Comisión Interamericana del Atún Tropical Inter-American Tropical Tuna Commission

CIA

IATTC

IDENTIFYING DATA GAPS AND OPPORTUNITIES FOR UPDATING MORPHOMETRIC RELATIONSHIPS AND COLLECTING BIOLOGICAL SAMPLES FOR PRIORITY SPECIES IN EASTERN PACIFIC OCEAN TUNA FISHERIES (SAC-14 INF-J)

Staff collaboration

14a Reunión del Comité Científico Asesor - 15-19 de mayo de 2023 14th Meeting of the Scientific Advisory Committee, 15-19 May 2023

Outline

- Background
- Objectives
- EPO data gaps Morphometric relationships
 - e.g., length-weight (L-W), length-length (L-L), weight-weight (W-W)
- EPO data gaps Biological sampling
 - e.g., tissues, stomachs, vertebral centra, otoliths, gonads
- Potential sampling opportunities
- Final considerations

Schaefer 1992, IATTC Bulletin Vol. 20, No.3

Background: Morphometric relationships

- Morphometric data are critical to several research and reporting activities
 - Stock assessments
 - **§** Ecological assessments (e.g., EASI-Fish)
- Relationships vary by species, region, year
- Species and size composition of catches differs by fishing gear
- Variability may influence assessments and increase uncertainty
- Catch estimations are influenced by morphometric relationships
 - **§** L-W data are used to convert catch data in numbers to weights and vice versa
 - W-W data required to convert processed weight to whole weight

Background: Morphometric relationships

- Various weight metrics
 - **§** whole weight
 - **§** gilled and gutted weight
 - **§** headed, tailed and gutted weight
- Various length metrics
 - § fork length
 - **§** total length
 - Iower-jaw fork length (billfish)
 - seye-fork length (billfish)
 - § precaudal length and interdorsal length (sharks)
- Improvements to morphometric relationships are essential for improving precision

Background: Biological sampling

- Biological data needed to parameterize stock assessment models e.g.,
 - stock structure (e.g., tagging and genetics)
 - **§** growth and longevity of tunas (e.g., otoliths and tagging)
 - **§** reproductive biology (e.g., histology)
 - **§** natural mortality (*M*) (e.g., tagging and growth parameters for *M* estimators)
 - **§** movement (e.g., conventional and electronic tagging)

Background: Biological sampling

- Biological data needed to parameterize ecological assessments e.g.,
 - to characterize age, growth and reproduction (i.e., productivity component of EASI-Fish)
 - stomach content data (foundation of ecosystem model)
 - s experiments on consumption rates (Q/B ratio parameter in ecosystem models)
 - genetic information (e.g., CKMR for sharks, SAC-12-14)

Initiation of Project F.3.a.

- Staff initiated Project F.3.a. to address data gaps and evaluate sampling feasibility
 - **§** morphometric relationships
 - § biological sampling
- Similar work conducted in WCPO (Project 90: <u>SC18-ST-IP-04</u>)
 - **§** SPC Oceanic Fisheries Programme established PS and LL observer measurement protocols
 - § developed measurement guidelines and forms (<u>GEN-4 Conversion Factor</u>)
 - **§** record multiple measurements on the same fish (e.g., FL, TL, whole weight, processed weight)
 - **§** purpose: to build comprehensive database of various length and weight types
 - **§** database allows scientists to develop the morphometric relationship needed for assessments
 - sestablished Pacific Marine Specimen Bank (biological samples)
- SAC-14 INF-J summarizes staff discussions on Project F.3.a
 - S complementary to documents on data improvements (<u>SAC-12-09</u>, <u>WSDAT-01-01</u>, <u>WSDAT-01-Report</u>, <u>SAC-14 INF-L</u>)
 - **§** creating awareness of data deficiencies
 - seeking ways to improve data collection

Objectives outlined in SAC-14 INF-J

- Objectives
 - **§** identify data gaps in morphometric relationships and biological sampling
 - identify potential opportunities for morphometrics and opportunistic biological sampling (for tunas, billfishes, prioritized species)
 - **§** provide considerations that will determine the success of the project (F.3.a)
 - **§** improve data collection to better align with scientific research under the Antigua Convention

Data gaps: Morphometric relationships W=aL^b

- Relationships for tropical tunas are outdated by several decades
 - § YFT (Wild 1986)
 - **§** BET (Nakamura and Uchiyama 1966)
 - SKJ (Hennemuth 1959)
 - **§** not representative of current EPO populations and fisheries
 - **§** there is indication of spatial variation in average sizes, temporal variation is expected
 - s critical for improving estimation of annual catches for all fisheries
 - **§** measurements of lengths and weights pre- and post-processing are required

Xu et al. BET benchmark assessment (SAC-11-06)

Data gaps: Morphometric relationships

- Staff derive estimates of annual and total catch of tunas, by species, using
 - **§** observer records, vessel logbooks, cannery records, port-sampling data (e.g., see <u>WSBET-02-06</u>)
- Data reported are not standardized
 - **§** processed or whole weight and/or numbers and lengths
 - § processing variability between fleets
 - some fishers remove operculum and tail, freeze fish in ultra-low temperatures (Langley et al. 2006)
 - others chill fish and land fresh fish with only viscera and gills removed (Langley et al. 2006)
- No EPO-specific conversion factors for gilled and gutted weight (<u>SAC-07-04a</u>)
 - stock assessment team use conversion factors for entire Pacific Ocean (Langley et al. 2006)
- Current catch estimates may be biased, due to:
 - **§** outdated morphometric relationships used to convert from length to weight
 - § processing methods (e.g., sampling frozen tunas vs. fresh tunas)
 - § individual variability in the relationships not accounted for (important when fitting models to weight frequencies)

Data gaps: Morphometric relationships

- Relationships for non-target species are: (see <u>IATTC Special Report 25, SAC-13-11</u>, <u>SAC-09-12</u>)
 - **§** non-existent
 - outdated
 - **§** borrowed from similar species within the region
 - **§** based on data from other ocean basins
 - **§** do not represent EPO populations

Data gaps: Morphometric relationships

- EASI-Fish (e.g., <u>SAC-14-12</u>) & estimates of artisanal shark catches (<u>SAC-14 INF-L</u>):
 - **§** different forms of L-W & W-W relationships available (literature review)
 - **§** Iength measurements (e.g., type: PCL, FL, TL)
 - **§** weight measurements (e.g., processed weight, whole weight)
 - **§** $W = aL^b$ (e.g., EASI-Fish uses TL in cm; W in kg)
 - § conversions needed to raise processed weights to whole weights (SAC-14 INF-L)
 - § analyst must convert to the appropriate form

Photos from Project C.4.b. Long-term sampling Program for catches of sharks in artisanal fisheries in Central America

Data gaps: Biological sampling

- Routine biological sampling is not conducted
- Routine sampling provides a means for monitoring fishing impacts
 - **§** decrease in YFT size at maturity (Schaefer and Fuller 2022; Schaefer 1998)
 - **§** such changes can impact productivity, subsequent stock status and management advice

Data gaps: Biological sampling

- Sampling has been limited to dedicated projects
 - Miss changes in biological processes across dynamic conditions (e.g., ENSO events)
- Sampling has not kept pace with modern techniques
 - **§** e.g., tissue collection for genetic studies on stock structure and CKMR (sharks) <u>SAC-12-14</u>
- ETP ecosystem model based on antiquated stomach contents (1990s)
 - secological impacts include changes in feeding dynamics

Identification of sampling opportunities: Overview

- Size composition of catches varies by gear type
 - **§** aim to sample across gear and fleet types
 - sim to maximize spatial range (coastal–offshore) & size distributions of fish (juveniles–adults)
- Propose hierarchical sampling approach
 - § feasibility study (Phase 1)
 - **§** pilot study (*Phase 2*)
 - § EPO-wide, statistically-robust sampling (Phase 3)
- Aim to collect different length and weight metrics on the same individuals
 - **§** allows for comprehensive database for development of conversions & to account for individual variability
- Opportunistically collect biological samples

Schaefer 1992, IATTC Bulletin Vol. 20, No.3

Identification of sampling opportunities: Feasibility study

Phase 1	Action	Outcome	Preliminary timeline	Collaborators
Feasibility	Identify measurements to be	List of morphological	January–May 2024	Stock assessment, Biology
(Part 1, planning)	taken and biological samples	measurements (e.g., FL, TL, WW,		and life-history, Ecosystem
	to be collected	GGW); List of biological samples		and bycatch, and Data
		(e.g., tissues, stomachs)		Programs; CPCs, fishing
	Identify priority species	List of priority species to sample		industry, SPC-WCPFC
	through literature review and	(e.g., silky sharks, hammerhead		
	meta-analysis	sharks)		
	Design feasibility studies with	Development of data collection		
	sampling protocols for both	forms and data/sample storage		
	PS and LL fisheries	protocols		
	Identify capacity building	List of vessels to be used for		
	opportunities and potential	sampling; List of external		
	collaborators	collaborators		
	Identify storage opportunities	List of potential storage facilities		
	for biological samples			
	Preliminary design of a	Beta database structure		
	database for morphometric	developed		
	measurements and biological			
	samples			

Identification of sampling opportunities: Feasibility study

Phase 1	Action	Outcome	Preliminary timeline	Collaborators
Feasibility	IATTC staff to execute feasibility	Evaluation of collected data	June 2024–May 2025	Stock assessment, Biology
(Part 2,	studies aboard class 6 PS and	and samples; Revision of		and life-history, Ecosystem
implementation)	coastal LL tuna fishing vessels	sampling protocols prior to		and bycatch, and Data
		implementing pilot phase		Programs; CPCs, fishing
	Pursue capacity building	List of potential distant-		industry, SPC-WCPFC
	opportunities with potential	water LL fishing vessels for		
	collaborators within distant	sampling		
	water LL fleets (in preparation			
	for Phase 2, Pilot study)			
	Collaborate with statisticians to	Development of sampling		
	develop statistically robust	protocol for upscaling		
	sampling design for industrial	sampling to additional		
	fisheries (in preparation for	vessels in Phase 2, Pilot		
	Phase 2, Pilot study)	study		

Identification of sampling opportunities: Pilot study

Phase 2	Action	Outcome	Preliminary timeline	Collaborators
Pilot sampling	Through collaborations, implement pilot	Development of sampling protocols for	June 2025–May 2026	Stock assessment,
	study following lesson's learned and	industrial fisheries; documentation of		Biology and life-
	sampling design from Phase 1. Sample	lesson's learned from Phase 1 and Phase		history, Ecosystem
	across all PS (i.e., class 1-6) vessels,	2 industrial fisheries. Compilation of a		and bycatch, and
	coastal States LL tuna vessels, and	dataset to derive L-W relationships for		Data Programs;
	distant-water LL vessels. Revise the	tunas and prioritized species from		CPCs, fishing
	sampling design as needed. Coordinate	industrial tuna fisheries; Collection and		industry, SPC-
	logistics for storing samples.	storage of biological samples (tissues,		WCPFC
		stomachs, gonads, otoliths, vertebrae)		
		for tunas and priority species		
	Pursue collaborations within coastal,	Development of sampling protocols for		
	multi-gear/multi-species fisheries;	coastal-multi-gear fisheries;		
	Work with statisticians to develop a	documentation of lesson's learned from		
	sampling design for small coastal, multi-	sampling these fisheries		
	gear fisheries			
	Implement sampling in small coastal	Compilation of a data set to derive L-W		
	fisheries. Revise the sampling design as	relationships for tunas and prioritized		
	needed. Coordinate logistics for storing	species from coastal multi-gear fisheries;		
	samples.	Collection and storage of biological		
		samples (tissues, stomachs, gonads,		
		otoliths, vertebrae) for tunas and priority	1	CIAT
		species		IATTC

Identification of sampling opportunities: EPO-wide study

Phase 3	Action	Outcome	Preliminary timeline	Collaborators
EPO-wide, statistically robust sampling	Expand sampling to additional vessels and areas across the EPO as is feasible. Continue sampling on PS class 1-6 vessels, coastal States LL tuna fisheries, distant-water LL fisheries, and coastal multi-gear fisheries	Collection of a robust data set to derive L-W relationships throughout the operational range of EPO fisheries. Store biological samples (tissues, stomachs, gonads, otoliths, vertebrae) for tunas and priority species.	January 2026–May 2030	Stock assessment, Biology and life-history, Ecosystem and bycatch, and Data Programs; CPCs, fishing industry, SPC-WCPFC
Establishment of an EPO-wide morphometric and biological database for various fisheries	Analyze data; develop morphometric relationships and conversion factors. Process prioritized biological samples in-house and through collaborations	Development of EPO-wide database of morphometrics and biological data. Biological material storage. Publications of meta-data and morphometric relationships. Project- specific analysis of biological samples (e.g., stock assessments and ecological assessments)	January 2026–December 2030	Stock assessment, Ecosystem and bycatch, Biology and life-history, and Data Programs

Final Considerations

- Success of the proposed sampling program predicated on collaborations, logistics and funding
- Therefore, staff has designed an iterative approach to the proposed project
 - **§** phased approach to upscaling sampling to additional vessels and areas
 - **§** biological sampling may occur opportunistically
 - **§** noting NOAA's Climate Prediction Center predicts transition to El Niño
- Project is complementary to others on data improvement
 - e.g., <u>SAC-12-09</u>, <u>WSDAT-01-01</u>, <u>WSDAT-01-Report</u>, <u>SAC-14 INF-M</u>, <u>SAC-14 INF-L</u>

Questions

PS sampling protocols: SPC-OFP 2021, GEN-4 Conversion Factor

Weights and measurements collected

DETAILS OF WEIGHTS AND MEASUREMENTS COLLECTED																			
SET NO SHIP'S LABEL SPECIES				LENGTHS (in cm.)			WEIGHTS (in kg.)				PROCESSED WGT. LAN			ANDED WEIGHT					
OLTINO.	TIME	NO.	CODE	UF	US	LF	PF	PS	TL	WHOLE	HEAD	TAIL	GUTS	WET FIN	(kg.)	CODE	(kg.)	CODE	COMMENTS

