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Abstract 20 

 21 

By-catch species from tropical tuna purse seine fishery have been affected by fishery 22 

pressures since the last century; however, the habitat distribution and the climate change 23 

impacts on these species are poorly known. With the objective of predicting the 24 

potential suitable habitat for a shark (Carcharhinus falciformis) and a teleost 25 

(Canthidermis maculata) in the Indian, Atlantic and Eastern Pacific Oceans, a MaxEnt 26 

species distribution model (SDM) was developed using data collected by observers in 27 

tuna purse seiners. The relative percentage of contribution of some environmental 28 

variables (depth, sea surface temperature, salinity and primary production) and the 29 

potential impact of climate change on species habitat by the end of the century under the 30 

A2 scenario (scenario with average concentrations of carbon dioxide of 856 ppm by 31 

2100) were also evaluated. Results showed that by-catch species can be correctly 32 

modelled using observed occurrence records and few environmental variables with 33 

SDM. Results from projected maps showed that the equatorial band and some coastal 34 

upwelling regions were the most suitable areas for both by-catch species in the three 35 

oceans in concordance with the main fishing grounds. Sea surface temperature was the 36 

most important environmental variable which contributed to explain the habitat 37 

distribution of the two species in the three oceans in general. Under climate change 38 

scenarios, the largest change in present habitat suitability is observed in the Atlantic 39 

Ocean (around 16% of the present habitat suitability area of Carcharhinus falciformis 40 

and Canthidermis maculata, respectively) whereas the change is less in the Pacific 41 

(around 10% and 8%) and Indian Oceans (around 3% and 2 %). In some regions such as 42 

Somalia, the Atlantic equatorial band or Peru’s coastal upwelling areas, these species 43 

could lose potential habitat whereas in the south of the equator in the Indian Ocean, the 44 

Benguela System and in the Pacific coast of Central America, they could gain suitable 45 

habitat as consequence of global warming. This work presents new information about 46 

the present and future habitat distribution under climate change of both by-catch species 47 

which can contributes to the development of ecosystem-based fishery management and 48 

spatially driven management measures. 49 

 50 

Key-words: By-catch, MaxEnt, Silky shark, Rough triggerfish, Habitat suitability, 51 

Climate change, Tropical purse seiners, Ecosystem Approach to Fishery Management 52 

  53 
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Introduction 54 

 55 

Anthropogenic pressures such as exploitation, pollution, introduction of non-native 56 

species and habitat destruction are currently affecting the marine biodiversity and 57 

driving changes in species composition and distribution (Jones et al., 2013; Worm et al., 58 

2006).The marine ecosystem is also being impacted by climate change in some habitats 59 

and species (e.g. Hoegh-Guldberg and Bruno, 2010). Thus, global warming may change 60 

the oceanographic conditions of the oceans forcing to the pelagic species adapt to them 61 

by shifting their distributions (Komoroske and Lewison, 2015). However, the complex 62 

interactions between climate change and fishing on the species are difficult to assess 63 

(Jones et al., 2013). Commercial fisheries can alter marine ecosystems by removing 64 

species with low reproductive rates, altering size spectra and reducing habitat quality 65 

(Dayton et al., 1995). The tropical tuna purse seine fishery, one of the most important 66 

fisheries of the world in terms of economic and ecological significance, captures by-67 

catch or the “part of the capture formed by non-target species, which are accidentally 68 

caught” (Hall and Roman 2013). The by-catch in the purse seine fishery is normally 69 

discarded dead by their low economic value. However, they can be also retained on 70 

board as by-product or be landed and sold in local markets (Amandè et al. 2010).  In 71 

any case, by-catch has negative connotation because it is a wasteful use of resources (if 72 

they are not retained or sold) and due to conservation, economic and ethical concerns 73 

(Kelleher, 2005). 74 

 75 

By-catch is comprised of a large variety of species. In particular, some of these species, 76 

such as sharks are vulnerable to fishing due to its large body sizes, slow growth rates 77 

and late maturation (“k” strategy species) which make them especially sensitive to 78 

overexploitation (Froese and Pauly 2014; Poisson 2007).  79 

Even though most of pelagic sharks are caught by longliners or other fishing gears 80 

(Gilman, 2011), there is a need to reduce the incidental catches of sharks made by purse 81 

seiners. Concretely, the silky shark (Carcharhinus falciformis) represents high % of all 82 

sharks (around 85%) caught by the purse seine fishery (Amandè et al., 2008; Hall and 83 

Roman, 2013) and reduce their mortality is one of the major objectives of ecological 84 

approach to fisheries management (EAFM). Silky sharks play an important role as tope 85 

predators in the ecosystem, with the capacity to influence community structure and 86 

essential to the maintenance and stability of food webs (Duffy et al., 2015). 87 

In contrast, other by-catch fish species, such as rough triggerfish (Canthidermis 88 

maculata) are more abundant, have higher reproductive rates (“r” strategy species) and 89 

their populations are not overexploited. However, little is known about the biology, 90 

ecology and role of this important species of the ecosystem. 91 

Because the issue of by-catch is a recognized cause of biodiversity loss, improving our 92 

knowledge about the changes in both common and vulnerable by-catch species and their 93 

habitats is necessary to support conservation plans and to account for the impact of 94 

climate change on their populations (Cheung et al. 2012; Nguyen, 2012). 95 

 96 

 97 

Thus, species distributions models (SDM), also called “habitat” models, are useful tools 98 

to determine species habitat, manage threatened species, and identifying special areas of 99 

interest for biodiversity (Franklin, 2009). Such models predict the probability of 100 

occurrence of species in an area where no biological information is currently available. 101 

Some authors believe that for any successful application of the Ecosystem Approach to 102 

Fishery Management (EAFM), impact of climate change in species distribution range 103 
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should be considered (Nguyen, 2012). Thus, modeling species distribution under 104 

different climate change scenarios provide also useful ways to project species 105 

distribution changes anticipating consequences of global warming on marine 106 

ecosystems (Chust et al 2014; Khanum et al., 2013; Villarino et al 2015).  107 

 108 

Although SDM have been applied to fisheries research (e.g. Chust et al., 2014), and its 109 

use is increasing, it is still scarcely applied in comparison with terrestrial systems 110 

(Kumar and Stohlgren, 2009; Muthoni, 2010; Thuiller et al., 2005). In the case of 111 

tropical tuna purse seine fisheries, some studies have described the distribution of the 112 

megafauna associated to the tuna schools and taken by purse seiners (Peavey, 2010; 113 

Sequeira et al., 2012). However, they have not yet been applied to compare the potential 114 

habitat of vulnerable and more common by-catch species and the changes of their 115 

distribution as consequence of the climate change impact. The use of SMD in by-catch 116 

species is an emergent issue of global interest which could provide relevant information 117 

about the ecology and distribution of these pelagic species which can contribute to 118 

adopt spatially structure management measures. Therefore, the application of these 119 

models in by-catch species will help to move towards the correct implementation of the 120 

Ecosystem Approach to Fishery Management (EAFM) in the tropical tuna purse seine 121 

fisheries. 122 

  123 

The main objectives of this work are to: 1) predict the suitable habitat for Carcharhinus 124 

falciformis and Canthidermis maculata in the Indian, Atlantic and Eastern Pacific 125 

Oceans on the basis of by-catch observations from the tropical tuna purse seine fishery, 126 

2) identify the relative percentage of contribution of each environmental variable 127 

considered to describe the species distributions in each Ocean, and 3) evaluate the 128 

potential impact of climate change on their species habitats under the A2 scenario 129 

(average concentrations of carbon dioxide of 856 ppm by 2100) (Muthoni, 2010) by the 130 

end of the century. We hypothesize that the potential suitable areas for the two species 131 

could vary as climate and ocean conditions change according to the specific 132 

oceanographic characteristics of each Ocean.  133 

 134 

 135 

Material 136 

Study area 137 

 138 

Our study area comprises the Western Indian (20º N/30º S and 30º E/80º E), Eastern 139 

Atlantic (30º N/15º S and 40º W/15º E) and Eastern Pacific Ocean (30º N/20º S and 70º 140 

W/150º W) (see Supplementary material Figure 1). The three oceans are considered 141 

separately in this study because they differ greatly among them with respect to climate, 142 

oceanographic characteristics, current dynamics and upwelling systems (Tomczak and 143 

Godfrey, 2003). 144 

 145 

Data collection 146 

 147 

Occurrences of Carcharhinus falciformis and Canthidermis maculata for the Atlantic 148 

and Indian Ocean were obtained from the European Union observer programs in support 149 

to its Common Fishery Policy under the EU Data Collection Regulations (EC-DCR) No 150 

1639/2001 and 665/2008. French (Institut de Recherche por le Développement (IRD)) 151 

and Spanish scientific institutes (Instituto Español Oceanográfico (IEO)  and AZTI) 152 

were responsible for collecting by-catch data in the Atlantic and Indian Oceans with a 153 
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coverage rate of around 10% of the fleet trips from 2003 to 2010/11 (Amandè et al., 154 

2010). By-catch data for the tropical tuna purse seine fisheries in the Eastern Pacific 155 

Ocean from 1993 to 2011 was collected by the Inter-American Tropical Tuna 156 

Commission (IATTC) observer program, with 100% coverage of the purse seine vessels 157 

of carrying capacity greater than 363 metric tons. Those observer programs record all 158 

the captures in each set, in numbers when possible and in weights otherwise. The 159 

objective of those programs is to estimate the amount of by-catch species in order to 160 

increase their knowledge which will allow developing measures to reduce their 161 

incidental mortality. Thus, the objective of the observer program is directly related with 162 

the collection of information on those species and thus, the occurrence of those species 163 

is well collected (by trained observers using fish/shark guides and photographs). 164 

 165 

Up to date, the information available on by-catch species from the observer programs is 166 

one of the most important in terms of fishery dependent data. It has allowed publishing 167 

diverse studies which provide useful information on the ecology, conservation and 168 

habitat distribution of these pelagic species (Amandè et al., 2008a; Amandè et al., 169 

2008b; Amandè et al., 2010; Gaertner et al. 2002; Gerrodette et al., 2012; Hall and 170 

Roman, 2013; Lezama-Ochoa et al., 2015; Martínez-Rincón et al., 2009; Minami et al., 171 

2007; Torres-Irineo et al., 2014; Watson, 2007). This is why we consider it valid to the 172 

meet the aforementioned objectives. 173 

 174 

The data recorded by observers in this study included information about the position of 175 

the set and the by-catch level of Carcharhinus falciformis and Canthidermis maculata. 176 

In this study, both by-catch species were selected to contrast a vulnerable with a 177 

common species. These species are frequently caught in tuna purse seine gear (Hall and 178 

Roman, 2013). Moreover, they also have scientific interest, economic and social 179 

importance and adequate information available for the Indian, Atlantic and Pacific 180 

Oceans. For that reason, we selected both by-catch species based on their ecological 181 

importance, but also on the availability of the most complete data to develop the SDM 182 

correctly. The silky shark, Carcharhinus falciformis (Müller and Henle, 1839), is a 183 

pelagic species vulnerable to fishing and listed on the IUCN (www.iucn.org) as Near 184 

Threatened. Rough triggerfish or spotted oceanic triggerfish, Canthidermis maculata 185 

(Bloch, 1786), is an epipelagic species which inhabits temperate and tropical waters 186 

(46ºN – 18ºS) and usually discarded dead.  Despite the fact that the two by-catch 187 

species have many ecological differences, they both are tropical species and is expected 188 

that their potential range distribution be similar. Although these species usually appear 189 

in FAD sets of the fishery, they can be also found in Free School sets. 190 

 191 

A total of 1,013 occurrences (59 in Free School sets and 954 in FAD sets) were 192 

observed in the Indian Ocean, 370 (79 in Free School sets and 291 in FAD sets) in the 193 

Atlantic Ocean and 28,866 occurrences (1,887 in Free School sets and 26,979 in FAD 194 

sets) in the Eastern Pacific Ocean for Carcharhinus falciformis; whereas 656 (21 in Free 195 

School sets and 976 in FAD sets), 997 (12 in Free School sets and 644 in FAD sets)  196 

and 29,874 (247 in Free School sets and 29,627 in FAD sets) occurrences were 197 

observed for Canthidermis maculata in the Indian, Atlantic and Pacific Ocean, 198 

respectively. In the Pacific Ocean 1000 subsamples were randomly selected to compare 199 

similar number of sets between oceans.  200 

 201 

With the aim of obtaining the potential habitat for these two species, the main types of 202 

sets (FAD and Free School) were combined for the analyses. We combine information 203 
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from both fishing modes to show the entire range distribution of the species, as 204 

sampling sites of both types of fishing provide useful information to map the occurrence 205 

of both species occurs in relation to local environmental conditions. In the case of FAD 206 

sets, we justified its inclusion in the study as both by-catch species can appear in the 207 

same areas for each fishing mode (Lezama-Ochoa et al., 2015) (see Supplementary 208 

material Figure 7). Therefore, on the scale of the area modeled (with reference to the 209 

movement of the FAD) not matter as the tropical area does not show high 210 

oceanographic variability (Longhurst and Pauly, 1987). In addition, the by-catch species 211 

can be aggregated to a FAD and thus, be attached to the movement of the FAD for a 212 

while (Freón and Dagorn, 2000; Castro et al., 2002; Girard et al., 2004). However, as 213 

they are not always associated to the FAD, these species can leave the FAD when 214 

environmental conditions are not optimal (López, 2015). 215 

 216 

Environmental variables 217 

 218 

Environmental data were extracted from the AquaMaps database (Kaschner et al., 2013) 219 

at 0.5º resolution and stored as sets of cell attributes in a Half-degree Cell Authority File  220 

(HCAF) along with their associated Land Ocean Interactions in the Coastal Zone 221 

(LOICZ) (http://www.loicz.org) and C-squares ID numbers 222 

(https://www.marine.csiro.au.csquares). The HCAF contains such environmental 223 

attributes for a grid of 164, 520 half-degree cells over oceanic waters. We considered 4 224 

environmental variables as potential predictors of Carcharhinus falciformis and 225 

Canthidermis maculata habitat distribution: depth, sea surface temperature (SST), 226 

salinity and primary production (Prim. Prod). These environmental variables were 227 

selected by their general relevance for (epi) pelagic species and their relation to the 228 

specific oceanographic conditions in each Ocean (Arrizabalaga et al., 2015; Martínez 229 

Rincón, 2012; Sund et al., 1981). Depth was selected because it may mark the 230 

difference between the coast, the open ocean or other geological features such as 231 

seamounts, marine trenches or ridges. Cell bathymetry was derived from ETOPO 2 min 232 

negative bathymetry elevation. Sea surface temperature was selected because it has a 233 

strong impact on the spatial distribution of marine fish. Concretely, it is important in 234 

areas where some phenomenon such as “El Niño” could alter the normal oceanographic 235 

conditions and fishery production (Fiedler, 2002; Hoegh-Guldberg and Bruno, 2010). 236 

Salinity is important for the fish’s osmoregulation (Lenoir et al., 2011) and primary 237 

production determines important fishing habitats in relation with the chlorophyll 238 

concentration in equatorial and coastal upwelling areas. Temperature, salinity and 239 

primary production were modelled by their annual mean and projected to the future by 240 

the IPSL model. All variables (see Supplementary material Figure 2) were converted to 241 

raster files with the “raster” package” in R (Hijmans and van Etten, 2012). The 242 

environmental variables used and their values and characteristics are summarized and 243 

explained in Table 1 and Table 2. 244 

 245 

 246 

Methods 247 

 248 

Habitat modelling 249 

 250 

MaxEnt (Phillips et al., 2006) is one of the most used species distribution modeling 251 

method that estimates the probability of species distribution based on continuous or 252 

categorical environmental data layers (Franklin, 2009). The model implements a 253 
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sequential-update algorithm to find an optimum relation between environmental 254 

variables and species occurrence based on the maximum entropy principle (Elith et al., 255 

2011). The MaxEnt logistic output was used as a suitability index (ranging from not 256 

suitable (0) to suitable (1)), which is interpreted as a probability of occurrence, 257 

conditional on the environmental variables used to construct the model.  258 

 259 

Response curves were generated to analyze the species response to a given 260 

environmental gradient. Although MaxEnt can fit complex relationships to 261 

environmental variables, we chose to only fit linear and quadratic relationships due to 262 

the difficult interpretation of more complex relationships (Louzao et al., 2012). MaxEnt 263 

species distribution model was chosen in this work because it is considered one of the 264 

best modeling techniques (P Anderson et al. 2006) which shows higher predictive 265 

accuracy than GLMs, GAMs, BIOCLIM or GARP distribution models (Franklin, 2009).  266 

In addition, this type of model is useful to obtain an overall perspective of their habitat 267 

with different number of samples and few predictors. Thus, MaxEnt is useful for 268 

modeling pelagic species with only-occurrences data and in environments where is 269 

difficult to obtain this information because of the complexity of the marine ecosystem 270 

and the low variability of its oceanography. 271 

 272 

Prior to modelling, strongly ‘correlated’ (correlation (r) >0.6) environmental predictors 273 

were identified by estimating all pair-wise Spearman rank correlation coefficients. This 274 

step is necessary to find any collinearity between explanatory variables (Louzao et al., 275 

2012). In addition, we evaluated percentage of contribution of the environmental 276 

variables to the MaxEnt model based on a jackknife procedure, which provides the 277 

explanatory power of each variable when used in isolation. 278 

Suitability maps for Carcharhinus falciformis and Canthidermis maculata were 279 

constructed using the MaxEnt algorithm with “dismo” package in R software (Hijmans 280 

et al., 2013). 281 

 282 

Pseudo-absence data generation 283 

 284 

The occurrences for silky shark and rough triggerfish were obtained from the same 285 

dataset in each Ocean. All the sampled occurrences were selected in the Indian Ocean 286 

and Atlantic Ocean dataset. In contrast, in the Pacific Ocean 1000 subsamples were 287 

randomly selected to compare similar number of occurrences between oceans. The total 288 

fishing effort is showed for each Ocean in Supplementary Material Figure 3. 289 

 290 

The absence of species in a set may be explained by three reasons: 1) the species was 291 

not present, 2) the species was present but escaped from the net and it was not captured 292 

or recorded, 3) the species was captured but it was not recorded by the observer. The 293 

species absence in a specific set could be reconstructed from the general species list but 294 

introduces a risk of creating erroneous data. In this work, shark and triggerfish data was 295 

considered presence-only, as true absences were unknown. Where absence data are 296 

unavailable to use in habitat models, an alternative approach is to generate pseudo-297 

absences that should, ideally, also account for any spatial bias in the sampling effort 298 

(Phillips et al., 2009). For that reason, we have generated pseudo-absences for model 299 

evaluation purposes. We generated the pseudo-absences following the next method: 300 

pseudo-absence points were selected randomly from across the sampled area in each 301 

ocean. Furthermore, an equal number of pseudo-absence points as presences points 302 

were used for the random selection method (Senay et al., 2013). We generated each set 303 
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of pseudo-absences excluding the presence points using the randomPoints function from 304 

the “dismo”   package in R (Supplementary material Figure 4). 305 

 306 

Model validation 307 

 308 

A validation step is necessary to assess the predictive performance of the model using 309 

an independent data set. The most common approach used is to split randomly the data 310 

into two portions: one set used to fit the model (e.g. 80% of data), called the training 311 

data, and the other used to validate the predictions with the presences and pseudo-312 

absences occurrences (e.g. 20% of data), called the testing data (Kumar and Stohlgren, 313 

2009). Cross-validation is a straightforward and useful method for resampling data for 314 

training and testing models (ref). In k-fold cross validation the data are divided into a 315 

small number (k, usually five or ten) of mutually exclusive subsets (Kohavi, 1995). 316 

Model performance is assessed by successively removing each subset, re-estimating the 317 

model on the retained data, and predicting the omitted data (Elith and Leathwick, 2009). 318 

In this study, a k-fold partitioning method (with k=5) was used to construct the testing 319 

(20%) and training data (80%) from occurrence records. Finally, we ran MaxEnt 5 times 320 

for the k-fold partitioning method. We calculated the mean of the 5 MaxEnt predictions 321 

to obtain an average prediction and coefficient of variation of predictions. 322 

 323 

Model evaluation 324 

 325 

The accuracy of the model and the five replicate model cross-validations were evaluated 326 

using the area under the receiver operating characteristic curve (AUC) (Fielding and 327 

Bell, 1997). Given the defined threshold value, a confusion matrix or error matrix 328 

(Pearson, 2007), which represents a cross-tabulation of the modelled occurrence 329 

(presence/pseudo-absence) against the observations dataset, was also calculated based 330 

on the  following  indexes (Pearson, 2007): sensitivity (proportion of observed 331 

occurrences correctly predicted), specificity (proportion of pseudo-absences correctly 332 

predicted), accuracy (proportion of the presence and pseudo-absence records correctly 333 

assigned) and omission error (proportion of observed occurrences incorrectly predicted). 334 

The modelled probability of species presence was converted to either presence or 335 

absence using probability thresholds obtained using two criteria: sensitivity is equal to 336 

specificity, and maximization of sensitivity plus specificity, following Jiménez-337 

Valverde and Lobo (2007). Thus, the cases above this threshold are assigned to 338 

presences, and below to absences.  339 

AUC values and accuracy values from the confusion matrix range in both cases between 340 

0.5 (random sorting) and 1 (perfect discrimination). The comparison between the 341 

accuracy of the model with all observations and the accuracy of the cross-validated 342 

model permits the detection of model overfitting (Chust et al., 2014).  343 

 344 

Projections for the 21
st
 century 345 

 346 

Habitat suitability of Carcharhinus falciformis and Canthidermis maculata was 347 

modelled at present (2001-2010/11) and future (2090-2099/2100) conditions under the 348 

A2 climate change scenario (Muthoni, 2010). The A2 scenario (concentrations of 349 

carbon dioxide of 856 ppm by 2100) (Muthoni, 2010; Rombouts et al., 2012), which 350 

was used in this study describes a very heterogeneous world with high population 351 

growth, slow economic development primarily regionally oriented and slow 352 

technological change. 353 
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The same environmental variables used for the present conditions were also obtained 354 

from the Aquamaps database for the future climate under the A2 scenario (Kaschner et 355 

al., 2013). 356 

 357 

Once the habitat models were built on the basis of present environmental data and 358 

occurrence observations, they were projected to future climate conditions to assess the 359 

habitat distribution response to climate change. Changes on species suitable habitat 360 

distribution were assessed by spatial overlap between suitable areas predicted under 361 

present and future scenarios. Percentages of gain and loss of suitable habitat from 362 

present to future modelled conditions were calculated for the two species. The 363 

percentage of suitable habitat which remains suitable in the future is defined as the 364 

percent of grid cells suitable for the species both at present and future. From the current 365 

suitable habitat, the grid cells predicted to become unsuitable represented the percentage 366 

of habitat loss. The percentage of new suitable or gained habitat (habitat unsuitable at 367 

the present but suitable at the future) is calculated as the ratio between the number of 368 

new grids cells and the habitat size not currently suitable (i.e. grid cells not suitable at 369 

the present) (Thuiller et al., 2005). 370 

 371 

 372 

Results 373 

 374 

Habitat suitability models  375 

 376 

The resulting predicted habitat suitability maps for Carcharhinus falciformis and 377 

Canthidermis maculata are depicted in Figure 1 and Figure 2.  378 

The MaxEnt model predicted current potential suitable habitat for silky shark: a) along 379 

the equatorial band (10ºN-10ºS/50º-90ºE) in the Indian Ocean, b) around Cap Lopez 380 

(5ºS-10ºE) and the north equatorial band (0º-10ºN) in the Eastern Atlantic Ocean and c) 381 

along both sides of Equator, especially in the northern hemisphere (0-10ºN) and near the 382 

coast in the Eastern Pacific Ocean.  383 

The most suitable habitats for rough triggerfish were predicted: a) around the equatorial 384 

band (10ºN-10ºS/50º-90ºE) in the Indian Ocean, b) along the Equator in the northern 385 

hemisphere (0-10ºN/10-25ºW) and to a lesser extent, around Cap Lopez (5ºS-10ºE) in 386 

the Atlantic Ocean and c) along the Equator  (10ºN-10ºS/80-110ºW) and close to the 387 

coast of Central and South  America (10ºN/10ºS; 80º-90ºW) in the Eastern Pacific 388 

Ocean. In general, model predictions showed that both by-catch species were found 389 

with higher probability (the lower the CV, the lower the uncertainty) in the Indian and 390 

the Pacific Ocean (represented by light blue color in the maps). Rough triggerfish 391 

showed better values (lower coefficient of variation along all the study area) in general 392 

than silky shark. In contrast, CVs were found for both species in the Atlantic Ocean, but 393 

out of their potential habitat distribution. All those areas were consistently identified as 394 

important due to the low coefficient of variation in predictions (Supplementary material 395 

Figure 5). 396 

 397 

The percent contribution of each environmental variable for both species in each Ocean 398 

is shown in Table 4. Results from Jackknife procedure are showed in Supplementary 399 

material Figure 6. Low correlations were found among environment variables (r<0.6) in 400 

each Ocean and in general (Supplementary material Table 1). Therefore, they all were 401 

included in the analysis. 402 
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Sea surface temperature and depth were respectively the most important predictors for 403 

silky shark (86.3% and 13.9%) and rough triggerfish (81% and 17.8%) in the habitat 404 

models in the Indian Ocean. Sea surface temperature and salinity were the variables that 405 

most contributed to the model for silky shark (85.5 and 11.5%) and rough triggerfish 406 

(91.1% and 4.1%) in the Eastern Atlantic Ocean. Finally, in the Eastern Pacific Ocean, 407 

sea surface temperature was the most important variable for silky shark with 66.3% 408 

contribution and primary production for rough triggerfish (56.6%). In general, sea 409 

surface temperature was the variable that most contributed to explain the habitat 410 

distribution for the two species in each ocean (Table 4). 411 

 412 

The relationships between presence probability and environmental variables for each 413 

Ocean are illustrated in Figure 3 and Figure 4. Silky shark and rough triggerfish 414 

presence probability increased with sea surface temperature and decreased linearly with 415 

salinity, whereas non-linear relationships were found in some cases for depth and 416 

primary production. Concretely, maximum presence probability was found at high 417 

temperatures (26-30º) and low salinities (20-30 psu) for both by-catch species in all 418 

oceans. Both by-catch species showed preference by deep ocean regions (5000-6000 419 

meters) in the Indian Ocean and by intermediate deep regions (3000-4000 meters) in the 420 

Atlantic and Pacific Ocean (with the  exception of silky shark in the Atlantic; its 421 

presence probability decreased with depth). Furthermore, probability of presence for 422 

both species was found to be higher at low primary production concentrations (50-100 423 

mg·m
-3

) in the Indian Ocean, intermediate concentrations (100-150 mg·m
-3

) in the 424 

Atlantic Ocean and at high concentrations (200-300 mg·m
-3

) in the Pacific Ocean.  425 

 426 

Model evaluation 427 

 428 

AUC values and accuracy indexes for all-observations (t) and cross-validated (k) 429 

models are shown in Table 3. MaxEnt models for both species in all oceans showed 430 

good agreement between AUC values (0.60 to 0.80) and accuracy values for cross-431 

validated models (0.50 to 0.75). The intermediate-high accuracy values for cross-432 

validated models, compared with the models using all observations, indicate that the 433 

models were not over-fitted. Sensitivity and specificity values for all observations and 434 

cross-validated models showed slightly high values for both species, with the exception 435 

of the Indian Ocean (around 0.55), where these values were lower (Table 3). The 436 

omission error was low in general (0.05-0.08), indicating that the model performed 437 

well. Finally, low-intermediate threshold values were obtained in all cases (around 438 

0.45), showing good proportion of predicted area suitability (Pearson 2007).  439 

 440 

In general, distribution models for both by-catch species showed reasonable model 441 

performance, although rough triggerfish showed better accuracy values (between 0.60 442 

and 0.80) than silky shark (around 0.60-0.70) in each Ocean. At the same time, the 443 

Indian Ocean had the worst performance values (around 0.50-0.60) for both by-catch 444 

species in comparison with the Atlantic (0.7/0.8) and Pacific Oceans (0.65/0.75). 445 

Finally, to verify that the occurrences randomly taken in the Pacific Ocean were a good 446 

representation of the species distribution, the model it was run several times with 447 

different sets of 1000 occurrences. In all cases, the results showed high accuracy values. 448 

 449 

Projected habitat suitability differences  450 

 451 
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The projected habitat suitability maps for Carcharhinus falciformis and Canthidermis 452 

maculata under A2 future scenario of climate change and differences between future 453 

and present conditions (binary maps) for each Ocean are depicted in Figure 1 and Figure 454 

2, respectively. The percentages of suitable and loss/gain habitat suitability for silky 455 

shark and rough triggerfish in the Indian, Atlantic and Pacific Oceans are shown in 456 

Table 5. 457 

 458 

Under the A2 scenario for 2100, 3.1% of the present habitat for silky shark was 459 

predicted to change in the future in the Indian Ocean (Table 5 and Figure 1). The gained 460 

areas were mostly located in the south (mostly around 12ºS) while the lost areas were 461 

located near the Somali coast, the central part of the study area and the south of India. In 462 

the Eastern Atlantic Ocean, under climate change impacts, the model predicts that silky 463 

shark could gain some habitat north of the equator and in the Cap Lopez area and would 464 

loss habitat around the equatorial band between 0º-10ºS (Table 5, Figure 1), with a total 465 

change of the present habitat of 15.9%. In the Eastern Pacific Ocean, under the A2 466 

scenario of climate change, 10.4% of the present habitat was predicted to change in the 467 

future. Habitat is predicted to be lost near the coastal upwelling area of Peru, and in the 468 

equatorial band (10ºN and 10ºS), while the gains would occur north and south of the 469 

Equator (10ºN and 10ºS) and along the coast of Central America (Nicaragua, Costa 470 

Rica, Panamá, Colombia) in an area called “Panama Bight” (Forsbergh, 1969). 471 

 472 

On the other hand, because of changes in oceanographic conditions, 2.4% of the present 473 

habitat was predicted to change in the future for rough triggerfish in the Indian Ocean. 474 

The gained and lost areas were detected in similar areas as for silky sharks. In the 475 

Eastern Atlantic Ocean, under the climate change scenario used, 15.7% of the present 476 

habitat was predicted to change in the future. The climatic model for 2100 projected a 477 

potential gain for rough triggerfish of habitat in the Cap Lopez area and the north of the 478 

Equator and loss of habitat in the north (0-10ºN/20-40ºW) and south (0-10ºS/0-10ºE) of 479 

the Equator. Finally, under the A2 scenario of climate change, 8.7% % of the present 480 

habitat in the Pacific was predicted to change in the future; with an increase in suitable 481 

habitat in the north and south of Equator (around 90-110ºW and 125-140ºW). The 482 

model predicted loss of habitat at south of Equator (around 100-110ºW) and in the 483 

upwelling coast area of Peru (Table 5, Figure 2). 484 

 485 

 486 

Discussion 487 

 488 

The influence of fishing pressure and climate change on marine ecosystems and more 489 

particularly on species distribution has become a general concern (Jones et al., 2013). In 490 

this study, we show that species distribution habitats for common and threatened by-491 

catch species can be modeled using MaxEnt species distribution model, even with a 492 

limited set of environmental variables. The application of SDM on by-catch species 493 

opens a new range of possibilities to study more pelagic species in different areas and 494 

fisheries. Potential habitat of species fished in different fisheries could provide 495 

important information about species distribution range in the open sea and useful for 496 

spatially structured management plans. 497 

 498 

We obtained reasonable accurate values using MaxEnt species distribution model, as 499 

Peavey (2010) and Sequeira et al., (2012) did. Moderately high AUC and overall 500 

prediction accuracy around 0.70 were found for both by-catch species in different 501 
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oceans. Our distribution models were able to predict habitat suitability for silky shark 502 

and rough triggerfish over a more extensive area than that covered only by the observer 503 

data (ocurrences). The observer dataset we used contained only silky shark and rough 504 

triggerfish presences. We addressed this drawback by randomly generating pseudo-505 

absences (Senay et al., 2013) and running 5 times the prediction to account for the 506 

robustness of the models. However, the correct selection of pseudo-absence data 507 

directly affects the accuracy of model prediction. For that reason, the accurate 508 

identification of the area (in this case, the sampled area and not areas out of the sampled 509 

area) for the creation of pseudo-absences was essential for the correct model 510 

performance. 511 

  512 

 513 

Habitat suitability areas 514 

 515 

The analysis and modelling of by-catch data collected by observer programs has 516 

provided predictions of the pelagic distribution of two wide-ranging species. Thus, the 517 

predictive maps produced by our models revealed that the regions close to equatorial 518 

and upwelling regions were the most suitable habitats for these species in the Atlantic, 519 

Indian and Pacific Ocean in correspondence to the main fishing grounds. These areas 520 

are the most important in the tropical tuna purse seine fisheries (Hall and Roman, 2013) 521 

because they are characterized by warm waters, strong surface currents, upwelling 522 

systems and different wind patterns supporting a great variety of organisms and in 523 

consequence, high marine biodiversity. Lezama-Ochoa et al., (2015a) and Torres-Irineo 524 

et al., (2014) showed that higher numbers of species were found close to coastal 525 

upwelling areas in the Indian Ocean associated to the monsoon system and with the 526 

equatorial counter-current in the Atlantic Ocean. In the Pacific Ocean, the higher 527 

numbers of species were found at north of the Equator (10ºN) in an area of marked 528 

frontal systems and near the coast of Central America (mainly Costa Rica and Panama) 529 

(Lezama-Ochoa et al., 2015b (submitted)). Our results suggest that the distributions of 530 

these two species coincide with the areas where the highest biodiversity was found.  531 

 532 

It is important to note that the use of this type of data is valid since the information 533 

provided by the models reveals interesting findings. Results showed some areas which 534 

can be suitable for these species independent of the area of fishing effort. That means 535 

these models provide new information (for example, at south (20ºS-80ºE) and close to 536 

the Indian Continent in the Western Indian Ocean, or the coast of Nigeria and 537 

Cameroon in the Atlantic Ocean) of areas which can be suitable despite not being 538 

fished. In contrast, other areas (for example, north and south (15ºN-20ºS) in the Atlantic 539 

Ocean) which are located inside the fishing effort area are not suitable for these species. 540 

It means that both target and non-target species may have different habitat distributions 541 

and preferences. 542 

This study was compared with the results from Froese and Pauly (2014) from 543 

AquaMaps (Kaschner et al., 2013). Both works showed similar habitat preferences of 544 

Carcharhinus falciformis around coastal and oceanic upwelling waters. However, 545 

Froese and Pauly (2014) did not show any climatic projection for the future. In the case 546 

of Canthidermis maculata, the habitat distribution published by Froese and Pauly 547 

(2014) only frames the coastal areas, which results in different distribution ranges and 548 

future projections compared with our work. The differences were based on the different 549 

sources of information used (museum collections, different databases, literature 550 

references) compared to our work which contains a large number of offshore 551 
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observations since it is based on observer programs covering the wide distribution of the 552 

tropical tuna fisheries. In that sense, the presence data of our sampling provides new 553 

information about the distribution of the two species. This new information may be a 554 

result of the expansion of the FAD fisheries. 555 

 556 

The habitat models derived in this study suggest that Carcharhinus falciformis and 557 

Canthidermis maculata responded mainly to variation in SST in the three oceans. These 558 

by-catch species are often distributed in warm waters and aggregated around floating 559 

objects (e.g. logs, Fish Aggregating Devices) in productive areas (Dagorn et al., 2013).  560 

In the Western Indian Ocean, the monsoon system determines the wind and current 561 

patterns of the area, with coastal upwelling systems close to Somalia in summer and 562 

Mozambique in winter. These systems are associated with changes in the surface 563 

temperatures and therefore, affect the habitat and distribution of the by-catch species. In 564 

addition, the depth of the ocean basins seems to play an important role in the habitat 565 

distribution of both by-catch species. The continental shelf in the Indian Ocean is 566 

narrower than in the other oceans and therefore, the distribution of the species in open 567 

ocean is close to the coast (Tomczak and Godfrey, 2003). 568 

 569 

In the Atlantic Ocean, the SST is also the most important environmental variable 570 

followed by low salinity and high primary production concentrations as a consequence 571 

of the Benguela upwelling system (Tomczak and Godfrey, 2003).  572 

In the Eastern Pacific Ocean, the SST plays an important role in relation with ENSO 573 

conditions in equatorial and coastal upwelling areas of the Pacific. Thus, determines 574 

tuna, other teleost species and shark distributions around the “warm pool” area close to 575 

the Gulf of Tehuantepec and Central America (Martínez Arroyo et al., 2011). In 576 

addition, the primary production is also important in the Eastern Pacific Ocean. The 577 

equatorial and Peru eastern boundary currents are associated with highly productive 578 

upwelling systems, which form some of the most important fishing areas of the world 579 

(Fiedler et al., 1992). Thus, these environmental variables had important implications on 580 

the biogeographic patterns of both species abundance and distribution in each Ocean. 581 

 582 

Projected habitat suitability 583 

 584 

The Intergovernmental Panel on Climate Change (IPCC) estimates ocean warming in 585 

the top one hundred meters between 0.6 °C and 2.0 °C by the end of the 21st century 586 

(Collins et al., 2013). Species may respond to climate change by shifting their 587 

geographical or bathymetric distributions (horizontal or vertical distributions) 588 

depending on the extent of the species geographical ranges, dispersal mechanism, life-589 

history strategies, genetic adaptations and biotic interactions or extinction factors 590 

(Thuiller, 2004). 591 

Our results suggest that climate change will affect the distribution of these species 592 

depending on the oceanographic conditions of each Ocean. In this study, changes in 593 

species distribution as a consequence of climate change were predominant around the 594 

equatorial band and in some cases, around upwelling systems (Panama in the Eastern 595 

Pacific Ocean, Benguela in the Atlantic Ocean (in a lesser extent)) where fisheries are 596 

quite significant. This is not in agreement with the general expectations of migration to 597 

deeper waters and poleward shifting of marine fishes in response to sea warming 598 

(Cheung et al., 2013; Walther et al., 2002). Moreover, climate change can impact the 599 

strength, direction and behavior of the world’s main currents and therefore, affecting 600 
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also in this way the species geographical distributions (Hoegh-Guldberg and Bruno, 601 

2010). 602 

  603 

Habitat loss 604 

 605 

The percentage of habitat suitability that could disappear, or persist for each species is a 606 

good way to assess the potential impact of climate change at a regional scale (Thuiller, 607 

2004).  608 

If we focus on the habitats in each ocean, the Atlantic Ocean temperatures are projected 609 

to increase due to the much larger warming associated with increases of greenhouse 610 

gases in this region (IPCC, 2007); and therefore, a greater and faster loss of habitat in 611 

this area is expected. In the case of the Western Indian Ocean, the area around the 612 

Somali coastal upwelling system could be unsuitable for the two species as a response 613 

to temperature warming, affecting one of the most diverse areas for these by-catch 614 

species (Amandè et al., 2011; Lezama-Ochoa et al., 2015a).  615 

With regard to the Eastern Pacific Ocean, the A2 climate change scenario projected 616 

habitat losses around 8-10% for both by-catch species around the coast of Peru and 617 

north and south of the Equator (10ºN-10ºS). In that sense, some authors suggested a 618 

reduction of primary production around these areas as consequence of global warming 619 

(Blanchard et al., 2012; Gregg et al., 2003; Hoegh-Guldberg and Bruno, 2010). The 620 

results obtained in this work lead us to suggest that these zones could be not suitable for 621 

studied by-catch species by 2100 if the primary production is reduced; since these 622 

species depend on high nutrient levels and the preys associated to those conditions.  623 

 624 

Habitat gain 625 

 626 

Climate change induced some positive effects with gain of habitat for both species in 627 

each Ocean. According to Bindoff et al., (2007), the Indian Ocean has been warming in 628 

the last years except for an area located at the latitude 12ºS along the South Equatorial 629 

Current. Therefore, it is believed that this trend will continue in the future. In that sense, 630 

our model projects a slight potential colonization for the two by-catch species along this 631 

area (12ºS) as a consequence of the positive effect of the ocean warming.  632 

 633 

Carcharhinus falciformis and Canthidermis maculata could gain new habitat in the 634 

Atlantic Ocean near the Angola and Namibia coasts. Global warming could increase the 635 

evaporation and, therefore, the rainfall with a consequent increase in the flow of the 636 

rivers, providing nutrients to feed plankton in the coastal areas (Justic et al., 1998). 637 

Thus, the area located near the mouth of the Congo River could increase its productivity 638 

and, hence, the habitat suitability for by-catch species. Other possible explanation for 639 

the increase in primary production in the western coast of Africa could be that suggested 640 

by Hjort et al., (2012) who showed that an increase in upwelling-favorable winds in the 641 

Benguela system could increase primary production. This could benefit the habitat 642 

suitability for some species around this area due to an increase of nutrients supplies. 643 

 644 

In the Eastern Pacific Ocean, a significant gain of habitat suitability for both by-catch 645 

species as a consequence of the increase in primary productivity around Central 646 

America is expected by the end of the century. In this region, the temperature increase 647 

in the continent as a consequence of global warming will be higher than in the open 648 

ocean, which could increase wind intensity favoring upwelling in the coast of Central 649 
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America where three “wind corridors” play a major role in coastal production (Martínez 650 

Arroyo et al., 2011).  651 

 652 

In general, there were not significant differences between the percentages of habitat loss 653 

and habitat gain for each by-catch species. High percentage of change of habitat was 654 

found in the Atlantic Ocean, and a lesser extent, in the Pacific Ocean. In contrast, the 655 

Indian Ocean didn’t show any relevant change or their distributions. The global 656 

warming could impact more the equatorial areas from the Pacific and Atlantic Oceans, 657 

which share similar oceanographic features (Tomczak and Godfrey 2003). The 658 

environmental processes in the tropical Indian Ocean, in contrast, seem to play a 659 

different role in the diversity (Lezama-Ochoa et al. 2015) and the habitat of the by-catch 660 

communities as consequence of the strongest monsoon on Earth. For that reason, the 661 

results were expected to be also different. The lack of the permanent equatorial 662 

upwelling in the Indian Ocean (as consequence of the steady equatorial easterlies) and 663 

the position of the land mass in the north area, seems to influence in the oceanography 664 

and environment of this area (Tomczak and Godfrey 2003). 665 

 666 

In an environmental or fisheries management context the question is not necessarily 667 

how the climate or ocean abiotic conditions will change, but how the species of the 668 

ecosystem might respond to these changes (Payne et al., 2015). We obtained that both 669 

by-catch species respond in similar way to the future climate changes. However, with 670 

respect to their populations, the silky shark could be largely affected in the Atlantic and 671 

the Pacific Ocean if no management measure is taken to reduce its mortality. Silky 672 

shark population should be considered more cautiously since this is a vulnerable species 673 

less resilient to climate change than small body-size organisms (Lefort et al., 2015). The 674 

use of good practices onboard (Gilman, 2011) to increase the post-release survivorship 675 

is the best option to reduce their mortality. In addition, understanding its spatio-676 

temporal distribution will help to develop spatially structured mitigation or management 677 

measures”. 678 

In contrast, although a similar percentage of habitat loss occurred in triggerfish, their 679 

population seems to be stable due to its “r” life-strategy. Even so, it must take into 680 

account these species in the future management plans. 681 

 682 

Limitation of the work 683 

 684 

Accurately describing and understanding the processes that determine the diversity and 685 

distribution of organisms is a fundamental problem in ecology and always inevitably 686 

associated with a degree of uncertainty (Payne et al., 2015). This uncertainty is 687 

multifaceted and can be decomposed into several elements. Identifying these different 688 

factors helps to better address them for obtaining a better model performance. Two of 689 

the most important uncertainties in species distribution models (considered as empirical 690 

models, see Payne et al., 2015) are structural and scenario uncertainties. Thus, the 691 

quality of model outputs can depend on the variables (biological data and environmental 692 

data) and the space-time scale considered (Payne et al. 2015; Phillips et al. 2009). There 693 

is not best model, and the choice should be driven by the question and the objective of 694 

the study. 695 

In this work, the MaxEnt habitat modelling method allowed in an easy way to obtain 696 

essential information with few environmental variables about pelagic species. However, 697 

the gained experience leads us to discuss several aspects which must be considered and 698 

improved applying future habitat models. The selection of the occurrence by-catch data 699 
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from the fishery not targeting those species can lead to assume that the data quality is 700 

not enough. However, we demonstrated that observer data is been used in multiple 701 

ecological and habitat studies similar to the one described here. Nevertheless, further 702 

increase of the coverage rates (in the case of the Atlantic and Indian Ocean) and the 703 

sample size is essential for doing comparisons between years and periods.  704 

 705 

The selection of the environmental variables was based in the main oceanographic 706 

characteristics of each Ocean, and thus, as showed by the results, the response curves 707 

explained correctly the high mobility character of the species and their relationship with 708 

the upwelling and surface current systems. However, the selection of other 709 

environmental variables related with the ecology of the species (nutrients, oxygen, 710 

etc…) could also improve the results. The habitat model performed better at large 711 

spatial scales (in the Atlantic and the Pacific Ocean) than at small scales (Indian Ocean). 712 

The complex oceanographic processes in the Indian Ocean compared with the Atlantic 713 

and Pacific Ocean, which share some oceanographic features, could difficult the 714 

selection of specific factors which explain the distribution of the two by-catch species. 715 

Thus, a better selection of the environmental data and the application of the other 716 

habitat models to compare predictions in this Ocean would be further recommended. 717 

Secondly, the lack of absence data was the most important factor discussed and 718 

considered in this study. As we know that the model with presences and absences 719 

performs better than the only-presence models, we decided to generated and include the 720 

pseudo-absences to evaluate the models. Within the numerous ways of addressing the 721 

problem of generate pseudo-absences (Barbet-Massin et al. 2012; Fourcade et al. 2014; 722 

Sequeira et al. 2012), here it was solved with the generation of the same number of 723 

pseudo-absences (randomly) as presences in places where presences were not observed 724 

within the sampled area. However, in future works, it would be worth to compare 725 

among different ways to generate pseudo-absences. 726 

 727 

The applicability of habitat models on fisheries management plans 728 

 729 

By-catch is a significant issue for the fishing industry, scientists and managers, and it 730 

needs to be managed and mitigated. Invasions and extinctions of by-catch species in an 731 

area can affect not only their species distribution range, but also the marine biodiversity, 732 

community structure, size spectra, and ecosystem functions (Sala et al., 2006). In this 733 

context, by-catch monitoring programs with observers onboard can be expensive and 734 

sometimes difficult to implement. However, they are an important source of data to 735 

identify suitable habitats to be used in conservation biology field (Franklin, 2009). 736 

 737 

Thus, there is still a need to develop SDM for other by-catch species and/or habitats of 738 

interest for these species (e.g. upwelling areas, seamounts, coastal areas) to investigate 739 

their spatial distributions and to assess the effects that fishing and climate change may 740 

have on those populations. Concretely, it would be interesting to apply this habitat 741 

model in other tuna target-species to describe their potential habitat distribution and 742 

identify any possible overlap with the by-catch species. Thus, the future gain areas by 743 

the by-catch species, provided that target species distribution remains the same, could 744 

be act as a refuge for by-catch species. Similarly, those losses areas could be considered 745 

to be protected in future management plans. Moreover, other habitat suitability 746 

distribution approaches (such as ensembles of different algorithms) and other more 747 

sophisticated and descriptive environmental predictors, as well as new climate change 748 

scenarios may help to improve habitat distribution projections.  749 
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Monitoring and understanding changes in by-catch species distributions, in addition to 750 

those of the harvested species (tunas), are necessary for a better understanding of the 751 

pelagic ecosystem and towards a correct implementation of the EAFM. 752 

 753 

 754 

Conclusions 755 

 756 

Our model predicts that potential habitat distribution areas for Carcharhinus falciformis 757 

and Canthidermis maculata in the Atlantic, Indian and Pacific Oceans are close to 758 

equatorial and coastal upwelling areas, and mainly associated with sea surface 759 

temperature. These habitat distribution models, based on the information collected by 760 

observer programs from the tropical tuna purse seine fisheries in the three oceans, 761 

provide a good estimation of the pelagic distribution of these wide-ranging by-catch 762 

species. The global ocean warming could impact some of these unstable and vulnerable 763 

ecosystems (mainly in the Atlantic and the Pacific Ocean) affecting the distribution of 764 

these species in accordance with the particular oceanographic conditions of each Ocean. 765 

Under climate change scenarios, the largest change in present habitat suitability was 766 

observed in the Atlantic Ocean (around 16% of the present habitat suitability area of 767 

Carcharhinus falciformis and Canthidermis maculata) whereas the change was less in 768 

the Pacific Ocean (around 10% and 8%) and any significant change was observed in the 769 

Indian Ocean (around 3% and 2 %). 770 
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Table 1. Environmental data used to generate the species distribution models (Present) 

and used to project the data (Future) from AquaMaps database. 

 
Variable Characteristics Present Future Units 

Mean sea depth Cell bathymetry derived from ETOPO 2 min negative bathymetry elevation - - meters 

Sea surface temperatura 

 

Modeled current and 2100. Mean annual sea surface temperature (IPSL 

model A2 scenario) 

2001-2010 2090-2099 
Annual average 

degrees 

Salinity Modeled current and 2100. Mean annual salinity (IPSL model A2 scenario)  2001-2011 2090-2100 
Practical Salinity Units 

(PSU) 

Primary production Proportion of annual primary production (IPSL model A2 scenario) in a cell Present 2100 MgC·m-²·day -1. 
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Table 2. Mean of environmental variables in the three oceans considered in this study. 

See Table 1 for the explanation of the variables and data sources, and the maps in the 

supplementary material (Figure 2) for the spatial distribution of the variables. 
 

    Indian Ocean Atlantic Ocean Eastern Pacific Ocean 

Variables Measure Present A2 (2100) Present A2 (2100) Present A2 (2100) 

Depth mean 3493.8 3493.8 4342.6 4342.6 3722.2 3722.2 

SST mean 26.9 28.9 25.1 27.0 26.0 27.8 

Salinity mean 36.0 36.0 36.0 36.2 35.6 35.7 

Prim. Prod mean 58.3 46.6 63.7 53.9 116.7 91.7 
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Table 3. Model evaluations with all observations (t) and cross-validated (k) for 

Carcharhinus falciformis and Canthidermis maculata in the Indian (IO), Atlantic (AO) 

and Eastern Pacific Ocean (EPO). Threshold values obtained from maximization of 

sensitivity plus specificity. 

 
Ocean By-catch species AUC(t/k) Sensitivity(t/k) Specificity(t/k) Accuracy(t/k) Omission(t/k) Threshold 

IO 
Carcharhinus falciformis 0.63/0.62 0.68/0.86 0.56/0.41 0.63/0.50 0.42/0.08 0.41 

Canthidermis maculata 0.64/0.62 0.70/0.84 0.56/0.44 0.64/0.52 0.39/0.08 0.46 

AO 
Carcharhinus falciformis 0.76/0.77 0.80/0.84 0.64/0.63 0.72/0.66 0.24/0.05 0.50 

Canthidermis maculata 0.82/0.83 0.74/0.78 0.79/0.77 0.77/0.77 0.29/0.05 0.40 

EPO 
Carcharhinus falciformis 0.67/0.67 0.68/0.67 0.60/0.60 0.64/0.61 0.35/0.01 0.49 

Canthidermis maculata 0.76/0.75 0.72/0.77 0.69/0.65 0.71/0.67 0.28/0.07 0.45 
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Table 4. Logistitc model output values: percentage of contribution of each 

environmental variable with all observations (t) and cross-validated (k) for 

Carcharhinus falciformis and Canthidermis maculata in the Indian (IO), Atlantic (AO) 

and Eastern Pacific Ocean (EPO). 

 

Ocean By-catch species SST (t/k) Salinity (t/k) Depth (t/k) Prim.Prod (t/k) 

IO 
Carcharhinus falciformis 65.5/86.3 0/1.5 13.5/13.9 21.1/20.9 

Canthidermis maculata 71.5/81 0.2/0.7 14.2/17.8 14/10.6 

AO 
Carcharhinus falciformis 61.8/85.5 16.7/11.5 15.1/11.3 6.3/1.6 

Canthidermis maculata 90.7/91.1 2.5/4.1 3.3/3.2 3.5/1.5 

EPO 
Carcharhinus falciformis 64.6/66.3 1.5/0.1 2.4/2.0 31.5/31.6 

Canthidermis maculata 37.9/41 0.1/0.2 5/2.1 57/56.6 
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Table 5. Predicted changes in habitat suitability areas (in %) by the year 2100 for the 

A2 scenario of climate change for both by-catch species.  Loss is the area that would no 

longer be suitable for the species. Gain is the area that would become suitable habitat 

due to the change. Suitable present-future is the area which will remain suitable in the 

future. Total change is the area which will change in the future as consequence of gain 

and loss of habitat. 

 

Oceans  Species Loss  Gain  
Suitable  Total change  

present-future  (loss + gain) 

Indian Ocean Carcharhinus falciformis 1.4 1.8 98.8 3.1 

Indian Ocean Canthidermis maculata 1.0 1.4 99.0 2.4 

Atlantic  Ocean Carcharhinus falciformis 15.5 0.3 84.4 15.9 

Atlantic  Ocean Canthidermis maculata 15.4 0.2 84.5 15.7 

Pacific Ocean Carcharhinus falciformis 9.9 0.4 90.1 10.4 

Pacific Ocean Canthidermis maculata 7.0 1.7 92.9 8.7 
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Figure caption 

 

Figure 1. Predicted current conditions (first column), future conditions (second column) 

and differences between future and present conditions (third column) for habitat 

suitability areas for Carcharhinus falciformis in the Indian, Atlantic and Eastern Pacific 

Ocean. The maps (first and second columns) show the probability of occurrence of each 

species from lowest (blue) to highest value (red).  

 

Figure 2. Predicted current conditions (first column), future conditions (second column) 

and differences between future and present conditions (third column) for habitat 

suitability areas for Canthidermis maculata in the Indian, Atlantic and Eastern Pacific 

Ocean. The maps (first and second columns) show the probability of occurrence of each 

species from lowest (blue) to highest value (red). 

 

Figure 3. Present response curves (sea surface temperature, salinity, depth and primary 

production) for Carcharhinus falciformis in the Indian (first column), Atlantic (second 

column) and Eastern Pacific Ocean (third column).  

 

Figure 4. Present response curves (sea surface temperature, salinity, depth and primary 

production) for Canthidermis maculata in the Indian (first column), Atlantic (second 

column) and Eastern Pacific Ocean (third column). 
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