Environmental versus operational drivers of drifting FAD beaching in the Western and Central Pacific Ocean

Citation
Escalle L, Scutt Phillips J, Brownjohn M, et al (2019) Environmental versus operational drivers of drifting FAD beaching in the Western and Central Pacific Ocean. Sci Rep 9:. https://doi.org/10.1038/s41598-019-50364-0
Abstract

In an effort to increase purse seine fishing efficiency for tropical tunas, over 30,000 drifting Fish Aggregating Devices (dFADs) are deployed every year by fishers in the Western and Central Pacific Ocean (WCPO). The use of dFADs also impacts ecosystems, in particular through marine pollution and dFAD beaching. This paper presents the first estimate of dFAD beaching events in the WCPO (>1300 in 2016–2017) and their distribution. Lagrangian simulations of virtual dFADs, released subject to contrasting deployment distributions, help us determine the relative importance of operational versus environmental drivers of dFADs drifting to beaching areas. The highest levels of beaching, occurring on Papua New Guinea and Solomon Islands, are likely a result of the prevailing westward oceanic circulation and subsequent local processes driving dFADs towards land. Similarly, high beaching rates in Tuvalu appear to be due to the general circulation of the WCPO. In contrast, beaching in Kiribati Gilbert Islands appear to be more strongly related to dFAD deployment strategy. These findings indicate that reducing beaching events via changes in deployment locations may be difficult. As such, management approaches combining dFAD deployment limits, the use of biodegradable dFADs, recoveries at-sea close to sensitive areas and/or beached dFAD removal should be considered.