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SUMMARY 
 

Abundance indices of blue shark caught by Japanese longline fishery from 1994 to 2021 in the 
South Atlantic were estimated. Since the catch data of sharks caught by commercial tuna 
longline fishery is usually underreported due to discard of sharks, the author filtered the 
logbook data using the similar filtering methods applied in the previous analysis. The nominal 
CPUE of filtered data was then standardized using the spatio-temporal generalized linear 
mixed model (GLMM) to provide the annual changes in the abundance of blue sharks in the 
South Atlantic. The author focused on interannual variations of the density in the model to 
account for spatially and annually changes in the fishing location due to the target changes of 
tuna and tuna-like species. The estimated CPUE revealed an upward trend from 2005 to 2011, 
and then downward trend until 2015. Thereafter the CPUE slightly decreased in recent years. 
The estimated CPUE using the spatio-temporal model with a large amount of data collected in 
the wide waters in the South Atlantic is a very useful information about the abundance of blue 
sharks. 

RÉSUMÉ 
 

Les indices d'abondance du requin peau bleue capturé par la pêcherie palangrière japonaise de 
1994 à 2021 dans l'Atlantique Sud ont été estimés. Étant donné que les données de capture des 
requins capturés par la pêcherie palangrière commerciale de thonidés sont généralement sous-
déclarées en raison des rejets de requins, l'auteur a filtré les données des carnets de pêche en 
utilisant les méthodes de filtrage similaires appliquées dans l'analyse précédente. La CPUE 
nominale des données filtrées a ensuite été standardisée à l'aide du modèle mixte linéaire 
généralisé spatio-temporel (GLMM) pour fournir les changements annuels dans l'abondance du 
requin peau bleue dans l'Atlantique Sud. L'auteur s'est concentré sur les variations 
interannuelles de la densité dans le modèle afin de tenir compte des changements spatiaux et 
annuels de la localisation de la pêche en raison des changements de cible des thonidés et des 
espèces apparentées. La CPUE estimée a révélé une tendance à la hausse de 2005 à 2011, puis 
une tendance à la baisse jusqu'en 2015. Par la suite, la CPUE a légèrement diminué au cours 
des dernières années. La CPUE estimée en utilisant le modèle spatio-temporel avec une grande 
quantité de données collectées dans une vaste zone de l'Atlantique Sud est une information très 
utile sur l'abondance du requin peau bleue. 
 

RESUMEN 
 

Se estimaron los índices de abundancia del tiburón azul capturado por la pesquería de 
palangre japonesa entre 1994 y 2021 en el Atlántico sur. Dado que los datos de capturas de 
tiburones por parte de la pesquería comercial atunera de palangre suelen estar infradeclarados 
debido al descarte de tiburones, el autor filtró los datos del cuaderno utilizando métodos de 
filtrado similares a los aplicados en el análisis anterior. A continuación, la CPUE nominal de 
los datos filtrados se estandarizó mediante el modelo lineal mixto generalizado 
espaciotemporal (GLMM) para obtener los cambios anuales en la abundancia de tiburón azul 
en el Atlántico sur. El autor se centró en las variaciones interanuales de la densidad en el 
modelo para dar cuenta de los cambios espaciales y anuales en la localización de la pesca 
debidos a los cambios de objetivo de los túnidos y especies afines. La CPUE estimada reveló 
una tendencia ascendente de 2005 a 2011, y luego descendente hasta 2015. A partir de 
entonces, la CPUE disminuyó ligeramente en los últimos años. La CPUE estimada utilizando el 
modelo espaciotemporal con una gran cantidad de datos recogidos en una amplia área del 
Atlántico sur es una información muy útil sobre la abundancia de tiburón azul. 
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1.  Introduction 

The blue shark (Prionace glauca) is a highly migratory species and widely distributed in the world’s oceans from 

tropical to temperate waters (Nakano and Stevens 2008). Blue sharks are relatively productive in the 

elasmobranchs and the most abundant pelagic sharks. Blue sharks are a major bycatch of Japanese tuna longline 

fleets operating in the Atlantic Ocean targeting to albacore (Thunnus alalunga), yellowfin tuna (Thunnus 

albacares), bigeye tuna (Thunnus obesus), bluefin tuna (Thunnus thynnus), southern bluefin tuna (Thunnus 

maccoyii) and swordfish (Xiphias gladius).  Blue sharks are considered to have two distinct stocks in the Atlantic 

Ocean due to their opposite reproductive biology between north and south Atlantic delineated by equator.  

 

The benchmark stock assessments for South Atlantic blue sharks were conducted in 2015 (Anon 2016). The 

Bayesian surplus production model indicated that the stock was not overfished, and that overfishing was not 

occurring. However, the Committee acknowledged that there still remained a high uncertainty of the results. In 

2019, ICCAT adopted a total TAC for southern blue sharks (28,923 t) without a quota allocation to prevent from 

the overexploitation in their uncertain stock status.  

 

In the previous benchmark stock assessment in 2015, Japan provided standardized CPUE (catch per unit effort) 

of blue sharks caught by Japanese tuna longline fleets operating in the South Atlantic (Kai et al., 2015). Since the 

logbook records of Japanese fleets in the early period from 1971 to 1993 contain only aggregated catch of shark 

species, the standardized CPUEs of Japanese fleets were computed separately using the logbook data from 1971 

to 1993 and 1994 to 2012, respectively. Since the reporting rates of bycatch species such as blue sharks are 

commonly low due to the lower value compared to the target species, a filtering method introduced by Nakano 

and Honma (1996) was applied to remove the set-by-set data with low reporting rates of sharks smaller than 

80 % (Nakano and Clarke, 2006; Matsunaga 2009). Then, the nominal CPUEs in the early and late periods 

(1971-1993, 1994-2012) for southern stocks were standardized using a generalized linear model (GLM) 

assuming lognormal and negative binomial error distributions. The standardized CPUEs with the best 

(lognormal) model showed some fluctuations and relatively increasing trends since 1994 for the southern stock 

(Kai et al., 2015). However, the lognormal model has an issue as a constant value (e.g., 0.1) must be given for 

the response variable. In addition, the GLMs commonly assign the spatial area with low resolution and main 

interaction terms such as “year-area” and “quarter and area” are frequently unavailable due to a lack of data.  

 

The VAST (Vector Autoregressive Spatio-Temporal) software package for R (Thorson, 2019), which enables us 

to analyze fishery data using the spatio-temporal generalized linear mixed model (GLMM) (Thorson et al., 

2015), has recently attracted attention as a new approach and is now commonly used globally to predict spatial 

changes in species distribution and temporal variations in a population range and density. The basic model 

structure of VAST adopts a delta-GLMM which can consider spatio-temporal correlations among categories such 

as species (Thorson et al., 2017) and length frequency (Kai et al., 2017). This spatiotemporal model can 

overcome the above issues of GLMs and improve the CPUE standardization by adding the functions such as 

random effects for the vessels and interaction terms.  

 

The objective of this working paper is to estimate the standardized CPUE of blue sharks caught by Japanese tuna 

longline fishery operating in the South Atlantic for 1994-2021 using the spatio-temporal GLMM in consideration 

with spatial and interannual changes in the density. 

 

 

2.  Materials and Methods 

 

2.1  Data sources 

 

Set-by-set logbook data from Japanese tune longline fisheries in the South Atlantic was used to estimate the 

annual standardized CPUE of blue sharks for 1994-2021. The logbook data includes information about date of 

operation, catch number of tuna and tuna-like species and bycatch species such as sharks and billfishes, amount 

of effort (number of hooks), number of branch lines between floats (hooks between float: HBF) as a proxy for 

gear configuration, location (longitude and latitude) of set by resolution of 1 × 1 degree square, and vessel 

identity (vessel name/call sign). 
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2.2  Data filtering 

 

The logbook data in the southern stock was filtered to remove unrealistic records and set-by-set data including 

discard and under-reporting catch. First, the set-by-set data was filtered using the number of hooks per baskets 

(HPB; 3~30) to remove unrealistic records on the gear-settings. Second, the set-by-set data was filtered using a 

reporting rate of positive catch for sharks (RR; number of sets with shark recorded/total number of sets in a 

cruise ≥ 0.8) based on the previous study (Nakano and Clarke 2006; Matsunaga 2008; Kai et al., 2015).  The 

80% of reporting rate had already been approved in the previous stock assessment for blue sharks in the Atlantic 

Ocean (Anon 2016). 

 

2.3  Catchability covariate 

 

Except for the effect of year, the nominal CPUEs of blue shark were largely influenced by station, quarter, 

vessel, sea surface temperature (SST), and target change (Figure A1). In the South Atlantic, Japanese longline 

fisheries change the target species by altering the operational area, gear configuration, and season etc. The 

number of HBF is one of the useful information to identify the target change through changing the depth of hook 

distribution (Bigelow et al., 2006). Cluster analysis based on the k-means clustering of observed catch 

proportions for tunas and swordfish (Carvalho et al., 2010; Chang et al., 2011) is another useful method to 

identify the target species. The number of HBF however had a strong correlation with station (cell) (Figure A2), 

the author decided not to use this effect in the model. The SST also had a strong correlation with station (cell), so 

that the SST was not included in the model. 

 

2.4  CPUE standardization with spatio-temporal model 

 

The spatio-temporal model is consisted of two components of encounter probability and positive catch in a delta 

model. The first predictor was fixed at a constant value because of high positive catches (> 92%). Second 

predictor was modeled using a negative binomial (NB) model to account for the count data with over-dispersion 

(variance/mean =19.5): 

 

𝑐~ 𝑁𝑒𝑔𝐵𝑖𝑛 (𝑐∗, 𝑐∗(1 + 𝜎1) + 𝑐∗2𝜎2), 

log  (𝑑) = 𝑑0(𝑡) + 𝛾(𝑠) + 𝜃(𝑠, 𝑡) + 𝜖(𝑣) + ∑ 𝛽𝑗𝑥𝑗
𝑛𝑗

𝑗=1
,    (1) 

where c is observed catch,  NegBin (a, b) is a negative binomial distribution with mean a and variance b (Lindén 

and Mäntyniemi 2011),  𝑐∗ is an expected catch and a function of density 𝑑 and fishing effort 𝑓(number of hooks 

= 1), σ1 and σ2 are residual variations, 𝑑0(𝑡) represents temporal variation (the intercept for each year t), 𝛾(𝑠) 

represents spatial variation (s), 𝜃(𝑠, 𝑡) represents spatio-temporal variation (station s and year t), 𝜖(𝑣) represents 

random variation in catchability for the 𝑣th vessel, and 𝛽𝑗 represents the impact of covariate 𝑗 with value 𝑥𝑗 on 

catchability. The three-month quarters and targeting cluster (i.e. 𝑛𝑗 = 2, 𝑥𝑗 = 𝑞 𝑎𝑛𝑑 𝑙) are used as covariates 

(changing the catchability) corresponding to Eq. (1).  

 

The VAST (version VAST_v13_0_0) software package for R (Thorson 2019) was applied to standardize the 

nominal CPUE of blue shark in the North Atlantic from 1994 to 2021. Annual abundance index I was estimated 

as: 

 𝐼(𝑡) = ∑ 𝑓(𝑠)𝑛𝑠
𝑠=1 × 𝑐∗(𝑠, 𝑡)/{∑ ∑ 𝑓(𝑠)𝑛𝑠

𝑠=1 × 𝑐∗(𝑠, 𝑡)}
𝑛𝑡
𝑡=1 ,    (2) 

where ns is total number of knots (i.e., 200 locations) and 𝑓 is fishing effort (number of hooks) at location s.  

 

2.5  Model selection and diagnostics 

 

To select the best model, the explanatory variable was sequentially added to the simple model (Model-1). The 

best model was selected using the AIC (Akaike, 1973) and BIC (Schwarz, 1978). For the best model, the 

goodness of fits was examined using the Pearson residuals and QQ-plot. The residuals were computed using a 

randomized quantile (Dunn and Smyth 1996) to produce continuous normal residuals.  
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3.  Results 

3.1  Summary of data filtering 

The preliminary filtering based on the HBF reduced the number records for this analysis from 292,957 sets to 

292,416 sets. The follow-up filtering based on the RR reduced the number of records for this analysis to 82,179 

sets. The follow-up filtering appeared to be reasonable because the low catch rates for sharks disappeared 

(Figure 1). The difference of annual changes in catch number for blue shark, number of hooks, and the nominal 

CPUE between the data with and without follow-up filtering are shown in Figure 2. The spatial maps of mean 

nominal CPUE for blue shark, total fishing effort (number of hooks), and total catch of blue shark are shown in 

Figure A3.  

 

3.2  Selection of the best model  

All models were reasonably converged with the positive definite of hessian matrix and a small value of 

maximum gradient (Table 1). The saturated model (Model-6) including spatial (station/cell), spatio-temporal 

variance (year and station) and variation over vessel as random effects was identified by AIC and BIC as the 

most parsimonious model (Table 1). The predicted CPUE changed substantially if random effect components 

were sequentially added to the simple model which had no random effects (Model-1) (Figure 3). The fixed 

effect components (quarter and cluster) had a small effect on the annual trends in the CPUE (Figure 3) but those 

decreased the values of both information criteria (Table 1). Lists of all parameters and estimates of the best 

models are shown in Table 2. 

 

3.3  Annual trends in CPUE 

The estimated annual changes in the CPUE of blue shark revealed an upward trend from 2005 to 2011, and then 

downward trend until 2015 (Figure 4). Thereafter the CPUE slightly decreased in recent years. The 95% 

confidence intervals of the CPUEs were slightly large after 2009 (Figure 4) due to the reduction in fishing effort 

and shrinkage of operational area of longline fisheries in the South Atlantic. 

 

3.4  Model diagnostics 

Diagnostic plots of goodness-of-fit for the best model didn’t show a serious deviation from normality and model 

misspecification (Figure 5). These results suggested that the fitting of the best model to the data was good.   

 

3.5  Spatial maps of predicted CPUE 

The annual spatial maps of predicted CPUE clearly showed the higher CPUEs of blue sharks at the higher 

latitudes (30-45° S) after 2005, whereas the lower CPUEs of blue sharks at the higher latitudes (30-45° S) were 

frequently observed before 2006 (Figure 6).  

 

 

4.  Discussions 

 

This document paper estimated a historical trend in abundance indices of blue shark caught by Japanese tuna 

longline fishery in the South Atlantic from 1994 to 2021 using a spatio-temporal GLMM. The main advantage of 

the spatio-temporal model is an imputation for the missing data using spatial and temporal correlations through 

random effects (Thorson 2019). Unlike the design based GLM used in the previous assessment (Kai et al., 2015), 

the spatio-temporal GLMM developed by Thorson et al., (2015) enabled us to include interaction terms between 

spatial and temporal effects with high spatial resolutions. The spatio-temporal variations with high spatial 

resolution had a large impact on the annual trends in the estimated CPUE (Figure 3).  

 

The annual trends of the selected model (Model-6) suggested that the abundance indices of blue shark 

significantly increased in the second half of 2000s and then the abundance indices have been slightly declining 

(Figure 4). Since the fishing effort of Japanese longline fishery has been declining (Figure 2) due to shrinkage 

of operational areas, the recent decreasing trends in the abundance might be attributed to the high fishing 

pressure of foreign fisheries (ICCAT 2022).  
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The reporting rates of catch for sharks increased in the late 2000s (Figure 1) due to the conservation and 

management measure for the sharks (Fishery Agency 2009). The Japanese government demanded Japanese 

longliners to land all parts of sharks in possession in order to promote effective utilization of all the usable parts 

of sharks.   

 

High CPUE of blue shark observed in the higher latitudinal waters (30-45° S) after 2005 (Figure 6) along with 

the extension of Brazil current and Benguela current where Japanese longliners historically targeting southern 

bluefin tuna and bigeye tuna.  

 

The author recommends using the predicted annual CPUEs of blue shark caught by Japanese tuna longline 

fishery in the South Atlantic from 1994 to 2021 as a representative of abundance indices for South Atlantic blue 

shark because a wide coverage of the main distributional areas (tropical to temperate waters) of blue shark as 

well as sufficient long time series of data, and statistical soundness of the spatio-temporal model. 
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Table 1.  Summary of model structure and outputs among different models. All models include fixed effects. 

“Δ” denotes a difference between the value of criteria and the minimum value.    

Model Catch rate predictors of random effect 
Number of 

parameters 
Deviance ΔAIC ΔBIC 

Maximum 

gradient 

Model-1 Year 31 229785 16356 16282 < 0.0001 

Model-2 Year + Station 35 223074 9654 9612 < 0.0001 

Model-3 Year + Station + Vessel 36 218340 4922 4889 < 0.0001 

Model-4 Year + Station + Vessel + Year and Station 38 213490 76 59 < 0.0001 

Model-5 Year + Station + Vessel + Year and Station + Cluster 39 213464 51 43 < 0.0001 

Model-6 

Year + Station + Vessel + Year and Station + Cluster + 

Quarter 
40 

213411 0 0 
< 0.0001 

 

 

Table 2. List of all parameters and estimates of the selected model (Model-6).  

No Parameter name Symbol Type Estimates 

1 Distance of correlation (Spatial random effect) κ Fixed 0.0027 

2 Variation over vessel σϵ Fixed 3.12 

3 Northings anisotropy h1 Fixed 1.15 

4 Anisotropic correlation h2 Fixed 0.85 

5 Parameter governing pointwise variance (Spatial random effect) ηɤ Fixed 0.58 

6 

Parameter governing pointwise variance (Spatio-temporal (year) random 

effect) ηθ Fixed 2.21 

7 Parameter governing autocorrelation (Spatio-temporal: year random effect) ρθ Fixed 1.42 

8 Residual variation 1 of negative binomial model σ1 Fixed 0.85 

9 Residual variation 2 of negative binomial model σ2 Fixed 0.36 

10 Coefficient of cluster β1 Fixed -0.03 

11 Coefficient of three month quarters β2 Fixed -0.04 

12-40 Intercept for year d0 Fixed Not shown 

41 Vessel effect ϵ Random Not shown 

42 Spatial residuals γ Random Not shown 

43 Spatio-temporal (year) residuals θ Random Not shown 
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Table 3. Summary of annual CPUE predicted by spatio-temporal model along with corresponding estimates of 

the coefficient of variation (CV), annual nominal CPUE, and number of hooks in millions. Values are predicted 

using the best fitting model (Model-6) and scaled by average CPUE.  

 

Year 
Predicted 

CPUE 

Nominal 

CPUE 
CV 

Number 

of hooks 

(millions) 

1994 1.11 1.19 0.14 10.41 

1995 0.46 0.64 0.16 5.40 

1996 0.72 0.69 0.19 5.06 

1997 0.75 0.77 0.17 4.89 

1998 0.63 0.76 0.16 3.24 

1999 0.71 0.78 0.16 3.93 

2000 0.48 0.66 0.19 2.72 

2001 0.46 0.60 0.21 1.82 

2002 0.53 0.49 0.23 1.39 

2003 0.70 0.82 0.18 1.50 

2004 0.60 0.62 0.18 2.97 

2005 0.59 0.63 0.19 2.83 

2006 0.94 0.94 0.17 5.80 

2007 0.91 0.82 0.16 9.34 

2008 1.34 1.16 0.13 16.69 

2009 1.21 1.11 0.11 10.32 

2010 1.66 1.56 0.11 7.78 

2011 1.70 1.38 0.12 15.53 

2012 1.32 1.01 0.12 20.71 

2013 1.42 1.27 0.14 14.27 

2014 1.52 1.23 0.16 17.51 

2015 1.17 1.15 0.14 15.63 

2016 1.22 1.34 0.16 11.62 

2017 1.22 1.36 0.16 16.57 

2018 1.23 1.31 0.14 17.43 

2019 1.23 1.42 0.17 10.51 

2020 1.08 1.19 0.17 8.91 

2021 1.08 1.07 0.20 6.94 
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Figure 1. Annual reporting rates (RR) of catch for sharks (a) before filtering and (b) after filtering. 

 

 

 

 

Figure 2. Annual catch in numbers (thousands) (a), number of hooks (millions) (b), and nominal CPUE (per 

1000 hooks) (c) for blue shark before filtering (broken line with open circle) and after filtering (solid line). 



232 

 

Figure 3. Comparisons of annual predicted CPUE relative to its average among different structures of the spatio-

temporal model. For details of the models, see Table 1. 

 

 

Figure 4. Annual predicted CPUE relative to its average. Gray solid line denotes nominal CPUE relative to its 

average, shadow denotes 95% confidence intervals, and horizontal dotted line denotes mean of relative values 

(1.0).  

 

 



233 

 

 

Figure 5. Diagnostic plots of goodness-of-fit for the most parsimonious model (Model-6).  
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Figure 6. Annual spatial distribution of log-scaled predicted CPUE for blue shark. Two hundred knots are given in the estimation of the standardized CPUE. 
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Figure A1. Changes in nominal CPUE (catch of blue shark per 1000 hooks) by quarter, vessel, number of hooks between floats (HBF), targeting cluster, and sea surface 

temperature (SST). 
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Figure A2. Correlation among quarter, number of hooks between floats (HBF), sea surface temperature (SST), cell (station), and cluster. 
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Figure A3. Spatial maps of log-scaled nominal CPUE (catch of blue shark per 1000 hooks), fishing effort (number of hooks) and log-scaled catch (catch of blue shark). Two 

hundred knots are given in the estimation of the standardized CPUE. 

 


