to new technology, analysts should consider whether the 
changes estimated in the assessment are plausible. If a change that likely 
increased catchability has the opposite effect in the model, it is usually 
better not to split the series. If selectivity has changed with effort moving 
to a spatially or seasonally different part of the stock, a better approach 
is to analyse the dataset as separate spatial or seasonal CPUE series that 
each take a consistent part of the stock so that the change in effort 
distribution does not affect either index. Alternatively, a joint model of 
composition and CPUE data (Maunder et al., 2020) can be used as 
described earlier in this section. 

Transitions such as these often involve alternative hypotheses about 
how the changes have affected catchability. Given this uncertainty, a 
useful approach for the analyst is, rather than splitting the index, to 
identify a set of plausible hypotheses about how catchability has 
changed and construct alternative indices based on these hypotheses 
(Campbell, 2016). This approach has more widespread value because 
analysts often end up with two or more alternative indices, each of 
which has support. Given the importance of CPUE indices for deter-
mining stock assessment outcomes and the many ways that estimated 
CPUE indices can diverge from the true abundance trend, it is important 
to consider the range of plausible options as alternative stock assessment 
scenarios, preferably within a model ensemble. 

Trends in catchability over time can bias CPUE indices and can be of 
great importance for stock assessments. Increases in catch efficiency, or 
fishing power, have played a critical role in the history of fisheries 
(Scherrer and Galbraith, 2020; Squires and Vestergaard, 2013). Wilberg 
et al. (2009) describe causes of increased catchability such as changes in 
fishing practices and technology (Garrod, 1964). Technological creep 
can mask declines in abundance by increasing catchability (Kleiven 
et al., 2022); and it is observed in almost all analyses involving time 
series of fishing effort, particularly if the analyses exceed one decade in 
temporal coverage (Palomares and Pauly, 2019). For example, Squires 
(1992) found that the most important sources of technical progress in 
the Pacific coast trawl fishery were electronics, the application of sci-
entific rather than craft principles to vessel and equipment design, and 
to harvesting methods. 

Estimates of mean rates of fishing power increases across fisheries 
are variable. Eigaard et al. (2014) estimated a mean rate of increase of 
3.2% per year, while Palomares and Pauly (2019) reviewed 51 estimates 
of about 2–4% per year and estimated an expected rate of 1.3% per year 
for studies that cover a 100-year period, although this is likely to be an 
underestimate (Scherrer and Galbraith, 2020). 

One difficulty in estimating rates of fishing power change is 
obtaining the requisite data (Scherrer and Galbraith, 2020). A major 
component of fishing power is the ability to locate fish; though tech-
nology supports this in many ways, few are recorded for analysis. Ex-
amples include the installation of GPS systems, provision of increasingly 
informative environmental data from satellites and models, upgraded 
communication technology to share information between vessels and 
with fishing companies, and scientific progress in understanding the 
factors that affect fish distribution, which may derive from public 

research or from fishers’ interrogation of their own stored catch and 
effort data. Catchability change associated with vessel turnover can be 
accounted for by including the vessel ID in the model (e.g., Hoyle and 
Okamoto, 2011), but datasets rarely indicate when a particular vessel 
installed a particular piece of technology or when the behaviour of a 
vessel, fishing company, or fleet adapted to use the available informa-
tion more effectively. 

Where catchability increases are considered likely but estimates are 
unavailable, ignoring them will positively bias stock status estimates (e. 
g., Han et al., 2023; Ye and Dennis, 2009). Wilberg et al. (2009) 
recommend a default assumption that catchability varies over time and 
multiple methods of including time-varying catchability should be 
applied. To allow for uncertainty about fishing power, stock assessments 
(particularly for target species) should consider a range of reasonable 
scenarios regarding long-term catchability trends, from low to high but 
noting that 0% is rarely plausible. 

7. Concluding remarks 

CPUE standardization is an influential component of the stock 
assessment process, as well as a powerful tool for generating under-
standing of the stock and the fishery. Rather than a statistical exercise, it 
should be seen as a core part of the fisheries research program. As such, 
the initial analytical steps of exploring and characterising the dataset, 
including talking to fishers, are key. In parallel, the understanding 
developed during CPUE standardization can often motivate changes in 
the assessment model structure itself, a contribution often more influ-
ential for assessment outcomes than small changes in the CPUE indices 
themselves. 

An important development in the field of CPUE standardisation since 
Maunder and Punt (2004) has been the increase of STM applications to 
fisheries datasets. However, while STMs are attractive models with 
powerful features, they do not constitute the best option in all situations. 
They are also complicated to implement for new analysts because of the 
different statistical concepts involved. We recommend that simpler ap-
proaches be tried first to develop understanding before, if warranted, 
transitioning to more sophisticated ones (like STMs), if only to under-
stand the influence of spatio-temporal structure on one’s 
catch-and-effort dataset. Of note, a course based on the VAST STM 
(Thorson, 2022; Thorson, 2019a) is available (https://github. 
com/James-Thorson/2018_FSH556), as are examples in the VAST 
Wiki (https://github.com/James-Thorson-NOAA/VAST). In addition, as 
STMs may be sensitive to model settings and choices, we encourage 
analysts to consult the growing literature (e.g., Commander et al., 2022; 
Dambly et al., 2023) describing potential analytic trade-offs. We also 
emphasize that simulation experiments represent valuable tools for 
testing and comparing CPUE standardization modelling approaches, so 
that the analyst may select approaches to produce indices likely to be 
unbiased. Finally, the development of methods to explicitly model fisher 
location choice to improve predictions in un-sampled areas would 
constitute a promising extension to STMs. 

In Table 3, we reiterate the major recommendations introduced in 
the preceding sections. Analysts are encouraged to consider the good 
practices identified in the 16 areas covered in this review and to apply 
them where practical. Not all will be feasible to apply to every analysis, 
but it is important to understand the implications of not applying them. 

In Table 4 (based on ISC Albacore Working Group, 2016) we sum-
marize information requirements for presenting the results of CPUE 
analyses. See also Hoyle et al. (2014a) and IOTC (2015). In Table 5 
(based on ISC Albacore Working Group, 2016), we list criteria that can 
be used to assess the strengths and weaknesses of candidate abundance 
indices. 

Finally, we raise a note of caution about the potential reliability of 
indices of abundance based on CPUE data. The relationship between 
CPUE indices and relative biomass or abundance can be proportional, 
but there are many scenarios in which this relationship changes or 
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breaks down (Cooke and Beddington, 1984; Dunn et al., 2000; Harley 
et al., 2001; National Research Council, 2000; Ye and Dennis, 2009). 
Although there are no easy answers, the recommendations presented 
here will help analysts to obtain the best information available. 
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Table 3 
Summary of good practices in catch-per-unit-effort (CPUE) standardization.  

1. Indices of abundance are often the most influential part of an assessment—invest 
accordingly. 

Data 
2. Defining fleets is key. Definitions depend on stock and fishery structure, the type of 

CPUE analysis (time + space versus spatiotemporal model (STM)), and the 
assessment approach (biomass dynamic versus age/size-structured, conventional 
versus index fishery). 

a. Explore and understand data (catch, effort, CPUE, sizes, ages, maturity, gear types, 
logbook types, vessel turnover, misreporting, etc.). Plot everything. 

b. Talk to fishers and other stakeholders. 
3. Structural changes based on understanding the system can be very important for the 

assessment, whereas many other issues just cause small changes in the index trends. 
4. Revisit data exploration when updating indices. Do not simply ‘turn the handle’. 
5. Identify likely covariates before you start modelling. Avoid data dredging. 
6. Differentiate between catchability and density variables. 
7. Always include the variables that affect catchability – this is usually more important 

than the type of model you use. Think about potential for bias due to missing 
variables. 

8. Consider targeting and target change through time and how to address it. 
Understand the fleet well enough to know what the targeting strategies might be. 

Analysis 
9. Generalized additive models (GAMs) and STMs are better than generalized linear 

models (GLMs). GAMs are best for exploration. STMs can be better for the final 
model(s). Each has unique capabilities. 

10. Model the whole stock if you can do so without dropping important covariates or 
relationships due to data gaps or difficult spatial interactions. 

11. Test your model by simulation. 
12. Build multiple models using different approaches to develop your understanding 

of how the models are working and to consider alternative hypotheses. Start simple. 
13. Use influence plots to understand how the variables and their values affect the 

indices. 
14. Construct the index via the “predict-then-aggregate” approach rather than the 

previous practice of treating the partial effect of year as the index. 
Assessment 
15. Use the index fishery approach if you can. 
16. Assume effort creep. There are catchability changes that your model has not 

captured. Catchability increases are almost inevitable in the long term. 
17. Do not blindly split indices and assume the model will scale them correctly – this is 

unlikely and dangerous. 
18. Do not include several conflicting indices in an assessment at the same time. Do 

include alternative indices as alternative assessment scenarios.  

Table 4 
Information requirements to support the acceptance of abundance indices.  

Fishery description Describe fishery including catch, effort, size composition of 
catch, nominal CPUE by area, season, history of fishery 
development and changes. 

Analysis description Describe data selection, CPUE standardization model, and 
CPUE estimates. Include any data filtering, outlier removal. 

Statistical Results Provide model diagnostics and goodness-of-fit criteria 
relative to alternative model configurations; tables, etc. 

Nominal/ 
Standardized 

Comparison plot of nominal and standardized indices. 

Diagnostic plots QQ, residuals, etc. 
Point estimate & 

variability 
Characterize uncertainty in estimates of standardized 
CPUE; SE or CV of standardized CPUE (generated or 
assumed). 

Source: Adapted from ALBWG (2013. 

Table 5 
Criteria for evaluating the strengths and weaknesses of candidate abundance 
indices.  

Criterion Description 

Spatial distribution Proportion of stock covered by fishery; latitude and 
longitude 

Size/age range Distribution of size or ages in catch 
Fishing ground map Show area of operations for each fishery by season/ 

decade 
Relative contribution Proportion of total catch in the fishery 
Temporal coverage Time period of data collection 
Temporal consistency Change in spatial location of fishing grounds over 

temporal period, e.g., decadal changes/seasonal 
changes 

Temporal consistency in 
size composition 

Decadal and seasonal changes in size of fish captured 

Statistical soundness Standardization method, diagnostic plots, and CPUE 
variability provided 

Targeting Primary target, by-catch species 
Drivers of catchability 

change 
Time series of external factors affecting catchability 
(e.g., management practices, fishing technology, 
targeting changes) 

Socio-economic factors Time series of price, demand, technological changes 
(e.g., freezers), etc. 

Source: Adapted from ALBWG (2013. 
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Conesa, D., 2019. Accounting for preferential sampling in species distribution 
models. Ecol. Evol. 9, 653–663. https://doi.org/10.1002/ece3.4789. 

Perretti, C.T., Thorson, J.T., 2019. Spatio-temporal dynamics of summer flounder 
(Paralichthys dentatus) on the Northeast US shelf. Fish. Res. 215, 62–68. https://doi. 
org/10.1016/j.fishres.2019.03.006. 

Peterson, C.D., Belcher, C.N., Bethea, D.M., Driggers III, W.B., Frazier, B.S., Latour, R.J., 
2017. Preliminary recovery of coastal sharks in the south-east United States. Fish 
Fish. 18, 845–859. 

Peterson, C.D., Wilberg, M.J., Cortés, E., Latour, R.J., 2021. Dynamic factor analysis to 
reconcile conflicting survey indices of abundance. ICES J. Mar. Sci. 78, 1711–1729. 
https://doi.org/10.1093/icesjms/fsab051. 

Peterson, M.J., Mueter, F., Criddle, K., Haynie, A.C., 2014. Killer whale depredation and 
associated costs to Alaskan sablefish, Pacific halibut and Greenland turbot 
longliners. PLoS One 9, e88906. 

S.D. Hoyle et al.                                                                                                                                                                                                                                 

https://doi.org/10.1016/j.fishres.2019.02.015
https://doi.org/10.1139/cjfas-2016-0327
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref86
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref86
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref86
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref86
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref87
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref87
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref87
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref88
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref88
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref88
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref89
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref89
https://doi.org/10.1016/j.fishres.2008.03.013
https://doi.org/10.1016/j.fishres.2008.03.013
https://doi.org/10.1038/s41598-022-07293-2
https://doi.org/10.1038/s41598-022-07293-2
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref92
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref92
https://doi.org/10.2307/1269547
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref94
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref94
https://doi.org/10.1038/39575
https://doi.org/10.1038/39575
https://doi.org/10.1016/j.fishres.2012.10.001
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref97
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref97
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref97
https://doi.org/10.1093/icesjms/fsac007
https://doi.org/10.1093/icesjms/fsac007
https://doi.org/10.18637/jss.v063.i19
https://doi.org/10.1038/s41598-022-17786-9
https://doi.org/10.1038/s41598-022-17786-9
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref101
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref101
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref101
https://doi.org/10.1890/13-1912.1
https://doi.org/10.1111/1365-2664.13060
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref104
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref105
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref105
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref106
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref106
https://doi.org/10.1002/sim.1403
https://doi.org/10.1002/sim.1403
https://doi.org/10.1016/j.fishres.2013.11.001
https://doi.org/10.1016/j.fishres.2016.04.022
https://doi.org/10.1016/j.fishres.2004.08.002
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref111
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref111
https://doi.org/10.1016/j.fishres.2020.105594
https://doi.org/10.1111/gcb.15404
https://doi.org/10.1111/gcb.15404
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref114
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref114
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref114
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref114
https://doi.org/10.1016/j.fishres.2006.10.019
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref116
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref116
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref116
https://doi.org/10.1093/icesjms/fsab085
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref118
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref118
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref118
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref119
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref119
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref119
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref120
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref120
https://doi.org/10.1016/j.fishres.2011.06.005
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref122
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref122
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref122
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref122
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref123
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref123
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref123
https://doi.org/10.1016/j.fishres.2015.05.021
https://doi.org/10.1016/j.fishres.2015.05.021
https://doi.org/10.1093/icesjms/fsx174
https://doi.org/10.1093/icesjms/fsx174
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref126
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref126
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref126
https://doi.org/10.5751/Es-11136-240331
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref128
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref128
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref128
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref129
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref130
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref130
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref130
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref131
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref131
https://doi.org/10.1002/ece3.4789
https://doi.org/10.1016/j.fishres.2019.03.006
https://doi.org/10.1016/j.fishres.2019.03.006
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref134
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref134
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref134
https://doi.org/10.1093/icesjms/fsab051
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref136
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref136
http://refhub.elsevier.com/S0165-7836(23)00253-9/sbref136


Fisheries Research 269 (2024) 106860

21

Phillips, A.J., Ciannelli, L., Brodeur, R.D., Pearcy, W.G., Childers, J., 2014. Spatio- 
temporal associations of albacore CPUEs in the Northeastern Pacific with regional 
SST and climate environmental variables. ICES J. Mar. Sci. 71, 1717–1727. https:// 
doi.org/10.1093/icesjms/fst238. 

Pickens, B.A., Carroll, R., Schirripa, M.J., Forrestal, F., Friedland, K.D., Taylor, J.C., 
2021. A systematic review of spatial habitat associations and modeling of marine fish 
distribution: a guide to predictors, methods, and knowledge gaps. PloS One 16, 
e0251818. https://doi.org/10.1371/journal.pone.0251818. 

Pilling, G.; Brouwer, S. Report from the SPC pre-assessment workshop, Noumea, April 
2017. WCPFC-SC13–2017/IP-02. 13th Regular Session of the Scientific Committee, 
9–17 August 2017. Rarotonga, Cook Islands; 2017. 

Pinto, C., Travers-Trolet, M., Macdonald, J.I., Rivot, E., Vermard, Y., 2019. Combining 
multiple data sets to unravel the spatiotemporal dynamics of a data-limited fish 
stock. Can. J. Fish. Aquat. Sci. 76, 1338–1349. https://doi.org/10.1139/cjfas-2018- 
0149. 

Pitcher, T.J., Watson, R., Forrest, R., Valtýsson, H.Þ, Guénette, S., 2002. Estimating 
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