Comisión Interamericana del Atún Tropical Inter-American Tropical Tuna Commission

Using an updated ecosystem model of the eastern tropical Pacific Ocean to explore potential impacts of increased fishing effort on floating objects

Shane Griffiths, Leanne Fuller, Juan Valero, Carolina Minte-Vera, Haikun Xu & Cleridy Lennert-Cody

12th Meeting of the Scientific Advisory Committee, 10-14 May 2021. Document: SAC-12-13

Ecological sustainability

- IATTC mandated to ensure ecologically sustainability of EPO tuna fisheries
 - Antigua Convention, IATTC Resolutions, and improved reporting (SAC-10-14, SAC-10 INF-B)
 - Development of the "EASI-Fish" ERA model for data-poor species (SAC-09-12, BYC-09-01)
- Single species assessments important

Ecological sustainability

- IATTC mandated to ensure ecologically sustainability of EPO tuna fisheries
 - Antigua Convention, IATTC Resolutions, and improved reporting (SAC-10-14, SAC-10 INF-B)
 - Development of the "EASI-Fish" ERA model for data-poor species (SAC-09-12, BYC-09-01)
- Single species assessments important
- But how does tuna fishing affect ecosystem dynamics?
- Diet analysis in 1990s and 2000s
- ETP ecosystem model ("ETP7")

- ETP7 used early software (v5.1) from 2003 and not used for reporting
- EwE (v6.6) improved with many ecological indicators
- In 2017, staff updated the ETP7 model with new data 1970-2014
- Since 2017, staff update ETP7 annually with catch and effort data and report on indicators in *"Ecosystem Considerations"* report (SAC-12-12)
- 2021 update (ETP-21) was required to:
 - Improve model structure to link ontogenetic stages (e.g., small and large YFT)
 - Update biological parameters with new information since 2003
 - Rebalance the model after including revised longline catch estimates (SAC-12-12)
 - Calibrate the model to new time series data available for target and bycatch species

• Why not develop a new EPO model?

• Why not develop a new EPO model? A very long process

Parameterization

(Ecopath)

	n Define around. ₩ Edit multi-stanza.										
	Group name	Hab area (proportion)	Biomess in habitat area (tkm²)	Total mortality (/year)	Production / biomass (/year)	Consumption /biomass (/ywar)	Ecotrophic Efficiency	Other mortality	Production / consumption	Unassim. consumptio	
1	Pursuit Birds	1.0000000	0.0006000000		0.079999998	65,6999969				0.3100000	
2	Grazing Birds	1.00000000	0.0001230000		0.15000001	65 6999969				0.3199999	
3	Ealeen Whales	1.00000000	0.0091000004		0.017999999	9.10000038				0.3400000	
4	Toothed labales	100000000	0.030999999		0.020000000	6 25000000				0.3100000	
5	Southed Dolphia	10000000	0.0035000001		0.020099009	16 5000000				0.3100000	
6	Meso Dolphin	1.00000000	0.017000001		0.039999999	16 5000000				0.2800000	
-	Sea Turtles	10000000			0.15000001	3,5000000	0.5000000			0.3499999	
v	YET										
•	Con Vollanda	10000000	0.049109491	1 7500000		12.0000000				0.2000000	
	La Velloufia	100000000	0.0025025129	7.3/999990		5 85775177				0.2000000	
	OCT		0.00000000000			2 2 2 2 2 2 2 1 1 1					
÷	Con Diversion									0.7700000	
	on ogeye	1.00000000	0.0033333333	0.72000003		4 50000000				0.2700000	
	Lý biýcje	1.00000000	0.012002000	0.75555555		4.55555550				0.3100000	
12	SILVATING	10000000			05000000	7.0000000	0.8000000/			0.300000	
13	Lg Marins	1.0000000			1000000	7.8000019	0.8000001			0.2000000	
14	SerSaltah	10000000			0.56359393	9,76000023	0.8000001			0.2800000	
15	Losansa	10000000			1.143595996	7.80000019	0.80000001			0.2800000	
16	Sin Swordtish	1.00000000			0.20999999	9.00000000	0.80000001			0.3000000	
W.	Lg Sworthsh	1.0000.000			0.44000000	7.8000019	0.80000001			0.3199999	
Y	DOR										
18	Sm Dorado	1.00000000	0.0015514490	1,23083997		27.3999996				0.3000000	
19	Lg Doredo	1.00000000	0.0009456115	1.76199496		13.6407204				0.3000000	
20	Lg Wahoo	1.00000000	0.0000900000		1,20000005	8.29076195				0.3000000	
21	Sin Wahoo	1.00000000			1,75000000	11.3999996	0.94999999			0.3000000	
22	Sm Sharks	1.00000000	0.0001200000		0.57999998	9.15999985				0.2899999	
23	Lg Sharks	1.00000000	0.0002300000		0.31999999	7.80999994				0.2899999	
24	Reys	1.00000000	0.0000500000		0.25000000	3.91000009				0.3400000	
25	Skipjack	1.00000000			1.88000000	21.5000000	0.94999999			0.3000000	
26	Abecore	1.00000000			0.75399998	15,9500008	0.54399999			0.2349999	
27	Aurois	1.00000000			2,50000000	25.0000000	0.54999999			0.3300000	
28	Bluefin	1.00000000	0.0008400000		0.64999998	12.8000002				0.3199999	
29	Misc Fisc	1.00000000			2,25000000	7,73000002	0.94999999			0.3100000	
30	Ehinofish	1.00000000			2,88000011	25,7800007	0.94999999			0.3499999	
31	Misc Fei Fish	1.00000000			206999933	10 7799997	0.56200220			0.3600000	
32	Minc Meno Fish	1.00000000	1.64999998		2 00000000	10,7799997				0.3499999	
33	Cenhalopoda	10000000			2 00000000	7 00000000	0.54999999			0.2299999	
24	Cats	10000000			3,50000000	10.00000000	0.54999999			0.3400000	
16	Manopoolarikton	1 00000000			61,0000000	200.000000	0.5000000			0.3499999	
ŝ	Micanocelasidon	10000000			143.000000	600.000000	0.5000000			0.4199999	
27	Lo Di Andaritte	10000000			135 000000		0.50000000				
	Con Destination	1.00000000			167 000000		0.50000000				

Revising ETP7 model structure

ETP7

	Group name
1	Pursuit Birds
2	Grazing Birds
3	Baleen Whales
4	Toothed Whales
5	Spotted Dolphin
6	Meso Dolphin
7	Sea Turtles
8	Sm Yellowfin
9	La Yellowfin
10	Sm Bigeye
11	Lg Bigeye
12	Sm Marlins
13	La Marlins
14	Sm Sailfish
15	La Sailfish
16	Sm Swordfish
17	Lg Swordfish
18	Sm Dorado
19	Lg Dorado
20	Sm Wahoo
21	Lg Wahoo
22	Sm Sharks

23 Lg Sharks

- ETP7 contained ontogenetic stages to reflect known differences in diet and biology
 - But stages not linked act as independent biomass pools

Revising ETP7 model structure

- ETP7 contained ontogenetic stages to reflect known differences in diet and biology
 - But stages not linked act as independent biomass pools
- ETP-21 linked 12 groups (6 species) as multi-stanza delay-difference sub-models

Revising ETP7 model structure

ETP-21

9

- ETP7 contained ontogenetic stages to reflect known differences in diet and biology
 - But stages not linked act as independent biomass pools
- ETP-21 linked 12 groups (6 species) as multi-stanza delay-difference sub-models

Model Calibration to Time Series Data

- ETP7 calibrated using time series 1975-1999 from stock assessments
 - Relative biomass
 - Total mortality (Z)
- Small & Large YFT
 - Excellent fit to CPUE data

- ETP7 calibrated using time series 1975-1999 from stock assessments
 - Relative biomass
 - Total mortality (Z)
- Small & Large YFT
 - Excellent fit to CPUE data

- ETP7 calibrated using time series 1975-1999 from stock assessments
 - Relative biomass
 - Total mortality (Z)
- Small & Large YFT
 - Excellent fit to CPUE data
- Small & Large BET
 - Poor fit to CPUE data
 - Small & large stanzas not linked?

- ETP7 calibrated using time series 1975-1999 from stock assessments
 - Relative biomass
 - Total mortality (Z)
- Small & Large YFT
 - Excellent fit to CPUE data
- Small & Large BET
 - Poor fit to CPUE data
 - Small & large stanzas not linked?

- ETP7 calibrated using time series 1975-1999 from stock assessments
 - Relative biomass
 - Total mortality (Z)
- Small & Large YFT
 - Excellent fit to CPUE data
- Small & Large BET
 - Poor fit to CPUE data
 - Small & large stanzas not linked?
 - Nominal OBJ CPUE ≠ abundance?
- Poor predictive ability

- Time series
 - Relative biomass
 - Fishing mortality (F)
 - Catch (retained + discarded)
- 25 functional groups
 - Small & large size classes
- Biomass and catch
 - Assessed species

- Time series
 - Relative biomass
 - Fishing mortality (F)
 - Catch (retained + discarded)
- 25 functional groups
 - Small & large size classes
- Biomass and catch
 - Assessed species

- Time series
 - Relative biomass
 - Fishing mortality (F)
 - Catch (retained + discarded)
- 25 functional groups
 - Small & large size classes
- Biomass and catch
 - Assessed species
- Catch only
 - Non-assessed & bycatch species

- Time series
 - Relative biomass
 - Fishing mortality (F)
 - Catch (retained + discarded)
- 25 functional groups
 - Small & large size classes
- Biomass and catch
 - Assessed species
- Catch only
 - Non-assessed & bycatch species

Historical changes in the structure of the ETP ecosystem for the period 1979-2018

Fishing-based indicators

- Nominal fishing effort scaled from 1993
 - Coincidentally, start of the FAD fishery
 - ~7-fold increase in number of OBJ sets 1993-2018

Fishing-based indicators

- Nominal fishing effort scaled from 1993
 - Coincidentally, start of the FAD fishery
 - ~7-fold increase in number of OBJ sets 1993-2018
- TL_c and MTI declined by 0.05 for 1991-2018
 - Change in TL_c of ≥ 0.1 per decade is significant
- FIB >0 since 1991
 - Indicates expansion of fishery, likely due to increasing catch of bycatch species

Community-based indicators

- Declining "evenness"
 - Changing relative biomass
- Alternating biomass trends by TL
 - Decline of predators (>4.0)
 - Increase of prey (3.25-4.0)
- Minor trophic cascade

Community-based indicators

- Declining "evenness"
 - Changing relative biomass
- Alternating biomass trends by TL
 - Decline of predators (>4.0)
 - Increase of prey (3.25-4.0)
- Minor trophic cascade
- Continued trends, certainly requires monitoring

Simulating the potential impacts of FAD fishing on key species and ecosystem structure

Modelled scenarios

- 1. Average no. of OBJ sets for 2018-2019 maintained from 2018 to 2024
 - Effort for all other fisheries maintained at 2018 levels

Modelled scenarios

- 2. Increase OBJ sets following the trajectory from 2004-2019
 - Effort for all other fisheries maintained at 2018 levels

1) Maintain 2018/2019 effort

• Biomass of tunas $\sqrt{1-3\%}$, retained bycatch $\uparrow 1-3\%$, sharks $\sqrt{7-9\%}$

2) Increase OBJ effort

• Biomass of tunas $\sqrt{1-5\%}$, retained bycatch $\uparrow 1-6\%$, sharks $\sqrt{11-14\%}$

Changes to ecosystem structure

• Continued decline of TLc & TL>4.0; increase FIB & TL 3.25

Summary

- ETP-21 improved realism of the ETP ecosystem and calibration improved reliability of forecasts by reproducing past population trends.
- The structure of the ETP substantial changed over the history of the EPO tuna fishery, and more pessimistic than 2019 assessment.
- Changes most significant since the early 1990s coinciding with the increase in OBJ sets, increasing by ~50% every 5 years; 7-fold since 1993.
- Maintaining 2018-2019 effort levels resulted in biomass declines of target species, but especially small and large sharks.
- Increase in OBJ effort predicted to result in further biomass declines for tuna and sharks and compromise the ETP structure.

Future research

- If ETP-21 or new model used, data improvements are required
- Data for catch (retained and discards) & effort (SAC-12-09)
 - Longline (especially shallow vs. deep sets)
 - Purse-seine class 1-5 by set type
 - Coastal 'artisanal' fleets (longline & gillnets)
- Foundation of the model is diet data from early 1990s
 - EPO has experienced some of the strongest El Nino events on record
 - FAD impacts may have altered predator-prey dynamics
- EPO ecological sampling program required to update diet matrix and key model parameters (*e.g.* consumption rates, SAC-10 INF-E)

Questions?

