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SUMMARY 

 

Abundance indices for blue shark (Prionace glauca) in the northwest Mexican Pacific for the period 
2006-2020 were estimated using data obtained through a pelagic longline observer program. 
Individual longline set catch per unit effort data, collected by scientific observers, were analyzed to 
assess effects of environmental factors such as sea surface temperature, distance to the nearest 
point on the coast and time-area factors. Standardized catch rates were estimated by applying 
generalized linear models (GLM). Sea surface temperature, mean SST anomalies, distance to the 
coast, year, area fished, quarter and fraction of night hours in the fishing set were all significant 
factors included in the model. The results of this analysis show a relatively stable trend with a 
sharp descent in the last year of the time series in the standardized abundance index in the period 
considered. This trend could be explained in terms of recent oceanographic events and possible 
recent changes in fishing strategy of the fleets involved. 
 

INTRODUCTION 

 

The presence of more than 100 species of sharks in Mexican waters has allowed the historical 
development of commercial fisheries in both coastal and oceanic waters (Castillo-Géniz et al. 

1998). The main Mexican shark fisheries are the coastal artisanal fishery (along the coasts of both 
Pacific and Gulf of Mexico coastlines) and the pelagic longline fisheries using medium size vessels 
in the northern Pacific region (Castillo-Géniz et al. 2008). 
 
The Mexican average annual shark production (including small sharks, “cazones”) from 1976 to 
2018 was 25,784.16 t, which places Mexico as one of the top shark producer nations in the world 
according to Musick and Musick (2011). In 2018 the total domestic shark production reached 
44,656 t, with a market value of more than six hundred million pesos. The average annual shark 
production in Mexican Pacific for 1976-2018 was 21,658 t. In 2018 the Pacific shark production 
reached 31,304 t which comprised 85.4% of the total Mexican shark production (CONAPESCA 
2018). 
 
Pelagic shark fisheries in the Mexican Northwest Pacific began in the mid 80's with the creation of 
an industrial fishing fleet. Stimulated by the successful driftnet fishery in California, in 1986 a small 
fleet of driftnet vessels appeared in northern Baja California, Mexico. This fishery was stimulated 
both by the reduction in longline permits and by the local abundance of swordfish and other 
marketable by-catch products, including several species of large pelagic sharks. These vessels were 
fiberglass or steel built, with an overall length of 18-25 m and a fish hold capacity of 50-70 t. 
 
From twenty medium size vessels in 1990, the fleet expanded to 31 vessels in 1993 (Sosa-Nishizaki 
et al. 1993). This fleet targets sharks, swordfish, tuna, and other pelagic fish. Sosa-Nishizaki et al. 

(1993), Holts et al. (1998), Ulloa-Ramírez et al. (2000), and Sosa-Nishizaki et al. (2002) described in 
detail the origin and growth of swordfish and sharks fishery along the west coast of Baja California 
(BC). 

 
During the first 20 years, this fleet used surface gillnets as its primary fishing gear. The Mexican 
Official Standard NOM-029-PESC-2006 banned driftnets in medium-size vessels (10-27 m length). 
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By the end of 2009, all vessels switched to longlines and the operational dynamics of the fleet 
changed drastically. The main shark species caught were blue (Prionace glauca), short-fin mako 
(Isurus oxyrinchus) and thresher (Alopias vulpinus) sharks. 
 
Among the studies conducted on shark fisheries in the West BC coast, included studies focused in 
blue shark catches and biology, are the works of Miranda-Vázquez (1996), Furlong-Estrada (2000), 
Reyes-González (2001) and Guerrero-Maldonado (2005). 
 

Shark fisheries management 

 

Shark fisheries in Mexican waters are managed mainly through three instruments: 1) The Mexican 
Official Standard NOM-029-PESC-2006. Shark and Ray Responsible Fisheries. Specifications for 
Their Exploitation; 2) The National Fisheries Chart (Carta Nacional Pesquera, CNP) and 3) The Shark 
and Ray Fishery Closure Agreements for both coastlines. The NOM-029 established numerous 
regulations for shark and ray fisheries in order to achieve sustainability, among them the 
establishment of specific fishing zones according to vessel characteristics, refuge zones, 
specifications for fishing gears, mandatory participation in the satellite vessel tracking program 
(Vessel Monitoring System, VMS), the banning of gillnets on medium size boats and the 
implementation of a scientific observer program on a voluntary basis. 
 
The CNP includes the description and the current status of shark populations as well as their 
availability in Mexican waters. At present, all shark fisheries are considered to be fully exploited 
(Diario Oficial de la Federación, DOF 2010). Finally, the fisheries authority has established closed 
seasons for shark and ray fisheries in the Pacific and for sharks only in the Gulf of Mexico, with the 
aim of protecting the main reproductive season for most species (DOF 2012 and 2014). Those 
closed periods include shark by-catch in other fisheries. The closed season in the Mexican Pacific 
was established between May 1st and July 31st. 
 

Blue shark Pacific catches 

 

Corro-Espinosa (unpublished data) conducted an analysis of the commercial logbooks from the 
Mazatlan longline fleet for years 2009-2012. Corro-Espinosa documented a total catch of 182,482 
sharks from 11 species, caught in 8,447 sets. Blue shark (P. glauca) 64.6%, thresher (A. vulpinus) 
9.4%, bigeye thresher (A. superciliosus) 9.3%, pelagic thresher (A. pelagicus) 7.7% and shortfin 
mako (I. oxyrinchus) 1.7% were the most frequently caught pelagic sharks. Godinez-Padilla et al. 
(2016) examined the commercial logbooks of 683 fishery trips and 6,371 longline sets from the 
swordfish and shark fleet of Ensenada conducted during 2011-2015. The logbooks reported a 
capture of 642,052 sharks belonging to eighteen shark species, with blue (89.25%), mako (7.77%) 
and thresher (1.06%) sharks being the most abundant species. 
 
The blue shark, P. glauca, is the most abundant shark species in pelagic longline catches in the 
Northwestern Mexican Pacific (Sosa-Nishizaki et al. 2008, Vögler et al. 2012, Godínez-Padilla et al. 
2016). Sosa-Nishizaki (2011) estimated the Pacific total blue shark landings in 66,221 t for the 
years 1976-2011. The largest catches were reported by BC (43.4%), followed by Baja California Sur 
(BCS) with 30% and Sinaloa (10%). 
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The Mexican National Aquaculture and Fisheries Commission (internal report) reported a total 
catch of blue shark of 59,658 t for the period 2006-2020 for the Mexican Pacific. BC accounted for 
48.79% of the total catch, followed by BCS (21.34%) and Sinaloa (19.57%). In 2020 BC reported a 
total annual blue shark catch of 1,565 t, while BCS and Sinaloa reported 756 and 865 t, 
respectively. For the period 2006-2020, BC had an annual average of 1,940.5 ± 378 t, BCS 849 ± 
388 t and Sinaloa 778.6 ± 377.5 t. The total annual catch of blue shark in Mexican Pacific showed a 
consistent growth until 2014, and from that year a downward trend (Figure 1). The commercial 
longline fishing sector in northwestern Mexico faced a severe decline in domestic demand for blue 
shark meat, forcing vessels to reduce the number of fishing trips made in 2020. The cancellation of 
the subsidy for the marine diesel for the fishing industry and the low cost of blue shark meat also 
influenced the decrease in fishing activity, which was reflected in low levels of blue shark 
production (Miguel Chaidez, representative of the Mexican National Chamber of the Fishing and 
Aquaculture Industry, pers. comm., October 2021). 
 
The blue shark is caught all year long on the west coast of the Baja California Peninsula and in the 
central Pacific (off Colima and Nayarit states) (Guerrero-Maldonado 2005, Cartamil et al. 2011, 
Santana-Hernández and Valdez-Flores 2014). P. glauca individuals of a relatively young age (0-3 
years) were reported in the catch of the shark fisheries in BC (Guerrero-Maldonado 2005). 
 
In artisanal fisheries blue sharks are fully recruited at age 1, while in the offshore fishery, using 
medium size boats, individuals are recruited at the age of 2 and 3 years. In BCS artisanal fisheries, 
blue shark individuals were caught at relatively older ages (4 years and older on the west coast 
and 5 years and older on the east coast), compared to blue sharks fished in similar vessels landed 
at San Carlos, in Western BCS (0-7 years old). Guerrero-Maldonado (2005) also reviewed catches 
of blue shark landed by the Manzanillo longline fleet in Colima. This fleet caught P. glauca in areas 
off BCS at ages between one to six years old but this author reports that individuals were recruited 
to the fishery at age three in that region. 

In the Ensenada longline fleet, female blue shark catches range 35-400 cm in total length (TL) with 
an average of 165.1 ± 0.3 cm TL (n = 14,822 females), while range in males is 40-400 cm TL with an 
average of 169.3 ± 0.3 cm TL (n = 20,857 males). The female blue shark catches from the Mazatlán 
fleet were comprised by individuals with a range of 30-400 cm TL and an average of 207.1 ± 0.3 cm 
TL (n = 13,064 females). Males showed a length interval of 50-400 cm TL with a mean of 195.5 ± 
0.1 cm TL (n = 47,003 males). Apparently, both fleets catch immature individuals with a small 
proportion of adults (Figure 2). 

Shark Observer Program (Programa de Observadores de Tiburón, POT) 

 

The shark observer program (POT) began operations on several shark fishing fleets along the 
Northern West coast of Mexico in August 2006 (as established in the NOM-029-PESC-2006 official 
standard). Participation in the POT is voluntary so fishing trips with observer onboard are 
conducted according to the availability and willingness of fishing companies. The POT is one of the 
most important research tools in Mexico’s shark fisheries, providing data for monitoring the main 
shark species caught on the Mexican Pacific coast (Tovar-Ávila et al. 2011). Observers gather data 
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during a fishing trip, including catches by set or haul, species composition and size and sex of a 
sample of individuals. 

Detailed POT operating statistics for the period 2006-2014 have been described previously by 
Castillo-Géniz et al. 2014 (ISC/14/SHARWG-3/02). Figure 3 shows the fishing effort recorded for 
different shark fishing fleets that operated during 2006-2020. Currently, the POT continues 
operating on board of the longline fleets of Ensenada (BC) and Mazatlán (Sinaloa), which represent 
the largest pelagic longline fishing effort in the northwest Mexican Pacific. 

Catch rate standardization 

 

Stock assessments may involve the use of several indices of stock abundance derived from 
commercial fisheries data, observer data from fisheries, and scientific surveys (McDonald et al. 

2001). The primary indices of abundance for many of the world’s valuable and vulnerable species 
are based on catch and effort. These indices, however, should be used with care because changes 
over space and time in catch rates can occur because of factors other than real changes in 
abundance (Gavaris 1980, Walters 2003, Maunder and Punt 2004, Campbell 2015). Nominal catch 
rates obtained from fishery statistics or observer programs require standardization to correct for 
the effect of factors not related to regional fish abundance but assumed to affect fish availability 
and vulnerability, usually by using statistical regression methods (Bigelow et al. 1999, Ortiz and 
Arocha 2004). 

Generalized Linear Models (GLM, Nelder and Wedderburn 1972, McCullagh and Nelder 1989) are 
the most common method for standardizing catch and effort data and their use has become 
standard practice because this approach allows identification of the factors that influence catch 
rates and calculation of standardized abundance indices, through the estimation of the year effect 
(Goñi et al. 1999, Maunder and Punt 2004, Brodziak and Walsh 2013). GLMs are defined mainly by 
the statistical distribution for the response variable (in this case, catch rate) and the relationship of 
a linear combination of a set of explanatory variables with the expected value of the response 
variable. Its use is based upon the assumption that the relationship between a function of the 
expected value of the response variable and the explanatory variables is linear. A variety of error 
distributions of catch rate data have been assumed in GLM analyses (Lo et al. 1992, Bigelow et al. 

1999, Punt et al. 2000, Goñi et al. 2004, Maunder and Punt 2004). 

 
MATERIAL AND METHODS 

As commented above, driftnet operations were banned in 2009, while longline fishing has 
prevailed through the years of operation of the scientific observer program. This study is focused 
on the longline component of the shark fishery with medium size vessels in the northwest region 
of the Mexican Pacific from June 2006 to December 2020. 

Data were subjected to a preliminary analysis, looking for missing values, incomplete information 
and inconsistencies. Original data contained fishing sets from within the Gulf of California and in 
the southeastern Mexican Pacific, where no blue sharks were caught in the years contained in the 
time series. Data from these zones were excluded from the analysis. An exploratory analysis, 
looking for extreme and highly influential values using leverage and Cook’s distance (Zuur et al. 
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2009) criteria was performed. In this way, from an initial total of 7,153 longline sets, 6,408 sets 
were retained to be used in the analysis. The proportion of zero-catch sets was around 4.8%, and 
the probability of obtaining a positive catch being close to 1 (0.95). For this reason, it was not 
considered necessary to use a Delta model in this analysis, modeling separately the probability of 
obtaining a positive catch and the catch rate, given that the catch is non-zero, using a standard 
distribution defined for positive values (Pennington 1983, as proposed by Lo et al. 1992). 

After an initial exploratory analysis, factors which were considered as having a possible influence 
on the RESPONSE variable, catch rate (CTCHRATE), were selected to be included in a “maximum 
model” for the analyses. 

The factors selected for inclusion in the analysis were the following: Mean Sea Surface 
Temperature (MEANTEMP as a three level factor, H, M and L for “high”, “medium” and “low”), 
calculated for each set as the average of temperature data measured in situ, at the beginning and 
the end of both gear setting and retrieval. MEANTEMP levels were defined as L<=21°C, 21<M<=25, 
and H>25°C, on the basis of the mean sea surface temperature in all validated sets. 

Mean Sea Surface Temperature Anomaly (MEANSSTANOM) was defined as a three level factor, 
MSSTANL (<=-1), MSSTANM (>-1,<+1), MSSTANH (>=+1) for “low”, medium and “high” mean SST 
anomaly. Data on this factor were obtained from the Multi-scale Ultra-high Resolution (MUR) SST 
Analysis Anomaly fv04.1, Global, 0.01°, 2002-present, Daily, Lon0360 data base, available in the 
ERDDAP data server: 
(https://coastwatch.pfeg.noaa.gov/erddap/griddap/jplMURSST41anom1day_Lon0360.html) 
using the rerddapXtracto R package (Mendelssohn 2021). 
 
The proportion of night hours in the fishing set for sets being carried out mostly in daylight or at 
night (PNH, a two level factor, “DAY” < 0.5 and “NIGHT” >=0.5) was calculated using the data from 
each fishing set and calculating the time of dawn and sunset for the corresponding dates and 
coordinates, using the suncalc R package (Thieurmel and Achraf 2019). 
 
Fraction of the Moon Illuminated (MP, a three level factor, “NEW”<0.3, “PART”>=0.3 <=0.7, and 
“FULL” >0.7), were obtained for the dates of the fishing sets from the Naval Oceanography Portal 
(https://www.usno.navy.mil/USNO/astronomical-applications/astronomical-information-
center/phases-percent-m). 
 
Distance to the nearest coastline, including islands, (DIST as a two level factor, N for “near” for 
distances less than 200 km and F for “far” from the coast for distances above that number), was 
calculated using the raster R package (Hijmans 2019). 
 
Time-area factors such as YEAR, QUARTER and fishing area were included. Three fishing areas 
(LATF ) were defined, NORTH above the 25° parallel, CENTRAL between 21° and 25° of latitude and 
SOUTH below 21° (Figure 4). 
 
The levels of the above mentioned factors were selected matching approximately the inflexion 
points of a LOESS smoother on a scatterplot of catch rate against the values of the corresponding 



7 
 

 

1 Working document submitted to the ISC Shark Working Group Workshop, 9-19 November 2021, 
Web-meeting. Document not to be cited without author’s permission. 

 

 

variable. The fishing areas were defined based on that LOESS – scatterplot procedure and on 
observed fleet operations patterns. 

Catch rates were modeled as a function of these factors and several two-way interactions, 
LATF:PNH, PNH:MP, MEANSSTANOM:MEANTEMP, LATF:DIST, QUARTER:DIST. 

Although we are conscious that inter annual variations in spatial or temporal patterns could occur 
(v. gr. the species and/or effort distribution, seasonal changes in temperature or other factors 
among years), we preferred not including interactions involving the factor YEAR at this stage of the 
analysis with fixed effects models. Including interactions involving the factor YEAR, as well as 
treating it as a random factor by using Generalized Linear Mixed Effects Models (GLMM) as 
suggested by Maunder and Punt (2004) and Campbell (2015), could be considered at later stages 
of the analysis. 

The formula of the maximum (initial) model was: 

CTCHRATE~YEAR+QUARTER+LATF+DIST+MEANTEMP+MEANSSTANOM+PNH+MP+QUARTER:DIST+
LATF:DIST+MEANTEMP:MEANSSTANOM+PNH:MP+LATF:PNH 

Two error structures were considered: Poisson (with log and inverse link functions) and negative 
binomial. The model that best described the data was selected using the Akaike Information 
Criterion (AIC) and Bayesian Information Criterion (BIC) (Burnham and Anderson 2002), followed 
by an analysis of residuals for validation purposes. 

The significance of the included variables and interactions was assessed through tests of 
hypothesis, using one-term deletion tests in order to prevent the potential effects of collinearities, 
as described by Crawley (2007) The effect of the term was determined to be significant at least at 
the alpha = 0.05 level based on an F test. The K-fold Cross Validation procedure (James et al. 2021) 
was used as an additional criterion of model simplification using the boot R package (Canty and 
Ripley 2020). 

The estimated marginal means and their standard errors for the YEAR factor (the standardized 
abundance indices) were obtained by using the emmeans routine contained in the emmeans R 
package (Lenth 2021). 

 

RESULTS AND DISCUSSION 

Table 1 shows the values of the Akaike Information Criterion (AIC) and the Bayesian Information 
Criterion (BIC) for the maximum models tried. Table 2 shows the results of the model 
simplification process. Based on the AIC and BIC, the model with the Negative Binomial error 
distribution and the log link was selected for simplification with one-term deletion and Cross 
Validation tests. The final (“minimum adequate”) model was: 

CTCHRATE ~ YEAR + QUARTER + LATF + DIST + MEANTEMP + MEANSSTANOM + PNH + 
QUARTER:DIST + LATF:DIST + MEANTEMP:MEANSSTANOM + LATF:PNH 
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The results of estimated marginal means procedure, the standardized abundance indices for the 
blue shark (2006-2020) from the model are shown in Table 3. The re-scaled values of the 
estimated indices are shown in table 4. Figure 5 show the estimated values of the relative index 
and their 95% confidence intervals, together with the nominal catch rates for years 2006-2020. 

Figure 6 shows the residuals of the Negative Binomial GLM as well as the marginal-model plots for 
each factor. The residuals for the Negative Binomial GLM are close to normal. Diagnostic plots 
showed good agreement with model assumptions and there were no clear systematic patterns in 
the residuals. 

Figure 7 shows the effects graphs for the terms included in the final model. 

Spatial-temporal heterogeneity in the marine environment is believed to greatly affect the biology, 
dynamics, and availability of fish stocks, as well as their vulnerability to fishing gear, thus 
introducing a source of variability in nominal catch rates (Bigelow et al. 1999). Sea surface 
temperature is one of the most important physical factors because it modifies the geographical 
and vertical aggregation patterns of fishes, through its effect on feeding, reproductive and 
migratory behavior, and body thermoregulation (Fonteneau 1998). The blue shark is highly 
migratory, with complex movement patterns related to water temperature, reproduction, and the 
distribution of prey (Nakano 1994, Nakano and Seki 2003, Stevens 2010). 

The results of this analysis show a relatively low dispersion (cv = 0.23) and stable trend of the 
standardized abundance indices from 2006 to 2020, with somehow lower levels after 2014 and a 
noticeable reduction in the latter year (Figure 5). 

It should be noted that the period after that year registered the occurrence of two unusual and 
consecutive warming events known as The Blob (TB2013–2015) and the 2015–2016 El Niño 
(Jiménez-Quiroz et al. 2019). The observed decrease in CPUE in the years after 2014 could be 
caused by the blue shark leaving the area included in this analysis or moving to deeper waters, 
rather than by an actual decrease in local abundance. It is suggested to compare the results of this 
analysis with those performed on the contiguous colder zone off California. 

Adams et al. (2016) report lower blue shark CPUEs at positive values of the MEI off the coast of 
Peru. Cavole et al. (2016) comment that research surveys during the summer of 2015 reported 
unusual sightings of blue shark in the Gulf of Alaska and that those reports suggested that tropical 
invertebrates such as tuna crabs were followed northward by their predators, tuna, which were in 
turn followed by their predators, sharks. According to Compagno (1984), in the tropics the blue 
shark shows submergence and occurs at greater depths there. In the tropical Indian Ocean the 
greatest abundance of blue sharks occurs at depths of 80 to 220 m, with temperatures about 12° 
to 25° C. 

In our results, lower levels of CPUE seem to be related with high values of the Mean SST Anomalies 
(Figure 7), like those occurring in the study area in the last years. Birkmanis et al. (2020) predict 
shifts in suitable habitat for blue and mako sharks, related with higher SST anomalies in the 
Southern Hemisphere. 
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Variability in nominal catch rates can also be related to other physical, chemical, and biological 
processes or factors in the ocean (e.g. water transparency, circulation patterns, frontal zones, 
salinity, plankton, nekton), which together with temperature define the identity, structure, and 
interaction of water masses and can affect the availability of potential prey and the capture 
efficiency of predatory fishes (Laurs et al. 1984, Bigelow et al. 1999). 

Fishery-related factors like hook size and type, fishing depth or bait type were not included in this 
analysis, as data on these factors were not available in the data set we used but could be available 
in the observer data base. However, the inclusion in the model of the interaction of latitude with 
the fraction of night hours in the fishing set (LATF:PNH) was aimed at assessing the effect of an 
apparent shift to night sets in some specific areas where the participating fleets operate. This 
change in fishing strategy is apparently related to fishermen looking for species other than sharks, 
like swordfish (Xiphias gladius). Figure 8 shows a graph containing the fraction of fishing sets with 
zero catch of swordfish and blue shark by year in the available data set. A clear negative trend in 
the fraction of zero swordfish catch coincides with a rise in the one for blue shark. A shift in the 
target species, with the possible corresponding change in blue shark CPUE, could not be excluded 
at this time and should be attentively evaluated in future analysis. 

The present study represents part of the initial stages of attempting to merge fishery and 
environmental information from the distribution range of the blue shark in the Mexican Pacific, 
estimate the best available relative abundance indices, and model recent trends in CPUE. Results 
may be improved by adding other predictor variables to the model, extending the time series, 
analyzing the data at lower spatial scales (particular areas and characteristics and operation of 
particular fleets) and taking into account the size-age structure and sex of the catches. 

Variable transformation and use of generalized additive models (GAM) may also increase the 
explanatory power of the model, due to the likely nonlinearity of many of the functional 
relationships between catch rate and the predictor variables. As mentioned before, using 
Generalized Linear Mixed Effects Models (GLMM) could be considered at later stages of the 
analysis. 
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Table 1. Values of the Akaike and Bayesian Information Criterions for 
the maximum models tried. 
 

 df AIC BIC 

Poisson (log link) 41 214,665.83 214,943.21 
Negative binomial (log link) 42 56,827.28 57,111.43 
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Table 2. p values and Cross Validation MSE obtained in the model simplification process 
(*covariate retained in the model). 
 

Term p (anova test) Model CV 

LATF:PNH * 0.002867007 MNB  1985.905 
   MNB2 1990.319 
PNH:MP 0.3147707 MNB 1985.905 
   MNB2  1983.174 
MEANSSTANOM:MEANTEMP * 8.98E-06 MNB2  1983.174 
   MNB3 1995.063 
LATF:DIST * 2.62E-05 MNB2  1983.174 
   MNB3 1986.711 
QUARTER:DIST * 2.27E-10 MNB2  1983.174 
   MNB3 2007.317 
MP 0.01685487 MNB2 1983.174 
   MNB3  1977.972 
YEAR * < 1.00 E-10 MNB3  1971.344 
   MNB4 2025.018 

 

 
 

Table 3. Standardized abundance indices (estimated marginal means for the YEAR 
factor) from the Negative Binomial model fit, their standard errors (se), coefficient of 
variation (cv) and lower and upper asymptotic 95% confidence intervals. 

YEAR Index se cv L CI 95% U CI 95% 

2006 43.7 2.92 0.067 38.3 49.8 
2007 35.5 1.54 0.043 32.6 38.6 
2008 41.6 2.03 0.049 37.8 45.8 
2009 32.8 1.87 0.057 29.3 36.7 
2010 27.5 1.27 0.046 25.2 30.1 
2011 24.9 1.38 0.055 22.4 27.8 
2012 40.5 4.27 0.105 32.9 49.8 
2013 42.4 2.57 0.061 37.6 47.7 
2014 36.3 2.01 0.055 32.6 40.5 
2015 25.8 1.77 0.069 22.6 29.5 
2016 34.6 2.4 0.069 30.2 39.6 
2017 24.5 1.48 0.060 21.8 27.6 
2018 30 2.16 0.072 26 34.5 
2019 36.5 2.68 0.073 31.6 42.1 
2020 18.7 1.68 0.090 15.7 22.3 
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Table 4. Re-scaled values of the estimated abundance indices for the 
Negative Binomial model and their 95% confidence intervals. 

 

YEAR Re-scaled abundance index L CI 95% U CI 95% 

2006 1.323 1.149 1.496 

2007 1.074 0.983 1.165 

2008 1.261 1.140 1.381 

2009 0.994 0.883 1.105 

2010 0.834 0.758 0.910 

2011 0.756 0.673 0.838 

2012 1.225 0.972 1.479 

2013 1.284 1.131 1.436 

2014 1.100 0.981 1.219 

2015 0.782 0.677 0.887 

2016 1.047 0.904 1.190 

2017 0.743 0.655 0.831 

2018 0.908 0.780 1.036 

2019 1.105 0.945 1.264 

2020 0.566 0.466 0.666 
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Figure 1. Total annual catch of blue shark from the Mexican Pacific, 1976-2020. 
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Figure 2. Size frequency structure of blue shark longline catches by sex and fleet in the northern 
Mexican Pacific in 2006-2014. 
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Figure 3. Observer effort in the different Mexican shark pelagic fisheries during 2006-2020. 

 

 

Figure 4. The zones used in the analyses (see text for details). 
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Figure 5. Relative abundance indices for the blue shark with approximate 95% 

confidence intervals. Negative Binomial model for years 2006-2020. 
 

  

*

*

*

*

*
*

*
*

*

*

*

*

*

*

*

2006 2008 2010 2012 2014 2016 2018 2020

0
.0

0
.5

1
.0

1
.5

2
.0

NOMINAL CPUE (X), STANDARDIZED INDEX (o) AND 95% CI (–)

 Negative Binomial model

YEAR

R
E

L
A

T
IV

E
 A

B
U

N
D

A
N

C
E

 I
N

D
E

X

_

_

_

_

_
_

_

_

_

_

_

_

_

_

_

_

_

_

_

_
_

_
_

_

_

_

_

_

_

_

X
X

X

X X
X

X

X

X

X

X

X

X

X

X



21 
 

 

1 Working document submitted to the ISC Shark Working Group Workshop, 9-19 November 2021, 
Web-meeting. Document not to be cited without author’s permission. 

 

 

 

 

Figure 6. Residuals and Marginal-model plots of the Negative Binomial GLM. 
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Figure 7. Effects plot for the terms included in the final model. 

 

Figure 8. Fraction of fishing sets with zero catch of swordfish and blue shark by year in the 
available data set. 
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