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SUMMARY 

The collaboration with the vessel-owners associations and the buoy-providers 
companies operating in the Pacific Ocean, has made it possible to obtain information 
recorded by the satellite linked GPS tracking echosounder buoys used by some of the 
tropical tuna purse seiners in the Eastern Pacific Ocean since 2010. These instrumental 
buoys inform fishers remotely in real-time about the accurate geolocation of the FAD 
and the presence and abundance of fish aggregations underneath them. Echosounder 
buoys have the potential of being a good observation platform to evaluate abundances 
of tunas and accompanying species using catch-independent data. Current 
echosounder buoys provide a single acoustic value without discriminating species or size 
composition of the fish underneath the FAD. Therefore, it has been necessary to 
combine the echosounder buoy data with fishery data, species composition and average 
size, to obtain a specific indicator. This paper presents a novel index of abundance of 
skipjack tuna in the Eastern Pacific Ocean derived from echosounder buoys for the 
period 2012-2020. 

 

1. INTRODUCTION 

Historically, stock assessments for tropical tuna species have relied almost exclusively on indirect 
abundance estimators, dependent on commercial catches and fishing effort derived from captain’s 
logbooks or observer data (Maunder and Punt 2004). These catch and effort data are used to provide 
information on relative trends in fish abundance that are integrated in fish stock assessment models 
to assess the state and the evolution of fish stocks (Quinn and Deriso 1999). Relative abundance indices 
based on Catch-Per-Unit-Effort (CPUE) are related with the abundance, through the catchability 
coefficient (q). However, this proportionality is affected by various factors as variations in fishing 
efficiency, spatial dynamics of the fleet or species, and changes in target species (Maunder and Punt 
2004; Maunder et al. 2006). To try to remove the effects of these factors on the CPUE data so that 
changes related to population abundance can be identified, standardization of CPUE is used.   

In the case of the tropical tuna purse-seine fishery, fishing efficiency has increased with the 
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incorporation of new technology on board and with the use of Fish Aggregating Devices (FADs) (Lopez 
et al. 2014; Torres-Irineo et al. 2014; Gaertner et al. 2016). The difficulties of providing new covariates 
based on fine scale data to reflect these technological changes and effort creep and the lack of a good 
proxy for purse seine effort on FADs, have hampered to standardize the FAD fishing CPUEs (Gaertner 
et al. 2016; Katara 2018; Wain 2021). This has prevented the use of the purse-seine FAD CPUE in stock 
assessment models and resulted in a lack of skipjack and juvenile yellowfin and bigeye tuna abundance 
indices. Science-industry collaborative projects are making possible to gain knowledge about the 
adoption of technological advances in this fleet and to improve the CPUE standardization (Wain 2021) 
so as to improve tropical tuna assessments.  

The introduction of FADs in the purse-seine fishery and the satellite-linked echosounder buoys 
attached to those FADs (Scott 2014) provides an alternative method for estimation of indices that are 
catch-independent. These instrumental buoys give daily information on buoy position and the 
potential size of fish aggregation underneath the FADs, being unique observation platforms of tuna 
and other aggregated species. In recent years research actions have been conducted to recover buoy-
derived information, develop of methodological frameworks to extract reliable scientific information 
from buoys, describe tuna behaviour around FADs and provide buoy-derived abundance indices (Lopez 
et al. 2014; Capello et al. 2016; Moreno 2016; Orúe Montaner 2019; Santiago et al. 2019; Baidai 2020). 

The Buoy-derived Abundance Index (BAI), which is based on the proportional relationship between the 
FAD associated echosounder buoy biomass and the total abundance of tuna, has been recently 
incorporated in several tropical tuna stock assessments (ICCAT 2020). Building on that success, a 
framework of collaborative work was stablished with the support of the International Seafood 
Sustainabillity Foundtion (ISSF) between the Inter-American Tropical Tuna Commission (IATTC) and 
AZTI, together with echosounder buoy providers and tropical tuna purse seiner fishing companies 
operating in the eastern Pacific Ocean (EPO) (companies integrated in OPAGAC and Cape Fisheries), to 
work on the BAI of tropical tuna species in the region. The preliminary results presented in this paper 
correspond to a novel index of abundance of skipjack tuna in the eastern Pacific Ocean derived from 
echosounder buoys for the period 2012-2020, which can form the basis for future abundance indices 
for the main tropical tuna species in the eastern Pacific Ocean. 

2. MATERIAL AND METHODS 
 

2.1 Acoustic data pre-filtering 

The data used in this analysis is recorded by satellite linked echo-sounder buoys, which are deployed 
with FADs in the tropical tuna purse-seine fishery. Data for this analysis have been provided by the 
buoy manufacturer Satlink. The buoy technical specifications, per model, are shown in Table 1. All 
buoys register data from 3 to 115 m depth divided into 10 homogeneous vertical layers, each with a 
resolution of 11.2 m (the first 3 m correspond to the blind zone). During the period analysed, five 
different buoy models have been used by the fleet: DS+, DSL, ISD, ISL and SLX (Table 1).  

The fishing companies that have provided acoustic information from their echosounder buoys were: 
Albacora, Calvo, Garavilla, Ugavi, and Cape Fisheries. This adds up to a total of 23 purse-seine vessels 
from 5 different flags (Panama, Spain, Ecuador, El Salvador, USA) operating in the IATTC convention 
area. 

A total number of 8.31 million acoustic records from 31,116 individual buoys for the period from 
January 2012 to December 2020 were used to build the database of acoustic information for the EPO. 
Years 2010 and 2011 were discarded due to the low number of records available (Figure 1) and acoustic 
records from areas with low number of observations (less than 200 records in 5ºx5º statistical 
rectangles) and west of 150ºW were excluded for this analysis.  
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From each single data record transmitted via satellite, the following information can be extracted: 
“Name”, unique identification number of the buoy, given by the model code (DS+, DSL, ISL, ISD, SLX) 
followed by 5-6 digits; “OwnerName“, name of the buoy owner assigned to a unique purse seine vessel; 
“MD“, message descriptor (160, 161 and 162 for position data, without sounder data, and 163, 168, 
169 and 174 for sounder data); “StoredTime“, date (dd/mm/yyyy) and hour (HH:MM) of the 
echosounder record; “Latitude, Longitude“, GPS latitude and longitude of recorded data during each 
day (in decimals); “Bat“, charge level as a percentage (not provided, except for the D+ and DS+ models, 
in voltage); “Temp“, temperature (Not provided); “Speed“, speed in knots; “Drift“, bearing in degrees 
(Not provided); “Layer1-Layer10“, estimated tons by layers (values are estimated by a manufacturer´s 
method which converts raw acoustic backscatter into biomass in tons, using a depth layer echo-
integration procedure based exclusively on an algorithm based on the target strength (TS) and weight 
of skipjack tuna; “Sum“, sum of the biomass estimated at each layer; “Max“, maximum biomass 
estimated at any layer; and “Mag1, Mag3, Mag5 and Mag7“, magnitudes corresponding to the counts 
of detected targets according to the TS of the detection peak. 

A set of five filters were applied to the original data to remove artifacts: isolated, duplicated and 
ubiquitous rows, that are mainly caused by satellite communication incidents; buoys located 1 km or 
closer to land or located in areas with a bottom depth shallower than 200 m, detected and removed 
using shoreline data from the GSHHG database (Wessel 1996) and a worldwide global bathymetry 
information (Amante and Eakins 2009); and “on-board” or “at sea” positions, identified using a 
Random Forest algorithm (Orue et al. 2019; Santiago et al. 2020), these cases are mainly related to 
buoy activation incidents on-board vessels prior and post deployment.  

In addition to the previously mentioned cleaning filters, the following selection criteria (Santiago et al. 
2020) were used to build the final dataset to feed into the standardization analysis: i) shallower layers 
(<25m) were excluded because they are consider to potentially reflect non-tuna species (Orue et al. 
2019); ii) only data recorded around sunrise, between 4 a.m. and 8 a.m. in local time, were considered 
for the analysis because they are supposed to capture the  echosounder biomass signals that better 
represents the abundance of fish under the FADs (Moreno et al. 2007); and finally, iii) acoustic data 
belonging to what we defined as “virgin segments” were selected in order to use the segment of a 
buoy trajectory whose associated FAD likely represents a new deployment which has been potentially 
colonized by tuna and not fished yet. To calculate virgin segments, single buoy segments were divided 
into smaller sub-segments where the difference between two consecutive observations of the same 
buoy was larger than 30 days. Then, the newly renamed sub-segments with less than 30 observations 
and those having a time difference between any of the consecutive observations longer than 4 days 
during the first 35 days were removed. Finally, from the remaining data we consider as virgin segments 
those segments of trajectories from 20-35 days at sea (Orue et al. 2019). Figure 2 shows a diagram 
with an example of “virgin” segments used for the calculation of the BAI index. 

2.2 From acoustic data to a species-specific abundance indicator 

To calculate the biomass aggregated under a FAD from the acoustic signal, Satlink uses the density of 
one species, skipjack, to provide the biomass in tons, and thus, biomass data from Satlink has to be 
converted to decibels reversing their formula for the biomass computation. Then we recomputed 
biomass using standard acoustic abundance estimation equations (Simmons and MacLennan 2005): 

 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 =  
𝐵𝐵𝑉𝑉 ∙ 𝑉𝑉𝐵𝐵𝑉𝑉 ∙ 𝑝𝑝𝑖𝑖
∑ 𝜎𝜎𝑖𝑖 ∙ 𝑝𝑝𝑖𝑖𝑖𝑖

 

 
where sv is the volume backscattering strength, Vol is the sampled volume of the beam and 𝑝𝑝𝑖𝑖 and 𝜎𝜎𝑖𝑖  
are the proportion and linearized target strength of each species i respectively. Species proportions in 
weight at 1ºx1º and month resolution were extracted from logbooks (for class 1-5 vessels, ≤ 363 mt) 
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and observers data (for class 6 vessels, >363mt) of IATTC from 14 different flags. Mean fish lengths (Li), 
by 5°x5° area - month resolution, for skipjack (SKJ), bigeye (BET) and yellowfin (YFT) were obtained 
from IATTC port-sampling data that were first raised to the catch in the sampled wells.  Weights were 
estimated using weight-length relationships (IATTC conversion factors). Then, the following Target 
Strength-length relationships were used to obtain linearized TS per kilogram: 
 

𝜎𝜎𝑖𝑖 =
10(𝑇𝑇𝑇𝑇)/10

𝑤𝑤𝑖𝑖
  

 
where 𝑤𝑤𝑖𝑖 is the mean weight of each species and TS is the backscattering cross-section of each species 
individual fish.  It is assumed that the linear value of TS, is proportional to the square of fish length 
(Simmons and MacLennan 2005). 

 

𝑇𝑇𝑇𝑇 =  20𝑉𝑉𝐵𝐵𝑙𝑙(𝐿𝐿𝐵𝐵)  + 𝑏𝑏20 

 

Given that each brand uses different operating frequencies, we used different b20 values for each 
species. For Satlink, the b20 values were obtained from Boyra et al. (2018) for SKJ, from Bertrand and 
Josse (2000) and Oshima (2008) for YFT and from Boyra et al. (2018) for BET.  

Since acoustic records do not always have information on catch composition for the same time-area 
strata, we followed a three-step hierarchical process to get this correspondence: 1) use species 
distribution data from the same 5ºx5º grid, year and month; 2) alternatively, use the same quarter and 
5ºx5º grid; and finally, as a last resort 3), use the mean values of species distribution data at same 
quarter and region shown in Figure 3.   

The results presented in this document correspond to the fraction of the acoustic signal estimated to 
be informative for the biomass of skipjack. 
 
2.3 The BAI index: Buoy-derived Abundance Index 

The estimator of abundance BAI was defined as the 0.9 quantile of the integrated acoustic energy 
observations in each of the "virgin" sequences. A high quantile was chosen because the large values 
are likely produced by tuna (opposite of what is expected for other species). This assumption is made 
by all the buoy brands in the market, which use the maximum value as the summary of each time 
interval. In our case we selected a high quantile instead of the maximum to try to provide a more 
robust estimator by avoiding outlier values. We also did this to avoid low values that might appear 
after eventual hauls occurring along the sequence. The total number of “virgin” sequences analysed, 
and hence the number of observations in the model, rose to 11732, of which 11696 (99.69%) were 
positives. 

2.4 The model 

The covariates used in the standardization process and fitted as categorical variables were year-
quarter, 5x5º area and buoy model. A proxy of 1ºx1º and monthly FAD densities (average number of 
unique buoys over each month) and the following environmental variables were fitted as continuous 
variables: 

- Ocean mixed layer thickness: defined as the thickness of the thermocline in the point of density 
increase, compared to density at 10 m depth, corresponds to a temperature decrease of 0.2°C in 
local surface conditions (θ10m, S10m, P0= 0 db, surface pressure).  

- Chlorophyll: Mass concentration of chlorophyll a in sea water at sea surface. 
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- Sea Surface Temperature (SST) 
- SST and Chlorophyll fronts: Oceanographic front detection was performed using the “grec” 

package for R (Team 2013) for each daily dataset, that provides algorithms for detection of spatial 
patterns from oceanographic data using image processing methods based on Gradient Recognition 
(Belkin and O'Reilly 2009). 
 

The model we propose is based on an assumption very similar to the fundamental relationship among 
CPUE and abundance widely used in quantitative fisheries analysis. In our case we built the index based 
on the assumption that the signal from the echosounder is proportional to the abundance of fish.  

𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡 = 𝜑𝜑 .𝐵𝐵𝑡𝑡  

where BAIt is the Buoy-derived Abundance Index and Bt is the abundance in time t (Santiago et al., 
2016). 

Although it would appear to be obvious, there is not a lot of literature on the relationship between 
acoustic indicators and fishing performance. It is assumed that acoustic echo integration is a linear 
process, i.e., proportional to the number of targets (Simmons and MacLennan 2005) and has been 
experimentally proven to be correct with some limitations (Foote, 1983; Røttingen, 1976). Therefore, 
acoustic data (echo-integration) are commonly taken as a proxy for abundance and are used to obtain 
acoustic estimates of abundance of many pelagic species (Hampton 1996; ICES 2015; Masse et al. 
2018).  

As with the catchability, the coefficient of proportionality φ is not constant for many reasons. In order 
to ensure that φ can be assumed to be constant (i.e. to control the effects other than those caused by 
changes in the abundance of the population) a standardization analysis should be performed by aiming 
to remove factors other than changes in abundance of the population.  This can be performed 
standardizing nominal measurements of the echosounders using a Generalized Linear Mixed 
Modelling (GLMM) approach. 

Considering the low proportion of zero values (0.31%), the delta lognormal approach (Lo et al. 1992) 
was not considered. GLMM (log-normal error structured model) was applied to standardize the 
acoustic observations. A stepwise procedure was used to fit the model with all the explanatory 
variables and interactions in order to determine those that significantly contributed to explaining the 
variability in the data. For this, deviance analysis tables were created for the positive acoustic records. 
Final selection of explanatory variables was conducted using: a) the relative percent increase in 
deviance explained when the variable was included in the model (normally variables that explained 
more than 5% were selected), and b) The Chi-square (χ2) significance test. Those variables that 
explained less than 5% of the variability in the data were not considered for the final model. 

Interactions between the temporal component (year-quarter) with the rest of the variables were also 
evaluated. If an interaction was statically significant, it was then considered as a random interaction(s) 
within the final model (Maunder and Punt 2004).  

Lastly, the selection of the final mixed model was based on the Akaike’s Information Criterion (AIC), 
the Bayesian Information Criterion (BIC), and a Chi-square (χ2) test of the difference between the log-
likelihood statistic of different model formulations. The year-quarter effect least square means 
(LSmeans) were bias corrected for the logarithm transformation algorithms using Lo et al (Lo et al. 
1992). All analyses were done using the lme4 package of R (Bates et al. 2014). 
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3. RESULTS 

A total of 8.31 million acoustic records from 31116 buoys for the period from January 2012 to 
December 2020 were evaluated to create 11696 observations for the GLMM analysis. Each observation 
was calculated as the 90% percentile of a “virgin” segment of buoy trajectories. A virgin segment was 
defined as the segment of a buoy trajectory from 20-35 days at sea, so that the associated FAD likely 
represents a new deployment which has been potentially colonized by tuna and not already fished. 

In this analysis we have obtained from the acoustic signal of the echosounder buoys associated to FADs 
the fraction of the biomass that would correspond to skipjack tuna aggregated under a FAD.  

Figure 4 shows the histograms of the BAI and log transformed BAI nominal values. Log transformation 
makes the data to follow a normal distribution, as shown in the left panel of Figure 4. Figure 5 shows 
the spatial distribution [5ºx5º] of the number of “virgin” sequences of buoy trajectories that have been 
used in the GLMM analysis. The quarterly evolution of the number of observations on a 5ºx5º grid is 
shown in figure 6. The period 2013-2017 is when the largest number of observations is available. 

Figure 7 shows the quarterly evolution of the nominal log BAI index by squares of 5x5 degrees from 
2012 to 2020. 

The results of the deviance analysis are shown in Table 2. The model explained 37% of the total 
deviance. The most significant explanatory variables were: year-quarter, 5ºx5º area and the 
interaction year-quarter*area that was considered as random effect. No significant residual patterns 
were observed (Figure 8). 

Quarterly series of standardized BAI index are provided in Table 2 and Figure 9. There are three periods 
with higher values: a) at the beginning of the series, 2012, with wide confidence intervals due to the 
relatively low number of observations; b) in the years 2015 and 2016; and c) in 2019. Apart from the first 
quarter from 2012 the CVs remain relatively stable (between 13-16%) during the whole time series. 

4. FUTURE STEPS 

This paper presents preliminary results on abundance indicators from the acoustic signal of buoys 
following the methodology previously developed for tropical tuna stocks in other oceans (Santiago et 
al. 2019; Santiago et al. 2020a; Santiago et al. 2020b). This methodology is intended to be improved in 
the context of the IATTC-AZTI collaboration and the following aspects have already been identified as 
potential lines of investigation:  

- Improve determination of virgin segments (a): the current threshold of 30 days between two 
consecutive observations of the same buoy to consider trajectories of two different FADs is too 
restrictive. A high threshold increases the certainty of differentiating new trajectories but severely 
limits the number of observations available for analysis. On the other hand, a threshold of a few 
days decreases the reliability of separating different trajectories, increasing the number of 
observations. A first exploratory analysis with  
10.000 random buoys show an increase of 25% on the number of virgin segments when using a 
threshold of 1 week instead of 1 month. It is planned to evaluate the effect of using different 
thresholds for virgin segment selection on the robustness of results.  

- It is also planned to use observer data on FAD deployments to investigate whether methodology 
of classification of virgin segments is accurate. Observer data can be used to inform the virgin 
segment selection and the selection of the threshold of days between two consecutive observation 
of the same buoy. 
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- Improve determination of virgin segments (b): a “virgin” segment is defined as segment of a buoy 
trajectory whose associated FAD likely represents a new deployment or re-deployment which has 
been potentially colonized by tuna and probably not fished yet. Currently the period selected 
corresponds to 20-35 days since the estimated date of deployment of the FAD. According to Orue 
et al. (2019) in the Indian Ocean, tuna seem to arrive at FADs in 13.5±8.4 days, so we leave a period 
of 20 days since deployment to try to maximize the probability of the FAD being colonized. The 
period of observation was also limited to 35 days since the deployment to minimize the probability 
of having been fished. Different time periods will be explored after analyzing the spatial-temporal 
pattern of FAD colonization in the EPO. Colonization models for each area will be produced, 
exploring a number of techniques, from traditional GAMMs and GLMMs to most sophisticated 
Boosted Regresssion. With regard to the methodology for acoustic based biomass estimation, 
sensitivity tests will be performed to test the appropriateness of using normal and non-normal 
distributions. Also new biomass estimates will be explored using other metrics rather than the 90% 
percentile (mean, median, etc.). 

- Explore the best spatial/temporal strata in the EPO to characterize the species composition and 
sizes to be applied for the species-specific acoustic biomass estimations because those are the two 
fishery dependent sets of data to convert acoustic information into biomass. The three steps 
approach currently used with different time-area strata resolution will be reviewed and sensitivity 
analysis with catch data performed to test the robustness of the estimation to different 
assumptions. 

- Develop methodology to predict species catches from acoustic samples using machine lerning 
algorithms. Using observer data on catch composition for individual sets, it may be possible to 
relate particular echograms with specific species composition so that we can move away from 
spatio-temporal fishery statistics. 

These issues reflected above are only examples of the improvement tasks that are being undertaken 
in the context of this collaborative Joint Project between AZTI e IATTC with the collaboration of the 
fleet, buoy providers and the ISSF. In this sense, the involvement of the industry is fundamental to 
provide these valuable indicators. We deeply appreciate the involvement of OPAGAC and Cape 
Fisheries in this project and hope that other companies will join this initiative, retrieving historical 
information and regularly providing high-resolution buoy data, including acoustic information. These 
advancements can provide significant information to complement current stock assessments of 
tropical tuna stocks, providing indices less dependent on fisheries data and less affected by changes in 
fishing efficiency. 
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Table 1. Technical specifications of different buoy models and observed values over analysis data. 

Mod
el 

Typical setup 
Mean observed 

values over 
analysis data 

Bea
m 

angl
e 

Sounder 
frequency 

Pow
er 

Frequency of 
acoustic 

sampling (ping 
rate) 

Daily 
acoustic 

data 
recorded 

Frequen
cy of 

transmis
sion 

Numb
er of 

buoys 

Sampli
ng 

freque
ncy 

DS+ 32º 190.5 kHz 100 
W 3 3 24h 1428 1.36 

DSL+ 32º 190.5 kHz 100 
W 3 3 24h 12462 2.82 

ISL+ 32º 190.5 kHz 100 
W 15 min 

variable 
(reset at 

dusk) 
24h 23 1.67 

ISD+ 32º 

200/38 
kHz (38 
kHz not 

provided) 

100 
W 15 min 

variable 
(reset at 

dusk) 
24h 6214 1.21 

SLX+ 32º 200 100 
W 5 min 

variable 
(Sunrise 

or Alarms 
based) 

24h 785 1.98 
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Table 2. Deviance table for the GLM lognormal model of the 2012-2020 period 
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Table 3. Nominal and standardized Buoy-derived Abundance Index for the period 2012-2020. 
Standard errors and coefficient of variations of the standardized series are also included. 
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Figure 1. Buoy data distribution per model in the Pacific Ocean (2010-2020)  

 

 

Figure 2. Example of “virgin” segments used for the calculation of the BAI index. Trajectories 
correspond to buoy ISL+284966 with two different paths representing drifts of different FADs. A virgin 
segment is defined as the segment of a buoy trajectory whose associated FAD likely represents a new 
deployment, which has been potentially colonized by tuna and not already fished. We consider as 
virgin segments (i.e. when tuna has aggregated to FAD) those segments of trajectories from 20-35 days 
at sea. “Virgin” segments are shown in green. 
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Figure 3. Length-frequency sampling areas defined by the IATTC staff for analyses of tropical tuna 
catches associated with floating objects. 

 

 

Figure 4. Histograms of the nominal values (left) and the log transformed nominal values (right) of 
the Buoy-derived Abundance Index (0.9 quantile of the integrated acoustic energy observations in 
"virgin" sequences).  
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Figure 5. Spatial distribution [5ºx5º] of the “virgin” sequences of buoy trajectories that have been used 
in the GLM analysis. 
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Figure 6. Quarterly evolution of the number of observations (“virgin” sequences of buoy trajectories) 
on a 5ºx5º grid. 
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Figure 7. Quarterly evolution of the nominal log BAI index in the Atlantic Ocean by squares of 5x5 
degrees from 2012 to 2020. 
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Figure 8. Diagnostics of the lognormal model selected for the period 2012-2020: residuals vs fitted, 
Normal Q-Q plot and frequency distributions of the residuals. 
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Figure 9. Time series of nominal (circles) and standardized (continuous line) Buoy-derived Abundance 
Index for the period 2012-2020. The 95% upper and lower confidence intervals of the standardized BAI 
index are shown by the grey shaded area. 
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