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Summary

1. Management of highly migratory species is reliant on spatially and temporally explicit informa-

tion on their distribution and abundance. Satellite telemetry provides time-series data on individual

movements. However, these data are underutilized in management applications in part because

they provide presence-only information rather than abundance information such as density.

2. Eastern North Pacific blue whales are listed as threatened, and ship strikes have been suggested

as a key factor limiting their recovery. Here, we developed a satellite-telemetry-based habitat model

in a case–control design for Eastern North Pacific blue whales Balaenoptera musculus that was

combined with previously published abundance estimates to predict habitat preference and densi-

ties. Further, we operationalize an automated, near-real-time whale density prediction tool based

on up-to-date environmental data for use by managers and other stakeholders.

3. A switching state-space movement model was applied to 104 blue whale satellite tracks

from 1994 to 2008 to account for errors in the location estimates and provide daily positions

(case points). We simulated positions using a correlated random walk model (control points)

and sampled the environment at each case and control point. Generalized additive mixed

models and boosted regression trees were applied to determine the probability of occurrence

based on environmental covariates. Models were used to predict 8-day and monthly resolu-

tion, year-round density estimates scaled by population abundance estimates that provide a

critical tool for understanding seasonal and interannual changes in habitat use.

4. The telemetry-based habitat model predicted known blue whale hot spots and had sea-

sonal agreement with sightings data, highlighting the skill of the model for predicting blue

whale habitat preference and density. We identified high interannual variability in occurrence

emphasizing the benefit of dynamic models compared to multiyear averages.

5. Synthesis and applications. This near-real-time tool allows a more accurate examination of

the year-round spatio-temporal overlap of blue whales with potentially harmful human activi-

ties, such as shipping. This approach should also be applicable to other species for which suf-

ficient telemetry data are available. The dynamic predictive product developed here is an

important tool that allows managers to consider finer-scale management areas that are more

economically feasible and socially acceptable.
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Introduction

Blue whales Balaenoptera musculus are the world’s lar-

gest animal and make seasonal basin-scale migrations

from foraging to presumed breeding areas (Rice 1974;

Mate, Lagerquist & Calambokidis 1999; Branch et al.

2007; Bailey et al. 2009; Irvine et al. 2014). In the east-

ern North Pacific Ocean, they migrate between the Cali-

fornia Current or the Gulf of Alaska and the eastern

tropical Pacific coincident with periods of increased prey

availability. North Pacific blue whales are believed to

feed year round, in contrast to many other migratory

whales (Reilly & Thayer 1990; Kenney, Mayo & Winn

2001). Blue whales in the California Current feed exclu-

sively on krill (Euphausia pacifica and Thysanoessa spini-

fera; Fiedler et al. 1998), requiring incredible adaptation

in lunge feeding, filtration and lipid storage to support

their energy demands over their broad migrations

(Goldbogen et al. 2011; Hazen, Friedlaender & Goldbo-

gen 2015). Although krill are abundant in the California

Current System, the dense patches blue whales require

to forage successfully can be ephemeral, forcing them to

adapt to periods of high and low energy gain over mul-

tiple spatial and temporal scales (Santora et al. 2011;

Hazen et al. 2013b). In addition, the California Current

is a highly dynamic eastern boundary upwelling system

where seasonal pulses of wind-driven upwelling provide

nutrient enrichment that serves as the building block

for the pelagic food web (Bograd, Leising & Hazen

2016). Because blue whales make large movements sea-

sonally and foraging habitats are dynamic, their

foraging and migratory habitats may overlap with mul-

tiple anthropogenic threats at different times of the

year.

Over the past century, human use of the ocean has

expanded dramatically, resulting in increased exposure of

top predators to anthropogenic activities (Maxwell et al.

2013; Redfern et al. 2013). Shipping lanes into two of

the largest California ports, Los Angeles/Long Beach

and San Francisco, directly overlap with important blue

whale foraging hot spots, creating an area of high colli-

sion risk (Berman-Kowalewski et al. 2010; Maxwell et al.

2013; Redfern et al. 2013; Irvine et al. 2014). Estimated

blue whale ship strike rates in the California Current

average approximately 2 per year, although this is a con-

servative estimate given that many ship strikes go unde-

tected (Berman-Kowalewski et al. 2010; Redfern et al.

2013). With ship strike mortality postulated as one of

the major factors inhibiting recovery, there is an

increased need for targeted management (Redfern et al.

2013). Most whales are unable to respond to the speed

of vessels, requiring additional whale detection tools or

mandatory speed restrictions (McKenna et al. 2015). A

recent study estimated blue whales have returned to their

carrying capacity before commercial exploitation in the

eastern North Pacific, which would suggest ship strikes

are not severely limiting their population recovery (Mon-

nahan, Branch & Punt 2015). Nonetheless, improved

year-round estimates of blue whale distribution and den-

sities can be used to assess overlap with anthropogenic

threats at finer temporal and spatial scales, for example

weeks to months and tens of kilometres (Pendleton et al.

2012). These data could support near-real-time targeted

management actions benefiting both ocean users and

protected species (Maxwell et al. 2013, 2015; Lewison

et al. 2015).

Highly migratory predators are difficult to manage

using traditional techniques, such as static closures (Hoo-

ker et al. 2011), as they transit ocean basins using ocean

features to find predictable foraging hot spots (Mate,

Lagerquist & Calambokidis 1999; Bailey et al. 2009;

Block et al. 2011; Maxwell et al. 2015). Shipboard line-

transect surveys and mark–recapture studies have been

used to estimate blue whale population abundance

(Calambokidis & Barlow 2004; Barlow & Forney 2007)

and have been used in the development of habitat-based

density models (Forney et al. 2012; Redfern et al. 2013;

Becker et al. 2016; Roberts et al. 2016). However, in

marine systems, these approaches are often spatially and

temporally constrained to a single season and navigable

waters within a country’s exclusive economic zone. In

contrast, telemetry data provide a Lagrangian view of

individuals moving through the environment and allow

additional inference on their behaviour (Hazen et al.

2012; Yamamoto et al. 2015). These two approaches

provide complementary data; however, telemetry data

are generally underutilized in management because the

data are presence-only, violate statistical assumptions

including independence of observations (Maunder et al.

2006), require a large number of tags to adequately rep-

resent population patterns (Block et al. 2011; Wakefield

et al. 2013) and in a worst case, can modify behaviour

or fitness (Fossette et al. 2008). Nonetheless, mark–re-
capture approaches from tag data (e.g. acoustic and

archival tags) have been used for population assessment

(Block et al. 2011; Whitehead & Jonsen 2013; Allen &

Singh 2016).

Prediction of habitat preference from telemetry data

can be useful for management applications, yet density

estimates are often necessary to estimate absolute risk.

Here, we use satellite telemetry data for blue whales

from 1997 to 2008 to develop a habitat preference

model for blue whales in the California Current. Predic-

tions were then scaled by the population abundance to

estimate density (Aarts et al. 2008). We automated the

predictive models to incorporate up-to-date environmen-

tal data, providing a year-round near-real-time tool for

use by managers and other stakeholders, for example in

ship strike risk models. The finer temporal scale of

these models allows managers to assess trade-offs in

strategies at the time-scales that are most informative

for ship strike avoidance in the California Current.
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Materials and methods

TELEMETRY DATA

Blue whales were tagged off California, in the Gulf of the Cali-

fornia, and in the eastern tropical Pacific (ETP) during 1993–

2008 (n = 182); of these tracks, we examined those with available

remotely sensed data and those that lasted longer than 7 days

(1994–2008, n = 104; Fig. 1; Table 1). Over this time period, the

tags consisted of a Telonics UHF transmitter with batteries

housed in a stainless steel cylinder attached to the whale by either

two subdermal attachments (surface-mounted style) or one-four-

bladed attachment on the end of the housing (implantable style).

Further tagging methodology and summaries of seasonal migra-

tion and hot spot use can be found in Mate, Mesecar & Lager-

quist (2007); Bailey et al. (2009); Irvine et al. (2014). A Bayesian

switching state-space model (SSSM) was applied to the raw, unfil-

tered locations from each track to account for satellite location

errors based on the Argos location quality classes and to provide

regularized tracks with one estimated location per day (Jonsen,

Flemming & Myers 2005; Bailey et al. 2009; Irvine et al. 2014).

After regularizing the presence data, we followed a series of steps

outlined below and in Fig. 2.

ASSEMBLING CASE/CONTROL POINTS

As telemetry data provide information only on presence, we sim-

ulated tracks termed ‘pseudo-absences’ (Phillips et al. 2009) with

daily positions (control points) for each true whale track (case

points). These control points provide a measure of habitat

availability (Aarts, Fieberg & Matthiopoulos 2012) and were sim-

ulated using a correlated random walk (CRW) model (Kareiva &

Shigesada 1983; Codling, Plank & Benhamou 2008). The CRW

tracks had the same start and duration as the actual whale tracks

with paired turning angles and step lengths randomly sampled

from the telemetry-derived distributions (�Zydelis et al. 2011; Wil-

lis-Norton et al. 2015). We created a series of 200 CRW tracks

for each corresponding whale track (see Fig. S1, Supporting

Information). Previous studies have demonstrated that model

accuracy is heavily dependent on choosing appropriate control

points that are in the same environmental space as the presence

data. For example, overly similar control points can result in spu-

rious projections, while those that are too broad can result in

model overfitting (Thuiller et al. 2004; Phillips et al. 2009; Lobo,

Jim�enez-Valverde & Hortal 2010). To avoid overly broad control

points, each CRW track was assigned a flag value based on cor-

respondence with the actual whale track in terms of overall direc-

tion and distance (Willis-Norton et al. 2015). The flag value was

calculated as the normalized difference between the actual whale

and simulated CRW track length distance, d, summed with the

normalized difference in net angular displacement, h, of the whale

and CRW track:

Flag ¼ 2� ðdistancewhale � distancesimÞ=distancewhale
þ ðanglewhale � anglesimÞ=90:

The flag value ranged from 0 to 4, with 0 being the most simi-

lar and four the most dissimilar to the corresponding whale

track. A CRW track travelling the same distance but opposite

angle to the whale track would have a flag value of 2, an equiva-

lent weighting to a CRW track travelling half the distance and at

a 90° displacement. The CRW tracks in the upper quartile of flag

Fig. 1. Map of blue whale tag data set

coloured by month highlighting seasonal

migration in and out of the California

Current.
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values, and those that crossed land, were removed to ensure that

the control points adequately represented the area potentially

accessible to the whales.

ENVIRONMENTAL DATA

We extracted remotely sensed environmental data using the

NOAA Coastwatch tool Xtractomatic (http://coastwatch.

pfel.noaa.gov/xtracto/) at the time and location of each case and

control positions. The predictor variables examined were identi-

fied based on hypothesized drivers of habitat and previously fit

cetacean–habitat relationships (Redfern et al. 2006; Becker et al.

2012, 2016). The variables were sea surface temperature (SST),

SST standard deviation, log-transformed chlorophyll-a concentra-

tion, sea surface height anomaly (SSHa), SSHa standard

deviation, eddy kinetic energy, north wind speed, wind-driven

Ekman upwelling, and the bottom variables bathymetry, standard

deviation of depth (indicative of bottom rugosity), slope (gradient

in depth) and aspect (dominant direction that the slope faces; see

Table S1). Standard deviation in SST, SSHa and bathymetry

were all calculated over a 100 9 100 km2 area at both case and

control locations.

TELEMETRY-BASED HABITAT MODEL

Given that many cetacean–habitat relationships are nonlinear

(Redfern et al. 2006; Becker et al. 2012), we fit both generalized

additive mixed models (GAMMs) and boosted regression trees

(BRTs) to predict blue whale habitat preference. The GAMMs

were fit using a binomial family and a logit link function and

residual maximum-likelihood estimator (MGCV version 1.8-7;

Wood 2006) in R (version 3.10; R Core Team 2015), with individ-

ual nested as a random effect. Initial models incorporated uncon-

strained smooths, but smooths were restricted to five knots in

final model selection to avoid overfitting. In addition, BRTs were

explored because this method has fewer statistical assumptions

and can predict when environmental layers are missing (GBM ver-

sion 2.1.1; Elith & Leathwick 2009). We used a case–control

design where the binary response variable for both modelling

approaches was a whale position (case point assigned a value of

1) or a control point representing available habitat (assigned a

value of 0; Aarts, Fieberg & Matthiopoulos 2012). We explored

year-round and separate seasonal models (winter–spring, Decem-

ber–June; summer–fall, July–November), as well.

Candidate models were generated based on hypothesized com-

binations of environmental covariates. Potential models were

assessed based on weighted Akaike Information Criterion

(AICw), in addition to area under the curve (AUC) cross-valida-

tion statistics. AUC statistics are calculated from receiver operat-

ing characteristic (ROC) curves that use the inflection point to

maximize the true positive rate, while minimizing the false-posi-

tive rate (DeLong, DeLong & Clarke-Pearson 1988). We calcu-

lated ROC curves and AUC statistics using the ROCR package

in R (1.0-7).

We explored the sensitivity of the models to selection of the

control points. Two of the 200 CRW tracks per whale track were

randomly selected and the models rerun. This process was

repeated 40 times to examine whether the whale–environment

relationships were robust to the selection of the simulated CRW

tracks (see Fig. S1). For example, if an environmental variable

was significant in only one of 40 GAMMs, it would indicate that

control point selection was strongly influencing the final model,

whereas a variable that was significant in the majority of the 40

models was more robust and independent of the control points

selected.

NEAR-REAL-T IME PREDICTION OF HABITAT

Our GAMM and BRT models provided spatial predictions of

habitat preference, which is proportional to density (Aarts, Fie-

berg & Matthiopoulos 2012). We compiled environmental data at

8-day and monthly temporal resolutions for 2005, 2008 and 2009

to create predictions of whale habitat preference. Predictions were

then normalized such that the entire area summed to 1 and multi-

plied by the population abundance to obtain absolute density

estimates (Aarts et al. 2008). The most recent mark–recapture

population estimate for North Pacific blue whales is 1647 individ-

uals (Calambokidis & Barlow 2013), which was used to scale our

Table 1. Tagging summary for blue whales and tag types used in this study. The number of tags and the number of state-space switching

modelled (SSSM) tracks are included in columns 3 and 4

Year # tags

# SSSM

tracks

Primary

tagging location Notes

1993 10 0 Gulf of the Farallones Tag type: surface-mounted

Delivery method: crossbow Mean duration = 7�6 days (�15�1 days)1994 17 2 Gulf of the Farallones

1995 26 8 Santa Barbara Channel

1998 9 6 Cape Mendocino Tag type: implantable

Delivery method: crossbow Mean duration = 68�9 days (�78�1 days)1999 23 16 Santa Barbara Channel

2000 13 6 Gulf of the Farallones

2001 4 1 Gulf of California

2002 2 2 Gulf of California

2004 20 16 Gulf of the Farallones/

Santa Barbara Channel

Tag type: implantable

Delivery method: ARTS Mean duration = 102�9 days (�93�7 days)

2005 15 14 Gulf of the Farallones

2006 12 7 Santa Barbara Channel

2007 16 14 Santa Barbara Channel

2008 15 12 Santa Barbara Channel

Total 182 104 102�5 days (�85�4 days)
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predictions. Monthly abundance estimates were not available for

the entire year, so we multiplied the total abundance estimate by

the proportion of tracking data within the California Current for

each month. Predictions were made on a 25 9 25 km grid cell

size (625 km2) as it was the coarsest scale of environmental vari-

ables and was comparable to other habitat-based density esti-

mates (Forney et al. 2012).

Ship-based line-transect surveys were conducted in July to

November of 2005 and 2008 by the NOAA National Marine

Fisheries Service (NMFS) Southwest Fisheries Science Center

(SWFSC; Barlow et al. 2009; Becker et al. 2016). We used

monthly blue whale sightings as an independent data set to com-

pare with our model predictions to assess their performance visu-

ally and using AUC statistics.

DEVELOPMENT OF A NEAR-REAL-T IME TOOL

The habitat preference models were incorporated into an auto-

mated process to create monthly predictions of whale occurrence

and density (see Fig. S2). This approach required automating the
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Fig. 2. Schematic highlighting the model fitting process. (1) Assembling the presence/absence data involves state-space switching models

(SSSMs) to normalize whale (case) points and correlated random walks to simulating absence control points. Unrealistic tracks based on dis-

tance and direction of travel were flagged for removal. (2) Whale/control points spatio-temporally sample the environmental correlates for use in

model fitting. (3) Generalized additive mixed models (GAMMs) and boosted regression trees (BRTs) were fit to case–control points to develop a

predictive model. (4) Survey data were used to both convert habitat predictions to density and to validate the spatial and temporal component of

model predictions. (5) Automated downloading of environmental predictor layers and prediction of habitat on the NOAA data server. (6) Near-

real-time predictive maps are served via URL to the regional office website.
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download and regridding of environmental data via the NOAA

Coastwatch data server ERDDAP (https://coastwatch.pfeg.noaa.

gov/erddap/index.html). We used 40 habitat models generated

with different control points, which allowed us to calculate a spa-

tial mean and standard deviation values. We also explored

September predictions (a historically high-use month for blue

whales) from two contrasting years, 2009 (an average year

oceanographically) and 2015 (an anomalously warm year in the

California Current; Bond et al. 2015). The resulting local

monthly prediction data and maps are embedded in regional

management websites for use in decision-making processes.

OVERLAP WITH HUMAN ACTIV ITY

We summarized one year of commercial vessel density data as

the number of vessels transiting a 1 km grid cell each day off the

west coast of the United States to identify high-use shipping

areas. The data were collected from the automatic identification

system (AIS) ship-tracking data (NOAA Office of Coast Survey –

http://marinecadastre.gov/data/) for vessels over 300 gross tons

and all passenger ships. These shipping data were collected after

the California Air Resources Board (CARB) rule in 2009, which

resulted in more vessel traffic travelling south of the Channel

Islands rather than in the channel-based traffic separation scheme

(TSS; Redfern et al. 2013). To illustrate overlap with human

activity, we compared our blue whale habitat preference predic-

tions to shipping intensity to estimate the spatial and temporal

overlap during 2009–2010.

Results

TELEMETRY-BASED HABITAT MODELS

The best-fit models relating the whales’ distribution to

the environment were seasonal GAMMs with separate

models for winter–spring (December–June) and the other

for summer–fall (July–November; Fig. 3; Table 2; see

Fig. S3). Models selected using AICw alone resulted in

anomalous prediction patterns, including high offshore

densities compared to those selected via AUC primarily

and AICw secondarily. The BRT models performed

poorly as predictions did not agree with known blue

whale habitat, and thus, results are presented in Figs

S4–S6. The final seasonal GAMMs included the environ-

mental variables SST, chlorophyll-a concentration, SSHa

standard deviation, bathymetry and standard deviation

of bathymetry, with four of five variables represented as

nonlinear relationships (Table 2; Fig. 3). This also

resulted in a final data set of 94 individual whales as

chlorophyll-a was not available via the SeaWiFS satellite

until late 1997. The 40 models we ran with different

control points showed no change in which environmen-

tal variables were significant, highlighting that models

were robust to control point selection (Table 2; see

Fig. S3).

Generalized additive mixed model and BRT models

showed similar contributions from environmental vari-

ables, with SSHa variability and bathymetry contributing

the most in the summer–fall and SST contributing the

most explanatory power in the winter–spring (Figs S4–
S6; Table 2). Our final summer–fall GAMMs showed a

wide preference for SST values between 20 and 30 °C,
increased chlorophyll-a concentrations (1–7�4 mg m�3),

increased SSHa variability (>0�2 cm), shallower bathyme-

try (<2000 m) and both high and low rugosity (<200 m

and >1200 m), representing the shelf-break and on or off

shelf habitat, respectively (Fig. 3a–e). The winter–spring
GAMMs had similar variable importance, with SST val-

ues >15 °C preferred, increasing chlorophyll-a concentra-

tion (>0�8 mg L�1), increased SSHa variability (>0�2 cm),

deeper bathymetry (1000–3000 m), and lower rugosities

(<200 m) representing more offshore habitat

(Fig. 3f–j).

NEAR-REAL-T IME PREDICTIONS OF HABITAT

Our monthly GAMM predictions captured the seasonal

migration of blue whales and predicted similar California

Current hot spots to those previously identified (Bailey

et al. 2009; Irvine et al. 2014; Calambokidis et al. 2015;

Fig. 4; see Fig. S7). Our predictions of the likelihood of

whale occurrence ranged from 0 to 92%, and boot-

strapped standard errors estimated from the control point

selection were 5% on average across all months, although

standard error per grid cell ranged from 0�1% to 18%.

The average densities from our model predictions in the

entire California Current were highest from August to

October and ranged from 0 to 3�5 individuals per

25 9 25 km grid cell. Very few whales (<1 per grid cell)

were predicted within the California Current between

November and March. April through June showed

increased predicted densities in the Southern California

Bight (1–2 per grid cell). The greatest densities in summer

and fall were predicted in the Southern California Bight

(south of Pt. Conception, 34° N) and between Monterey

Bay (~37° N) and Humboldt Bay (~44° N) within 300 km

from shore. A few offshore hot spots were predicted at

lower densities, particularly north of the Mendocino

Escarpment (40�5° N).

Comparison with the NOAA/NMFS SWFSC line-

transect survey sightings in 2005 and 2008 indicated fair

agreement with our predictions (AUC values ranged from

0�55 to 0�66 across our model iterations; Fig. 6; see

Fig. S7-video). Considerable survey effort occurred off-

shore, while the satellite tracks largely remained inshore,

highlighting a difference in sampling effort between the

two data sets. Sightings often overlapped with high pre-

dicted densities, while there were also cases where blue

whales were observed in offshore areas with lower pre-

dicted density (e.g. Fig. 5).

NEAR-REAL-T IME TOOL

The near-real-time tool termed ‘WhaleWatch’ was

automated to provide monthly estimates of likelihood of

occurrence, uncertainty estimates and density of blue whales
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(0–3�5 individuals per 625 km2; http://oceanview.pfeg.noaa.

gov/WhaleWatch/; see Fig. S8). Because the images are

hosted via restful URLs (http://oceanview.pfeg.noaa.gov/

WhaleWatch/images/WhaleWatch_current.png), the image is

automatically updated monthly on the NOAA/NMFS

West Coast Region website when new predictions are

made (http://www.westcoast.fisheries.noaa.gov/whalewatch;

see Fig. S9).

(a) (f)

(b) (g)

(c) (h)

(d) (i)

(e) (j)

Fig. 3. Generalized additive mixed model

partial plots for blue whale presence/

absence variables in winter/spring (Decem-

ber–June; a–e) and summer/fall (July–
November; f–j). Partial response is on the

y-axis with standard error shown in grey.

The range of the environmental variable is

on the x-axis.
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The web-based predictions showed much higher densi-

ties off the U.S. West Coast in September 2009 compared

to 2015 reflecting interannual variability in blue whale dis-

tribution as a result of changing environmental conditions

(Fig. 6). In the California Current, 2009 has been

described as an ‘average’ year in terms of the sea surface

temperature and other variables in the model, while 2015

was a year of reduced ocean mixing and warmer surface

temperatures (Bond et al. 2015).

OVERLAP WITH HUMAN ACTIV ITY

Measurements of shipping traffic and predicted blue whale

density showed high overlap (see Figs S10 and S11). Com-

pared to shipping intensity from October 2009 to October

2010, blue whales were predicted in high densities in the

TSS into Long Beach and Los Angeles largely from April

to November and in the TSS into San Francisco Bay from

August to October (Figs S10 and S11). The blue whale den-

sities from our model predictions suggest that overlap

between blue whales and shipping traffic in the California

Current is greatest between August and October.

Discussion

Previous blue whale studies have used satellite tracks to

create kernel densities and home ranges (Irvine et al.

2014) or have used survey-based sightings and oceano-

graphic variables to predict habitat-based densities (For-

ney et al. 2012; Redfern et al. 2013; Becker et al. 2016).

Each of these approaches has particular advantages, with

survey data providing instantaneous snapshots of blue

whale abundances but only for surveyed years and sea-

sons (e.g. July–November, in this case). Combining our

large satellite telemetry data set with oceanographic corre-

lates provided a year-round prediction of potential habi-

tat. Tracking data typically sample a small portion of the

population and often from only one or a few tagging

locations, potentially limiting their inference for the entire

population. However, our telemetry data set spanned

more than a decade, including twelve months of the year

and animals tagged at multiple locations (Table 1; Bailey

et al. 2009; Irvine et al. 2014). Both visual comparison

and AUC calculations between sightings data and our

model predictions indicated fair agreement as surveys had

greater offshore effort, while the whales were tagged pre-

dominantly in coastal waters (within 100 km from shore

in the California Current). Because of the coastal focus of

tagging locations (Table 1), site fidelity could result in an

undersampling of offshore foraging habitat (Calambokidis

& Barlow 2004), potentially causing our blue whale densi-

ties to be underestimated offshore. Using year-round

telemetry data and ocean habitat proxies, we provide spa-

tially explicit density predictions for all seasons, which is

critical when managing highly migratory species.

Long-term telemetry data have greatly improved our

understanding of blue whale annual migrations from the

eastern tropical Pacific in winter and spring to the east-

ern North Pacific in the summer and fall (Mate, Lager-

quist & Calambokidis 1999; Bailey et al. 2009; Irvine

et al. 2014). The exact temporal cues and triggers of

these migrations remain unknown; however, they are

likely driven by recurrent krill patches, given the whales’

reliance on this single prey resource. Studies modelling

krill distribution in the California Current have found a

strong association with the shelf-break and eddy kinetic

energy (Santora et al. 2011); thus, physical variables

likely serve as proxies for prey density in our blue whale

models. In the absence of year-round krill density mea-

surements, we must rely on oceanographic covariates to

predict likely habitat.

We found our models were able to capture habitat-use

characteristics of blue whales and to provide year-round

density estimates for blue whales in the California Cur-

rent. Our range-wide models showed that blue whales

used more inshore, high rugosity (measured by standard

deviation of bathymetry), and 20–30 °C surface tempera-

ture habitat in the summer, while there was a preference

for offshore, low rugosity, warmer temperatures and

higher chlorophyll-a concentration habitat in the winter.

Table 2. Four candidate generalized additive mixed model sum-

maries for seasonal, annual full and annual reduced models

including Akaike Information Criterion (AIC) and area under

the curve (AUC) statistics

edf F n-significant

Summer

sst 3�967 134�724 40

log(chl) 3�899 33�564 40

ssh sd 3�939 162�419 40

Bathy 2�847 185�528 40

Bathy sd 3�926 85�774 40

R2 = 0�417 AIC = 109 934�320
AUC = 0�861

Winter

sst 3�932 520�662 40

log(chl) 3�640 22�089 40

ssh sd 3�738 108�896 40

Bathy 3�938 107�749 40

Bathy sd 3�862 47�362 40

R2 = 0�280 AIC = 81 018�105
AUC = 0�855

Full

sst 3�984 552�051 40

log(chl) 3�901 29�235 38

ssh sd 3�979 316�054 40

Bathy 3�844 343�527 40

Bathy sd 3�860 125�023 40

R2 = 0�334 AIC = 177 822�723
AUC = 0�845

Reduced

sst 3�989 955�522 40

Bathy 3�911 849�284 40

Bathy sd 3�910 241�537 40

R2 = 0�226 AIC = 157 116�585
AUC = 0�802

In the models presented, all variables were significant with P

values less than 0�001.
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While these SST preferences are higher than California

Current-only studies (Becker et al. 2016), our models

include the migratory use of offshore waters and the trop-

ical Pacific (Bailey et al. 2009). Blue whales showed a pos-

itive relationship with the standard deviation of SSHa, a

metric of mesoscale activity, year-round. While wind forc-

ing drives much of the upwelling dynamics in the Califor-

nia Current, it was less useful in these models likely

because of a lag between upwelled nutrients and a change

in krill density (Croll et al. 2005) and because of the

importance of stratification in modulating the effects of

upwelling on the ecosystem (Jacox et al. 2015).

The eastern North Pacific population of blue whales

had approximately 3000 individuals taken by whalers over

30 years from Mexican to Canadian waters in the early to

mid-20th century (Clapham et al. 1997). Blue whales in

the eastern North Pacific are listed as threatened under

the endangered species act with ship strikes identified as a

source of annual mortality (Calambokidis & Barlow 2013;

Redfern et al. 2013). Recent population estimates have

remained steady in the California Current across mark–
recapture data sets between ~1600 and 2000 individuals

(Calambokidis & Barlow 2013), while shipboard surveys

have documented a distributional shift in the number of

(a) (b)

(c) (d)

Fig. 4. (a–d) Blue whale habitat predictions from seasonal GAMMs for March, June, September and December of 2009. Density is

included as number of whales per 625 km2.
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whales found off California, Oregon and Washington

since 1998 (Barlow & Forney 2007; Barlow et al. 2009). A

recent modelling study suggested that blue whales have

recovered to c. 97% of their carrying capacity offering a

positive message for recovery (Monnahan, Branch & Punt

2015). Nonetheless, efforts to reduce ship strikes are

important for both continued recovery and adherence

with management regulations (Calambokidis & Barlow

2004; Redfern et al. 2013; Irvine et al. 2014). Global

trends towards rebuilding and recovery of exploited and

(a) (e)

(b) (f)

(c) (g)

(d) (h)

Fig. 5. (a–h) Comparison of blue whale

habitat predictions for fall 2008 in US

EEZ with SWFSC sightings data shown as

black points. Survey track lines (on effort)

are shown as grey lines. Density is

included as number of whales per

25 9 25 km grid cell.
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protected species stocks are continuing (Worm et al. 2009;

Monnahan, Branch & Punt 2015; Roman et al. 2015), yet

there remain additional opportunities to align fisheries

and conservation goals using a suite of management tools

(e.g. ecosystem-based and dynamic ocean management)

instead of relying on a single approach (Worm et al.

2009).

Telemetry data combined with species distribution mod-

els (SDMs) offer a novel approach towards examining

management scenarios (Carvalho et al. 2011; Guisan et al.

2013; McShea 2014; Allen & Singh 2016), yet SDMs are

infrequently used in marine management (Marshall, Glegg

& Howell 2014). This is in contrast to terrestrial systems,

where SDMs have been used to examine overlap between

species such as the migratory saiga antelope Saiga tatarica

or caribou Rangifer tarandus and risk (e.g. human devel-

opment and climate-induced changes), dynamically (Singh

& Milner-Gulland 2011; Taillon, Festa-Bianchet & Côt�e

2012; Bull et al. 2013). SDMs can be used to identify

potentially undiscovered habitat, but also to look at dis-

tributional metrics such as residency time, migration cues

and foraging effort that ultimately can inform dynamic

management approaches (Bailey et al. 2009; Carvalho

et al. 2011; Hooker et al. 2011). In addition, ensemble

approaches combine multiple models and even data types

to improve predictions (Ara�ujo & New 2007; Scales et al.

2015; Yamamoto et al. 2015). Running SDMs in a predic-

tive mode allows for habitat estimates at finer temporal

scales (days to months) limited by environmental data

availability. Such dynamic approaches provide an

opportunity to minimize management actions (e.g. area

closures) and enforcement need, while maximizing man-

agement effectiveness (Lewison et al. 2015; Maxwell et al.

2015).

Here, we have developed a dynamic management tool

that uses remotely sensed variables to predict blue whale

density in the California Current at 8-day and

monthly time-scales (http://www.westcoast.fisheries.noaa.

gov/whalewatch). Our habitat model provides a valuable

approach for understanding blue whale distribution that

can be combined with shipping data (see Fig. S11) or

other potential threats to look for spatio-temporal oppor-

tunities for targeted management. Both dynamic and sea-

sonal management areas (DMAs and SMAs) have been

implemented to reduce ship strike risk for North Atlantic

right whales Eubalaena glacialis, yet voluntary dynamic

speed restrictions (in DMAs) were less successful than

mandatory seasonal speed restrictions (SMAs; van der

Hoop et al. 2015). Similarly, voluntary strategies were

found to be inadequate to mitigate ship strike risk for

blue whales on the west coast as shipping vessels did not

significantly alter their speed (McKenna et al. 2012).

However, we have several reasons to believe that manda-

tory dynamic management approaches could be successful

for blue whales in the California Current. First, the obli-

gate prey (krill) of blue whales are more strongly tied to

dynamic features (Croll et al. 2005; Santora et al. 2011)

than the prey (diapausing copepods) of North Atlantic

right whales (Baumgartner et al. 2003). Secondly, the

managers and the shipping industry using the ports of

Fig. 6. Predicted habitat preference from the web-based tool (http://oceanview.pfeg.noaa.gov/WhaleWatch/) for (a) September of 2009

and (b) 2015. The year 2009 was an average year in the California Current, while 2015 was a period of unusual warming. The current

locations of shipping lanes are overlaid in black. This output highlights the interannual variability in blue whale use of the California

Current.
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Long Beach and San Francisco have been engaged in the

development of ship strike risk tools since the problem

was identified (Redfern et al. 2013). Finally, there are

multiple options available to implement these predictions

in a risk-limiting approach. Specifically, shipping traffic

could be adjusted to alternate shipping lanes or could

have mandatory speed restrictions implemented only in

high-risk scenarios providing a dynamic approach. Also,

periods of high risk could trigger additional marine mam-

mal monitoring to validate the occurrence of whales and

enforce any speed restriction rules. The predictive model

presented here provides a critical step towards developing

seasonal and dynamic management approaches to help

reduce the risk of ship strikes for blue whales in the Cali-

fornia Current.

Our models will require ongoing validation to ensure

the species–environment relationships identified here per-

sist in the future, particularly if the climate changes

beyond the conditions experienced during our study. Sta-

tic management approaches that are sufficient now may

become less effective in the future, such that dynamic

ocean management inherently provides an opportunity to

be proactive for climate-induced distribution shifts in

marine species (Hazen et al. 2013a). Increased technologi-

cal capacity from animal telemetry, environmental data

from satellite remote sensing and computationally inten-

sive models offer opportunities for targeted management

applications to protect critical pelagic habitat and respond

to environmentally driven changes in species distributions.
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Fig. S1. Entire dataset of blue whale tracks (blue) and correlated

random walk simulated pseudo-absences (red) used in the mod-

elling framework. Inset: Actual track (black) and correlated ran-

dom walk simulated pseudo-absences (red) for a single tagged

blue whale.

Fig. S2. Automated data processing flowchart identifying the

steps once models have been fit and best environmental predic-

tors have been identified.

Fig. S3. Receiver operating curves for seasonal (black), full

(blue), reduced (red), boosted regression tree (green) models with

false positive on the x-axis plotted against the true positive on

the y-axis. A perfect receiver operating curve would have a true

positive rate of 1 and a false positive rate of 0 (hollow circle).

Fig. S4. BRT variable influence for summer/fall and winter/spring

models. Relative contribution is represented on the x-axis.

Fig. S5. BRT response curves for winter/spring and summer/fall

models.

Fig. S6. Blue whale habitat predictions from seasonal BRTs for

March, June, September, and December of 2009.

Fig. S7. Animated blue whale habitat predictions from GAMMs

for January to December of 2009. Density is the number of whales

per 25 9 25 km grid cell.

Fig. S8. Southwest Fisheries Science Center hosted tool predict-

ing blue whale likelihood of occurrence and density at a monthly

time step (http://oceanview.pfeg.noaa.gov/WhaleWatch/).

Fig. S9. Regional office project description serving the real-time

predictive maps and describing the tool for use by managers and

shippers (http://www.westcoast.fisheries.noaa.gov/whalewatch/

index.html).

Fig. S10. Blue whale predicted habitat climatologies (1997–2009)

for (a) summer-fall and (b) winter -spring modelled periods. Den-

sity is the number of whales per 25 9 25 km grid cell.

Fig. S11. Commercial vessel density data from October 2009–

2010 showing areas of low (blue) to high (red) shipping intensity.

Table S1. Satellite products, resolution, time periods covered and

source of data used in our modelling approach (fitting and pre-

diction).
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