

IDENTIFYING DATA GAPS AND OPPORTUNITIES FOR UPDATING M ORPHOM ETRIC RELATIONSHIPS AND COLLECTING BIOLOGICAL SAM PLES FOR PRIORITY SPECIES IN EASTERN PACIFIC OCEAN TUNA FISHERIES (SAC-14 INF-J)

14a Reunión del Comité Científico Asesor - 15-19 de mayo de 2023 $14^{\text {th }}$ M eeting of the Scientific Advisory Committee, 15-19 M ay 2023

Outline

- Background
- Objectives
- EPO data gaps - M orphometric relationships

B e.g., length-weight (L-W), length-length (L-L), weight-weight (W-W)

- EPO data gaps - Biological sampling

B e.g., tissues, stomachs, vertebral centra, otoliths, gonads

- Potential sampling opportunities
- Final considerations

Background: M orphometric relationships

- M orphometric data are critical to several research and reporting activities
ß Stock assessments
B Ecological assessments (e.g., EASI-Fish)
- Relationships vary by species, region, year
- Species and size composition of catches differs by fishing gear
- Variability may influence assessments and increase uncertainty
- Catch estimations are influenced by morphometric relationships
ß L-W data are used to convert catch data in numbers to weights and vice versa
B W-W data required to convert processed weight to whole weight

Background: M orphometric relationships

- Various weight metrics
ß whole weight
B gilled and gutted weight
B headed, tailed and gutted weight
- Various length metrics

B fork length
B total length
B lower-jaw fork length (billfish)

B eye-fork length (billfish)
B precaudal length and interdorsal length (sharks)

- Improvements to morphometric relationships are essential for improving precision

Background: Biological sampling

- Biological data needed to parameterize stock assessment models e.g.,

B stock structure (e.g., tagging and genetics)
B growth and longevity of tunas (e.g., otoliths and tagging)
B reproductive biology (e.g., histology)
B natural mortality (M) (e.g., tagging and growth parameters for M estimators)
B movement (e.g., conventional and electronic tagging)

Background: Biological sampling

- Biological data needed to parameterize ecological assessments e.g.,

B to characterize age, growth and reproduction (i.e., productivity component of EASI-Fish)
B stomach content data (foundation of ecosystem model)
B experiments on consumption rates (Q / B ratio parameter in ecosystem models)
B genetic information (e.g., CKM R for sharks, SAC-12-14)

Initiation of Project F.3.a.

- Staff initiated Project F.3.a. to address data gaps and evaluate sampling feasibility

B morphometric relationships
B biological sampling

- Similar work conducted in WCPO (Project 90: SC18-ST-IP-04)

B SPC Oceanic Fisheries Programme established PS and LL observer measurement protocols
B developed measurement guidelines and forms (GEN-4 Conversion Factor)
B record multiple measurements on the same fish (e.g., FL, TL, whole weight, processed weight)
B purpose: to build comprehensive database of various length and weight types
B database allows scientists to develop the morphometric relationship needed for assessments
B established Pacific M arine Specimen Bank (biological samples)

- SAC-14 INF-J summarizes staff discussions on Project F.3.a

B complementary to documents on data improvements (SAC-12-09, WSDAT-01-01, WSDAT-01-Report, SAC14 INF-M, SAC-14 INF-L)
B creating awareness of data deficiencies
B seeking ways to improve data collection

Objectives outlined in SAC-14 INF-J

- Objectives

B identify data gaps in morphometric relationships and biological sampling
B identify potential opportunities for morphometrics and opportunistic biological sampling (for tunas, billfishes, prioritized species)
B provide considerations that will determine the success of the project (F.3.a)
B improve data collection to better align with scientific research under the Antigua Convention

Data gaps: M orphometric relationships $\mathrm{W}=\mathrm{a} \mathrm{L}^{\mathrm{b}}$

- Relationships for tropical tunas are outdated by several decades
ß YFT (Wild 1986)
ß BET (Nakamura and Uchiyama 1966)
B SKJ (Hennemuth 1959)
B not representative of current EPO populations and fisheries
$ß$ there is indication of spatial variation in average sizes, temporal variation is expected
B critical for improving estimation of annual catches for all fisheries
B measurements of lengths and weights pre- and post-processing are required

Data gaps: M orphometric relationships

- Staff derive estimates of annual and total catch of tunas, by species, using

B observer records, vessel logbooks, cannery records, port-sampling data (e.g., see WSBET-02-06)

- Data reported are not standardized

B processed or whole weight and/or numbers and lengths
B processing variability between fleets
B some fishers remove operculum and tail, freeze fish in ultra-low temperatures (Langley et al. 2006)
B others chill fish and land fresh fish with only viscera and gills removed (Langley et al. 2006)

- No EPO-specific conversion factors for gilled and gutted weight (SAC-07-04a)

B stock assessment team use conversion factors for entire Pacific Ocean (Langley et al. 2006)

- Current catch estimates may be biased, due to:

B outdated morphometric relationships used to convert from length to weight
B processing methods (e.g., sampling frozen tunas vs. fresh tunas)
B individual variability in the relationships not accounted for (important when fitting models to weight frequencies)

Data gaps: M orphometric relationships

- Relationships for non-target species are: (see IATTC Special Report 25, SAC-13-11, SAC-09-12)

B non-existent
B outdated
B borrowed from similar species within the region
B based on data from other ocean basins
B do not represent EPO populations

Data gaps: M orphometric relationships

- EASI-Fish (e.g., SAC-14-12) \& estimates of artisanal shark catches (SAC-14 INF-L):

B different forms of L-W \& W-W relationships available (literature review)
B length measurements (e.g., type: PCL, FL, TL)
B weight measurements (e.g., processed weight, whole weight)
B $W=a L^{b}$ (e.g., EASI-Fish uses TL in cm; W in kg)
ß conversions needed to raise processed weights to whole weights (SAC-14 INF-L)
B analyst must convert to the appropriate form

Photos from Project C.4.b. Long-term sampling Program for catches of sharks in artisanal fisheries in Central America

Data gaps: Biological sampling

- Routine biological sampling is not conducted
- Routine sampling provides a means for monitoring fishing impacts

B decrease in YFT size at maturity (Schaefer and Fuller 2022; Schaefer 1998)
B such changes can impact productivity, subsequent stock status and management advice

Data gaps: Biological sampling

- Sampling has been limited to dedicated projects

B M iss changes in biological processes across dynamic conditions (e.g., ENSO events)

- Sampling has not kept pace with modern techniques

B e.g., tissue collection for genetic studies on stock structure and CKM R (sharks) SAC-12-14

- ETP ecosystem model based on antiquated stomach contents (1990s)

B ecological impacts include changes in feeding dynamics

Identification of sampling opportunities: Overview

- Size composition of catches varies by gear type

B aim to sample across gear and fleet types
B aim to maximize spatial range (coastal-offshore) \& size distributions of fish (juveniles-adults)

- Propose hierarchical sampling approach

B feasibility study (Phase 1)
B pilot study (Phase 2)
B EPO-wide, statistically-robust sampling (Phase 3)

- Aim to collect different length and weight metrics on the same individuals

B allows for comprehensive database for development of conversions \& to account for individual variability

- Opportunistically collect biological samples

Identification of sampling opportunities: Feasibility study

Phase 1	Action	Outcome	Preliminary timeline	Collaborators
$\begin{aligned} & \text { Feasibility } \\ & \text { (Part 1, planning) } \end{aligned}$	Identify measurements to be taken and biological samples to be collected	List of morphological measurements (e.g., FL, TL, WW, GGW); List of biological samples (e.g., tissues, stomachs)	January-M ay 2024	Stock assessment, Biology and life-history, Ecosystem and bycatch, and Data Programs; CPCs, fishing industry, SPC-WCPFC
	Identify priority species through literature review and meta-analysis	List of priority species to sample (e.g., silky sharks, hammerhead sharks)		
	Design feasibility studies with sampling protocols for both PS and LL fisheries	Development of data collection forms and data/sample storage protocols		
	$\begin{aligned} & \text { Identify capacity building } \\ & \text { opportunities and potential } \\ & \text { collaborators } \\ & \hline \end{aligned}$	List of vessels to be used for sampling; List of external collaborators		
	Identify storage opportunities for biological samples	List of potential storage facilities		
	Preliminary design of a database for morphometric measurements and biological samples	Beta database structure developed		

Identification of sampling opportunities: Feasibility study

Phase 1	Action	Outcome	Preliminary timeline	Collaborators
Feasibility (Part 2, implementation)	IATTC staff to execute feasibility studies aboard class 6 PS and coastal LL tuna fishing vessels	Evaluation of collected data and samples; Revision of sampling protocols prior to implementing pilot phase	June 2024-M ay 2025	Stock assessment, Biology and life-history, Ecosystem and bycatch, and Data Programs; CPCs, fishing
	Pursue capacity building opportunities with potential collaborators within distant water LL fleets (in preparation for Phase 2, Pilot study)	List of potential distantwater LL fishing vessels for sampling		industry, SPC-WCPFC
	Collaborate with statisticians to develop statistically robust sampling design for industrial fisheries (in preparation for Phase 2, Pilot study)	Development of sampling protocol for upscaling sampling to additional vessels in Phase 2, Pilot study		

Identification of sampling opportunities: Pilot study

Phase 2	Action	Outcome	Preliminary timeline	Collaborators
Pilot sampling	Through collaborations, implement pilot study following lesson's learned and sampling design from Phase 1. Sample across all PS (i.e., class 1-6) vessels, coastal States LL tuna vessels, and distant-water LL vessels. Revise the sampling design as needed. Coordinate logistics for storing samples.	Development of sampling protocols for industrial fisheries; documentation of lesson's learned from Phase 1 and Phase 2 industrial fisheries. Compilation of a dataset to derive L-W relationships for tunas and prioritized species from industrial tuna fisheries; Collection and storage of biological samples (tissues, stomachs, gonads, otoliths, vertebrae) for tunas and priority species	June 2025-M ay 2026	Stock assessment, Biology and lifehistory, Ecosystem and bycatch, and Data Programs; CPCs, fishing industry, SPCWCPFC
	Pursue collaborations within coastal, multi-gear/multi-species fisheries; Work with statisticians to develop a sampling design for small coastal, multigear fisheries	Development of sampling protocols for coastal-multi-gear fisheries; documentation of lesson's learned from sampling these fisheries		
	Implement sampling in small coastal fisheries. Revise the sampling design as needed. Coordinate logistics for storing samples.	Compilation of a data set to derive L-W relationships for tunas and prioritized species from coastal multi-gear fisheries; Collection and storage of biological samples (tissues, stomachs, gonads, otoliths, vertebrae) for tunas and priority species		

Identification of sampling opportunities: EPO-wide study

Phase 3	Action	Outcome	Preliminary timeline	Collaborators
EPO-wide, statistically robust sampling	Expand sampling to additional vessels and areas across the EPO as is feasible. Continue sampling on PS class 1-6 vessels, coastal States LL tuna fisheries, distant-water LL fisheries, and coastal multi-gear fisheries	Collection of a robust data set to derive L-W relationships throughout the operational range of EPO fisheries. Store biological samples (tissues, stomachs, gonads, otoliths, vertebrae) for tunas and priority species.	J anuary 2026-M ay 2030	Stock assessment, Biology and life-history, Ecosystem and bycatch, and Data Programs; CPCs, fishing industry, SPC-WCPFC
Establishment of an EPO-wide morphometric and biological database for various fisheries	Analyze data; develop morphometric relationships and conversion factors. Process prioritized biological samples in-house and through collaborations	Development of EPO-wide database of morphometrics and biological data. Biological material storage. Publications of meta-data and morphometric relationships. Projectspecific analysis of biological samples (e.g., stock assessments and ecological assessments)	January 2026-December 2030	Stock assessment, Ecosystem and bycatch, Biology and life-history, and Data Programs

Final Considerations

- Success of the proposed sampling program predicated on collaborations, logistics and funding
- Therefore, staff has designed an iterative approach to the proposed project

B phased approach to upscaling sampling to additional vessels and areas
A biological sampling may occur opportunistically
B noting NOAA's Climate Prediction Center predicts transition to El Niño

- Project is complementary to others on data improvement

B e.g., SAC-12-09, WSDAT-01-01, WSDAT-01-Report, SAC-14 INF-M, SAC-14 INF-L

Questions

PS sampling protocols: SPC-OFP 2021, GEN-4 Conversion Factor

Weights and measurements collected

DETAILS OF WEIGHTS AND MEASUREMENTS COLLECTED																			
SETNO.	SHIP'S	LABEL	SPECIES	LENGTHS (in cm.)						WEIGHTS (in kg.)					PROCESSED WGT.		LANDED WEIGHT		COMMENTS
	TIME	NO.	CODE	UF	US	LF	PF	PS	TL	WHOLE	HEAD	TAIL	GUTS	WET FIN	(kg.)	CODE	(kg.)	CODE	

