False killer whale (Pseudorca crassidens) echolocation and acoustic disruption: implications for longline bycatch and depredation

Citation
Mooney TA, Pacini AF, Nachtigall PE (2009) False killer whale (Pseudorca crassidens) echolocation and acoustic disruption: implications for longline bycatch and depredation. Can J Zoo 87:726–733. https://doi.org/10.1139/Z09-061
Abstract

False killer whales (Pseudorca crassidens (Owen, 1846)) depredate fish caught by the North Pacific pelagic longline fishery, resulting in loss of target species catch and the whales themselves becoming bycaught. This incidental take of false killer whales exceeds sustainable levels. In an effort to address a potential solution to reducing this depredation and bycatch, we tested an acoustic device designed to deter false killer whales from approaching longlines by reducing the whales’ echolocation performance capabilities. The device produced a series of complex, broadband signals (1–250 kHz) at high intensity levels (up to 182 dB). In the experiment, a trained false killer whale was asked to detect a target in the presence or absence of the acoustic device. Baseline performance capabilities were 95% correct responses. Initially, the device reduced the whale’s echolocation performance to chance levels. However, subsequent sessions demonstrated improvement in echolocation performance up to 85%. This improvement was likely a result of behaviorally adapting to the task and a decrease in the source level of the echolocation “disruptor”. The results underscore the challenges in using acoustic devices to reduce depredation and bycatch, and demonstrate the need for concern regarding anthropogenic noise levels and effects on odontocete echolocation capabilities.