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SUMMARY 

 

The BycatchEstimator tool developed by Babcock (2022) was used to estimate bycatch in fisheries 

simulated using the species distribution model and longline simulator (LLSIM) developed by 

Goodyear (2021). To compare the effectiveness of several design-based and model-based 

estimators that are used to estimate bycatch in a realistic context, an observer program similar 

to the US pelagic longline observer program (USPLL) was simulated. The estimates of total 

bycatch were precise and unbiased for all methods during recent years with high observer 

coverage. However, in the early years with lower observer coverage, the design-based methods 

(delta lognormal and ratio) performed worse than the delta lognormal model. The results were 

sensitive to how observers were allocated to trips. A geostatistical model showed that total 

bycatch estimates were more precise when spatial and/or spatiotemporal random effects were 

included. The BycatchEstimator tool was also applied to the real data from the USPLL. The tool 

was able to recreate the US Task 1 estimates in recent years, but when observer coverage was 

lower, estimates were sensitive to how strata with low sample sizes were pooled.  

 

RÉSUMÉ 

 

L'outil d'estimation des prises accessoires développé par Babcock (2022) a été utilisé pour 

estimer les prises accessoires dans des pêcheries simulées en utilisant le modèle de distribution 

des espèces et le simulateur palangrier (LLSIM) mis au point par Goodyear (2021). Afin de 

comparer l'efficacité de plusieurs estimateurs basés sur la conception et basés sur le modèle qui 

sont utilisés pour estimer les prises accessoires dans un contexte réaliste, un programme 

d'observateurs similaire au programme des observateurs palangriers pélagiques des États-Unis 

(USPLL) a été simulé. Les estimations du total des prises accessoires étaient précises et sans 

biais pour toutes les méthodes au cours des dernières années avec un niveau élevé de couverture 

par les observateurs. Toutefois, au cours des premières années où la couverture des observateurs 

était plus faible, les méthodes basées sur la conception (delta lognormal et ratio) ont donné de 

moins bons résultats que le modèle delta lognormal. Les résultats étaient sensibles à la manière 

dont les observateurs étaient affectés aux sorties. Un modèle géostatistique a montré que les 

estimations des prises accessoires totales étaient plus précises lorsque des effets aléatoires 

spatiaux et/ou spatiotemporels étaient inclus. L'outil d’estimation des prises accessoires a 

également été appliqué aux données réelles de l'USPLL. L'outil a permis de recréer les 

estimations de la tâche 1 des États-Unis au cours des dernières années, mais lorsque la 

couverture par les observateurs était plus faible, les estimations étaient sensibles à la manière 

dont les strates ayant une faible taille d'échantillon étaient regroupées. 
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RESUMEN 

 

Se usó la herramienta de estimación de las capturas fortuitas desarrollada por Babcock (2022) 

para estimar la captura fortuita en las pesquerías simuladas utilizando el modelo de distribución 

de especies y el simulador de palangre (LLSIM) desarrollado por Goodyear (2021). Para 

comparar la eficacia de varios estimadores basados en el diseño y basados en el modelo que se 

utilizan para estimar la captura fortuita en un contexto realista, se simuló un programa de 

observadores similar al programa de observadores de palangre pelágico de Estados Unidos 

(USPLL). Las estimaciones de la captura fortuita total fueron precisas y sin sesgos para todos 

los métodos durante los últimos años con un nivel elevado de cobertura de observadores. Sin 

embargo, en los primeros años con una menor cobertura de observadores, los métodos basados 

en el diseño (delta lognormal y ratio) obtuvieron peores resultados que el modelo delta 

lognormal. Los resultados eran sensibles a cómo se asignaron los observadores a las mareas. 

Un modelo geoestadístico mostró que las estimaciones de captura fortuita total eran más precisas 

cuando se incluían efectos aleatorios espaciales y/o espaciotemporales. La herramienta de 

estimación de las capturas fortuitas también se aplicó a los datos reales del USPLL. La 

herramienta fue capaz de recrear las estimaciones de Tarea 1 de Estados Unidos en los últimos 

años, pero cuando la cobertura de observadores era menor, las estimaciones eran sensibles a 

cómo se agrupaban los estratos con tamaños de muestra pequeños. 
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1.   Introduction 

 

The BycatchEstimator tool of Babcock (2022) and Babcock et al. (2022) uses model-based and design-based 

procedures to estimate total annual bycatch by expanding the data from an observer program to the total effort 

from logbooks or landings records. This framework can also be used to estimate an annual index of abundance, 

calculated only from the observer data. Model-based bycatch estimation uses generalized linear models (GLM) 

based on the user’s choice of observation error models (e.g., delta-lognormal, negative binomial) and predictor 

variables (e.g., year, season, depth). Information criteria (e.g., Akaike Information Criteria: AIC or Bayesian 

Information Criterion: BIC) can be used to find the best set of predictor variables, and cross-validation can be used 

to compare observation error models (e.g., negative binomial, delta lognormal). The selected GLMs are used to 

predict total bycatch in all logbook trips (or only unsampled trips, if desired) and total bycatch is estimated by 

summing across trips. The design-based methods include a stratified ratio estimator, and the delta-lognormal 

estimator of Pennington (1983), and the user may specify the stratification variables for these estimators (e.g., 

seasons, spatial areas). For the design-based estimators, if any strata have less than a user-specified number of 

observations (e.g., sets), estimates for those strata are made by pooling across the user’s choice of stratification 

variables. Pooling can be done either across adjacent years, or by defining a more aggregated variable to be used 

in pooling (e.g., seasons rather than months), or by pooling across all levels of a variable.  

 

The objectives of this analysis were (1) to add functionality to the bycatch estimation tool so that it can reproduce 

more of the methods that are used or are being considered for use for bycatch estimation in ICCAT CPC fisheries, 

(2) to improve functionality of the tool for abundance index standardization, (3) to consider how geostatistical 

models could be included in methods for bycatch estimation, and (4) to test the method on real CPC observer data. 

For the first objective, as a test case, a simulated observer program was developed that mimicked the design of the 

observer program for the US pelagic longline fishery (USPLL) and this was applied to the LLSIM’s USA-like 

fleet. For this simulated fishery, bycatch of blue marlin was estimated using multiple model-based and design-

based methods, including the method currently being used for the USPLL, which is the Pennington (1983) method, 

with pooling (as needed) across years, seasons and areas (Brown 2001). For objective 2, the ability to include 

random effects was added, so that commonly used methods such as random effects for year:area interactions could 

be modeled (Ortiz and Arocha 2004). For objective 3, the sdmTMB R package (Anderson et al. 2022) was used 

to estimate total bycatch for the simulated US longline fishery and for all three simulated fleets together. Finally, 

for objective 4, the bycatch estimation tool was applied with the same methods to the real US pelagic longline 

data, and the results were compared to the blue marlin discard estimates submitted to ICCAT by the USA. 
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2.  Methods 

 

2.1  Bycatch estimation tool 

 

The functionality of the bycatch estimation tool is described in detail in Babcock et al. (2022) and the User Guide 

at Babcock (2022). Recently added functionality includes the Pennington (1983) delta lognormal estimator. This 

estimator for the mean CPUE in each stratum is: 
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where m is the number of positive observations out of n samples, �̅� and 𝑠2 are the mean and variance of the log of 

the positive observations, 𝑥1 is the positive CPUE if only one value is positive (m=1), and 𝐺𝑚 is a bias correction 
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The variance of the mean CPUE is: 
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In each stratum, the mean CPUE is multiplied by total effort to get total bycatch, and the totals are summed across 

strata. The variances are multiplied by effort squared and summed to calculate the total variance.  

 

For both the Pennington estimator and the ratio estimator, the user specifies which variables define the strata. If 

desired, the user can specify a minimum number of sample units below which strata should be pooled. If pooling 

is needed, variables will be pooled in the order in which the design variables are entered (e.g., year, season, area). 

For strata over the cutoff of effort, no pooling is done. For each stratum (i) that requires pooling, the algorithm is: 

(1) identify the strata that need to be included to reach the minimum sample size, by pooling variables in the order 

specified by the user. For example, the pool could include adjacent years, and if the number of samples is still 

below the threshold could include all seasons; (2) estimate the design-based estimates across the observer and 

logbook data in the pool; (3) calculate the total bycatch of stratum i as the total bycatch in its pool times the fraction 

of the total effort in the pool that is in stratum i. The variance is also allocated to stratum i based on the fraction of 

effort in each stratum in the pool.  

 

The new version of the tool also has the capacity to include random effects, such as a vessel effect, or random 

interactions (Ortiz and Arocha 2014) as are commonly used for CPUE index standardization. If random effects are 

specified, they are included in all models for both bycatch estimation and index standardization. In practice, it may 

be useful to run the model with fixed effects only to identify interactions that improve prediction, and then include 

these interactions as random effects in a later run of the model. Note that it is possible to run the model for index 

standardization only without estimating total bycatch. In this case, no logbook data set is needed.  

 

The updated user’s guide and information on the GitHub site (Babcock 2022) now include detailed information 

on how to install the package and debug common problems that come up, as well as advice on how to use the tool. 

This material is intended to make the package easier for analysts from multiple CPCs to learn and apply.   
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2.2 Longline fishery simulation testing 

 

LLSIM was used to simulate a USA-like fleet as described by Goodyear (2021), with data from 1990 to 2015. The 

species distribution model (SDM) generates a 3-dimensional distribution of blue marlin and swordfish throughout 

the Atlantic Ocean based on the habitat preferences of the species (Goodyear 2016; Goodyear et al. 2017, Forrestal 

and Schirripa 2019). LLSIM then simulates longline sets by distributing hooks throughout the habitat of the 

species, consistent with the distribution, gear, depth of fishing, use of light sticks and other characteristics of 

historical longline fishing fleets. The probability of each hook capturing a blue marlin or swordfish is then 

determined by the three-dimensional location of the hook and the probability of fish presence from the SDM 

(Goodyear 2021).  

 

While LLSIM initially produces set-level catches, sets were allocated to simulated trips to more accurately reflect 

the fact that observers are allocated randomly by trips rather than sets. The method of Grüss et al. (2019), which 

has been used in previous simulation studies from LLSIM, was modified to more closely mimic the distribution 

of predictor variables within trips in the US fishery. Sets were allocated to the same trip if they were in the same 

gear, month and spatial area (5 x 5 squares) and had the same number of hooks between floats (hbf), since these 

variables tended to be similar within trips in the USPLL fishery. Trips with more than 7 sets were randomly 

allocated to different trips so that the median trips had about 7 sets and the distribution of sets per trip was roughly 

comparable to the real USPLL fishery. This algorithm allowed for correlation among sets in the same trip to 

introduce potential clustering bias into the simulated observer data.  

 

The datasets simulated using LLSIM were then provided to the observer program sub-model. The observer 

coverage level each year was as close as possible to the actual coverage level, based on those reported by Diaz et 

al. (2009), and the 2017 -2019 annual reports to ICCAT by USA, matching the “realistic” scenario from Babcock 

et al. (2022). In the US pelagic observer program, observers are randomly assigned to trips based on the effort (in 

sets) in the previous year in each stratum, defined by season (3 month period) and the US pelagic longline spatial 

areas (Brown 2001), and vessels are selected with probability proportional to their effort in the previous year 

(Keene et al. 2010). The simulated data has no way to match trips from the same vessel. Thus, to simulate a process 

similar to the US sampling plan, the following algorithm was used. Within each stratum, defined by season and 

USA pelagic longline area, in each year, the desired sampling effort, in sets, was calculated as the coverage level 

times the number of sets in the season-area stratum in the previous year. The probability of trips being sampled 

was roughly proportional to the number of sets being sampled. If the preliminary sample had more sets than were 

needed, later trips could be removed from the sample. This method gave coverage roughly similar to the true 

coverage levels over time. This algorithm was used to generate 100 random draws of the USA-like fishery.  

 

The bycatch estimation tool was used to estimate total bycatch using for each of the 100 draws for the USA-like 

fleet only. Sets were used as the sample unit, in contrast to Babcock et al. (2022), which used trips as the sample 

unit. Potential predictor variables for GLM included year, the ICCAT billfish areas, season, and hooks between 

floats (hbf), and the best set of predictor variables was selected using the Bayesian Information Criterion (BIC). 

The delta-lognormal model-based estimator was used for all draws, and the bycatch in all trips was predicted from 

the model, rather than predicting only the unobserved effort. Variances were calculated by the Monte Carlo 

simulation method, which involves drawing 1000 values of each of the model coefficients and then drawing 

simulated values of the predicted catches in each logbook trip. The stratified ratio estimator (Rao 2000), and the 

Pennington (1983) delta lognormal estimator were also used, with the stratification variables of year, ICCAT 

billfish area and season (Brown 2001). The minimum sample size needed to avoid pooling was either 30, consistent 

with Brown (2001), or 5 for comparison. Years were pooled with the adjacent years so that the pool for each 

stratum would include 3 years. If the year pooling did not reach the minimum sample sizes, all seasons were 

combined, then all areas. For the delta-lognormal model, design-based delta-lognormal and ratio estimator, the 

bias in annual total bycatch estimates was calculated. The accuracy of the variance estimates for both model and 

design-based estimates, was evaluated by calculating the coverage for each observation error and model year, 

where coverage is defined as the fraction of the 100 draws in which the estimated 95% confidence interval 

contained the true value.  

 

Abundance indices were calculated using the Tweedie, delta-lognormal, negative binomial 1 and negative 

binomial 2 models for simulated USA-like observer data. Potential variables are year, the ICCAT billfish areas, 

season, and hooks between floats (hbf). A year-area interaction as a random effect was included in some runs for 

comparison.  
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For the purpose of testing the geostatistical models, the simulator was also used to generate a single draw with 5 

percent observer coverage across all three fleets, including the one based on the USA, and the ones based on Japan 

and Brazil. Trips were sampled randomly for this draw. For comparison, both the geostatistical model and the 

bycatch estimation tool were applied to this dataset. 

 

2.3 Geostatistical models 

 

We fit geostatistical models using the R package sdmTMB (Anderson et al. 2022), which implements spatial and 

spatiotemporal predictive-process GLMMs using the SPDE (stochastic partial differential equation) 

approximation to Gaussian random fields. sdmTMB fits geostatistical models with maximum marginal likelihood 

calculated with TMB (Template Model Builder, Kristensen et al. 2016) and the Laplace approximation and uses a 

“mesh” constructed with the R package INLA (Lindgren and Rue 2015) for the SPDE approximation and bilinear 

interpolation. Previous work has shown that such an approach can improve the accuracy and precision of 

population indices from fisheries independent surveys (e.g., Thorson et al. 2015) and commercial CPUE (e.g., 

Grüss et al. 2019). 

 

The general structure of the most complex models fit was 

 

𝔼[𝑦𝐬,𝑡] = 𝜇𝐬,𝑡 ,

𝜇𝐬,𝑡 = 𝑓−1(𝐗𝐬,𝑡𝛃 + 𝑂𝐬,𝑡 +𝜔𝐬 + 𝜖𝐬,𝑡),

𝛚 ∼ MVNormal(𝟎, 𝚺𝜔),

𝛜𝐭 ∼ MVNormal(𝟎, 𝚺𝜖),

 

 

where 𝑦𝐬,𝑡 represents blue marlin bycatch counts at coordinates 𝐬 in space and time 𝑡, 𝜇 represents the mean, 𝑓−1 

represents an inverse link function, 𝐗 represents a design matrix, 𝛃 represents a vector of main-effect coefficients, 

𝑂𝐬,𝑡 represents an offset of log hook count, 𝛚 represents a spatial Gaussian random field with mean zero and 

covariance 𝚺𝜔, and 𝛜𝐭 represents a spatiotemporal Gaussian random field with mean zero and covariance 𝚺𝜖 that 

is independent each year. For main effects, we used factor (categorical) predictors for year, season, and light-stick 

presence as well as a linear predictor for log hooks between floats (hbf). 

 

There are several ways these models can be configured. We evaluated four families: NB2, NB1, delta-gamma, and 

delta-lognormal. We initially tested the Tweedie distribution but had challenges with model convergence unless 

the model was fit to CPUE instead of bycatch with an offset. We therefore excluded it here, but future work could 

explore it. We evaluated three random field configurations: (1) no random fields, (2) spatial random fields, and (3) 

spatial and spatiotemporal random fields with the spatiotemporal random fields being independent each year. 

Based on initial testing, we let the range parameter, which defines the distance at which spatial correlation has 

decayed to about 13%, be independent between the spatial and spatiotemporal random fields. We also allowed for 

spatial anisotropy (Fuglstad et al. 2015; Thorson et al. 2015): spatial correlation that varies with direction. Here, 

we shared the anisotropy properties between the spatial and spatiotemporal fields since they can be challenging to 

estimate. For sdmTMB, this means we used the arguments anisotropy = TRUE, share_range = FALSE, spatial = 

"on", and spatiotemporal = "iid" for our full spatiotemporal model; the anisotropy is by default shared but can be 

configured within sdmTMBcontrol() via the ‘map’ argument. 

 

Geostatistical models are best fit in a coordinate space where distance is constant. For smaller spatial areas, UTMs 

are commonly used, but these datasets spanned well beyond one UTM zone introducing considerable distortion. 

Instead, we chose a custom Albers projection with reference longitudes at approximately 1/6 from the bottom and 

top of the data—future work could investigate the impact of this decision, but our initial observations suggest this 

had a minimal impact on model predictions. We fit out models with coordinates in 100 km units so that the spatial 

parameters were on an appropriate scale for estimation. We configured the mesh to have a ‘cutoff’ of 500 km for 

the full dataset and 300 km for the USA-like data set, which means no triangle edge was allowed to be smaller 

than 500 or 300 km, respectively. This mesh has approximately 250 triangle vertices or ‘knots’ for both datasets. 

Model convergence can be sensitive to the exact mesh configuration—a problem that can often be alleviated by 

increasing or reducing the mesh resolution or, more elegantly, applying penalized complexity priors, which could 

be explored in future work (available within sdmTMBpriors() via pc_matern()). 

 

sdmTMB uses a projection matrix 𝐀, calculated through R-INLA, to bilinearly interpolate random field values at 

triangle vertex locations (𝛚∗ and 𝛜∗) to the values at the locations of the observed or predicted data (Lindgren and 

Rue 2015): 𝛚∗ = 𝐀𝛚 and 𝛜∗ = 𝐀𝛜. The matrix 𝐀 has a row for each data point and a column for each vertex 

defining the weight of the neighboring three vertices. 
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sdmTMB minimizes the negative marginal log likelihood—calculated via TMB—with the non-linear optimization 

routine stats::nlminb() in R (Gay 1990; R Core Team 2022) followed by a Newton optimization routine 

stats::optimHess() in R (R Core Team 2022) to further reduce the likelihood gradients with respect to fixed effects 

if needed. Using sanity() function within sdmTMB, we assessed convergence by checking that the Hessian matrix 

was positive definite, that all gradients with respect to fixed effects were < 0.001, and that no random field 

marginal standard deviations were too small (< 0.01; suggesting the parameter had ‘collapsed’ to zero) among 

other checks. 

 

To derive predicted total bycatch on the logbook data, we predicted from our model on the logbook data and 

summed the predicted bycatch each year. We calculated standard errors on the log value of this total via the 

generalized delta method (as implemented in TMB, Kristensen et al. 2016) and calculated 95% Wald confidence 

intervals as ± 1.96 the standard error in log space. We evaluated model fit via randomized quantile residuals and 

calculated summary statistics of MARE (median absolute relative error), MRE (mean relative error), and coverage 

(the proportion of years in which the true value was within the confidence interval). See 

https://github.com/seananderson/llsim-geostat for the code used in this analysis.  

 

2.4 USA Pelagic longline fishery 

 

To demonstrate the application and behavior of the Bycatch Estimator R package in real world situations, the tool 

was used to conduct a preliminary evaluation of blue marlin bycatch in the USA Atlantic pelagic longline fishery. 

Raw data from the USA pelagic observer program (POP) and the pelagic longline logbook reporting program 

(USPLL) were provided by NOAA’s Southeast Regional Office. To be as consistent as possible with previous 

studies, analysts from the Southeast Fisheries Science Center (i.e. those that provided the US Task 1 estimates) 

were contacted directly to obtain both length-weight conversion parameters and estimates of Blue Marlin total 

bycatch for the most recent years of data (Anonymous 2018; SEFSC, pers comm).  Data were provided beginning 

in 1992, which corresponds to the start of the observer program, through 2021. The raw data files contained just 

under 425,000 records/sets in logbook program and just under 22,000 observed sets.  

 

Data were documented well and provided in raw form, which required a full evaluation and processing prior to 

application of the bycatch estimation package. Records which did not contain fundamental information (e.g. year, 

gear) were removed and then decisions had to be made about retaining records which contained questionable 

entries for a variable (i.e. hooks, hbf, latitude, and/or longitude) or for outliers that were outside the expected range.   

 

For example, in logbook cases where latitude or longitude was missing, an average fishing location for each vessel 

over all years was used to designate a US or ICCAT area (Version: 2016.02). In other logbook records, total hooks 

(i.e. effort/set) or hbf was missing and averages or calculations from other variables (e.g. for missing hbf, total 

hooks per set was divided by floats per set) was applied. The observer data had very little missing data, but an 

average weight was used in cases where unrealistic fish weights were calculated or length was not recorded. 

Although raw data manipulation was not necessary in more than ~5% of the data, this was an important step given 

the low sample sizes used to calculate CPUE for a stratum. It is important to note here and throughout that the 

results presented in this document are only intended to illustrate how the BycatchEstimator package can be applied 

to real data and the results should not be used in place of the US Task 1 estimates.  

 

 

3. Results 

 

3.1  Simulation testing 

 

Using simulated USA-like data, the delta lognormal model, delta lognormal estimator and stratified ratio estimator 

all performed similarly, although there was a slight tendency for the design delta lognormal to estimate higher 

bycatch than the stratified ratio estimator (Table 1, Figure 1). The minimum cutoff below which the design-based 

estimators were pooled (5 sets vs. 30 sets) did not make much difference in the median estimates. Because the 

simulated observer program had coverage less than 1% in the early years increasing to more than 8% in 2015, the 

bias in the estimates decreased over time for all estimation methods (Figure 2).  

 

As the observer sample size increased over time, the fraction of confidence intervals that included the true value 

increased for all three methods (Figure 3). When observer coverage was low in the early years, the fraction of 

confidence intervals including the true value was higher for the model-based estimate than the design-based 

estimates. Within individual simulations, the widths of the confidence intervals were similar for all three methods, 

even with different pooling cutoffs in the design-based methods (Figure 4). The lower fraction of true values in 
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the confidence intervals for the design-based methods in the early years seems to be caused by the slight 

overestimate in the design-based estimates in the early years in some simulations. Increasing the amount of pooling 

somewhat reduced the fraction of confidence intervals including the true value in the early years for design-based 

estimators. This underestimation was not seen when observers were allocated randomly rather than in a stratified 

system (e.g. Figure 4, top panel). The data were pooled in the simulation much more than in the real US data 

(Figure 5). This indicates that either the simulated allocation of sets to trips or the simulated allocation of observers 

to trips was not representative of the real US fishery (Brown 2001, Diaz et al. 2009).  

 

When the model was used to generate abundance indices, there was not much difference in either trends or 

confidence intervals among the observation error models (delta-lognormal, negative binomial 1, negative binomial 

2, Tweedie), and whether or not a random year:area effect was included (Figure 6). However, different random 

draws from the observer sampling program gave highly variable year to year estimates in the early years when 

observer coverage was low. The similarity among observation error models is not surprising, as all performed well 

according to model diagnostics. For example, the DHARMa QQ plots show the quantiles of the DHARMa scaled 

residuals against a uniform distribution (Figure 7), and the points for all distributions fall roughly along the line, 

indicating that the observation error model adequately describes the distribution of the data (Hartig 2020). Also, 

within a random draw, the same set of predictor variables were generally chosen for all observation error models 

(e.g. Table 2). 

 

3.2 Geostatistical models 

 

The geostatistical models were applied using a mesh with edges of at least 500 km, corresponding to about 250 

vertices throughout the Atlantic (Figure 8). We observed considerable anisotropy with correlation decaying more 

quickly in an approximately latitudinal direction compared to an approximately longitudinal direction. The exact 

level of anisotropy may be sensitive to the projection used. We also estimated a larger spatial range than 

spatiotemporal range (Figure 9). Randomized quantile residuals suggested the models were consistent with the 

distribution of the data (Figure 10). The models applied to the full Atlantic simulated dataset and with the specified 

level of mesh resolution fit reasonably quickly (about six minutes for the most complex model) but were slower 

to fit than GLMs without random fields. The models with only spatial random fields fit considerably faster than 

models with both spatial and spatiotemporal random fields. 

 

Models were applied with no spatial random fields, with spatial random fields (e.g., Figure 11) and with 

spatiotemporal random fields (e.g., Figure 12). These random field deviations represent spatially correlated effects 

from latent variables not included in the model that are static through time (spatial) and that change from year to 

year (spatiotemporal). The projected maps of predicted bycatch across space and time were consistent with the 

expected distribution of blue marlin habitat and a decreasing trend in bycatch over time (Figure 13). The variability 

in the predicted bycatch followed the expected pattern with higher CVs at the north and south range edges where 

the data were sparser (Figure 14).  

 

When the models were used to predict bycatch for the simulated logbook sets, the resulting predictions were quite 

accurate, particularly when spatial and spatiotemporal random fields were included (Figure 15, Figure 16). In 

general, the models with spatial and spatiotemporal random fields performed best in terms of MARE, MRE, and 

confidence interval coverage, with spatial fields a close second, and models without random fields third (Table 

3). For the USA-fleet-only dataset, the marginal standard deviation of the delta-gamma and delta-lognormal 

spatiotemporal random fields collapsed to zero suggesting that the models with only spatial random fields were 

sufficient. This result and which specific observation error model is preferred may be sensitive to the mesh set up. 

Nevertheless, all the observation error models performed adequately. The two negative binomial models 

consistently performed best in confidence interval coverage. 
 

3.3 US Pelagic longline 

 

The initial evaluation of the data showed some differences in the observer coverage available for the analysis in 

comparison to the coverage presented through 2007 in Diaz et al. (2009). In 2001, 2002, 2003, and 2005, the 

observed effort (hooks) in this analysis represent 64%, 38%, 43% and 73% respectively of those reported  (Figure 

17, Figure 18). Consultation with the data providers suggested that the inclusion of experimental trips or records 

outside the standard observer program may have resulted in these differences and for the purposes of this study no 

additional data were requested.   
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The analysis was initially set up according to the observer allocation procedure described in Brown (2001), which 

utilized US Pelagic Longline area; however, for comparison to the Task 1 data reported at BUM (2018) and those 

provided by the SEFSC (pers comm), the analysis utilized the ICCAT areas to estimate bycatch for all years from 

1992 to present. Manual pooling of areas to obtain sufficient sample sizes was initially done and estimates were 

sensitive to this process. The BycatchEstimator package was updated during this work and areas are now pooled 

within the analysis as necessary which greatly simplifies the pre-processing of raw data necessary. A single lumped 

category was used for a small number of records (e.g. 0.6% of PLL, and 0.1% of POP) for which designating a 

clear ICCAT area was questionable.  

    

Once the data were formatted and the BycatchEstimator package applied, a couple of unexpected real world data 

issues arose. In the raw data, some strata contained more observed sets than were reported in the logbook and the 

package failed. To resolve this issue a few observed sets were simply removed. Once the data were corrected the 

package was able to produce results; however, estimates were unreasonable from the delta-lognormal model-based 

estimator. In short, the logbook data contained values of hbf that were orders of magnitude greater than those in 

the observer database so the extrapolation of this linear term by multiple orders of magnitude gives a predicted 

variance that is extremely high. Because the formula to calculate the mean for the lognormal includes the variance 

term in the bias correction, the resulting estimates were not valid. The hbf values were capped at the maximum 

value in the observer database rather than simply excluded, but the lesson learned was that the numerical range for 

variables needs to be comparable between observer and logbook datasets.    

 

The first direct comparison of bycatch estimates from the tool and those provided by SEFSC were made on with 

results from the Pennington (1983) delta lognormal estimator with the stratification variables of year, ICCAT 

billfish area and season to be consistent with the methodology in Brown (2001). The US Task 1 estimates for all 

but five years prior to 2010 fell within the confidence intervals of those calculated with the design-based delta 

(Figure 19). Estimates from the early part of the time series (prior to ~2010) were sensitive to data processing as 

would be expected given the low observer coverage rates and resulting extrapolations. Between 2000 and 2010, 

the years in which raw differed from that in Diaz et al. (2008) the bycatch estimator produced estimates which 

were consistently higher than the US Task 1 data. After 2010 estimates were very similar and stable to minor 

changes in raw data.  

 

All of the observation error models selected from the BycatchEstimator package for this analysis successfully 

converged providing both estimates and confidence intervals (Figure 20). Estimates from 1996 were the most 

uncertain with confidence intervals from the TMBnbinomial2 model dwarfing the signal from the other methods. 

The pattern of annual estimates from all models was similar across methods with differing levels of uncertainty 

based on the approach (Figure 21).       

 

 

4.   Discussion 

 

Compared to the simulations in Babcock et al. (2022), the estimated bycatch for the simulated USA-like fleet in 

this paper have somewhat higher bias and lower confidence interval coverage for equivalent methods. This may 

be because the observer sampling program was less random due to the stratified observer allocation scheme. The 

fact that the simulated data are generated by set rather than trip makes it difficult to recreate a real trip-based 

observer allocation process. Thus, these results are probably not representative of the real US fishery. However, 

they are informative about the kinds of biases that can be introduced by a sampling scheme that is not entirely 

random at the level of the sample unit. Future work might try a range of observer allocation schemes and pooling 

algorithms to see if it is possible to overcome some of these biases. Also, the spatial allocation scheme was based 

on the US pelagic longline areas (Brown 2001), while the estimation method used the ICCAT billfish areas, and 

this mismatch may explain some of the bias in the estimates.    

 

In addition to the model-based estimates, the BycatchEstimator tool can calculate bycatch using either the stratified 

ratio estimator or design-based delta lognormal estimator, with multiple options for how pooling should be set up 

to impute bycatch in under-sampled strata. This makes the tool useful for simulation testing and should make it 

possible to approximate the estimation methods used in multiple fisheries. However, it is likely that many real 

world fisheries will have nuances in their estimation methods that cannot easily be automated, such as adjusting 

the number of years over which data are pooled over time as observer coverage levels increase. The tool could 

potentially be applied in recent years only when estimation methods are more consistent.  
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The ability to add random effects to the model now makes it possible to recreate many of the abundance index 

estimations methods used by CPCs. The indices we estimated from the simulated data with and without random 

effects were very similar, but this was expected because the simulated data has no significant year:area interaction 

(results not shown). Further testing could evaluate other variables that do have significant interactions.  

 

Although geostatistical models have not yet been added to the bycatch estimation tool, they can be set up for these 

data using sdmTMB. Model convergence can be sensitive to technical details such as how the spatial mesh is 

designed, and the models are slower to fit than GLMs without random fields. However, based on our preliminary 

work, random fields can substantially improve the estimates of total bycatch, so they should be the focus of future 

work. In the geostatistical models, as in the GLMs used in the BycatchEstimator, the specific choice of an 

observation error model (e.g. delta-lognormal vs. negative binomial 1 or 2) made minor differences in confidence 

interval coverage but all performed adequately and gave similar total bycatch estimates.  

 

The overall application of the BycatchEstimator package to data from the US Pelagic Longline Fishery was 

successful and proves promising for applications to other data sets. As would be expected, in the early years of the 

time series when US observer coverage was below 5%, the results of this analysis were sensitive to how the raw 

data were prepared and how much pooling of strata (i.e. years, seasons, and areas), were necessary to meet 

minimum sample size requirements. A consistent and documented data processing approach should be the first 

step in moving forward with a powerful analysis package that can be applied to multiple CPC data streams. 

Decisions such as how to treat a ‘parted’ longline or whether to calculate ‘effective’ effort in terms of hooks set or 

hooks retrieved are universal questions which analysts will face regardless of country of origin. A standard 

approach for imputing missing effort or area variables (i.e. hooks, sets, trips, or ICCAT area) that borrows 

information from pooled strata, if necessary, to designate a ‘typical’ trip within a strata would be helpful to many 

analysts attempting to apply the BycatchEstimator tool or any other standardized method for bycatch estimation. 

Limiting the number of decisions that have to be made by analysts in the data processing step would allow for 

greater comparisons of BycatchEstimator results between CPC countries. Further work could explore an extension 

of the BycatchEstimator package or a stand-alone module which would allow for all CPC datasets to be pre-

processed (i.e. quality control and filling in missing data when necessary) as input files in a consistent fashion.    

 

As this process moves forward the use of additional factors and how they may be reliably collected should be 

considered, as additional variables that are correlated with bycatch could greatly improve the precision and 

accuracy of model-based estimates. The most obvious factor that was not considered in this application but was 

shown to be important in the Babcock et al. (2022) study, is the use of lightsticks. In the LLSIM data this factor 

serves as a proxy for targeting and the intended depth of the sets. Although the US logbook data contained a field 

for the use of lightsticks it was not populated with enough information to use. The use of additional information 

such as stated target species, time of set, bait, and soak time could be used to infer target species. Similarly, future 

work should consider using factors which are currently available (e.g. habitat suitability scoring scheme) or those 

that could be generated from satellite information that can be applied to the raw data based on time, date and 

location (e.g. temperature, frontal boundaries, chlorophyll). Additional variables could potentially make model-

based bycatch estimates much more accurate, with the caveat that variables are only useful if they are also present 

in the logbook data for the prediction step.  

 

Finally, the ability to match observer trips and/or sets to the logbook data in all CPC’s should be made a priority. 

Effort, and thus the extrapolations of observer data, are generally made on self-reported effort metrics and 

validation of these data by cross referencing sets will allow for the calculation of correction factors, and the ability 

to include observed bycatch as a known constant, which improves precision in model-based estimates. Finally, in 

this analysis, the model-based and design-based estimators were quite similar, for the most part, implying that 

either approach can yield valid estimates. However, it should be noted that model-based methods generally require 

data from the whole time series, or at least a large part of it, to estimate the model coefficients, while design-based 

estimates can be calculated for only recent years, because the estimates are not influenced by data from other time 

periods beyond the range of years that are pooled together to deal with sparse data.  

 

In conclusion, this set of analysis found that the BycatchEstimation tool is able to estimate bycatch accurately with 

a variety of methods. However, results can be sensitive to apparently small differences in how observers are 

allocated to trips, and the decisions made in data cleaning and missing data imputation, implying that these 

elements may be more important than statistical methodology in the attempt to standardize bycatch estimation 

across fisheries.  Finally, adding geostatistical methods, in cases where location data are available from both 

observer and logbook data, has the potential to improve estimates substantially. 
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Table 1. Summary of percent bias for estimates of bycatch from the USA-like simulated fleet. Estimation models 

are: stratified ratio estimator, design-based delta-lognormal and delta-lognormal model. Shown are results across 

all years ‘All’, and for years 2000 and 2010 across 100 simulation runs.  
 Centered 95% 

Year 
Sets needed to 

avoid pooling 

Estimation 

model 
Median Lower Upper 

All 30 sets Stratified ratio 0.74 -40.67 54.70 

All 30 sets Design delta 9.63 -37.82 67.92 

All 5 sets Stratified ratio 1.01 -44.00 64.53 

All 5 sets Design delta 9.30 -41.12 77.92 

All Model Model delta 5.84 -40.77 66.83 

2000 30 sets Stratified ratio -3.88 -35.00 37.17 

2000 30 sets Design delta 5.18 -30.93 44.59 

2000 5 sets Stratified ratio -5.03 -46.98 50.74 

2000 5 sets Design delta 0.52 -43.36 56.40 

2000 Model Model delta -2.55 -43.21 53.56 

2010 30 sets Stratified ratio -5.39 -47.93 46.14 

2010 30 sets Design delta 1.07 -46.32 53.34 

2010 5 sets Stratified ratio -5.09 -47.01 53.39 

2010 5 sets Design delta 2.82 -44.46 60.32 

2010 Model Model delta 19.08 -24.32 65.67 

 

 

Table 2. Variables selected by BIC for each observation error, for one random draw of the USA-like simulated 

data with realistic observer coverage, with and without a Year:area random effect.  

Model No interaction Random interaction 

TMBbinomial hbf + Year hbf + Year + (1 | Year:area) 

TMBdelta-

Lognormal area + hbf + season + Year area + hbf + season + Year + (1 | Year:area) 

TMBnbinom2 

area + hbf + Year + 

offset(log(Effort)) 

area + hbf + Year + (1 | Year:area) + 

offset(log(Effort)) 

TMBnbinom1 

area + hbf  + Year + 

offset(log(Effort)) 

area + hbf + Year + (1 | Year:area) + 

offset(log(Effort)) 

TMBtweedie area + hbf + Year area + hbf + Year + (1 | Year:area) 
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Table 3. Median absolute relative error (MARE), mean relative error (MRE), and 95% confidence interval 

coverage for geostatistical models with four families and two random field configurations. The models are sorted 

by MARE. The non-spatial models (‘Tweedie’, ‘NB2’, ‘NB1’, and ‘Delta-lognormal’ below) are from the versions 

fit in Section 2.2. 

 

(a) For all three fleets 

Model MARE MRE Coverage 

NB2 sdmTMB spatial + spatiotemporal fields 0.04 0.02 0.93 

Delta-lognormal sdmTMB spatial + spatiotemporal fields 0.04 0.04 0.90 

NB1 sdmTMB spatial + spatiotemporal fields 0.04 0.02 0.93 

Delta-lognormal sdmTMB spatial fields 0.05 0.05 0.79 

NB1 sdmTMB spatial fields 0.05 0.03 0.76 

NB2 sdmTMB spatial fields 0.05 0.02 0.76 

Delta-gamma sdmTMB spatial fields 0.06 0.05 0.72 

Delta-gamma sdmTMB spatial + spatiotemporal fields 0.06 0.04 0.83 

Tweedie 0.08 0.01 0.62 

NB2 0.10 0.03 0.55 

Delta-lognormal 0.10 0.03 0.52 

NB1 0.11 0.06 0.52 

 
(b) For the USA-like fleet only 

Model MARE MRE Coverage 

Delta-lognormal sdmTMB spatial fields 0.09 -0.01 1.00 

Delta-gamma sdmTMB spatial fields 0.09 -0.01 1.00 

NB1 sdmTMB spatial fields 0.11 -0.01 0.96 

NB1 sdmTMB spatial + spatiotemporal fields 0.11 -0.01 0.96 

NB2 sdmTMB spatial + spatiotemporal fields 0.12 -0.01 0.96 

NB2 0.12 0.01 0.96 

NB2 sdmTMB spatial fields 0.12 -0.01 0.96 

Tweedie 0.12 0.10 1.00 

Delta-lognormal 0.13 0.06 1.00 

NB1 0.15 0.01 1.00 
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Figure 1. Percent bias across all years and runs by estimator for 100 simulations from the USA-like fleet. Panels 

indicate whether the design estimators were pooled below a minimum size of 30 sets or 5 sets, or whether the 

method is model-based. 
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Figure 2. Percent bias across runs by estimator for 100 simulations from the USA-like fleet. Panels indicate 

whether the design estimators were pooled below a minimum size of 30 sets or 5 sets, or whether the method is 

model-based. 
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Figure 3. Fraction of the draws that included the true value in the confidence interval in each year for each method. 

Panels indicate whether the design estimators were pooled below a minimum size of 30 sets or 5 sets, or whether 

the method is model-based. 
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Figure 4. Example total bycatch estimates from one run of the estimator for the USA-like simulations, for a 

random 5% observer coverage, and for the realistic stratified observer allocation, pooling if the sample in a stratum 

is less than either 30 or 5 sets. True total bycatch is the black line.   
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Figure 5. Fraction of strata that had to be pooled when the minimum sample size cutoff was 30 sets vs. 5 sets.  
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Figure 6. Abundance indices calculated by multiple methods from the USA-like simulation observer data. 

Panels are 4 random draws of the realistic observer sampling program.  
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Figure 7. Residual QQ plots for one draw from the USA-like simulation with realistic observer coverage.  
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Figure 8. Mesh used in the SPDE approximation and bilinear interpolation for the full-dataset simulation across 

all three fleets. The grey dots in the background represent the simulated observer data locations. This mesh uses a 

cutoff of 5 with 100 km X-Y units, which means no triangle edge is allowed to be smaller than 500 km. This mesh 

has approximately 250 vertices or knots. 

 

 

 
 

Figure 9. Visualization of estimated anisotropy for the NB2 and delta-lognormal models. The ellipses indicate 

spatial and spatiotemporal range parameters in any direction from zero in the middle. The range is the distance at 

which two data points are effectively independent (about 0.13 correlation). The units are the units of the X and Y 

coordinates, which here are 100 km within the Albers projection.  
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Figure 10. Randomized quantile residuals for the four models with spatial and spatiotemporal random fields. 

 

 
Figure 11. Spatial random field values for the NB2 model. These are deviations in link space and represent 

spatially correlated effects from latent variables not included in the model. 
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Figure 12. Spatiotemporal random field values for the NB2 model. These are deviations in link space and represent 

spatially correlated effects from latent variables not included in the model that change each year. Every second 

year is omitted here to save space. The model assumes these random effects to be independent each year. 

 

 
Figure 13. Overall predictions in space from the NB2 model shown for every second year. These predictions are 

created by summing all fixed and random effect components of the model. 
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Figure 14. The coefficient to variation (CV) on predicted bycatch in space from the NB2 spatiotemporal model 

for an example year. The spatial uncertainty looks similar across years. The mesh-pattern observed in the CV is a 

known artifact of the bilinear interpolation—the prediction uncertainty is most accurate at the triangle vertices and 

their connecting lines. 

 

 
 

Figure 15. Total predicted blue marlin bycatch for four families (rows) and three random field configurations 

(columns) for the full dataset, summed across all three fleets. The true total is shown with a dashed black line. For 

the model estimates, lines represent mean estimates and ribbons represent 95% confidence intervals. 
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Figure 16. Total predicted blue marlin bycatch for four families (rows) and three random field configurations 

(columns) for the USA-like fleet only. The true total is shown with a dashed black line. For the model estimates, 

lines represent mean estimates and ribbons represent 95% confidence intervals. The spatial + spatiotemporal fields 

delta-lognormal and delta-gamma models are omitted here because the spatiotemporal standard deviation 

collapsed to zero suggesting the models with only spatial fields were appropriate. 
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Figure 17. Comparison of fraction of Observed to total Pelagic Longline hooks, sets, and trips, as contained in 

the datasets used in this analysis and those reported by Diaz et al. (2009). 

  

 
 

Figure 18. Comparison of total effort in the Pelagic Longline logbook data as contained in the datasets used in 

this analysis and those reported by Diaz et al. (2009). 
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Figure 19. Delta lognormal estimates with confidence intervals (red line and shading) as compared to the US Task 

1 reported bycatch estimates (solid black line). Minimum sample of 30.  

 

 

 

 

 
Figure 20. Bycatch estimates as calculated by multiple methods. USA Task 1 data are presented as the solid black 

line.   
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Figure 21. Bycatch estimates as calculated by multiple methods (TMB Binomial2 model results removed). USA 

Task 1 data are presented as the solid black line.   

 

 


