SCIENTIFIC COMMITTEE FIFTEENTH REGULAR SESSION

Pohnpei, Federated States of Micronesia
12-20 August 2019

IDENTIFYING APPROPRIATE REFERENCE POINTS FOR ELASMOBRANCHS WITHIN THE WCPFC

Identifying appropriate reference points for elasmobranchs within the WCPFC

Shijie Zhou ${ }^{1 *}$, Roy Aijun Deng ${ }^{1}$, Simon Hoyle ${ }^{2}$, Matthew Dunn ${ }^{3}$

${ }^{1}$ CSIRO Oceans and Atmosphere, 306 Carmody Road, St. Lucia, QLD 4067, Australia
${ }^{2}$ NIWA, 217 Akersten St, Port Nelson 7010, New Zealand
${ }^{3}$ NIWA, 301 Evans Bay Parade Hataitai, 6021 Wellington New Zealand

January 2019
*Corresponding author: Phone: +61 73833 5968. Emails: Shijie.Zhou@csiro.au

Citation
Zhou, S., Deng, A.R., Hoyle, S., and Dunn, M. 2019. Identifying appropriate reference points for elasmobranchs within the WCPFC. Report to Western and Central Pacific Fisheries Commission, Pohnpei, Federated States of Micronesia.

Disclaimer

CSIRO advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, CSIRO (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it.

Contents

Contents iii
List of figures vi
List of tables viii
Acknowledgments ix
Executive summary x
1 Introduction 12
2 Estimating F-based reference points 14
2.1 Data sources 14
2.1.1 Life history parameters 14
2.1.2 Selectivity 14
2.2 Estimating natural mortality rate 15
2.3 Methods for estimating reference points 18
2.3.1 Method 1: empirical relationship 19
2.3.2 Method 2: Euler-Lotka equation (or demographic model) 19
2.3.3 Method 3: Intrinsic population growth rate from literature 20
2.3.4 Method 4: Spawning potential ratio (SPR) 20
2.3.5 Joint reference points 21
2.4 Results of natural mortality estimation 22
2.5 Results of estimated reference points 22
(1) BSH-N: the Blue shark (Prionace glauca), North Pacific stock 22
(2) BSH-S: the Blue shark (Prionace glauca), South Pacific stock 22
(3) SMA-N: the Shortfin mako shark (Isurus oxyrinchus), North Pacific stock 23
(4) SMA-S: the Shortfin mako shark (Isurus oxyrinchus), South Pacific stock. 23
(5) LMA: the Longfin mako shark (Isurus paucus) 23
(6) FAL: the Silky shark (Carcharhinus falciformis) 23
(7) OCS: the oceanic whitetip shark (Carcharhinus longimanus) 24
(8) BTH: the Bigeye thresher shark (Alopias superciliosus) 24
(9) PTH: the Pelagic thresher shark (Alopias pelagicus) 24
(10) ALV: the Common thresher shark (Alopias vulpinus) 24
(11) POR: the Porbeagle shark (Lamna nasus) 25
(12) SPZ: the Smooth hammerhead shark (Sphyrna zygaena) 25
(13) SPL: the Scalloped hammerhead shark (Sphyrna lewini) 25
(14) SPK: the Great hammerhead shark (Sphyrna mokarran) 25
(15) EUB: the Winghead shark (Eusphyra blochii) 25
(16) RHN: the Whale shark (Rhincodon typus) 25
2.6 Discussions on F-based reference points 26
2.6.1 Comparison between methods 26
2.6.2 Uncertainty in life-history parameters 26
2.6.3 Effect of gear selectivity 27
2.6.4 Spawning stock biomass per recruit approach 28
2.6.5 Approaches based on population growth rate 29
2.6.6 Theoretical basis for Methods 1 to 3 30
2.6.7 Management objectives and reference points for non-target species 30
2.7 Recommended reference points for WCPFC elasmobranchs 31
$3 \quad$ Potential methods for estimating fishing mortality 33
3.1 Traditional stock assessment 33
3.2 Area-based ERA methods 33
3.2.1 Species distribution 34
3.2.2 Area affected by fishing 34
3.2.3 Gear efficiency 34
3.2.4 Discard survival rate and escapement 35
3.3 Age-based methods-catch curve 35
3.4 Length-based methods 36
3.5 Discussion on estimating fishing mortality 37
4 Other potential management procedures for WCPFC elasmobranchs 38
4.1 Catch-rate (CPUE) approach 38
4.2 Traffic-light framework 38
4.3 Catch-only methods 39
5 Review of Shark Stock-Recruitment Relationship 40
5.1 Introduction 40
5.2 Overview 40
5.3 Method in general, including Mangel et al. (2010) 41
5.4 Simulation 43
5.4.1 Methods 43
5.4.2 Parameter values 44
5.4.3 Results and Discussion 44
5.5 Conclusions - applicability of method to species in general 44
6 References 46
7 Appendix 1: R code for testing stock-recruitment steepness 76

List of figures

Figure 1. Comparison of estimated M from seven estimators for the 15 elasmobranch stocks. Estimator 7 is based on values from the literature64
Figure 2. Density distributions of estimated reference points for Blue shark in the North Pacific Ocean (BSH-N) from four alternative methods. For the SPR method, $F_{40 \%}$ is used as $F_{m s m}, F_{40 \%}$ as $F_{\text {lim }}$, and $F_{10 \%}$ as
$F_{\text {crash }}$ 65
Figure 3. Density distributions of estimated reference points for Blue shark in the South Pacific Ocean (BSH-S) from three alternative methods 65
Figure 4. Density distributions of estimated reference points for Shortfin mako shark in the North Pacific Ocean (SMA-N) from three alternative methods 65
Figure 5. Density distributions of estimated reference points for Shortfin mako shark in the South Pacific Ocean (SMA-S) from three alternative methods 66
Figure 6. Density distributions of estimated reference points for Silky shark in the Pacific Ocean (FAL) from four alternative methods using newly estimated life-history parameters (Grant et al. 2018) 66
Figure 7. Density distributions of estimated reference points for Oceanic whitetip shark in the Pacific Ocean (OCS) from four alternative methods 66
Figure 8. Density distributions of estimated reference points for Bigeye thresher shark in the Pacific Ocean (BTH) from three alternative methods 67
Figure 9. Density distributions of estimated reference points for Pelagic thresher shark in the Pacific Ocean (PTH) from three alternative methods 67
Figure 10. Density distributions of estimated reference points for Common thresher shark in the Pacific Ocean (ALV) from three alternative methods. 67
Figure 11. Density distributions of estimated reference points for Porbeagle shark in the Pacific Ocean (POR) from three alternative methods. 68
Figure 12. Density distributions of estimated reference points for Smooth hammerhead shark in the Pacific Ocean (SPZ) from three alternative methods. 68
Figure 13. Density distributions of estimated reference points for Scalloped hammerhead shark in the Pacific Ocean (SPL) from three alternative methods. 68
Figure 14. Density distributions of estimated reference points for Great hammerhead shark in the Pacific Ocean (SPK) from three alternative methods 69
Figure 15. Density distributions of estimated reference points for Winghead shark in the Pacific Ocean (EUB) from three alternative methods 69
Figure 16. Density distributions of estimated reference points for Whale shark in the Pacific Ocean (RHN) from three alternative methods 69
Figure 17. Comparison of estimated $F_{m s m}$ and $F_{\text {lim }}$ between Methods 1 to 4 for the 16 shark stocks (RP cannot be estimated for stock \#5 LMA) 70
Figure 18. Comparison of estimated $F_{m s m}$ between four alternative methods for the 16 shark stocks (RP cannot be estimated for stock \#5 LMA). The line indicates where $F_{x}=F_{y}$ 71

Figure 19. Methods 1 and 2 sensitivity to estimated maximum age. The example is $F_{m s m}$ for Blue shark in the Northern Pacific with all other life history parameters remaining unchanged. The vertical line is the estimated $t_{\text {max }}$.

Figure 20. Methods 1 and 2 sensitivity to estimated natural mortality. The example is $F_{m s m}$ for Blue shark in the Northern Pacific. The vertical line is the estimated M72

Figure 21. Relationship between reference points based on spawning potential ratio (SPR) and stock productivity measured as life time reproductive rate (x-axis). SPR MER is the spawning potential ratio at maximum excess recruitment in number, and SPR crash below which the stock will become extinct......... 73

Figure 22. Intrinsic population growth rate r as a function of natural mortality M based on Euler-Lotka equation and mean fecundity of sharks species in the WCPFC. The thin line is $r=M$.74
Figure 23: Probability density distribution for von Bertalanffy steepness h, including uncertainties associated with maximum age and mean natural mortality 75

List of tables

Table 1. WCPFC key elasmobranchs species reviewed by the Pacific Shark Life History Expert Panel Workshop (2015, WCPFC-SC11-2015/EB-IP-13) 53
Table 2. Comparison of mean M estimated from Eqns $2 a$ (M.1) and $2 b$ (M.2) with all estimators (M.all) for the 15 elasmobranch stocks. On average, M from both Eqns $2 a$ and $2 b$ is 1.11 times higher than M from all estimators. 54
Table 3. Comparison of estimated reference points by four methods for three shark stocks in the WCPFC managed areas. $c F_{m s m}, c F_{\text {lim }}$, and $c F_{\text {crash }}$ are combined from 1 Methods 1 to 4. L10\% and H90\% are 10\% and 90% percentiles. 55
Table 4. Comparison of estimated reference points by three methods for the 15 shark stocks in the WCPFC managed areas. $c F_{m s m}, c F_{\text {lim }}$, and $c F_{\text {crash }}$ are combined from 1 Methods 1 to 4. L10\% and H90\% are 10\% and 90\% percentiles 56
Table 5. Available data from WCPFC-SC11-2015/EB-IP-13 (number of studies in parenthesis) and relative quality of the estimated reference points for WCPFC key elasmobranchs species. Alternative r is adopted from regions outside Western and Central Pacific Ocean. New data are used for three stocks 60
Table 6. Biological reference points, proposed ecological risk assessment categories, and ecological consequences for WCPFC bycatch species 62
Table 7: Parameter values used in estimation of stock recruitment relationship 63

Acknowledgments

We thank WCPFC Scientific Committee for their comments on the earlier draft and their feedback during the Fourteenth Regular Session. We are grateful to Dr S. Clarke and Mr T. Beeching for providing many documents and advices on the project. Dr F. Carvalho helped with gear selectivity issues. This project is cofunded by Western and Central Pacific Fisheries Commission and Australian Commonwealth Scientific and Industrial Research Organisation.

Executive summary

Elasmobranch species are bycatch in fisheries managed by the Western and Central Pacific Fisheries Commission (WCPFC). These species have limited fishery-dependent data and biological information. Traditional stock assessment cannot be performed for most of the stocks. Assessment using alternative approaches has become a priority research project. Recently, Clarke and Hoyle (2014) reviewed appropriate limit reference points (LRPs) for WCPFC elasmobranchs and provided a conceptual framework for selecting appropriate LRPs. In 2015 an expert panel held a workshop to identify the most appropriate life history data to be used in calculating the risk-based LRPs. The panel compiled and reviewed over 270 studies worldwide on 16 WCPFC elasmobranch stocks.

The current study continues the previous work. The report contains several components related to reference point development. In the first section, we apply a total of four methods and use the data in the expert panel report to estimate fishing mortality-based reference points ($F_{R P s}$). As natural mortality M is a key variable in three of the four methods, we start with M estimation by using six M estimators as well as adopting M values from the literature. Comparison among the seven M estimators shows that the estimator based on maximum life span $t_{\max }$ and the estimator based on the von Bertalanffy growth function (VBGF, K and $L_{\text {inf }}$) differ markedly from other estimators for most stocks. On average, M from $t_{\max }$ is 1.45 times higher than the mean value from all seven approaches. In contrast, M based on VBGF is only 0.73 times of the average.

The four methods for deriving $F_{R P_{s}}$ are: an empirical relationship between $F_{R P_{s}}$ and life history parameters, demographic analysis, the intrinsic population growth rate from literature, and the spawning potential ratio (SPR) approach. We provide three reference points, $F_{m s m}, F_{\text {lim }}$, and $F_{\text {crash }}$. As expected, the estimated values are similar between multiple methods (i.e. 2 to 4 methods depending on available data) in some stocks but vary considerably in other stocks. Because of a lack of selectivity and maturity information, the SPR approach is applied to only three stocks. It is difficult to determine what percentage of SPR is appropriate for elasmobranchs and how it corresponds to the three $F_{R P S}$, so this approach has limited value. Since the WCPFC has adopted a benchmark 20\%SB dynamic10, unfished as the limit biomass reference point for target species, we recommend using a similar RP—the combined $F_{\text {lim }}$ ($c F_{\text {lim }}$, combined from the three methods) as LRP for elasmobranchs.

In the second section, we review some potential methods for estimating fishing mortality for data-poor species, including formal stock assessment, area-based ERA methods, age-based methods, and lengthbased methods. We focus on the area-based methods, as varying versions, tailored for varying data availability, have been developed and have been applied to two WCPFC species. This group of methods can be flexibly modified to suit the available data. To be consistent, this method is recommended for other data-poor WCPFC elasmobranch species.

In the third section, we briefly review other potential management procedures for WCPFC elasmobranchs. As a wide range of assessment methods and management procedures have been developed for data-poor fisheries, and several comprehensive reviews have already been completed, we only discuss three procedures that are potentially promising for WCPFC bycatch. These procedures include catch-rate approaches, length-based traffic-light approaches, and catch-only methods. We suggest that before adopting a particular approach, it is essential to check the data inventory against the key assumptions required by the method, and keep in mind the merit of consistent methodology across multiple species.

In the fourth section, we review the life history-based approach to estimating a stock recruitment relationship (SRR) for sharks, focusing in particular on the approach published by Kai and Fujinami (2018) in Fisheries Research. They modelled the SRR using the approach proposed by Mangel et al. (2010), based on maximum population growth rate at low population size and spawning biomass per-recruit at equilibrium without fishing. They used this approach to derive steepness parameter for both Beverton-Holt and Ricker's models, and argued for use of the estimate based on the Beverton-Holt stock recruitment relationship.

They suggested this steepness can be used as a prior for stock assessment. Their paper is, in general, well written and provides sufficient explanation to repeat the approach for other species. However, we have identified several weaknesses of the approach, including: underestimating uncertainty in input parameters and in the stock recruitment relationship, overlooking of the density-dependent effect on life-history parameters, and potentially unrepresentative coverage of the population. We conclude that the approach is an interesting theoretical idea, but requires further research before applying to sharks for estimating steepness priors for stock assessment.

1 Introduction

Fishing impact on elasmobranchs has become an increasing concern in fisheries management and biodiversity conservation (Dulvy et al., 2014; Stein et al., 2018). Lack of biological and fisheries data has hindered the use of traditional quantitative stock assessments (such as surplus production models, statistical catch-at-age models, stock-recruitment models, delay-difference models, and virtual population analysis models) and development of management advice based on the output of these assessments. Most elasmobranch species impacted by Western and Central Pacific Fisheries Commission (WCPFC) managed fisheries have very limited data. Traditional stock assessment has been attempted for only four of the 16 stocks of elasmobranchs in the Western and Central Pacific Ocean (WCPO) (Table 1). Developing management reference points using alternative approaches has been a priority research agenda for the Commission. In 2014, Clarke and Hoyle (2014) conducted a thorough review of appropriate limit reference points (LRPs) for WCPFC elasmobranchs. Based on the adopted WCPFC's framework for target species, they provided a conceptual framework for selecting potential LRPs for non-target elasmobranchs. Data needs were also identified as a priority issue and an expert panel was recommended to identify the most appropriate life history data to be used in calculating the risk-based LRPs. Consequentially, a workshop was held in 2015, which produced the "Report of the Pacific Shark Life History Expert Panel Workshop". The panel compiled and reviewed over 270 studies worldwide on 16 WCPFC elasmobranch stocks. Since then it has been endorsed by the Scientific Committee for the continued development of reference points for elasmobranchs based on previous findings and compiled data.

In April 2018, the Commission called for proposals for identifying appropriate reference points for elasmobranchs within the WCPFC. The terms of reference list six tasks:

1. For those elasmobranchs which have been evaluated using a stock assessment model, recalculate the risk-based limit reference points (LRPs, as described in Table 5, WCPFC-SC10-MI-WP-07 (Clarke and Hoyle, 2014)) using the updated life history information produced by the Shark Life History Expert Panel.
2. For those elasmobranchs which have not been evaluated using a stock assessment model advise on ways of developing an estimate of current fishing mortality (F), for example using catch curves, the method used in the bigeye thresher assessment (WCPFC-SC12-SA-IP-17, see updated version Fu et al., 2018), or other suitable means. Risk-based LRPs (as described in WCPFC-SC10-MI-WP-07) should then be developed for all WCPFC key shark species.
3. Where the stock-recruitment relationship is highly uncertain, compare $F_{\text {current }}$ to SPR-based LRP such as $F_{60 \% s P R, \text { unfished }}$ (or simply $F_{60 \% \text {) }}$) and discuss any new insights into the recommended estimated LRPs so that the WCPFC Scientific Committee can decided on a case-by-case basis which LRP is most appropriate.
4. Review the use or otherwise of other potential LRPs based on SPR, reduction of recruitment or empirical measures (e.g. catch rate or length values designed to signal unacceptable population states).
5. Advise on any changes or updates to the recommended LRPs in WCPFC-SC10-MI-WP-07 based on new developments, including any suggestions for further technical work before consideration of adoption of LRPs by fishery managers.
6. Review the work presently being undertaken by ISC on the development of stock-recruitment relationships and their parameter estimates, such as stock-recruitment steepness for North Pacific blue shark and assess the applicability of extending this work to other key shark species, especially South Pacific blue shark.

The report is organized in four sections: (1) Estimating F-based reference points; (2) Potential methods for estimating fishing mortality; (3) Other potential management procedures for WCPFC elasmobranchs, and (4) Review shark stock-recruitment relationships. Note that section (1) addresses tasks 1, 3, 5 and part of 2, because these tasks are all about developing reference points, whether the species have been evaluated or not, using risk-based or SPR-based estimators, and updating the existing estimates.

2 Estimating F-based reference points

2.1 Data sources

2.1.1 Life history parameters

An expert panel was convened in 2015 to review appropriate life history parameters for the fourteen WCPFC key shark species (16 stocks). The panel compiled and reviewed over 270 studies worldwide on blue, mako, silky, oceanic whitetip, thresher, porbeagle, hammerhead and whale shark species (Clarke et al., 2015). Tables containing over a dozen of the most important life history parameters and their uncertainties and caveats were constructed for each species. We extracted all relevant numbers from the report. Some species and parameters had multiple studies, and we retained all individual values by sex. We primarily used "Pacific parameters", i.e., data from the Pacific Ocean. However, for certain parameters that were not available from the Pacific Ocean, "Alternative parameters" from other areas (e.g., Atlantic Ocean and Indian Ocean) were used instead (note that "Alternative parameters" are also provided in Clarke et al. (2015) report). We have provided a note in the results section when an alternative parameter was used for a particular stock. Specifically, we borrowed intrinsic rate of increase (r) from "alternative parameters" for two stocks, the Blue sharkNorth and the ocean Whitetip shark, and maximum age and age at maturity for smooth hammerhead shark. Different units, types of measurement (e.g. fork length, total length, pre-caudal length), and equations were used in different studies, and where necessary we converted measurements to consistent units and adjusted equations as appropriate, using relevant information from the original literature.

Since the Cairns workshop, updated life history parameters (LHPs) have become available for some stocks. However, in this study we did not have time to carry out a thorough review and find all the new estimates. We adopted updated estimates for three stocks that were readily known. Grant et al. (2018) recently examined the life history of silky sharks from Papua New Guinean waters. The newly estimated life history parameters differ significantly from those reported in the early literature (Clarke et al., 2015). Fu et al. (2018) updated the maximum life span for the Bigeye thresher shark. Hoyle et al. (2017b) used the new maximum life span for the Porbeagle shark. We adopted the updated values for these three species.

2.1.2 Selectivity

Realised selectivity (i.e. relative catchability at size in all fisheries combined) is required by some methods for deriving reference points. However, this is a difficult relationship to estimate, and it may vary through time. Elasmobranchs are captured by various fishing gears in the WCPFC fisheries, including longline, purse seine, and some gillnet, each of which may have a different selectivity, and their effort levels vary through time. In addition, fish availability affects realised selectivity, since fishing effort varies spatially, and elasmobranch populations are usually spatially structured. Sexual segregation in space is a general characteristic of elasmobranchs (Wearmouth and Sims, 2008; Finucci et al., 2018), and spatial segregation between juveniles and adults is also commonly observed (e.g. Finucci et al., 2018; Gouraguine et al., 2011; Semba et al., 2013).

Moreover, selectivity has been estimated for very few elasmobranchs species. Most sharks are captured in longline fisheries (Shark Working Group, 2014), where two types of curves are often assumed (Hovgard and Lassen, 2000): dome-shaped and sigmoid (logistic). For example, Rice and Harley (2013) assumed the selectivity for the longline bycatch of Silky sharks to be dome shaped with a maximum at body length 172 cm . Selectivity for the target longline fishery (targeting the Silky sharks) was also assumed to be dome shaped but with maximum selectivity value that ranged from 168 cm to 204 cm . The selectivity for purse seine unassociated sets was assumed to be logistic with size at inflection of 64 cm . For oceanic whitetip sharks, Rice and Harley (2012) assumed that the longline bycatch fishery selectivity increased with age and remained at the maximum once attained. Selectivity for the target longline fishery was assumed to be dome shaped with a maximum selectivity value at 180 cm . Selectivity for purse seine associated sets were assumed to be logistic with size at inflection of 110 cm .

The logistic curve may be more typically assumed for longline for other species. For example, a study fitted the logistic size selectivity model to Blue shark catch-at-length data from 17 fleets operating in the North Pacific Ocean (Carvalho and Sippel, 2016). The majority of these fleets were longline. The selectivity at length / is modelled as
$S_{l}=\frac{1}{1+e^{-s_{a}\left(L_{l}-S_{50}\right)}}$
Where S_{a} is the slope parameter, L_{l} is the pre-caudal length, and S_{50} is the length at which 50% of individuals encountered the gear are hooked. Across the 17 fleets, S_{a} ranges from 4.05 to 11.37 (mean $=7.46, \mathrm{sd}=2.29$) and S_{50} ranges from 66.27 to 167.62 ($\mathrm{mean}=126.02, \mathrm{sd}=28.44$).

Based on these studies, we assume a logistic curve for Blue shark selectivity and use the means of the estimated S_{a} and $S_{\text {I }}$ from Carvalho and Sippel (2016) study. Because the slope parameter was not provided for Silky shark and Whitetip shark in Rice and Harley $(2012,2013)$ reports, we assume a knife-edge selectivity at 64 cm and 110 cm for these two species respectively.

2.2 Estimating natural mortality rate

Natural mortality M is an essential parameter for Methods 1, 2, and 4 presented below. For most fish species (both teleosts and chondrichthyes), M is typically derived from other life history parameters. Although M is available from literature for most stocks (12 out of 16), we are unsure whether they are directly measured (e.g. from tagging studies, telemetry, or catch curve analysis) or indirectly estimated from other life-history parameters, and in particular whether these values are accurate. A range of indirect M estimators have been proposed for information-limited species. Kenchington (2014) reviewed 29 of these estimators and proposed a new alternative that requires an estimate of effective sample size in addition to other life-history parameters. He found that none of the 30 can provide accurate estimates for every species, while several perform so poorly as to have no practical utility.

Recently, Then et al. (2015) compared different approaches and recommended two basic equations, one based on the maximum life span, $t_{\max }$, and the other one based on von Bertalanffy growth parameters, K and $L_{\text {inf }}$. These equations were modified or improved from similar equations that had been widely used, such as Hoenig (1983) and Pauly (1980) methods, and were not included in Kenchington (2014) review. Then et al. (2015) concluded that a $t_{\max }$ based estimator performed the best among all estimators evaluated. In our first version of this report, we used the two Then's equations with unequal weight using the inverse prediction error. However, the results from
applying the two equations to the 15 WCPFC stocks indicated that the $t_{\max }$ based estimator often produced unrealistically large M. The problem may arise from both the estimator itself, and the input $t_{\max }$ which may have been frequently underestimated. Furthermore, many of the indirect methods were developed almost entirely from teleosts. Elasmobranchs have lower fecundity, larger body size at birth, slower growth, later maturity, and longer life span than most teleosts, so many of these indirect methods largely based on teleosts may be inappropriate for elasmobranchs. A study from 29 elasmobranch species showed that the most common methods in elasmobranch literature appeared to be overestimating M by factors of $1.34-1.91$ (Moe, 2015). It is well recognized that many popular estimators widely used for teleosts are less useful for elasmobranchs (Simpfendorfer et al., 2005; Kenchington, 2014b; Moe, 2015).

In this updated version, we selected six estimators that were either recently developed or specifically formulated for elasmobranchs. Hence, including natural mortality adopted from literature, we have a total of seven methods for deriving M :
(1) $M=a t_{\text {max }}^{b}=4.899 t_{\text {max }}^{-0.916}$
(Eqn 2a, Then1)
(2) $M=a K^{b} L_{\text {inf }}^{c}=4.118 K^{0.73} L_{\text {inf }}^{-0.33}$
(Eqn 2b, Then2)
(3) $\ln (M)=0.42 \ln (K)-0.83$, or $M=0.463 K^{0.42}$
(Eqn 2c, Frisk1)
(4) $M=\frac{1}{0.44 t_{m a t}+1.87}$
(Eqn 2d, Frisk2)
(5) $M=\frac{1.65}{t_{\text {mat }}-t_{0}}$
(Eqn 2e, Hisano)
(6) $M= \begin{cases}\frac{K}{1-e^{-K\left(t-t_{0}\right)}}, & t<t_{S} \\ \frac{K}{a_{0}+a_{1}\left(t-t_{s}\right)+a_{2}\left(t-t_{s}\right)^{2}}, & t \geq t_{s}\end{cases}$

$$
\text { where }\left\{\begin{array}{l}
a_{0}=1-e^{-K\left(t_{s}-t_{0}\right)} \\
a_{1}=K e^{-K\left(t_{s}-t_{0}\right)} \\
a_{2}=-\frac{1}{2} K^{2} e^{-K\left(t_{s}-t_{0}\right)}
\end{array}\right.
$$

(Eqn 2f, Chen)
and $t_{s}=-\frac{1}{K} \ln \left|1-e^{K t_{0}}\right|+t_{0}$
(7) M from literature.

In these equations, $t_{\max }$ is the maximum life span, $K, L_{\text {inf }}$, and t_{0} are von Bertalanffy growth parameters, $t_{\text {mat }}$ is age at maturation, t_{s} is age when senescent growth phase begins.

Eqns 2a and 2b were proposed by Then et al. (2015) (we refer them as Then1 and Then2). Although their study focused on improving the estimation of M for both teleosts and elasmobranchs, only four elasmobranchs (all in order Carcharhiniformes) were included in the data of a total 230 species. The $t_{\max }$-based equation had a mean prediction error $=0.32$ (defined as the root-mean-square between the cross-validation predicted M and the true value), $\operatorname{sd}[a]=0.11$, and $\operatorname{sd}[b]=0.02$ across all species; the growth-based equation had a prediction error $=0.60, \operatorname{sd}[a]=0.80, \operatorname{sd}[b]=0.08$, and $\operatorname{sd}[c]=0.08$ across all species (Then 2015).

Eqns 2c, 2d, and 2e were developed specifically for elasmobranchs. Frisk et al. (2001) obtained Eqns 2c and 2d (referred to as Frisk1 and Frisk2) through regression of data from 30 elasmobranchs species in nine families. Eqn 2e was modified from a widely used Jensen (1996) estimator, $M=$
$1.65 / t_{\text {mat }}$. This estimator was extended from a theoretical work by Roff (1984). Roff established life history correlations for teleosts by incorporating the von Bertallanffy growth function where t_{0}, the age when an individual would have been of length 0 , was set to 0 . As length at birth is usually small for teleosts, assuming $t_{0}=0$ has little impact on other life history parameters. However, size at birth is much larger for elasmobranchs than teleosts. Hence, Hisano et al. (2011) modified Jensen's estimator by including t_{0} (referred to as Hisano). For example, for the 16 WCPFC shark stocks the mean $t_{\text {mat }}$ is 10.26 yrs while the mean t_{0} is -3.46 yrs . Using Jensen's estimator would overestimate M by 34%. As no variance estimates were provided for the three equations in the original papers, we assumed a CV = 0.2 for the process error as in (Quiroz et al., 2010).

Eqn $2 f$ is an age-dependent estimator developed by Chen and Watanabe (1989) (referred to as Chen). This method was one of the five indirect estimators recommended for elasmobranchs (Moe, 2015) because it was relatively conservative than others while many estimators tended to produce upward biased estimation. To obtain a single M for the stock, we took the mean of the estimated M between age 1 and $t_{\max }$. Again, we assumed a CV $=0.2$ for the process error.

Uncertainty is an important factor affecting the reliability of the estimated natural mortality. Measurement error in life history parameters can be substantial due to factors such as ageing bias and error, fishing selectivity, and unrepresentative sampling across spatially separated life history stages. Process error can also be substantial and likely larger than the prediction error associated with each equation, since the values used to derive the equations are themselves uncertain but treated as known.

We took uncertainty into account at two levels: measurement error in each life-history parameter (i.e., $t_{\text {mat }}, K, L_{\text {inf }}, t_{0}$, as well as M from literature, except $t_{\max }$), and the process error of the $M^{\sim} \operatorname{LHP}(s)$ relationship in Eqns 2 a to 2 f . If $t_{\max }$ has multiple values from different studies, the maximum value was used. For other life history parameters, uncertainty was evaluated through Monte Carle simulation of 10,000 random samples at each level. At the parameter level, results from multiple studies were provided in two forms in the Clarke et al. (2015) report: a vector of single measurements and a range from low to high. For measurements in a vector we took 10,000 random samples (with replacement) from the vector. For range values we generated 10,000 samples by assuming a uniform distribution from low to high values. We used Pacific Ocean studies except when a particular parameter was not available from the Pacific, in which case the alternative estimate from another region (e.g. Atlantic Ocean or Indian Ocean) was used. These cases are noted in the results section. All study sources and all seven methods were given the same weight. For process error, estimated variances in the original studies (Then et al. 2015) or an assumed CV $=0.2$ (Quiroz et al., 2010), when variance was not available, were used to generate parameter distributions. Using multiple methods to avoid bias resulting from either life history parameters or M estimators concurs with the general recommendations of previous studies (Simpfendorfer et al., 2005; Brodziak et al., 2011; Zhou et al., 2011; Kenchington, 2014a). Note that Eqn 2 differs from those used in Zhou et al. (2011) since the updated Eqn 2a and Eqn 2b were not available then, and their assessment did not focus on elasmobranchs.

After obtaining natural mortality estimates, we proceeded to the methods for deriving reference points.

2.3 Methods for estimating reference points

Ideally, reference points (RPs) should be defined for both biomass and fishing mortality. This is a common practice for target species. Examples of biomass-based (B-based) reference points include $B_{m s y}, B_{m e y}, B_{l i m}, B_{p a}, x \% S S B_{0}$, etc., while corresponding F-based RPs are $F_{m s y}, F_{m e y}, F_{l i m}, F_{p a}$, and $F_{x \%}$. Bbased RPs play a fundamental role in fisheries management because biomass and its composition (i.e., sex, size, and age structure) ultimately determine stock sustainability and fishery production. Unfortunately, B-based reference points are more difficult to estimate than F-based RPs and are typically obtained through stock assessment modelling using a range of data. Fishing mortality, on the other hand, is directly controlled by management. Long-term management of fishing mortality will shape the level and structure of population biomass. Theoretically, under stable environmental and biological conditions, applying fishing mortality rate at a fixed level, such as $F=F_{m s y}$, year after year, will lead to $B=B_{m s y}$ regardless the starting biomass level. The duration to reach this equilibrium state depends on the productivity of the stock and the level of its starting biomass. F-based RPs are relatively easier to estimate because alternative approaches can be used in addition to stock assessment models.

The level of stock depletion, $B_{c u r} / B_{0}$, is an important concept in fisheries management. A pre-defined depletion ($\mathrm{x} \% \mathrm{~B}_{0}$), expressed as a ratio with values from 0 to 1 , is technically a B-based RP. Depletion may be estimated without traditional stock assessment modelling. For example, a simple catch trend analysis was developed for determining stock status by comparing annual catch to the historical maximum catch (Froese and Kesner-reyes, 2002; Pauly, 2008). This method has received widespread criticism (Branch et al., 2011; Daan et al., 2011). Additional research on this method has been undertaken (Anderson et al., 2012; Carruthers et al., 2012), but using catch data alone to classify fisheries status continues to be debatable (Froese et al., 2012; Cook, 2013; Pauly et al., 2013). Recently, Zhou et al. (2017) used the RAM Legacy database and developed a boosted regression tree (BRT) model to correlate depletion with a range of easily available predictors. However, this method may have a low prediction accuracy for some stocks and requires time series of catch data that are not available for most WCPFC elasmobranchs. Due to these limitations, this report focuses on Fbased RPs.

Two main types of reference point are used for commercial species, and considered in relation to both pressure (fishing mortality) and state (biomass level). The target reference point (TRP) is typically an MSY-related quantity, and the limit reference point (LRP) is defined as the level of biomass or fishing mortality at which the risk to the stock (in terms of recruitment impairment) is regarded as unacceptably high. A proxy value for the LRP of 20% of the unfished spawning biomass is often used for productive stocks such as tuna (for example in Australia and New Zealand). The WCPFC adopted a benchmark 20% SB dynamic $10, ~ u n f i s h e d ~$ as the limit biomass reference point for target species (20% of the average theoretical level of spawning biomass that would be present during recent 10 years with no fishing) (Clarke and Hoyle, 2014). If $B_{M S Y}$ can be reliably estimated and is above $B_{40 \%}$, then $0.5 B_{M S Y}$ may be an appropriate alternative LRP (Dowling et al., 2008; Sainsbury, 2008). For less productive stocks (such as some sharks), more conservative biomass LRPs may be adopted - $B_{30 \%}$ and associated fishing mortality $F_{30 \%}$ being advocated as best practice in some cases (see Sainsbury, 2008). Because available information varies between stocks, and the reliability of stock assessments, if available, also varies, the following tiered framework has been recommended (Clarke and Hoyle, 2014):
(1) For those elasmobranchs evaluated using a stock assessment model for which there is confidence that the stock-recruitment relationship is appropriately specified, use a fishing mortality-based LRP of $F_{m s y}$;
(2) In cases where a stock assessment model was used but the stock-recruitment relationship is highly uncertain, also consider SPR-based LRP such as $F_{60 \% \mathrm{SPR}}$;
(3) When stock assessments are not available, or when the results are not considered robust, use risk-based fishing mortality LRP benchmarks ($F_{m s m}$, $F_{\text {lim }}$ and $F_{\text {crash }}$), as used in Australia (Zhou et al. 2011).

The method we used for deriving risk-based reference points assumed that the population dynamics could be described by a Graham-Schaefer production model where $F_{m s m}=F_{m s y}, F_{\text {lim }}=1.5 F_{m s m}$, and $F_{\text {crash }}=2 F_{m s m}=r_{\max }$ (Zhou et al., 2011). These three reference points were adopted in this report. The acronym "msm" stands for "maximum sustainable mortality" for non-retained bycatch, but it is equivalent to MSY for commercial species. Hence $F_{m s m}$ is identical to $F_{m s y}$. In addition to the recommendation and the requirement set out in the terms of reference, we used four methods to estimate reference points. Method 1 was based on the empirical relationship between $F_{m s y}$ and life history parameters, which corresponded to Methods ii to vi in Zhou et al. (2011), except that we used M estimators that have been recently updated or tailored for elasmobranchs. Method 2 used a demographic model, the Euler-Lotka equation, to derive the intrinsic population growth rate r, and assumed $F_{m s m}=0.5 r$. Method 3 used r from the literature, which was identical to Method in Zhou et al. (2011). Method 4 was based on the spawning potential ratio approach and did not directly refer to msm or msy, which distinguished it from Methods 1 to 3.

2.3.1 Method 1: empirical relationship

An empirical relationship between biological reference points based on fishing mortality ($F_{B R P}$) and life-history parameters (LHPs) was developed from a meta-analysis of 245 data-rich fish species worldwide (Zhou et al., 2012). It was found that natural mortality M was the most important LHP affecting $F_{B R P}$. The relationship may vary among taxonomic groups. For example,
(1) $F_{m s m 1}=0.87 \mathrm{M}(\mathrm{SD}=0.05)$ for teleosts
(2) $F_{m s m 1}=0.41 \mathrm{M}(\mathrm{SD}=0.09)$ for chondrichthyans

In addition to the two-level uncertainty in M as described in "Estimating natural mortality rate", Eqn 3 involves a third level of uncertainty: process error between $F_{B R P} \sim M$. Again, we derived statistics of $F_{m s m 1}$ from simulation of 10,000 random samples. The empirical relationship approach corresponded to methods ii to vi for sustainability reference points in the SAFE (Zhou et al., 2011). Eqn 3 is comparable to recent study by Cortés and Brooks (2018) who recommended that for low productivity species, such as many shark stocks, the $F_{m s y} / M$ ratio should not exceed ≈ 0.4.

2.3.2 Method 2: Euler-Lotka equation (or demographic model)

The ability of a species to withstand fishing mortality is determined by its intrinsic ability to increase its population. The intrinsic population growth rate, denoted as $r_{m}, r_{\text {max }}$, or simply r, can be estimated by different methods. This is a growth parameter r in the Graham-Schaefer production model. However, for sharks it is more commonly derived from the Euler-Lotka equation because life-history parameters are relatively easier to obtain than time series of population and fisheries data. The
original Euler-Lotka equation has been modified in various ways and has been incorrectly used in some studies (see discussion in Cortés, 2016; Pardo et al., 2016). The following (correct) equation is commonly used for sharks (Skalski et al., 2008; Cortés, 2016; Pardo et al., 2018):
$e^{r t_{m a t}}-e^{-M}\left(e^{r}\right)^{t_{m a t}-1}-f l_{m a t}=0$
Where $t_{\text {mat }}$ is age at first breeding, f is constant annual fecundity, $I_{\text {mat }}$ the cumulative survival from age 0 to age at maturity. Assuming constant natural mortality leads to $l_{m a t}=e^{-M t_{m a t}}$. Equation (4) is equivalent to a model for estimating the limits of fishery exploitation (Myers and Mertz, 1998) when it assumes vulnerable age to fishing gear is 1. Age at recruitment is available for 5 out of the 16 WCPFC stocks reported in Clarke et al. (2015): BSH-N, SMA-N, SMA-S, LMA, and POR. All are suggested to be vulnerable to fishing at ages between 0 and 1 (however, see selectivity study for BSH below).

Solving equation (4) for r requires $t_{\text {mat }}, M, f$, as well as the reproduction cycle $R c$ because f is annual fecundity which consists of the mean reported litter size (ls) and reproductive frequency, such that f $=I s / R c / 2$ to account for female pups only. In this equation, r increases as $t_{m a t}$ reduces, or M reduces, or f increases, or Rc reduces. Both Methods 1 and 2 depend on M, but the effect of M is opposite in the two methods.

We treated the parameter uncertainty in the same way as in Method 1, i.e., using Monte Carlo resampling for point values and assuming uniform distribution for range values, and giving the same weight to each study. The final distribution was based on 10,000 random samples, whether the value was positive or negative. Again, according to a logistic production model
$F_{m s m 2}=r / 2$

2.3.3 Method 3: Intrinsic population growth rate from literature

Three types of population growth rates were reported in the literature assembled in Shark Life History Expert Panel Workshop (Clarke et al., 2015): r, λ, and $r_{Z(m s y)}\left(=r_{1.5 \mathrm{M}}\right)$. Unlike some basic life history parameters, fish population growth rates are always model estimates. By adopting these estimates we assumed that the original modelling in the literature was reasonable. We converted λ and $r_{Z(m s y)}$ to r by $r=\log (\lambda)$ and $r=2 r_{Z(m s y)}$ (Cortés, 2016). Again, parameter uncertainty was handled in the same way as in Method 1. The primary reference point is $F_{m s m 3}=r / 2$ as in Eqn 5.

2.3.4 Method 4: Spawning potential ratio (SPR)

Reference points based on spawning stock biomass per recruit (or spawning potential ratio, SPR) have been used or suggested for data-limited fisheries (Pope, 2000; Le Quesne et al., 2012; Clarke and Hoyle, 2014; Prince et al., 2015; Hordyk et al., 2016). Spawning potential ratio is estimated as (Goodyear, 1993):
$S P R=\frac{S S B R_{\text {fished }}}{S S B R_{\text {unfished }}}$
Where SSBR is the spawning stock biomass per recruit. SPR is similar to yield per recruit (YPR) and estimated for only a single cohort, so does not consider a stock-recruitment relationship. Assuming a constant year class, SSBR can be obtained by following a cohort through their entire life from growth, maturation, natural and fishing mortality rates, to the end of their maximum life span. The required information includes: growth parameters (i.e., $K, L_{\text {inf }}$, and t_{0}), length at maturity $L_{\text {mat }}$ or
maturity ogive m_{o}, maximum age $t_{\max }$, length-weight relationship (power function parameters a and $b)$, and fishing gear selectivity curve. Other data may also be used, including the proportion of fishing mortality that occurs before spawning, and the proportion of natural mortality that occurs before spawning. Clearly, the SPR approach requires more inputs than the other three methods. In particular, selectivity and maturity ogives are typically unavailable for data-poor elasmobranchs. Amongst the 16 stocks in the WCPFC region, only four stocks have maturity ogive information (i.e., BSH-N, SMA-N, FAL, and SPL). Furthermore, we only found one study on gear selectivity for Blue Shark (Carvalho and Sippel, 2016) and assumed selectivity and its function form for Silky shark and oceanic Whitetip shark. Therefore, this method was applied to these three stocks only (we assumed OCS had the same m_{o} as BSH-N as they had similar $L_{m a t}$ (values for both species largely overlapped each other, with a mean $L_{m a t}=192 \mathrm{~cm}$ for BSH-N and mean 196 cm for OCS, respectively).

Unlike MSY-related reference points, the benchmark for SPR is the depletion level of spawning biomass per recruit, typically set as $F_{35 \%}$ to $F_{40 \%}$ as a proxy for $F_{m s y}$, that is, fishing mortality that depletes spawning biomass per recruit down to $35 \%-40 \%$ of unfished level (Gabriel and Mace 1999). It is worth to point out that although SPR refers to spawning biomass, this biomass is not the biomass of the population but a relative value, in terms of "per recruit". Any arbitrarily number, such as 1 or 1000 fish, can be used as the initial population size to derive SPR. Reference points derived from SPR, generally expressed as $F_{x \%}$, are also F-based rather than B-based reference points. They refer to the fishing mortality that corresponds to the percentage of depletion in spawning biomass from an unfished level on a "per recruit" basis.

SPR requires a link between $F_{x \%}$ and $F_{m s y}$ and there has been extensive research on the particular x\% as proxy for $F_{m s y}$. For example in a review of biological reference points for precautionary approaches, Gabriel and Mace (1999) recommended that fishing mortality rates in the range $F_{30 \%}$ to $F_{40 \%}$ be used as general default proxies for $F_{m s y}$, in cases where the latter cannot be reliably estimated. In the absence of data and analyses that can be used to justify alternative approaches, they recommended that $F_{30 \%}$ be used for stocks believed to have relatively high resilience, $F_{40 \%}$ for stocks believed to have low to moderate resilience, and $F_{35 \% \text { SPR }}$ for stocks with "average" resilience. It is becoming increasingly difficult to justify MSY-compatible targets less than $30-40 \% B_{0}$, so $F_{45 \%}$ is recommended for low productivity stocks in New Zealand (Ministry of Fisheries, 2011). Here we provided three reference points: $F_{60 \%}, F_{40 \%}$, and $F_{10 \%}$. We were unable to investigate what fraction of $F_{\text {msy }}$ the SPR-based $F_{60 \%}, F_{40 \%}$ and $F_{10 \%}$ may correspond to as this requires a stock-recruitment relationship and may differ from species to species. To integrate multiple methods, we tentatively treated $F_{60 \%}$ as $F_{m s m}, F_{40 \%}$ as $F_{\text {lim }}$, and $F_{10 \%}$ as $F_{\text {crash }}$.

2.3.5 Joint reference points

The results from multiple methods were combined to give a more balanced estimation. Depending on the available information, two to four methods were applied to each stock and each method was given the same weight. The combined reference points are $c F_{m s m}, c F_{\text {lim }}$, and $c F_{\text {crash }}$. Similar to the dilemma encountered in M estimation, using the combined RPs from multiple methods rather than choosing a single method is more likely to minimize bias (Simpfendorfer et al., 2005; Brodziak et al., 2011; Kenchington, 2014c; Moe, 2015). However, the SPR approach concerns a single cohort and disregards the stock-recruitment relationship, and is only applied to three stocks. As the development of SPR strategy mainly concerned obtaining a large fraction of the MSY in the long term and biomass levels were not considered important (Clark, 2002), we recommend using joint RPs from Methods 1 to 3 only for the WCPFC stocks.

2.4 Results of natural mortality estimation

Comparison among the seven estimators of natural mortality (the last estimator adopts values from literature) indicated that the first two estimators, Then1 and Then2, differed markedly from other estimators for most stocks (Figure 1). Eqn 2a (Then1) based on $t_{\text {max }}$ yielded larger M than the average for all stocks except Porbeagle shark (Table 2). On average, M from Then1 was 1.23 times higher than the mean value of all seven approaches. In contrast, Eqn 2b (Then2) based on growth parameters yielded smaller M than the average for all stocks except Porbeagle shark (Table 2). On average, M from Then 2 was only 71% of the mean value of all seven approaches. The deviations in opposite directions from these two estimators may be seen as fortunate, as they offset each other.

It was interesting to see this stark disparity between the first two methods and other estimators. Then et al. (2015) is the most recent development in natural mortality estimation and was considered to have improved existing research.

2.5 Results of estimated reference points

(1) BSH-N: the Blue shark (Prionace glauca), North Pacific stock

This stock may be considered "data-rich" amongst the 16 shark stocks because there was sufficient information to apply all four methods. The posterior distributions of $F_{m s m}$ from the four methods largely overlapped each other (Figure 2), and the summary statistics were similar between methods. For example, the mean $F_{m s m}$ was $0.10,0.19,0.15$, and 0.14 for Methods 1 to 4 , respectively (Table 3). The r values from the literature (Method 3) were typically derived from demographic approaches so the results between Methods 2 and 3 should be close. We recognize that if the same life history parameters and the same form of Euler-Lotka equation were used in the literature (Method 3), then Method 2 would have simply duplicated Method 3.

It was interesting to see that $F_{60 \%}$ falls within the range of $F_{m s m}$ estimated by Methods 1 to 3. However, this does not imply that $F_{60 \%}$ is a proper proxy for $F_{m s m}$ for this stock because these methods may have used different age composition data. For example, the SPR method involved larger and older fish than Method 2. The mean S_{50} from 16 fleets catching Blue shark (Carvalho and Sippel, 2016) was 126.0 cm . This translated into a mean age of 2.77 ($s d=1.16$, ranging from 1.01 to 5.73 yrs) based on various von Bertalanffy growth parameters estimated for this stock. The demographic method implicitly assumed that recruitment age was 1 yr . If we used a knife-edge selectivity at age 2.77, the Euler-Lotka equation yielded a mean $F_{m s m 2}=0.258$ ($s d=0.127$), similar to $F_{40 \%}$.

Other reference points, i.e., $F_{\text {lim }}$ and $F_{\text {crash }}$, exhibited similar distribution patterns to $F_{m s m}$ (Figure 2) because they were essentially calculated from $F_{m s m}$, except for the SPR method. Because it was difficult to determine which one of Methods 1 to 3 was most reliable, we recommended using the combined results from all three methods, i.e., $\mathrm{c} F_{m s m}, \mathrm{c} F_{\text {lim }}$, and $\mathrm{c} F_{\text {crash }}$ in Table 4.

(2) BSH-S: the Blue shark (Prionace glauca), South Pacific stock

This stock had fewer life-history data available than the same species in the North Pacific. There was a lack of maturity ogive and gear selectivity information, so the SPR method cannot be applied. The reproductive cycle was also unknown. To use Method 2, we assumed that the reproductive
frequency was the same for the North and South stocks, i.e., 1 or 2 yrs (values from two studies, Clarke et al., 2015). There was no intrinsic rate of increase (r or λ) available for BSH-S in the Pacific and we used the alternative value of $r=0.34$ from the Clarke et al. (2015) report. With this borrowed information, the analysis resulted in mean $F_{m s m} 0.08,0.13$, and 0.17 for Methods 1 to 3 , respectively (Figure 3 and Table 4).

(3) SMA-N: the Shortfin mako shark (Isurus oxyrinchus), North Pacific stock

The estimated reference points differed considerably between methods (Figure 4), perhaps due to large variations in life history parameters from different studies. The mean $F_{m s m 2}$ was about $1 / 3$ of $F_{m s m 1}$ (Table 4). Reproductive cycle was one of the most uncertain parameters used in Method 2. Two studies found $R c=3$ yrs (Clarke et al., 2015), but a more recent study indicated a time shorter than 3 yr (Semba et al., 2011). Instead of using $R c=3 \mathrm{yr}$, we tested $R c=2$ and 1 yr with all other parameters remaining unchanged. The test led to a mean $F_{m s m 2}=0.03$ when $R c=2 \mathrm{yr}$ (same as $F_{m s m 3}$) and 0.05 for $R c=1 \mathrm{yr}$, which were closer to $F_{m s m 1}$.

(4) SMA-S: the Shortfin mako shark (Isurus oxyrinchus), South Pacific stock

Life-history parameters were very limited for the South Pacific stock compared to the North Pacific stock. There were no growth parameters ($K, L_{\text {inf }}$, and t_{0}), fecundity, reproductive cycle, and intrinsic population growth rate available. Another important life history parameter was maximum age $t_{\text {max }}$. This parameter had not been determined for SMA-S but was considered to be greater than 29 yrs for males and greater than 28 yrs for females (Clarke et al., 2015). We used $t_{\max }=29$ for both sexes and assumed that growth parameters, reproductive parameters, and intrinsic population growth rate were the same as SMA-N. Such information borrowing resulted in a wide distribution of $F_{m s m 2}$ (Figure 5) and a very small mean $F_{m s m 2}$ (0.002 rounded to 0.00 in Table 4). The inputs may have led to overestimation of M and consequentially overestimating $F_{m s m 1}$ but underestimation of $F_{m s m 2}$.

(5) LMA: the Longfin mako shark (Isurus paucus)

Longfin mako shark had very few life-history parameters available, i.e., no other information except length at birth, length at maturity, and litter size. There were also no alternative parameters available from other regions. The limited information was insufficient to apply any method.

(6) FAL: the Silky shark (Carcharhinus falciformis)

The early studies reported that Silky shark longevity ranged from 8 to 16 yrs (mean =12.67) (Clarke et al., 2015). This range differed markedly from alternative $t_{\max }$ in other regions (30, 32, 19, and 20 yrs , mean=25.25). Using the smaller $t_{\max }$ from the Pacific resulted in large $F_{m s m 1}$ by Method 1 (likely overestimation) and small $F_{m s m 2}$ by Method 2 (likely underestimation). So for this stock we used the newly estimated life history parameters, including $t_{\max }(28 \mathrm{yr}), t_{\text {mat }}, L_{\text {inf }}, K, t_{0}, L_{\text {mat }}$ (Grant et al., 2018). These new values and a knife-edge selectivity at 64 cm total length led to reasonably similar reference points from the four methods (Table 3, Figure 6). For example, $F_{m s m}$ (or $F_{60 \%}$) was 0.06, $0.07,0.07$, and 0.03 for Methods 1 to 4, respectively.
However, as discussed in BSH-N, we recommended using the combined RPs from Methods 1 to 3 (Table 4). The combined mean $c F_{m s m}$ was 0.06 and mean $c F_{\text {lim }}$ was 0.09 .

(7) OCS: the oceanic whitetip shark (Carcharhinus longimanus)

No estimate of the intrinsic rate of increase was available for the Pacific for OCS so we borrowed estimated r from Atlantic and Indian Oceans (Clarke et al. 2015). Similar to FAL, a knife-edge selectivity at 175 cm total length was assumed for OCS. The longevity estimates came from two studies and differed markedly: 11 yrs and 36 yrs . We used $t_{\max }=36$. The estimated reference points were not too far apart (Figure 7). The mean $F_{m s m}$ was $0.07,0.12,0.06$, and 0.05 from Methods 1 to 4 (Table 3). Again, we recommended using Methods 1 to 3 where the combined mean $c F_{m s m}$ was 0.08 and the mean $c F_{\text {lim }}$ was 0.12 (Table 4).

(8) BTH: the Bigeye thresher shark (Alopias superciliosus)

The estimated intrinsic rate of increase λ by demographic analysis from the literature was 0.996 (ranging between 0.0978 and 1.014)(Cortés, 2002; Clarke et al., 2015). This suggests that the Bigeye thresher shark in the Pacific would suffer a negative population growth rate even with no fishing. Longevities of 21 yrs for females and 20 yrs for males were based on the largest observed sizes. There was no reproductive cycle information available for BTH so we assume $R c=1 \mathrm{yr}$.

Recently, Fu et al. (2018) used the longevity of 22 yrs for females in the Atlantic in their demographic analysis. If we used $t_{\max }=22 \mathrm{yrs}$ for both males and females (all other parameters from the Clarke et al. (2015) report), the estimated mean $F_{m s m}$ was $0.07,-0.01$, and 0.004 (rounded to 0.00) for Methods 1 and 3, respective, and the combined result of $c F_{m s m}$ was 0.02 (Figure 8, Table 4).

(9) PTH: the Pelagic thresher shark (Alopias pelagicus)

There was also no reproductive cycle information available for PTH so we again assumed $R c=1 \mathrm{yr}$. The estimated reference points varied between the three methods, with mean $F_{m s m}$ of $0.06,0.02$, and 0.03 for Methods 1 to 3 (Table 4, Figure 9). The longevity from literature ranged from 14 to 28.5 and we again used the maximum value. The estimated natural mortality may have played a role in causing the disparity between Methods 1 and 2 . The method based on $t_{\max }$ (Eqn 2a) yielded a larger M (mean $=0.23$) than the method based on growth (Eqn $2 b)$ (mean $=0.13$) and M from other estimators. It was unclear whether the maximum $t_{\max }$ was still biased low. Conventional techniques to resolve growth rings in older shark can be very unreliable. The revision of longevity in white sharks would seem to be a good example of the potential underestimation of longevity (Hamady et al., 2014).

(10) ALV: the Common thresher shark (Alopias vulpinus)

The $t_{\text {max }}$ came from two studies: 25 yrs and 15 yrs . Using the larger value $0 f 25$ yielded mean $M=$ 0.26 and 0.12 from Then1 and Then2 estimators. The former is the largest and the latter the smallest amongst the seven estimators (Figure 1). All three methods produced moderately similar reference points for ALV (Table 4, Figure 10). Again, the combined mean $c F_{m s m}$ of 0.07 was more balanced estimate than the individual estimate from Methods 1 to 3 (mean $F_{m s m}=0.08,0.07$, and 0.05, respectively).

(11) POR: the Porbeagle shark (Lamna nasus)

Only two methods were applied to Porbeagle shark, as there was no estimated intrinsic population growth rate in literature (Table 4). The estimated M was more similar between the seven methods than many other species (Figure 1). Recently, Hoyle et al. (2017b) conducted a stock-assessment for the southern hemisphere porbeagle shark and used updated LHPs since the Clarke et al. (2015) report. We used their data (in their Table 2, e.g., $t_{\max }=75, t_{m}=14.5, L_{\text {inf }}=211, K=0.086$, and $M=$ 0.09). The estimated mean $F_{m s m}$ was 0.05 and 0.03 for Methods 1 and 2, respectively (Figure 11).

(12) SPZ: the Smooth hammerhead shark (Sphyrna zygaena)

Only two methods were applied to the Smooth hammerhead shark, as there was no estimated intrinsic population growth rate in literature (Table 4, Figure 12). Moreover, there was also no age at maturity t_{m} and longevity $t_{\max }$ from the Pacific Ocean, no reproductive cycle Rc and estimated natural mortality rate M from the Pacific or other regions. To apply Method 2, we used alternative parameters t_{m} and $t_{m a x}$, and again assume $R c=1 \mathrm{yr}$. These treatments led to a mean $F_{m s m}$ of 0.07 and 0.03 for Methods 1 and 2 , respectively, with a mean $c F_{m s m} 0.05$.

(13) SPL: the Scalloped hammerhead shark (Sphyrna lewini)

The $t_{\text {max }}$ significantly differ between males (21 yrs) and females (35 yrs) and we used 35 yrs for both sexes. The estimated reference points (e.g., mean $F_{m s m}=0.06,0.06$, and 0.03) from the three methods were relatively comparable (Table 4, Figures 13) when compared with other species.

(14) SPK: the Great hammerhead shark (Sphyrna mokarran)

There was no estimated intrinsic population growth rate available for the Great hammerhead, so we used only two methods to derive reference points. Interestingly, this was one of a few stocks where Method 2 yielded a higher reference point (mean $F_{m s m 2}=0.09$) than Method 1 (mean $F_{m s m 1}=0.06$, Table 4, Figure 14). Although Eqn 2a still gave a larger M (mean 0.15) than Eqn $2 b$ (mean 0.10), the difference was smaller than for many other species.

(15) EUB: the Winghead shark (Eusphyra blochii)

There was no estimated natural mortality or intrinsic population growth rate available for the Winghead shark in the literature so only Methods 1 and 2 were used. The reproductive cycle was "seasonal", which we assumed to mean annual. The estimated M based on $t_{\max }$ (Eqn 2a) was again higher than the estimate based on growth parameters (Eqn 2b), i.e., mean M of 0.30 vs 0.18 . Compared with other stocks, the estimated reference points were relatively similar (Table 4, Figure 15). The mean $F_{m s m}$ was 0.08 and 0.11 for Methods 1 and 2 , respectively, with a mean $c F_{m s m} 0.09$.

(16) RHN: the Whale shark (Rhincodon typus)

There was no estimated intrinsic population growth rate, natural mortality nor reproductive cycle in the literature. Some parameters (e.g., longevity, maximum length, age at maturity) were observed values (e.g. $t_{\text {max }}$ includes maximum observed number of growth band pairs), or estimated from very
small samples. To apply Method 2 , we assumed $R c=1 \mathrm{yr}$. The estimated M based on growth parameters was very small compared to M based on other estimators (mean 0.03 vs 0.08), but the average of 0.08 was smaller than for other species. The low natural mortality contributed to a low $F_{m s m 1}$ (mean 0.03) and a high $F_{m s m 2}\left(\right.$ mean $\left.F_{m s m 2}=0.11\right)$ (Table 4, Figure 16).

2.6 Discussions on F-based reference points

2.6.1 Comparison between methods

Method 1 based on empirical relationships were applied to all 15 stocks (except Longfin mako shark). Although we also applied Method 2 (demographic analysis) to all 15 stocks, we had to borrow some life history parameters from other regions for some stocks and make assumption about the reproductive cycles for several stocks. Comparison of these two methods shows that they provide similar mean RPs (Figure 17). For example, the mean RPs across the 15 stocks are nearly identical between the two methods: 0.06 vs 0.07 for $F_{m s m}, 0.10$ vs 0.10 for $F_{\text {lim, }}$, and 0.13 vs 0.14 for $F_{\text {crash }}$, respectively. Both methods have the same number of stocks with a higher RP value than the other method (seven stocks plus one stock (SPL) in a tie). However, the estimated RP values can be different between the two methods and their correlation is low (Figure 18). The empirical method is less likely to yield extreme estimates than the Euler-Lotka equation (e.g., for SMA-S, BTH, and RHN). Method 1 also tends to produce smaller uncertainty than Method2, with an overall $\operatorname{SD}\left[F_{m s m 1}\right]=0.03$ compared to $\operatorname{SD}\left[F_{m s m} 2\right]=0.04$.

Method 3 based on intrinsic population growth rate from the literature was applied to 10 stocks. The result from this method is similar to Method 2. The correlation between Methods 2 and 3 (0.85) is much higher than correlation between Methods 1 and 2 (Figure 18).

Method 4 based on SPR was applied to three stocks. For the Blue shark in the North Pacific $F_{60 \%}$ appears to be a proper proxy for $F_{m s m}$ as the mean $F_{60 \%}=0.14$ is within the $F_{m s m}$ range estimated by Methods 1 to 3 (Table 3). Similarly, $F_{40 \%}$ is within the range of $F_{\text {lim }}$ estimated by Methods 1 to 3. However, $F_{10 \%}$ is too high compared to $F_{\text {crash }}$ from other methods.

For the Silky shark $F_{60 \%}$ appears to be a more conservative proxy for $F_{m s m}$ as the mean $F_{60 \%}=0.03$ is lower than the $F_{m s m}$ range estimated by Methods 1 to 3 (i.e. $0.06,0.07$, and 0.07). Instead, $F_{40 \%}(=$ 0.05) or slightly lower (e.g. $F_{35 \%}$) would be comparable to $F_{m s m}$, while $F_{10 \%}$ is close to $F_{\text {crash }}$ from other methods. The low values for these $F_{x \%}$ may be mainly caused by the knife-edge selectivity set at a low 64 cm.

Similar to BSH-N, for the Ocean whitetip shark it seems appropriate to use $F_{60 \%}$ as a proxy for $F_{m s m}$, $F_{40 \%}$ as a proxy for $F_{\text {lim, }}$, but $F_{10 \%}$ is too large for $F_{\text {crash }}$.

Overall it is difficult to conclude which method is the best across all species. Besides the effect of alternative methods, available life-history parameters and their quality have marked impact on the quality of the estimated reference points. Table 5 summarizes available data for each stock and the relative reliability of the derived reference points.

2.6.2 Uncertainty in life-history parameters

A close examination of the life-history parameters fed into the four methods reveals high uncertainty in life-history parameters. In particular, maximum age may have been underestimated
for most stocks because this parameter is either the observed or estimated maximum age from a population that has been fished for many years so fish at maximum age are no longer included in the sample. Sample sizes may also be inadequate (since the maximum of a distribution tends to increase at larger sample sizes), and sampling fisheries may have selected smaller, younger fish, either through gear selectivity or because they fish in areas where older sharks are not present. Moreover, recent studies show that the common method of ageing sharks and rays, counting growth zones on calcified structures, can substantially underestimate true age (Francis et al., 2007; Hamady et al., 2014; Harry, 2018). Underestimation of $t_{\max }$ leads to overestimation of natural mortality rate. Different studies were often found to produce a wide range of estimates for the same life history parameters (including $t_{\max }$). Large uncertainty in life history parameters leads to a wide spread of the estimated reference points, as evidenced in Figures 2 to 16. Greater precision in reference points cannot be achieved without greater precision in life-history parameter estimates.

We note that Method 2 is more likely to produce extreme estimates and even negative $F_{m s m 2}$. The reason behind this may be due to its use of more life history parameters and more assumptions. In addition to natural mortality which is used in Method 1, the Euler-Lotka equation requires age at maturity, annual fecundity, and reproduction cycle. It also requires the assumptions that survival from age 0 to the age at maturity is constant, and that knife-edge selectivity occurs at age 1.

Mean negative $F_{m s m 2}$ results from the estimated negative mean r (or $\lambda<1$). Although some of the LHPs are certainly problematic and are the most likely causes of the negative estimates, the negative values are theoretically valid, since it is possible for a population to suffer a period of negative growth even without fishing, perhaps due to adverse environmental conditions.

The bias in $t_{\max }$ and M has an opposite effect on Methods 1 and 2 (Figure 19, Figure 20). Interestingly, Method 2 exhibits counter-intuitive behaviour: the longer life span or lower natural mortality leads to higher sustainability. Hence, if the methods are used independently (not combined), we recommend using Method 1 as it shows an intuitive behaviour and is less likely to produce extreme values. Overall, it is recommended to use the combined estimates, i.e., $c F_{m s m}, c F_{\text {lim }}$, and $c F_{\text {crash }}$ from Methods 1 to 3 for risk-based reference points, instead of adopting a particular method, so the bias in the different methods can at least partially offset each other.

2.6.3 Effect of gear selectivity

Selectivity plays a significant role in all methods, because MSY-related RPs vary with the age/size composition of the fish used to derive the RPs. Method 1 is based on empirical relationships between $F_{m s y}$ and life-history parameters from formal stock assessments of data-rich stocks. The data used in formal stock assessment are gear-specific, meaning that catches by certain gear types are used for the assessment. Similarly, applying Method 1 implicitly involves an assumption that the estimated reference points go with the catches assuming the same selectivity. However, when a stock is impacted by multiple sub-fisheries with different selectivity, it is impractical to set different RPs for different sub-fisheries. In such cases, we need to assume that the selectivity in the data-rich stocks used to build the empirical relationship is similar to the overall selectivity in the multiple subfisheries.

On the other hand, the widely adopted demographic approach (Method 2) implicitly assumes that fish are vulnerable to the fishery at age 1 and equally vulnerable at all older ages. If the majority of fish are not captured until older ages, this method will underestimate RPs, regardless of whether other life-history parameters are accurate or not. It appears that the intrinsic population growth
rates in literature are often estimated from demographic analysis, suggesting that they are also likely underestimated if vulnerable age is greater than 1.

F-based reference points are both stock-specific and age-specific. The significance of age-specific $F_{B R P s}$ are often overlooked. The classic fisheries sciences focus on single stock assessments. A stock's capability to withstand fishing mortality depends on their age/size at recruitment, relative to maturity. For example, selectively harvesting only large fish that have spawned in their earlier life has a low impact on their population sustainability (if we ignore their potential disproportionate contribution to reproductive output (Barneche et al., 2018), fishing induced evolution (Law, 2000; Heino et al., 2015), and changes in ecosystem structure (Zhou et al., 2010; Garcia et al., 2012)). On the other hand, when fish enter fisheries at young ages, fishing mortality rate must be lower to allow a sufficient fraction of the population to reach maturity (noting that low F does not necessary translate to a low catch as catch also depends on biomass). Method 1 does not require selectivity (it assumes that selectivity is the same as those data-rich stocks used to derive the empirical relationship between $F_{\text {BRPs }}$ and LHPs), but an estimated or assumed selectivity is needed for Methods 2 to 4.

2.6.4 Spawning stock biomass per recruit approach

We have only applied the SPR approach to three stocks as required LHPs are not available for the other 13 stocks. Besides the concerns about uncertainty of input life history parameters and a lack of selectivity information, this "per recruit" approach fundamentally differs from other methods. A species' intrinsic productivity determines its ability to sustain fishing impact but the SPR approach basically ignores this critical trait. Extensive studies have examined the appropriate $F_{x \%}$ proxy for $F_{m s y}$, and a range from $F_{20 \%}$ to $F_{70 \%}$ have been suggested (see discussion in Brooks et al. 2010). It has been well recognized that SPR levels are related to the slope at the origin of stock-recruit curves, and that life history is an important consideration. However, the analytical relationship between SPR and the underlying stock-recruit curve had not been explicitly explored until the work of Brooks et al. (2010). They investigated the relationship between the slope of a stock-recruit function and the maximum excess recruitment (MER) in number of individuals. MER differs from MSY in two respects. First, MER is derived by solving for a maximum in numbers, whereas MSY is the maximum in weight. Second, MER is a property of the stock-recruit function, whereas MSY considers the combined effect of a given fishing mortality on YPR and the extent of excess recruitment (Brooks et al. 2010). For the Beverton-Holt SRR, the spawning potential ratio (SPR) at MER is $S P R_{M E R}=\frac{1}{\sqrt{\widehat{\alpha}}}$, where $\hat{\alpha}$ is the maximum lifetime reproductive rate at low density, a property of the slope b of SRR: $\hat{\alpha}=b \frac{S_{0}}{R_{0}}$, where R_{0} and S_{0} are recruits and spawners when the stock is unexploited. $F_{M E R}$ (corresponding to SPR $_{\text {MER }}$) is generally greater than $F_{\text {msy }}$, but both are comparable when steepness and natural mortality are relatively low (commonly the case for elasmobranchs). This study demonstrated that SPRx\% is a function of the stock productivity quantified as life time reproduction rate, which is a product of the slope at the origin of a stock-recruitment function and SPR when no fishing (Figure 21). In other words, to maintain stock biomass at certain $x \%$ of unfished level or of a reference point (i.e., $20 \% B_{0}$ or $10 \% B_{m s y}$) requires varying SPRx\% from species to species. Therefore, it is inappropriate to use a common $\mathrm{x} \%$ such as $F_{40 \%}$ for all stocks unless they have the same productivity. Indeed, Brooks et al. (2010) showed that SPR mer varied among 11 elasmobranchs, ranging from 0.26 to 0.89 .

The level of risk to sustainability varies between stocks due to their varying productivity and compensation (measured by r or the steepness parameter in the stock-recruitment relationship). Because SPR does not take the stock-recruitment relationship or population growth rate into account, choosing a particular $\mathrm{x} \%$ for a particular stock is more or less arbitrary. For example, $F_{40 \%}$ can maintain 40% spawning biomass relative to the unfished condition for a single cohort, but it may lead $\mathrm{SSB}_{\text {cur }} /$ SSB $_{0}$ (depletion level of actual spawning biomass) above or below this level depending on the stock's productivity or compensation. In other words, $F_{40 \%}$ can be very conservative for a productive stock but may be too risky for unproductive elasmobranchs. Unlike Methods 1 to 3 , a pre-defined $F_{\mathrm{x} \%}$ value lacks a theoretical basis. Note that a similar reference point based on maximum excess recruitment, SPR $_{\text {MER }}$, can be defined for each species if the steepness parameter is known (Brooks et al., 2010).

2.6.5 Approaches based on population growth rate

In contrast to the SPR approach, Methods 1 to 3 are based on population growth rate r, where $F_{m s m}$ corresponds to reducing stock biomass to $0.5 B_{0}$ in the Graham-Schaeffer production model if fishing mortality is maintained at this level for a long term. Amongst the three methods in this group, Method 1 may deserve some additional discussions. This method is based on established empirical relationship between $F_{B R P}$ and LHPs. In the established relationship, $F_{B R P}$ are estimated from stock assessment models for data-rich species, so it has taken into account the stock-recruitment relationship. Seeking a reliable correlation between $F_{m s y} \sim M$ has attracted extensive research. Because natural mortality is often derived from other life-history parameters, this relationship involves uncertainty at three levels: measurement error in LHPs used to derive M (e.g. $t_{\max }, K, L_{\text {inf }}$), process error in $M \sim \operatorname{LHP}(s)$ relationship, and process error in $F_{m s y} \sim M$ (or $r_{m} \sim M$) relationship. The first two levels uncertainty also occurs in Method 2 (Euler-Lokta equation) and Method 4 (SPR approach) as M is also needed for these methods, but the last level uncertainty is unique to Method 1 (but other methods also have their own unique uncertainties). Eqn 3 is for class Chondrichthyes in general, and the estimated coefficient can be different between orders in the same class (for example, Carcharhinifores has a smaller coefficient than Lamniformes) (Zhou et al. 2012). Cortes and Brooks (2018) suggest that the $F_{m s y} / M$ ratio should not exceed 0.4 for shark species. They further suggest that if the stock is harvested before reaching maturity, as a rule of thumb the $F_{m s y} / M$ ratio should not exceed $0.2,0.5$, and 0.8 for low, medium and high productivity stocks, respectively.

To validate the results from these studies, we examined the relationship between intrinsic population growth rate r_{m} and M using Euler-Lotka equation. Assuming litter size $=13.3$ (mean of the 14 stocks in this report, except very uncertain whale shark), and reproductive cycle of one year, we simulated maturation age from 5 to 40 years in Eqn (4) to obtain both r_{m} and M. Figure 22 shows a clear linear relationship between r_{m} and M when M is smaller than 0.17 , (i.e. $r_{m} \approx M \approx 2 F_{m s y}$) but r_{m} increases more quickly than M when $M>0.17$ ($F_{m s y}>0.5 M$). Because the change is less dramatic comparing to SPR in Figure 21, Method 1 based on natural mortality is more reliable than Method 4 based on SPR approach, although it may be slightly too conservative for many stocks.

Method 2 requires more LHPs than Method 1, which could be an advantage if these LHPs exist and are reasonable accurate. On the other hand, our results indicate this method is more likely to produce extreme estimates and even negative $F_{m s m 2}$. Using more life history parameters may absorb more uncertainty and more assumptions. For example, age at maturity, annual fecundity, and reproduction cycle required by Euler-Lotka equation may be difficult to obtain or highly uncertain.

The assumptions of constant M from age 0 and knife-edge selectivity at age 1 are also difficult to hold.

2.6.6 Theoretical basis for Methods 1 to $\mathbf{3}$

It is worthwhile to recall that the biomass dynamics model provides the technical foundation for the three RPs ($F_{m s m}, F_{\text {lim }}$, and $F_{\text {crash }}$) estimated by Methods 1 to 3 . Each RP has a corresponding equilibrium biomass: $B_{m s m}=0.5 B_{0}, B_{\text {lim }}=0.25 B_{0}$, and $B_{\text {crash }}=0$. In classical single-stock dynamics theory, if fishing mortality is maintained at one of the three F levels for a long time, the stock biomass will tend towards the corresponding B level regardless of the initial biomass level and the stock's productivity. However, these reference points do not directly relate to spawning biomass. It is more likely that $B_{l i m}$ is closer to 20% or $30 \% S B_{\text {dynamic } 10, \text { unfished }}$ than $B_{m s m}$ so $F_{\text {lim }}$ is recommended as the limit reference point for WCPFC bycatch, given the fact that the WCPFC has adopted a benchmark 20\%SB dynamic10, unfished as the limit biomass reference point ($F_{\text {lim }}$) for target species.

The Schaefer production model is a symmetrical curve, which assumes that the maximum yield occurs at $B_{m s y}=B_{0} / 2$. This model is widely accepted for teleosts, but there is a concern that the curve may not be symmetric for elasmobranchs. If this is the case, a general surplus production (PellaTomlinson) model (Pella and Tomlinson, 1969) may be more appropriate. However, the shape parameter is rarely available for most groups of animals, including sharks.

2.6.7 Management objectives and reference points for non-target species

The Convention on the Conservation and Management of Highly Migratory Fish Stocks in the Western and Central Pacific Ocean (CCMWCPO) stipulates management objective for target species to "maintain or restore stocks at levels capable of producing maximum sustainable yield, as qualified by relevant environmental and economic factors" (Article 5). This is simply MSY-based target and mirrors the objective in FAO Code of Conduct for Responsible Fisheries (CCRF) and UN Convention on the Law of the Sea (UNCLOS). In addition to a target, fisheries management often specifies limit reference points. Limit reference points are set primarily on biological grounds to protect the stock from serious, slowly reversible or irreversible fishing impacts, which include recruitment overfishing and genetic modification. The distinction between retained and by-catch species is a result of human values and utilisation, rather than one of biology or ecology. In that limit reference points are set to so as to prevent slowly reversible or irreversible biological impacts there is no biological basis for bycatch and retained species having different limit reference points (Sainsbury 2008). As such, for nontarget species, the CCMWCPO adopts "a view to maintaining or restoring populations of such species above levels at which their reproduction may become seriously threatened" (Article 10). Apparently, this view matches the limit reference point for target species. Hence, setting aside ecological interaction among species, the biological objective is consistent between target and non-target species.

In the present report, we developed three reference points ($F_{m s m}, F_{\text {lim }}$ and $F_{\text {crash }}$) rather than a single LRP. Providing multiple reference points is helpful as they explicitly link to the level of ecological risk as described in

Table 6 (Zhou et al. 2011). For this reason, we removed the word "limit" from the original title. These are the same reference points adopted for Bigeye thresher shark (Fu et al. 2018) and Porbeagle shark (Hoyle et al. 2017) where the three RPs are termed as maximum impact sustainable threshold (MIST) limit reference points (LRP). However, a particular stock cannot have three different "limit reference points". We must choose one out of these three as the LRP. For commercial species, $F_{m s y}$ is often a target reference point (TRP) and $F_{\text {lim }}$ a LRP (Sainsbury, 2008), although defining a TRP or LRP is not purely a scientific question but also a management and societal choice. Similarly, for bycatch species a limit reference point is essentially the acceptable level of risk to sustainability. From the scientific point of view, if we wish to reduce fishing impact on ecosystem structure and function (a key goal in Ecosystem-based fisheries management), it is more sensible to adopt a common and impartial benchmark for all competitive species in the same ecosystem, whether it is commercial species or bycatch species, than to treat them differently. From the management point of view, this is also a simpler procedure. This is similar to the previous recommendation for WCPFC elasmobranchs (Clarke and Hoyle, 2014). WCPFC has adopted 20% SB $_{\text {dynamic10,unfished }}$ as a LRP for target species. The notation $S B_{\text {dynamic10,unfished }}$ is adapted from $S B_{0}$, the virgin spawning biomass when there was no fishing. This biomass is fundamentally different from $S B_{S P R, \text { unfished, }}$, and is difficult to estimate without time series data and traditional stock assessment. Out of the three RPs ($F_{m s m}, F_{\text {lim }}$ and $F_{\text {crash }}$), $F_{\text {lim }}$ corresponds to $B_{\text {lim }}$ that is 25% of fishable virgin biomass B_{0} and is closer to 20% S $B_{\text {dynamic } 10, \text { unfished }}$ than the other two RPs. Therefore, in this study $F_{\text {lim }}$ corresponds most closely to the requirements of Article 10 of the CCMWCPO.

For the sake of discussion, the analysis in this report deals with each stock or species independently without taking ecological interactions into account. Because most elasmobranchs are typically high trophic level predators, the abundances of their prey species may have declined due to fishing, which may have already led to a proportional decline of these elasmobranchs from their unfished population size (Zhou and Smith, 2017). In addition to this bottom-up effect, any additional fishing mortality on predators will further reduce their biomass. Hence, accepting $F=F_{\text {lim }}$ will eventually drive population lower than $B_{\text {lim }}$ for top predatory sharks so adopting LRP $F=F_{\text {msy }}$ (corresponding to $B_{m s y}=50 \% B_{0}$) is more precautionary for elasmobranchs.

Incorporating reference points into management of non-target species has been adopted in some countries. In New Zealand, Ministry for Primary Industries has developed Spatially Explicit Fisheries Risk Assessment method (Ministry for Primary Industries, 2016), which is designed to estimate fisheries impact and reference points spatially for non-target species, and to inform risk management responses for these species. In Australia, a comprehensive Guide to AFMA's Ecological Risk Management has been developed for management of non-target species (AFMA, 2017). The area-based risk assessment method is used for ecological risk assessment in which reference points are an essential component. The WCPFC may consider these existing examples and adopt constructive elements for the risk management of these shark bycatch.

2.7 Recommended reference points and further research for WCPFC elasmobranchs

Our analyses and discussions support the previous recommendations of Clarke and Hoyle (2014). Considering the current and previous studies, we provide the following recommendations:
(1) Reference points should adopt a tiered (based on availability of information) framework. For those elasmobranchs evaluated using a stock assessment model, reference points estimated in the
same stock-assessment should be adopted. This will avoid the potential inconsistency of demographic composition used to estimate $F_{c u r}$ and $F_{B P R}$ when they are derived separately.
(2) When stock assessments are not available, or when the results are not considered robust by the WCPFC Scientific Committee, risk-based fishing mortality benchmarks ($F_{m s m}$, $F_{\text {lim }}$ and $F_{\text {crash }}$) developed in the present report are recommended.
(3) Caution is needed when key life-history parameters are copied from literature, such as $t_{\max }$. It is important to continue research to provide or improve estimates of life-history parameters. A metaanalysis should be considered to integrate studies on growth, maturity, and other LHPs from sampling across the whole population in the WCPO.
(4) Selectivity should be estimated for all elasmobranchs in the WCPFC jurisdiction. If selectivity cannot be modelled, a knife-edge size of entry may be determined by length samples of the observed catch.
(5) Further examination and research on spawning potential ratio approach is needed. Until the particular $F_{S P R x \%}$ that ensures low risk to population sustainability can be determined for each stock, we do not recommend SPR approach for setting a limit reference point for elasmobranchs using one generic value for all species.
(6) Adopt the combined LRP (cFlim) derived in this study as tentative limit reference point for elasmobranchs managed by WCPFC. These estimates should be reviewed and updated in three to five years when new methods or additional data become available.
(7) In the future if the Commission deems that ecological interactions among species and ecosystem structure conservation are essential elements in the management of shark species, a relative lower fishing mortality benchmark such as $F_{m s m}$ should be considered as a limit reference point for these top predators.

3 Potential methods for estimating fishing mortality

3.1 Traditional stock assessment

This is the ideal approach for estimating both reference points and current fishing mortality. Traditional stock assessment models include surplus production models (biomass dynamics models), statistical catch-at-age models, delay-difference models, and virtual population analysis models. Traditional stock assessment models require various data, including at least a time series of catch and biomass index (often CPUE) records. The models produce biological and management quantities that quantify biological status, fishing impact, and at the same time produce corresponding reference points (i.e., there is no need to calculate reference points separately using additional models). This cohesive approach avoids possible inconsistency between reference points and biological status because both refer to the same type of fish in terms of their age/size/sex composition.

3.2 Area-based ERA methods

Unfortunately, the types of data required for traditional stock assessment models are generally unavailable for lower-value or bycatch species. Alternative data-poor techniques are needed for these species. In the last two decades, an area-based ecological risk assessment approach has become increasingly popular. The assessment involves two separate components: (1) deriving reference points based on biological and life-history traits as we have described in the previous section; (2) estimating fishing impact using fishery and ecological data.

The sustainability assessment for fishing effect (SAFE) (Zhou and Griffiths, 2008; Zhou et al., 2009a, 2011) is an area-base ERA method to estimate the annual instantaneous fishing mortality for a species in defined period (i.e. one year):
$F=\frac{C}{\bar{N}} \approx \frac{\sum_{t} a_{s \mid A_{J}, t}}{A_{J}} q_{h} q_{\lambda}(1-S) \quad(E q n ~ 7)$
Where C is catch, \bar{N} is average abundance over the period, A_{j} is the species distribution range within the jurisdiction, $a_{s \mid A, t}$ is gear affected area by one unit of fishing effort when fishing site s is within A_{J} at time t, (a combination of habitat-dependent encounterability q_{h} and size- and behaviourdependent selectivity q_{λ}), and S is the discard survival rate or escapement rate in some gear types (e.g. gear fitted with bycatch reduction device). This equation assumes that fish density is constant within its distribution range, and encounterability and selectivity can be predefined by fish size and behaviour. It implies that fishing mortality is the fraction of overlap between fished area and the species distribution area within the jurisdiction (availability), adjusted by catchability and postcapture mortality. This simple approach has been referred to as base SAFE (or bSAFE, AFMA, 2017).

If catch data are available in some years, fish density and gear efficiency may be estimated so bSAFE can be enhanced:

$$
F=\frac{C}{\bar{N}}=\frac{\sum_{t}\left(d_{s} a_{s \mid A_{J}, t}\right.}{\sum_{s}\left(d_{s} A_{s, J}\right)} Q(1-S) \quad(\text { Eqn } 8)
$$

where d_{s} is fish density at site s, Q is catch efficiency. This version has been referred to as enhanced SAFE (or eSAFE, AFMA, 2017).

Eqns (7 and 8) assume no local depletion effects from repeated fishing at the same location, i.e., populations rapidly mix between fished and unfished areas. The fishing mortality will likely be overestimated if this assumption is not satisfied.

These basic equations have been modified in various ways depending on available data. Modification can be made to each of the input variables in the equations. In particular, if there is sufficient information to estimate CPUE trends, biomass and fishing mortality can be estimated using biomass dynamic models. This approach was used in the WCPFC stock assessments for bigeye thresher and porbeagle sharks (Fu et al 2018; Hoyle et al 2017).

3.2.1 Species distribution

Species distribution can be obtained from survey data (Zhou and Griffiths, 2008; Zhou et al., 2009b; Ministry for Primary Industries, 2016; Grüss et al., 2018), existing distribution maps based on habitat and other information (Zhou et al., 2009a; Ministry for Primary Industries, 2016), and fishery data (Zhou et al., 2009c, 2015; Hoyle et al., 2017c; Fu et al., 2018). Relative fish density is an important feature of species distribution. Depending on available information, homogeneous or random distribution may be assumed for data-poor species. If catch at location or presence-absence are available, heterogeneous density can be estimated and predicted through various statistical models as such GLMM, GAM, N-mixture, and geostatistical models (Zhou and Griffiths, 2007, 2008; Zhou et al., 2013; Hoyle et al., 2017c; Fu et al., 2018; Grüss et al., 2018). Models that include environmental data can be used to extend predicted distributions into areas with insufficient fishery data (Hoyle et al 2017).

3.2.2 Area affected by fishing

The simplest method is to divide the management area into many small equal-sized cells and count the number of cells with fishing effort greater than a threshold (e.g., 3 boat-days or 1 unit of fishing effort) (Zhou and Griffiths, 2008; Griffiths et al., 2018). It may be preferable to calculate actual gear affected area from gear dimension (i.e., length of longline, gillnet, and seine, or trawl opening width) and soak time (Zhou et al., 2011, 2013; Ministry for Primary Industries, 2016). The total area affected by fishing is a function of the total fishing effort and the gear-affected area per set.

3.2.3 Gear efficiency

This term is sometime called catch efficiency, fishing power, or catchability. Unlike catchability parameter q in stock assessment model, Q is the probability of catching a particular fish in one gear setting (deployment) when that fish is within the gear affect area. It may be considered as the combined effect of encounterability and selectivity (Zhou et al., 2011, 2016). For data-poor species, a constant value may be assumed and assigned to encounterability and selectivity for each gear type based on fish size and behaviour (e.g. low 0.33 , medium 0.67 , high 1.0). If sufficient set-by-set catch
data are available, gear efficiency can be estimated by abundance and detectability (referred to as N-mixture) models (Zhou and Griffiths, 2007; Zhou et al., 2013, 2014; Campbell et al., 2017).

Gear efficiency Q is directly related to catchability q in stock assessment models. When individuals are assumed to be randomly or evenly distributed in stock distribution area A, the relationship between these two quantities is $q=Q a / A$, where a is the average gear affected area by one unit of fishing effort. Hoyle et al. (2017) and Fu et al. (2018) took a different approach to derive catchability for Porbeagle shark and Bigeye thresher shark. They used a subset of the observer data within a subsection of the assessment area A_{Ω} where the data are believed to have good quality. They fitted a Bayesian state-space biomass dynamic model to an index of relative abundance in the selected sub-area. Catchability q_{Ω} is one of the three parameters (the other two parameters are carrying capacity K and intrinsic population growth rate r) in the biomass dynamics model. This q_{Ω} is then adjusted by area and used to estimate fishing mortality. This approach may be compared with the N mixture model for estimating gear efficiency.

3.2.4 Discard survival rate and escapement

Bycatch species are often returned to the sea and some of these fish may survive. When there is no data available, survival rate may be assumed, for example $S=0$ as the most conservative option. Results from field studies are available for some elasmobranchs (Campbell et al., 2017; Ellis et al., 2017). Fu et al. (2018) derive this variable for Bigeye thresher shark using a uniform distribution with bounds [0.3, 0.7] based on the calculated proportion of BTH released alive in the SPC and US observer datasets.

Modification of fishing gear can facilitate escapement of some bycatch species. For example, prawn trawl rigged with turtle excluder devices (TEDs) and bycatch reduction devices (BRDs) can reduce a range of species groups caught in tropical Australia (Brewer et al., 2006). Nets with a combination of a turtle excluder device and bycatch reduction device reduced the catches of turtles by 99\%, sharks by 17.7%, and rays by 36.3%. Similarly, a study on the demersal fish-trawl fishery found that BRDs significantly improved the escape proportions for most chondrichthyans by 20-30\% (Wakefield et al., 2017). The results of these and other studies may be used as the escapement rate in calculation of fishing mortality for similar gear types.

3.3 Age-based methods-catch curve

Statistical catch-at-age methods are considered the state-of-the-art in modern stock assessment. Catch curves represent the simplest catch-at-age methods. If catch-at-age data are available, catch curve analysis may be carried out to estimate total mortality Z and fishing mortality F if natural mortality M is known. There are alternative methods for estimating Z from catch curve data, including regression-based methods, the Chapman-Robson estimator, and the Heincke estimator. These methods generally require that vulnerability to fishing gear is constant above the age when maximum catch occurs, and that the population has a stable age structure. For example, a domeshaped selectivity curve may distort the linear relationship between log(catch) and age. Catch curve analysis can be applied to catches taken in the same year so the fish are composed of cohorts born in different years. In this case catch curve analysis has to assume (1) a constant recruitment for these cohorts; (2) similar survival history for these cohorts (Quinn and Deriso, 1999).

In additional to potential violations of assumptions, non-random sampling, and inaccurate ageing data, stochastic error in the true mortality rate, recruitment, and ageing affect the accurate of the estimated mortality. Comparison between the Chapman-Robson and regression estimators found the Chapman-Robson estimator to be more accurate than regression methods (Dunn et al., 2002). Another comparison study comparing three catch-curve methods (the Chapman-Robson, regression, and Heincke estimators) also showed that the Chapman-Robson estimator generally outperformed the other two methods (Smith et al., 2012) and was recommended, after correction for over-dispersion, for estimating total mortality.

3.4 Length-based methods

The most common length-based model is the Beverton-Holt "per-recruit" estimator (BHE) based on von Bertalanffy growth model with an assumption that total mortality Z is constant beyond the age of recruitment (Quinn and Deriso, 1999). Z is calculated as
$Z=\frac{K\left(L_{\text {inf }}-\bar{L}\right)}{\bar{L}-L_{c}}$
where K and $L_{\text {inf }}$ are VB growth parameters, \bar{L} is the mean length in the catch, and L_{c} is the length at recruitment age. The BHE (Eqn 9) assumes steady-state conditions, deterministic vB growth function, a constant mortality rate of all fully recruited fish, and continuous and constant recruitment to the fishery.

As length is a function of age, length frequency data can be converted to age under the assumption of deterministic growth following a vB growth model. Hence, the length converted catch curve (LCCC) method was developed. It has been shown that the standard LCCC overestimates Z, but by explicitly considering seasonal growth oscillations LCCC can produce unbiased estimates (Pauly et al., 1995).

Recently, Hordyk et al. $(2014,2016)$ have developed the length-based spawning potential ratio (LBSPR) mortality estimator. This is an equilibrium age-structured model that converts the predicted age distribution of the catch to a length distribution. Given known M / K, the LB-SPR estimates the parameters F / M from the standardized length composition of the catch.

Huynh et al. (2018) compared these three length-based methods used Monte Carlo simulations across a range of scenarios with varying mortality and life history characteristics. They showed that neither the LCCC nor the BHE was uniformly superior in terms of bias or root mean square error across simulations, but these estimators performed better than LB-SPR, which had the largest bias in most cases. Generally, if the ratio of natural mortality (M) to the von Bertalanffy growth rate parameter (M) is low, then the BHE is preferred, although there is likely to be high bias and low precision. If M / M is high, then the LCCC and BHE performed better and similarly to each other.

The requirement of constant fishing mortality and recruitment over time has been relaxed by a recent developed length-based method. Rudd and Thorson (2017) extended the length-only approaches to account for time-varying recruitment and fishing mortality using a Length-based Integrated Mixed Effects (LIME) method. LIME requires a single year of length data and basic biological information and can fit to multiple years of length data, catch, and an abundance index if available.

The most recent development in this area is length-based Bayesian biomass estimation method (LBB) (Froese et al., 2018). The method estimates asymptotic length, length at first capture, relative
natural mortality, and relative fishing mortality using length frequency data. Standard fisheries equations can then be used to approximate current exploited biomass relative to unexploited biomass.

3.5 Discussion on estimating fishing mortality

Clearly, the traditional stock assessment is the first choice for estimating current fishing mortality (and reference points) if required data are available. When using data-limited approaches, their assumptions and caveats should be kept in mind.

Area-based methods involve a series of assumptions regarding species distribution pattern and range, gear efficiency, discards survival rate and escapement rate. Accuracy can be improved with more data and better estimators, but uncertainly may still be high for some species.

Age and length-based methods generally require constant recruitment, growth, natural mortality, and fishing mortality, in addition to the requirement that the age composition and length frequency data in the sample truly represent those of the exploited age/size range of the stock. In addition, as discussed in the previous section, ageing sharks and rays can have high errors (Francis et al., 2007; Hamady et al., 2014; Harry, 2018). Moreover, age data are expensive to obtain and the samples often come from selected sub-populations.

Similarly, real fisheries data may violate many assumptions required by length-based methods. In a review of data-poor methods, Edwards (2015) recommended that pending further testing by proponents of these approaches, they were not considered suitable for immediate application in New Zealand.

Amongst the four categories of potential methods, the area-based ERA method has been widely applied to bycatch risk assessment. Conceptually, the method is analogous to formal stock assessment as both indicator ($F_{\text {cur }}$) and reference points ($F_{R P s}$) are equivalent to those in formal stock assessment. This group of methods can be flexibly modified to suit the existing data. Indeed, varying versions have been developed according to available data. Furthermore, this method has been applied to two WCPFC elasmobranch species (Bigeye thresher and Porbeagle shark). We recommend this method to be the first choice for data-poor elasmobranch species in WCPO.

The most important piece of information required by area-based method is fishing effort data. A recent analysis of data for sharks caught in longline and purse seine fisheries in the WCPO reveals fishing effort data exist for several shark species (Rice, 2018). In addition to the two species that have already been assessed, these species include Silky shark, Blue shark, Pelagic thresher, Common thresher, Oceanic Whitetip, Shortfin mako, and Whale shark. It is possible that similar analysis can be carried out for these species.

4 Other potential management procedures for WCPFC elasmobranchs

Abstract

A wide range of assessment methods and management procedures have been developed for datapoor fisheries in the past two decades. The methods vary from life-history-based to catch-only, from qualitative to quantitative, and from traditional to simple rules. These research also prompt several reviews of the methods and procedures (e.g., Edwards, 2015; Geromont and Butterworth, 2015; Oliveira et al., 2017). It is unnecessary and unrealistic to repeat the review, but a few methods show potential merit for testing of WCPFC stocks.

4.1 Catch-rate (CPUE) approach

The New Zealand Ministry for Primary industries has accepted a method where an F-proxy is estimated as catch/CPUE, where CPUE is derived from a standardisation model (generalised linear model). This model assumes CPUE is analogous to biomass (i.e., the F-proxy is a relative exploitation rate). If the catch and CPUE are the same data set then effectively catch/CPUE = effort, but in practice the CPUE dataset is a subset of the catch. For example, the Assessment Plenary for Rig shark (Mustelus lenticulatus) agreed to use the average CPUE during the period 2005-2015, a period of relatively stable CPUE and catches, as a proxy for $B_{m s y}$. Reference points may then follow, usually an $F_{m s y}$ proxy based on the average F during the same period. This is done from consideration of fishery (catch) history, and expert opinion. This method has been used for both rig and school sharks (e.g., https://fs.fish.govt.nz/Page.aspx?pk=113\&dk=24365). This approach may only work when there is a long and reliable time series of catch and CPUE.

4.2 Traffic-light framework

Caddy $(1999,2002)$ developed a series of limit reference points based on measures or proxies for fishing mortality rate or stock size, relating to the biology, economic, and social aspects of a fishery. Many of these LRPs may be difficult to apply to WCPFC bycatch due to lack of data, but a lengthbased LRP may be useful. The total mortality limit reference point is derived by replacing the mean length in the catch in Eqn (9) by length at maturity:
$Z_{L R P}=\frac{K\left(L_{\text {inf }}-L_{\text {mat }}\right)}{L_{\text {mat }}-L_{c}}$
This LRP implies that mean length in the catch must be greater than the mean size at maturity.
Alternative length-based approaches have been developed (see Geromont and Butterworth, 2015; Oliveira et al., 2017; Froese et al. 2018). These methods require assumptions that the stock is equilibrium, recruitment and mortality are time-invariant, and selectivity is knife-edged above the age at first capture. Length-based indicators have previously been developed for WCPFC elasmobranchs using standardized length data (Francis et al., 2014; Cortés et al., 2017; Hoyle et al., 2017a, 2017b). However, simulations suggest that they may be relatively insensitive indicators of population status (Clarke \& Hoyle 2014).

4.3 Catch-only methods

There has in recent years been an increasing interest in developing catch-only methods. These methods require only time series of catch data and perhaps some life history parameters, so they can be applied to many fisheries where catch records are available. These methods typically require information about stock depletion. Model performance will be affected by the depletion level chosen so methods that assume a common depletion have limited application. Amongst the catchonly methods, Catch-MSY (Martell and Froese, 2013; Froese et al., 2017) and OCOM (Zhou et al., 2017b) attempt to come up a depletion prior based on catch history. Hence, they are more promising than other catch-only methods. Catch-MSY and OCOM produce time series of biomass, fishing mortality, and both F-based and B-based reference points such as $B_{m s y}$ and $F_{m s y}$. The main disadvantage of catch-only methods is their potentially inaccurate results for some stocks, particularly for unproductive, lightly fished, or highly depleted stocks.

Before deciding which category of approaches may be tested for WCPFC elasmobranchs, a few factors should be taken into consideration. It is essential to examine the data inventory, including the types of data available and their quality and quantity. The key assumptions required by each potential method should be examined. As the WCPFC is concerned with multiple species, applying consistent methodology across multiple species could facilitate both assessment and management.

5 Review of Shark Stock-Recruitment Relationship

5.1 Introduction

Stock recruitment relationships are very influential in stock assessments and can substantially affect MSY-related parameters. They are also considered very difficult to estimate from fishery data (Lee et al., 2012). Current practice in many WCPFC stock assessments is to consider a range of plausible values of steepness, giving equal weight to each of them (e.g., Tremblay-Boyer et al., 2018; Vincent et al., 2018), but determining plausibility also requires some information, and the chosen values imply a prior. It would be very useful to be able to infer prior distributions for stock recruitment relationships from another data source, such as life history parameters.

ISC scientists have been involved in developing and applying models to predict stock recruitment relationships based on early life history, with applications to Pacific bluefin tuna (Mangel et al., 2010, 2013), billfish (Brodziak and Mangel, 2011; Brodziak et al., 2015), and recently also sharks (Kai and Fujinami, 2018).

Task 6 in the term of reference requests a review of the work presently being undertaken by ISC on the development of stock-recruitment relationships and their parameter estimates. Stockrecruitment steepness for North Pacific blue shark has been estimated recently using life-history parameters. Task 6 also requests an assessment of the applicability of extending this work to other key shark species, especially South Pacific blue shark.

Here we review the life history-based approach to estimating a stock recruitment relationship for sharks, focusing in particular on the approach published by Kai and Fujinami (2018) in Fisheries Research.

5.2 Overview

In Kai and Fujinami (2018) (KF) the authors consider the relationship between blue shark spawning stock size and recruitment to the age 1 year-class. They model this relationship using the approach proposed by Mangel et al. (2010) (referred to as Mangel hereafter), based on maximum population growth rate at low population size and spawning biomass per-recruit at equilibrium without fishing (i.e., virgin population). They use this relationship to infer the proportion of maximum recruitment that occurs at $20 \% \mathrm{~B}_{0}$ (steepness), under several different stock recruitment relationships. They argue for use of the estimate based on the Beverton-Holt stock recruitment relationship, and provide an estimate of steepness with a form of uncertainty that they suggest can be used as a prior.

The adaptation of the method to sharks has been performed effectively. The paper is, in general, well written and provides sufficient explanation to repeat the approach for other species. The implementation for blue sharks is competently performed and well justified, although when repeating the analysis we obtained a different result (0.71 rather than 0.58).

However, for the reasons identified below we consider the approach implemented here for sharks, and proposed by Mangel, to be an interesting theoretical idea, but doubt its practical utility in its
present form. We have reservations about using Mangel's method, or its application here to sharks, to provide priors for stock assessment.

5.3 Method in general, including Mangel et al. (2010)

Estimation error. When developing a prior distribution, estimation error is the key issue. The prior should describe the distribution of relative probabilities for all potential parameter values. KF and Mangel simulated process uncertainty in a small population, and their resulting distribution described the estimates one might obtain by sampling a small population. The process error approach was, as described by Mangel, an ad hoc approach for assigning a probability distribution, and did not contain the information about the relative probabilities of different steepness values implied by a prior. To explore estimation error, one could implement a Monte Carlo procedure to recalculate steepness given resampled plausible values of all the important input parameters, such as alternative ogives or estimates for M, the shape of the SRR, maturity, the growth curve, lengthweight relationship, etc. We demonstrate below that using such an approach to generate a more realistic uncertainty distribution would result in a much less informative prior for north Pacific blue shark.

Uncertainty in natural mortality. The method of KF, like the approach of Mangel, relies strongly on estimates of age-dependent mortality and pre-recruit mortality. Mangel (page 99) say "Perhaps most importantly, Equations 20 and 26 show that as soon as we are able to develop a demographic model for the survival of a cohort, we are close to being able to obtain a point estimate for steepness."

This also implies that the functional form of density dependence in recruitment is determined entirely by age-dependent mortality and reproductive rates averaged across the population. However, the true M at age is unknown, and various alternative assumptions could be made. The appendix in KF presented a range of possibilities and finally selected an approach based on the (Lorenzen, 2005) method, which assumed that natural mortality was inversely proportional to body length. However, there is little evidence to support the Lorenzen method over the others for blue sharks, and the true uncertainty would be better represented by sampling from approaches at random. Moreover, as noted by KF, Peterson and Wroblewski (1984) advised (with respect to their own method) that "the relationship between mortality rate and size can only be viewed as a central tendency for organisms in an ecosystem as a whole and may not be applicable to individual species" and cautioned against its use as an estimator for a specific species. This excellent advice is equally applicable to the Lorenzen (2005) method.

Assumptions about natural mortality of pre-recruits are likely to be more accurate and precise for sharks than they are for broadcast spawning fish, which is one advantage when estimating demographic models of cohort survival. Pre-recruit mortality rates for pelagic fish, which Mangel based on estimates reported by (McGurk, 1986), are highly uncertain. In fact (McGurk, 1987) later recalculated his size to mortality relationship using fish data only and changed the size exponent from -0.25 to - 0.39 , which may have significant implications for predicted mortality rates. This highlights the degree of variability among species and taxonomic groups, and the potential for error when applying a general principle to a specific case without fully considering uncertainty.

The choice of stock-recruitment function. Steepness is typically estimated from sufficiently contrasting and reliable pairs of stock-recruitment data. Rather than using data on stock and recruitment, the method reviewed here uses the maximum population growth rate α_{s} at low population size and spawning biomass per-recruit \bar{W}_{f} at no fishing (i.e., virgin population) to predict steepness. The prediction strongly depends on the shape of the spawner recruit curve. This sensitivity is shown by the very different steepness estimates of 0.584 based on the Beverton-Holt curve, and 0.851 based on the Ricker curve.

In choosing a value of steepness for blue shark, KF argue that the Ricker curve is not appropriate "because there is little scientific evidence of cannibalism by adult blue sharks on juvenile blue sharks" which by elimination leaves the BH model.

However, these two curves are far from the only options - they are simply two mathematically convenient ways of summarising possible stock recruitment curves. They have little inferential value in estimating the appropriate value of steepness to use for a stock. If a species truly has a consistent SRR, there is no reason to assume a priori that its shape matches BH or any other simple and convenient curve. As acknowledged by Mangel et al. (2013) Punt et al. (2005) stated "other (more complicated) forms may provide better representations of the existing data". For example, the low fecundity stock recruitment relationship (Taylor et al., 2013), which is often used for sharks, has a very flexible shape. With this curve, as KF note, a single value for maximum reproductive rate can be associated with various steepness estimates. Accordingly, even precisely-estimated values of 国s at low population size and \bar{W}_{f} at no fishing cannot be assumed to imply a precise value of steepness.

Effect of density-dependence on life history parameters and estimated h. Stock-recruitment functions (including Beverton-Holt and Ricker models) are density-dependent, meaning that the stock is more productive at low density than at high density. Such density-dependent mechanisms manifest through life-history traits, including natural mortality rate and reproductive rate, as well as other parameters such as growth rate, maturation age and size, fecundity, egg size, etc. (Rochet, 2000). Traditionally, SRR is estimated from time series of stock-recruitment data at varying density (a wide range of data points). In KF and Mangel, h is defined as a function of both population growth rate at low population size α_{s}, and spawning biomass per-recruit at unfished virgin biomass \bar{W}_{f}. These two variables should have been calculated from life history parameters (LHPs, including fecundity, litter size, survival rate, weight at age, etc.) obtained from the two very different population densities. However, both KF and Mangel used the same LHPs to calculate the two variables, meaning that this approach is essentially using one data point (one set of LHPs) to derive a SR curve, even though the LHPs at virgin biomass and low population size are very different. The same LHPs cannot be used for two completely different statuses.

Population coverage. The estimated life history parameters are assumed to apply to the whole population, but this assumption may not be valid. The parameters have actually been estimated from a subset of the population in space and time, with particular environmental conditions and history. This is of course a general criticism that can be applied to all population model parameters but must also be considered here. It may be particularly difficult to estimate population-level parameters for sharks, because sexual segregation in space is a general characteristic of elasmobranchs (Wearmouth and Sims, 2008; Finucci et al., 2018), and spatial segregation between juveniles and adults is also commonly observed (e.g., Gouraguine et al., 2011; Semba et al., 2013; Finucci et al., 2018). Blue shark populations are known to be spatially segregated by size and sex (Clarke et al. 2015). Estimates of population parameters vary widely among studies, with (for example) female longevity estimates varying from 12 in a study off the northwest coast of Mexico
(Blanco-Parra et al., 2008) to 28.6 in a Taiwanese northwest Pacific study (Hsu et al., 2011). Accurate estimates of population-level parameters require understanding of both parameter variation and stock distribution. These factors add uncertainty to the estimates and may, depending on the stock structure, add bias. Longevity estimates, for example, can often be biased low by surveying a subset of the population.

5.4 Simulation

We repeated the analyses of Kai and Fujinami (2018) incorporating some of the suggestions above.

5.4.1 Methods

Parameter values are reported in Table 7.

$$
a=0: a_{\max }
$$

Growth was modelled using the von Bertalanffy growth equation.

$$
L_{a}=L_{\infty}\left(1-e^{-k\left(a-a_{0}\right)}\right)
$$

Mortality at age was defined in the same way as KF, with $M T$ defined across the ages of 0 (i.e. ac was set to 0) to $a_{\text {max }}$.

$$
M_{a}=\frac{L_{c}=L_{a=a c}}{\log \left(\frac{M T\left(a_{\max }-a_{c}\right)}{L_{c}+L_{\infty}\left(\exp \left(k\left(a_{\max }-a_{c}\right)\right)-1\right)}\right)} \log \left(\frac{L_{a}}{L_{a}+L_{\infty}(\exp (k)-1)}\right)
$$

Probability of maturity, weight at age, and fecundity at age were calculated as follows.

$$
\begin{gathered}
\text { pmat }_{a}=\frac{1}{1+\exp \left(c 3+c 4 \cdot L_{a}\right)} \\
w_{a}=c 1 \cdot L_{a}^{c 2} \\
\text { litter }_{a}=c 5+c 6 \cdot L_{a}
\end{gathered}
$$

We could not determine the value used by KF for pre-recruit survival at stage 3 (juveniles), and chose to set it to the estimated annual survival rate at age 0 . Since this is an annual survival rate, it implies full recruitment at age 1.

$$
S_{p r e}=S 0 . S 1 . S 2 . S 3
$$

Survivors per recruit were calculated from age 1.

$$
S_{a}=\prod_{i=1}^{a-1} \exp (-M(i))
$$

Female spawning biomass per female recruit was calculated as follows.

$$
W_{f}=\sum_{a=1}^{a m a x} S_{a} W_{f}(a) p_{f, m}(a)
$$

We modified equation (9) in Kai and Fujinami (2018) for calculation of α_{s}, individuals per spawning biomass, to adjust for relative productivity at age, following equation 41 in Mangel et al 2010. This
modification is needed since a summation appears to be omitted in KF's equation (9), probably because the summation is carried out as part of their simulation. The sex ratio is applied to both the individuals spawned and the spawning biomass, so cancels out.

$$
\alpha_{s}=S_{p r e} S_{c y c l e} \frac{\sum_{a=1}^{a \max } S_{a} \cdot p_{f, m}(a) \cdot \text { litter }_{a}}{W_{f}}
$$

Steepness was calculated as follows:

$$
h=\frac{\alpha_{s}(1-s r) W_{f}}{4+\alpha_{s}(1-s r) W_{f}}
$$

5.4.2 Parameter values

We tested only two of the many sources of uncertainty. Potential values of MT were obtained from Campana et al. (2005), Table 14, the mean of which (0.23) was used by KF as their estimate. Based on the values reported by Campana et al. (2005), we estimated mean as 0.23 and standard deviation as 0.08 , and sampled random values of MT from this distribution.

Maximum age values were reported for blue shark (both north and south) by Clarke et al. (2015) of $12,15,20-24$ (set to 22), 29,21 , and 20 . These values were resampled randomly with replacement, with $n=200,000$.

The model was implemented in R , and all code is provided in Appendix 1.

5.4.3 Results and Discussion

With the base values, Beverton-Holt steepness was estimated to be 0.71 . This is higher than the estimate of 0.58 provided by KF. The explanation of this difference is unclear and should be explored further. The R code provided in Appendix 1 can be used for this purpose. The main differences between the analyses are our use of 1 year rather than age 0 as the age of recruitment, and our use of the point estimate of steepness with the base parameter values rather than the mean of 200 simulations.

Including two sources of estimation uncertainty resulted in a much wider uncertainty distribution (Figure 23) for Beverton-Holt steepness h than proposed by Kai and Fujinami (2018) based on process error. The distribution included estimates below 0.2 . These represent unrealistic scenarios in which the assumed mortality was above replacement level. A more thorough exploration of uncertainty should address this by selecting scenarios that include plausible combinations of life history parameters, with growth rate greater than zero.

5.5 Conclusions - applicability of method to species in general

Given the above, it seems premature to use steepness distributions based on the methods proposed by Kai and Fujinami (2018) and Mangel et al. (2010) as prior distributions in stock assessments. Consideration of estimation uncertainty in just a few of the input parameters considerably broadens the uncertainty distribution. Considering uncertainty in other parameters is likely to add considerably more variability.

The method may be useful for comparing reproductive strategies among shark species, or for identifying factors that are particularly influential and therefore warrant further research.

To use the method for these purposes, it will be important to perform the analyses with appropriate consideration of estimation error in all input parameters, and in the shape of the SRR curve. This would demonstrate how much uncertainty there is in the estimates of steepness, and which factors are most important in determining it. It is also necessary to use LHPs appropriate for populations at a) very low population size, and b) virgin biomass.

Finally, we would like to recommend: (1) modelling estimation error for h, rather than using the numerical simulation method. An estimation error approach is likely to provide a much wider distribution of plausible values for steepness than the distribution presented here. (2) Using multiple alternative models to characterise the plausible distribution of natural mortality. A single model can considerably underestimate the uncertainty in this key parameter. Reproductive output per spawner, and hence the steepness estimate, is likely to be highly sensitive to the selected particular M estimator. Potential bias in natural mortality due to underestimation of longevity, and uncertainty about the natural mortality of pre-recruits should also be considered. (3) Conducting sensitivity tests to examine the effect of density-dependent mechanisms on LHPs and resulting h. (4) Where wholepopulation estimates are unavailable, considering uncertainty by using alternative estimates of life history parameters.

6 References

AFMA. 2017. Guide to AFMA's Ecological Risk Management. Australian Fisheries Management Authority. June 2017, Canberra. 119 pp.
Anderson, S. C., Branch, T. A., Ricard, D., and Lotze, H. K. 2012. Assessing global marine fishery status with a revised dynamic catch-based method and stock-assessment reference points. ICES Journal of Marine Science, 69: 1491-1500.
Barneche, D. R., White, C. R., and Marshall, D. J. 2018. Fish reproductive-energy output increases disproportionately with body size. Science (New York, N.Y.), 360: 642-645.
Blanco-Parra, M. del P., Galván-Magaña, F., and Márquez-Farías, F. 2008. Age and growth of the blue shark, Prionace glauca Linnaeus, 1758, in the Northwest coast off Mexico. Revista de Biologia Marina y Oceanografia, 43: 513-520.
Branch, T. a, Jensen, O. P., Ricard, D., Ye, Y., and Hilborn, R. 2011. Contrasting global trends in marine fishery status obtained from catches and from stock assessments. Conservation Biology, 25: 777-786. http://www.ncbi.nlm.nih.gov/pubmed/21535149 (Accessed 30 October 2013).
Brewer, D., Heales, D., Milton, D., Dell, Q., Fry, G., Venables, B., and Jones, P. 2006. The impact of turtle excluder devices and bycatch reduction devices on diverse tropical marine communities in Australia's northern prawn trawl fishery. Fisheries Research, 81: 176-188.
Brodziak, J., Ianelli, J., Lorenzen, K., and Jr, R. D. M. 2011. Estimating natural mortality in stock assessment applications. NoAA technical Memorandum NMFS-F/Spo-119 June 2011. 38 pp.
Brodziak, J., and Mangel, M. 2011. Probable values of stock-recruitment steepness for North Pacific Albacore tuna. ISC/11/BILLWG-2/11 Probable. 13 pp.
Brodziak, J., Mangel, M., and Sun, C. L. 2015. Stock-recruitment resilience of North Pacific striped marlin based on reproductive ecology. Fisheries Research, 166: 140-150. Elsevier B.V. http://dx.doi.org/10.1016/j.fishres.2014.08.008.
Brooks, E. N., Powers, J. E., and Corte, E. 2010. Analytical reference points for age-structured models: application to data-poor fisheries. ICES Journal of Marine Science, 67: 165-175.
Caddy, J. F. 1999. Deciding on precautionary management measures for a stock based on a suite of limit reference points (LRPs) as a basis for a multi-LRP harvest law. NAFO Scientific Council Studies, 1324: 55-68.
Caddy, J. F. 2002. Limit reference points, traffic lights, and holisitc approaches to fisheries management with minimal stock assesment input. Fisheries Research, 56: 133-137.
Campana, S. E., Marks, L., Joyce, W., and Kohler, N. 2005. Catch, by-catch and indices of population status of blue shark (prionace glauca) in the Canadian Atlantic. Collect. Vol. Sci. Pap. ICCAT, 58: 891-934.
Campbell, M., Courtney, A., Wang, N., Mclennan, M., and Zhou, S. 2017. Estimating the impacts of management changes on bycatch reduction and sustainability of high-risk bycatch species in the Queensland East Coast Otter Trawl Fishery. FRDC Final Report Project number 2015/014, Brisbane, Queensland. CC BY 3.0. 64 pp.
Carruthers, T. R., Walters, C. J., and McAllister, M. K. 2012. Evaluating methods that classify fisheries stock status using only fisheries catch data. Fisheries Research, 119-120: 66-79. Elsevier B.V. http://linkinghub.elsevier.com/retrieve/pii/S0165783611003894 (Accessed 3 November 2013).
Carvalho, F., and Sippel, T. 2016. Direct estimates of gear selectivity for the North Pacific Blue Shark using catch-at-length data: implications for stock. ISC/16/SHARKWG-1/13. 10 pp.
Chen, S., and Watanabe, S. 1989. Age dependence of natural mortality coefficient in fish population dynamics. Nippon Suisan Gakkaishi, 55: 205-208. http://joi.jlc.jst.go.jp/JST.Journalarchive/suisan1932/55.205?from=CrossRef.
Clark, W. G. 2002. F35\% revisited ten years later. North American Journal of Fisheries Management,

22: 251-257.
Clarke, S., and Hoyle, S. 2014. Development of limit reference points for elasmobranchs. WCPFC-SC10-2014/ MI-WP-07. Scientific Committee Tenth Regular Session, Majuro, Republic of the Marshall Islands, 6-14 August 2014. 43 pp.
Clarke, S., Coelho, R., Francis, M., Kai, M., Kohin, S., Liu, K.-M., Simpfendorfer, C., et al. 2015. Report of Pacific Shark life history expert panel workshop, 28-30 April 2015. Western Central Pacific Fisheries Commission Scientific Committee Eleventh Regular Session. WCPFC-SC11-2015/EB-IP13. 111 pp.

Cook, R. M. 2013. A comment on "What catch data can tell us about the status of global fisheries" (Froese et al. 2012). Marine Biology, 160: 1761-1763.
Cortés, E. 2002. Incorporating Uncertainty into Demographic Modeling : Application to Shark Populations and, 16: 1048-1062.
Cortés, E. 2016. Perspectives on the intrinsic rate of population growth. Methods in Ecology and Evolution, 7: 1136-1145.
Cortés, E., and Brooks, E. N. 2018. Stock status and reference points for sharks using data-limited methods and life history. Fish and Fisheries. http://doi.wiley.com/10.1111/faf.12315.
Cortés, F., Waessle, J. A., Massa, A. M., and Hoyle, S. D. 2017. Aspects of porbeagle shark bycatch in the Argentinean surimi fleet operating in the Southwestern Atlantic Ocean ($50-57^{\circ} \mathrm{S}$) during 2006-2014. WCPFC Scientific Committee 13th regular session WCPFC-SC13-SA-IP-14.
Daan, N., Gislason, H., Pope, J. G., and Rice, J. C. 2011. Apocalypse in world fisheries? The reports of their death are greatly exaggerated. ICES Journal of Marine Science, 68: 1375-1378.
Dowling, N. A., Smith, D. C., Knuckey, I., Smith, A. D. M., Domaschenz, P., Patterson, H. M., and Whitelaw, W. 2008. Developing harvest strategies for low-value and data-poor fisheries: Case studies from three Australian fisheries. Fisheries Research, 94: 380-390. http://linkinghub.elsevier.com/retrieve/pii/S0165783608003160 (Accessed 3 November 2013).
Dulvy, N. K., Fowler, S. L., Musick, J. A., Cavanagh, R. D., Kyne, M., Harrison, L. R., Carlson, J. K., et al. 2014. Extinction risk and conservation of the world 's sharks and rays. eLife, 3: 1-35.

Dunn, A., Francis, R. I. C. C., and Doonan, I. J. 2002. Comparison of the Chapman-Robson and regression estimators of Z from catch-curve data when non-sampling stochastic error is present. Fisheries Research, 59: 149-159.
Edwards, C. T. T. 2015. Review of data-poor assessment methods for New Zealand fisheries. Ministry for Primary Industries. New Zealand Fisheries Assessment Report No. 2015/27. Wellington. 24 pp.
Ellis, J. R., McCully Phillips, S. R., and Poisson, F. 2017. A review of capture and post-release mortality of elasmobranchs. Journal of Fish Biology, 90: 653-722.
Finucci, B., Dunn, M. R., and Jones, E. G. 2018. Aggregations and associations in deep-sea chondrichthyans. ICES Journal of Marine Science: fsy034-fsy034. http://dx.doi.org/10.1093/icesjms/fsy034.
Francis, M. P., Campana, S. E., and Jones, C. M. 2007. Age under-estimation in New Zealand porbeagle sharks (Lamna nasus): is there an upper limit to ages that can be determined from shark vertebrae? Marine and Coastal Fisheries, 58: 10-23.
Francis, M. P., Clarke, S. C., Griggs, L. H., and Hoyle, S. D. 2014. Indicator based analysis of the status of New Zealand blue, mako and porbeagle sharks. New Zealand fisheries assessment report No. 2014/69. 109 pp.
Frisk, M. G., Miller, T. J., and Fogarty, M. J. 2001. Estimation and analysis of biological parameters in elasmobranch fishes: a comparative life history study, 981: 969-981.
Froese, R., and Kesner-reyes, K. 2002. Impact of fishing on the abundance of marine species. ICES CM 2002/L:12. 12p. 1-12 pp.
Froese, R., Zeller, D., Kleisner, K., and Pauly, D. 2012. What catch data can tell us about the status of global fisheries. Marine Biology, 159: 1283-1292.
Froese, R., Demirel, N., Coro, G., Kleisner, K. M., and Winker, H. 2017. Estimating fisheries reference
points from catch and resilience. Fish and Fisheries, 18: 506-526.
Froese, R., Winker, H., Coro, G., Demirel, N., Tsikliras, A. C., Dimarchopoulou, D., Scarcella, G., et al. 2018. A new approach for estimating stock status from length frequency data. ICES Journal of Marine Science. https://academic.oup.com/icesjms/advancearticle/doi/10.1093/icesjms/fsy078/5051296.
Fu, D., Rou, M.-J., Clarke, S., Francis, M., Dunn, A., Hoyle, S., and Edwards, C. 2018. Pacific-wide sustainability risk assessment of bigeye thresher shark (Alopias superciliosus). Prepared for Western and Central Pacific Fisheries Commission. NIWA, Wellington, April 2018. 102 pp.
Gabriel, W. L., and Mace, P. M. 1999. A review of biological reference points in the context of the precautionary approach. Proceedings of the fifth national NMFS stock assessment workshop: providing scientific advice to implement the precautionary approach under the MagnusonStevens fishery conservation and management act. NOAA Tech Memo NMFS-F/SPO-40: 34-45.
Garcia, S. M., Kolding, J., Rice, J., Rochet, M.-J., Zhou, S., Arimoto, T., Beyer, J. E., et al. 2012. Reconsidering the consequences of selective fisheries. Science, 335: 1045-1049.
Geromont, B. H. F., and Butterworth, D. S. 2015. A review of assessment methods and the development of management procedures for data-poor fisheries. FAO Report. The Marine Resource Assessment and Management Group (MARAM), University of Cape Town, South Africa. 218 pp.
Goodyear, C. P. 1993. Spawning stock biomass per recruit in fisheries management: foundation and current use. Canadian Journal for Fisheries and Aquatic Science, 120: 67-81.
Gouraguine, A., Hidalgo, M., Moranta, J., Bailey, D. M., Ordines, F., Guijarro, B., Valls, M., et al. 2011. Elasmobranch spatial segregation in the western Mediterranean. Scientia Marina, 75: 653-664.
Grant, M. I., Smart, J. J., White, W. T., Chin, A., Baje, L., and Simpfendorfer, C. A. 2018. Life history characteristics of the silky shark Carcharhinus falciformis from the central west Pacific. Marine and Freshwater Research, 69: 562-573.
Griffiths, S. P., Kesner-Reyes, K., Garilao, C. V, Duffy, L., and Roman, M. 2018. Development of a flexible ecological risk assessment (ERA) approach for quantifying the cumulative impacts of fisheries on bycatch species in the Eastern Pacific Ocean. Inter-American Tropical Tuna Commission Scientific Advisory Committee Ninth Meeting, La Jolla, California (USA) 14-18. Document SAC-09-12. 38 pp.
Grüss, A., Drexler, M. D., Ainsworth, C. H., Babcock, E. A., Tarnecki, J. H., and Love, M. S. 2018. Producing distribution maps for a spatially-explicit ecosystem model using large monitoring and environmental databases and a combination of interpolation and extrapolation. Frontiers in Marine Science, 5: 1-20.
Hamady, L. L., Natanson, L. J., Skomal, G. B., and Thorrold, S. R. 2014. Vertebral bomb radiocarbon suggests extreme longevity in white sharks. PLoS ONE, 9: 1-8.
Harry, A. V. 2018. Evidence for systemic age underestimation in shark and ray ageing studies. Fish and Fisheries, 19: 185-200.
Heino, M., Pauli, B. D., and Dieckmann, U. 2015. Fisheries-induced evolution. Annual Review of Ecology, Evolution, and Systematics, 46: 461-480.
Hisano, M., Connolly, S. R., and Robbins, W. D. 2011. Population growth rates of reef sharks with and without fishing on the Great Barrier Reef: Robust estimation with multiple models. PLoS ONE, 6: e25028.
Hoenig, J. M. 1983. Empirical use of longevity data to estimate mortality rates. Fishery Bulletin, 82: 898-903.
Hordyk, A., Ono, K., Sainsbury, K., Loneragan, N., and Prince, J. 2014. Some explorations of the life history ratios to describe length composition, spawning-per-recruit, and the spawning potential ratio. ICES Journal of Marine Science, 72: 204-216.
Hordyk, A. R., Ono, K., Prince, J. D., and Walters, C. J. 2016. A simple length-structured model based on life history ratios and incorporating size-dependent selectivity: application to spawning potential ratios for data-poor stocks. Canadian Journal for Fisheries and Aquatic Science, 73:

Hovgard, H., and Lassen, H. 2000. Manual on estimation of selectivity for gillnet and longline gears in abundance surveys. FAO Fisheries Technical Paper. No. 397. Rome, FAO. 84 pp.
Hoyle, S. D., Semba, Y., Kai, M., and Okamoto, H. 2017a. Development of Southern Hemisphere porbeagle shark stock abundance indicators using Japanese commercial and survey data. New Zealand Fisheries Assessment Report 2017/07. WCPFC Scientific Committee 13th regular session WCPFC-SC13- SA-IP-15. 64 pp.
Hoyle, S. D., Quiroz, J. C., Zarate, P., Devia, D., and Azocar, J. 2017b. Population indicators for porbeagle sharks in the Chilean swordfish fishery. WCPFC Scientific Committee 13th regular session WCPFC- SC13-SA-IP-17.
Hoyle, S. D. S. D., Edwards, C. T. T., Roux, M.-J., Clarke, S. C., and Francis, M. P. 2017c. Southern hemisphere porbeagle shark (Lamna nasus) stock status assessment. NIWA Client Report, Prepared for Western and Central Pacific Fisheries Commission. WCPFC-SC13-2017/SA-WP-12. 65 pp.
Hsu, H.-H., Joung, S.-J., Lyu, G.-T., Liu, K.-M., and Huang, C.-C. 2011. Age and growth of the Blue Shark, Prionace glauca, in the Northwest Pacific. ISC/11/SHARKWG-2.
Huynh, Q. C., Beckensteiner, J., Carleton, L. M., Marcek, B. J., Nepal KC, V., Peterson, C. D., Wood, M. A., et al. 2018. Comparative performance of three length-based mortality estimators. Marine and Coastal Fisheries, 10: 298-313. http://doi.wiley.com/10.1002/mcf2.10027.
Jensen, A. L. 1996. Beverton and Holt life history invariants result from optimal trade-off of reproduction and survival. Canadian Journal of Fisheries and Aquatic Sciences, 53: 820-822.
Kai, M., and Fujinami, Y. 2018. Stock-recruitment relationships in elasmobranchs: Application to the North Pacific blue shark. Fisheries Research, 200: 104-115.
Kenchington, T. J. 2014a. Natural mortality estimators for information-limited fisheries. Fish and Fisheries, 15: 533-562.
Kenchington, T. J. 2014b. Natural mortality estimators for information-limited fisheries. Fish and Fisheries, 15: 533-562. http://doi.wiley.com/10.1111/faf.12027.
Kenchington, T. J. 2014c. Natural mortality estimators for information-limited fi sheries: 533-562.
Law, R. 2000. Fishing, selection, and phenotypic evolution. ICES Journal of Marine Science, 57: 659668.

Le Quesne, W. J. F. F., Jennings, S., Quesne, W. J. F. Le, Jennings, S., Le Quesne, W. J. F. F., and Jennings, S. 2012. Predicting species vulnerability with minimal data to support rapid risk assessment of fishing impacts on biodiversity. Journal of Applied Ecology, 49: 20-28.
Lee, H. H., Maunder, M. N., Piner, K. R., and Methot, R. D. 2012. Can steepness of the stockrecruitment relationship be estimated in fishery stock assessment models? Fisheries Research, 125-126: 254-261. Elsevier B.V. http://dx.doi.org/10.1016/j.fishres.2012.03.001.
Lorenzen, K. 2005. Population dynamics and potential of fisheries stock enhancement: Practical theory for assessment and policy analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 360: 171-189.
Mangel, M., Brodziak, J., and DiNardo, G. 2010. Reproductive ecology and scientific inference of steepness: A fundamental metric of population dynamics and strategic fisheries management. Fish and Fisheries, 11: 89-104.
Mangel, M., Maccall, A. D., Brodziak, J., Dick, E. J., Forrest, R. E., Pourzand, R., and Ralston, S. 2013. A perspective on steepness, reference points, and stock assessment, 11: 1-11.
Martell, S., and Froese, R. 2013. A simple method for estimating MSY from catch and resilience. Fish and Fisheries, 14: 504-514.
McGurk, M. 1987. Natural mortality and spatial patchiness: reply to Gulland. Marine Ecology Progress Series, 39: 201-206. http://www.int-res.com/articles/meps/39/m039p201.pdf.
McGurk, M. D. 1986. Natural mortality of marine pelagic fish eggs and larvae: role of spatial patchiness. Marine Ecology Progress Series, 34: 227-242.
Ministry for Primary Industries. 2016. Aquatic Environment and Biodiversity Annual Review 2016.

Compiled by the Fisheries Management Science Team, Ministry for Primary Industries, Wellington, New Zealand. 790 pp.
Ministry of Fisheries. 2011. Operational guidelines for New Zealand's harvest strategy standard. 78 pp.
Moe, B. J. 2015. Estimating growth and mortality in elasmobranchs: are we doing it correctly? Nova Southeastern University. 42 pp . http://nsuworks.nova.edu/occ_stuetd/42.
Myers, R. A., and Mertz, G. 1998. The limits of exploitation: A precautionary approach. Ecological Applications, 8: 165-169.
Oliveira, J. A. A. De, Carpi, P., Walker, N. D., Fischer, S., Earl, T. J., and Davie, S. 2017. Data-limited methods review. DRuMFISH. http://drumfish.org.
Pardo, S. A., Kindsvater, H. K., Reynolds, J. D., and Dulvy, N. K. 2016. Maximum intrinsic rate of population increase in sharks, rays, and chimaeras: the importance of survival to maturity. Canadian Journal for Fisheries and Aquatic Science, 73: 1159-1163.
Pardo, S. A., Cooper, A. B., Reynolds, J. D., and Dulvy, N. K. 2018. Quantifying the known unknowns: estimating maximum intrinsic rate of population increase in the face of uncertainty. ICES Journal of Marine Science.
Pauly, D. 1980. On the interrelationships between natural mortality, growth parameters and mean environmental temperature in 175 fish stocks. Journal du conseil International l'Exploration de la Mer, 39: 175-192.
Pauly, D., Moreau, J., and Abad, N. 1995. Comparison of age-structured and length-converted catch curves of brown trout Salmo trutta in two French rivers. Fisheries Research, 22: 197-204.
Pauly, D. 2008. Global fisheries: a brief review. Journal of Biological Research-Thessaloniki, 9: 3-9.
Pauly, D., Hilborn, R., and Branch, T. A. 2013. Does catch reflect abundance? Nature, 494: 303-306.
Pella, J. J., and Tomlinson, P. K. 1969. A generalized stock production model. Inter-American Tropical Tuna Commission Bulletin, 13: 421-458.
Peterson, I., and Wroblewski, J. S. 1984. Mortality rate of fishes in the pelagic ecosystem. Canadian Journal for Fisheries and Aquatic Science, 41: 1117-1120.
Pope, J. 2000. Gauging the impact of fishing mortality on non-target species. ICES Journal of Marine Science, 57: 689-696.
Prince, J., Victor, S., Kloulchad, V., and Hordyk, A. 2015. Length based SPR assessment of eleven Indo-Pacific coral reef fish populations in Palau. Fisheries Research, 171: 42-58. Elsevier B.V. http://dx.doi.org/10.1016/j.fishres.2015.06.008.
Punt, A. E., Smith, D. C., and Koopman, M. T. 2005. Using Information for 'Data-Rich' Species to Inform Assessments of 'Data-Poor' Species through Bayesian Stock Assessment Methods. Final report to Fisheries Research and Development Corporation Project No. 2002/094. Primary Industries Research Victoria, Queenscliff. 240 pp.
Quinn, T. J., and Deriso, R. B. 1999. Quantitative fish dynamics. Oxford University Press, New York.
Quiroz, J. C., Wiff, R., and Caneco, B. 2010. Incorporating uncertainty into estimation of natural mortality for two species of Rajidae fished in Chile. Fisheries Research, 102: 297-304.
Rice, J., and Harley, S. 2012. Stock assessment of oceanic whitetip sharks in the western and central Pacific Ocean. 7-15 August 2012 Busan, Republic of Korea. WCPFC-SC8-2012/SA-WP-06 Rev 1. 53 pp.
Rice, J., and Harley, S. 2013. Updated Stock Assessment of Silky Sharks in the Western and Central Pacific Ocean. Pohnpei, Federated States of Micronesia 6-14 August 2013. WCPFC-SC9-2013/ SA-WP-03.
Rice, J. 2018. Report for Project 78: Analysis of Observer and Logbook Data Pertaining to Key Shark Species in the Western and Central Pacific Ocean. WCPFC-SC14-2018/ EB-WP-02. 160 pp.
Rochet, M.-J. 2000. Does the concept of spawning per recruit make sense? ICES Journal of Marine Science, 57: 1160-1174. http://icesjms.oxfordjournals.org/cgi/doi/10.1006/jmsc.2000.0803.
Roff, D. A. 1984. The evolution of life history parameters in teleosts. Canadian Journal of Fisheries and Aquatic Sciences, 41: 989-1000.

Rudd, M. B., and Thorson, J. T. 2017. Accounting for variable recruitment and fishing mortality in length-based stock assessments for data-limited fisheries. Canadian Journal of Fisheries and Aquatic Sciences, 1035: 1-17. http://www.nrcresearchpress.com/doi/10.1139/cjfas-20170143.

Sainsbury, K. 2008. Best practice reference points for Australian Fisheries. A Report to Australian Fisheries Management Authority and the Department of the Environment and Heritage. 159 pp.
Semba, Y., Aoki, I., and Yokawa, K. 2011. Size at maturity and reproductive traits of shortfin mako, Isurus oxyrinchus , in the western and central North Pacific. Marine and Freshwater Research, 62: 20. http://www.publish.csiro.au/?paper=MF10123.
Semba, Y., Yokawa, K., Matsunaga, H., and Shono, H. 2013. Distribution and trend in abundance of the porbeagle (Lamna nasus) in the southern hemisphere. Marine and Freshwater Research, 64: 518-529.
Shark Working Group. 2014. Stock Assessment and Future Projections of Blue Shark in the North Pacific Ocean. Scientific Committee Tehnth Regular Session. Majuro, Republic of the Marshall Islands 6-14 August 2014. WCPFC-SC10-2014/ SA-WP-14 Rev 1. 194 pp.
Simpfendorfer, C. A., Bonfil, R., and Latour, R. J. 2005. Mortality estimation. In Management Techniques for Elasmobranch Fisheries, pp. 127-142. Ed. by J. A. Musick and R. Bonfil. FAO Fisheries Technical Paper 474.
Skalski, J. R., Millspaugh, J. J., and Ryding, K. E. 2008. Effects of asymptotic and maximum age estimates on calculated rates of population change. Ecological Modelling, 212: 528-535.
Smith, M. W., Then, A. Y., Wor, C., Ralph, G., Pollock, K. H., and Hoenig, J. M. 2012. Recommendations for catch-curve analysis. North American Journal of Fisheries Management, 32: 956-967.
Stein, R. W., Mull, C. G., Kuhn, T. S., Aschliman, N. C., Davidson, L. N. K., Joy, J. B., Smith, G. J., et al. 2018. Global priorities for conserving the evolutionary history of sharks, rays and chimaeras. Nature Ecology and Evolution, 2: 288-298. Springer US. http://dx.doi.org/10.1038/s41559-017-0448-4.
Taylor, I. G., Gertseva, V., Methot, R. D., and Maunder, M. N. 2013. A stock-recruitment relationship based on pre-recruit survival, illustrated with application to spiny dogfish shark. Fisheries Research, 142: 15-21. Elsevier B.V. http://dx.doi.org/10.1016/j.fishres.2012.04.018.
Then, A. Y., Hoenig, J. M., Hall, N. G., and Hewitt, D. A. 2015. Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species. ICES Journal of Marine Science, 72: 82-92.
Tremblay-Boyer, L., Hampton, J., McKechnie, S., and Pilling, G. 2018. Stock assessment of South Pacific albacore tuna. WCPFC Scientific Commitee Fourteenth Regular Session. Busan, Republic of Korea. WCPFC-SC14-2018/SA-WP-05. 113 pp.
Vincent, M. T., Pilling, G. M., and Hampton, J. 2018. Incorporation of updated growth information within the 2017 WCPO bigeye stock assessment grid, and examination of the sensitivity of estimates to alternative model spatial structures. WCPFC Scientific Commitee Fourteenth Regular Session. Busan, Republic of Korea. WCPFC-SC14-2018/SA-WP-03. 41 pp.
Wakefield, C. B., Santana-Garcon, J., Dorman, S. R., Blight, S., Denham, A., Wakeford, J., Molony, B. W., et al. 2017. Performance of bycatch reduction devices varies for chondrichthyan, reptile, and cetacean mitigation in demersal fish trawls: Assimilating subsurface interactions and unaccounted mortality. ICES Journal of Marine Science, 74: 343-358.
Wearmouth, V. J., and Sims, D. W. 2008. Sexual segregation in marine fish, reptiles, birds and mammals: behaviour patterns, mechanisms and conservation implications. In Advances in Marine Biology, pp. 107-170.
Zhou, S., and Griffiths, S. P. 2007. Estimating abundance from detection-nondetection data for randomly distributed or aggregated elusive populations. Ecography, 30: 537-549. http://doi.wiley.com/10.1111/j.2007.0906-7590.05009.x.

Zhou, S., and Griffiths, S. P. 2008. Sustainability Assessment for Fishing Effects (SAFE): A new quantitative ecological risk assessment method and its application to elasmobranch bycatch in an Australian trawl fishery. Fisheries Research, 91: 56-68.
Zhou, S., Smith, T., Fuller, M., and Zhou, S. 2009a. Rapid quantitative risk assessment for fish species in selected Commonwealth fisheries. Australian Fisheries Management Authority. 139 pp.
Zhou, S., Griffiths, S. P., and Miller, M. 2009b. Sustainability assessment for fishing effects (SAFE) on highly diverse and data-limited fish bycatch in a tropical prawn trawl fishery. Marine and Freshwater Research, 60: 563-570.
Zhou, S., Fuller, M., and Smith, T. 2009c. Rapid quantitative risk assessment for fish species in seven Commonwealth fisheries additional seven Commonwealth fisheries. Final Report to Australian Fisheries Management Authority, Canberra. 89 pp.
Zhou, S., Smith, A. D. M., Punt, A. E., Richardson, A. J., Gibbs, M., Fulton, E. A., Pascoe, S., et al. 2010. Ecosystem-based fisheries management requires a change to the selective fishing philosophy. Proceedings of the National Academy of Sciences of the United States of America, 107: 94859489.

Zhou, S., Smith, A. D. M. M., and Fuller, M. 2011. Quantitative ecological risk assessment for fishing effects on diverse data-poor non-target species in a multi-sector and multi-gear fishery. Fisheries Research, 112: 168-178.
Zhou, S., Yin, S., Thorson, J. T., Smith, A. D. M. M., and Fuller, M. 2012. Linking fishing mortality reference points to life history traits: an empirical study. Canadian Journal of Fisheries and Aquatic Sciences, 69: 1292-1301.
Zhou, S., Daley, R., Fuller, M., Bulman, C., Hobday, A., Ryan, P., Courtney, T., et al. 2013. ERA extension to assess cumulative effects of fishing on species. Final Report on FRDC Project 2011/029. Canberra, Australia. 139 pp.
Zhou, S., Klaer, N. L., Daley, R. M., Zhu, Z., Fuller, M., and Smith, A. D. M. 2014. Modelling multiple fishing gear efficiencies and abundance for aggregated populations using fishery or survey data. ICES Journal of Marine Science, 71: 2436-2447.
Zhou, S., Buckworth, R. C., Miller, M., and Jarrett, A. 2015. A SAFE analysis of bycatch in the Joseph Bonaparte Gulf fishery for Red-legged Banana Prawns. CSIRO Oceans and Atmosphere Flagship, Brisbane, Australia. 28 pp.
Zhou, S., Hobday, A. J., Dichmont, C. M., and Smith, A. D. M. 2016. Ecological risk assessments for the effects of fishing: A comparison and validation of PSA and SAFE. Fisheries Research, 183: 518529. Elsevier B.V.

Zhou, S., Punt, A. E., Ye, Y., Ellis, N., Dichmont, C. M., Haddon, M., Smith, D. C., et al. 2017a. Estimating stock depletion level from patterns of catch history. Fish and Fisheries, 18: 742-751.
Zhou, S., and Smith, A. D. M. 2017. Effect of fishing intensity and selectivity on trophic structure and fishery production. Marine Ecology Progress Series, 585: 185-198. http://www.intres.com/prepress/m12402.html.
Zhou, S., Punt, A. E., Smith, A. D. M., Ye, Y., Haddon, M., Dichmont, C. M., and Smith, D. C. 2017b. An optimized catch-only assessment method for data poor fisheries. ICES Journal of Marine Science, 75: 964-976.

Table 1. WCPFC key elasmobranchs species reviewed by the Pacific Shark Life History Expert Panel Workshop (2015, WCPFC-SC11-2015/EB-IP-13)

ID	Stock	Code	Recent assessment	Method	Result
1	Blue shark - North Pacific	BSH-N	2017	SS3	$\begin{aligned} & F_{m s y}=0.35 \\ & F_{12-14}=0.13 \end{aligned}$
2	Blue shark - South Pacific	BSH-S	2016	Multifan-CL	Results inconclusive
3	Shortfin mako North Pacific	SMA-N	2015	Indicators	Results inconclusive
4	Shortfin mako (South Pacific	SMA-S			
5	Longfin mako	LMA			
6	Silky shark (WCPO)	FAL	2013	SS3	$\begin{aligned} & F_{m s y}=0.08 \\ & F_{\text {cur }}=0.358 \end{aligned}$
7	Oceanic whitetip (WCPO)	OWT/OCS	2012	SS3	$\begin{aligned} & F_{m s y}=0.07 \\ & F_{c u r}=0.469 \end{aligned}$
8	Bigeye thresher (Pacific)	BTH	2017	Quantitative ERA	$\begin{aligned} & F_{o 0-14} / F_{\text {lim }}=0.33 \\ & F_{o 0-14} / F_{m s m}=0.54 \end{aligned}$
9	Pelagic thresher shark	PTH			
10	Common thresher shark	ALV			
11	Porbeagle shark (Southern hemisphere)	POR	2017	Quantitative ERA	$\begin{aligned} & F_{06-14} / F_{l i m}=0.002 \\ & F_{06-14} / F_{m s m}=0.007 \end{aligned}$
12	Smooth hammerhead	SPZ			
13	Scalloped hammerhead	SPL			
14	Great hammerhead	SPK			
15	Winghead	EUB			
16	Whale shark (Pacific)	RHN	2018	Quantitative ERA	Not see

Table 2. Comparison of mean M estimated from Eqns $2 a(M .1)$ and $2 b$ (M.2) with all estimators (M.all) for the 15 elasmobranch stocks. On average, M from both Eqns $2 a$ and $2 b$ is 1.11 times higher than M from all estimators.

| ID | | Stock | M.1/M.all |
| ---: | :--- | ---: | ---: | M.2/M.all | 1 | BSH-N | 0.98 | 0.73 |
| ---: | ---: | ---: | ---: |
| 2 | BSH-S | 1.26 | 0.78 |
| 3 | SMA-N | 1.09 | 0.88 |
| 4 | SMA-S | 1.57 | 0.85 |
| 5 | LMA | 0.00 | 0.00 |
| 6 | FAL | 1.73 | 0.47 |
| 7 | OCS | 1.09 | 0.69 |
| 8 | BTH | 1.71 | 0.66 |
| 9 | PTH | 1.50 | 0.83 |
| 10 | ALV | 1.30 | 0.63 |
| 11 | POR | 0.78 | 1.09 |
| 12 | SPZ | 1.60 | 0.87 |
| 13 | SPL | 1.36 | 0.84 |
| 14 | SPK | 1.06 | 0.72 |
| 15 | EUB | 1.50 | 0.88 |
| 16 | RHN | 1.15 | 0.44 |
| | Mean | 1.23 | 0.71 |

Table 3. Comparison of estimated reference points by four methods for three shark stocks in the WCPFC managed areas. $c F_{\text {msm }}, c F_{\text {lim, }}$ and $c F_{\text {crash }}$ are combined from 1 Methods 1 to 4. L10\% and H90\% are 10\% and 90\% percentiles.

ID	Stock	Quantit		$F_{\text {msm2 }}$	$F_{\text {msm3 }}$	$F_{60 \%}$	$c F_{\text {msm }}$	$F_{\text {lim1 }}$	$F_{\text {lim2 }}$	$F_{\text {lim3 }}$	$F_{40 \%}$	$c F_{\text {lim }}$	$F_{\text {crash1 }}$	$F_{\text {crash2 }}$	$F_{\text {crash }}$	$F_{10 \%}$	$c F_{\text {crash }}$
1	BSH-N	mean	0.10	0.19	0.15	0.14	0.14	0.14	0.28	0.22	0.27	0.23	0.19	0.37	0.29	0.77	0.40
1	BSH-N	sd	0.04	0.08	0.07	0.04	0.07	0.06	0.11	0.11	0.07	0.11	0.08	0.15	0.14	0.14	0.25
1	BSH-N	CV	0.42	0.41	0.49	0.27	0.48	0.42	0.40	0.49	0.27	0.46	0.42	0.40	0.49	0.19	0.63
	BSH-N	median	0.09	0.19	0.15	0.14	0.13	0.14	0.28	0.23	0.26	0.23	0.18	0.38	0.30	0.79	0.34
1	BSH-N	L10\%	0.05	0.09	0.04	0.10	0.06	0.08	0.14	0.05	0.19	0.09	0.10	0.18	0.07	0.57	0.13
1	BSH-N	H90\%	0.15	0.28	0.24	0.18	0.24	0.22	0.43	0.36	0.35	0.37	0.29	0.57	0.49	0.94	0.83
6	FAL	mean	0.06	0.07	0.07	0.03	0.05	0.08	0.10	0.10	0.05	0.08	0.11	0.13	0.13	0.13	0.13
6	FAL	sd	0.03	0.05	0.02	0.01	0.03	0.05	0.07	0.02	0.01	0.05	0.06	0.09	0.03	0.04	0.06
6	FAL	cv	0.56	0.70	0.25	0.27	0.61	0.56	0.67	0.25	0.28	0.58	0.56	0.66	0.25	0.34	0.48
6	FAL	median	0.05	0.07	0.07	0.03	0.04	0.07	0.10	0.11	0.05	0.07	0.09	0.13	0.14	0.12	0.12
6	FAL	L10\%	0.02	0.01	0.04	0.02	0.02	0.03	0.01	0.06	0.04	0.04	0.04	0.01	0.09	0.10	0.06
6	FAL	H90\%	0.10	0.13	0.08	0.04	0.09	0.15	0.19	0.12	0.07	0.14	0.20	0.25	0.16	0.17	0.20
7	OCS	mean	0.07	0.12	0.06	0.05	0.07	0.10	0.18	0.09	0.09	0.12	0.14	0.24	0.12	0.25	0.19
7	OCS	sd	0.03	0.06	0.02	0.02	0.04	0.04	0.09	0.03	0.03	0.06	0.06	0.12	0.04	0.08	0.10
7	OCS	CV	0.40	0.51	0.30	0.29	0.59	0.40	0.50	0.30	0.30	0.56	0.40	0.50	0.30	0.33	0.53
7	OCS	median	0.07	0.11	0.06	0.05	0.06	0.10	0.17	0.08	0.09	0.10	0.13	0.22	0.11	0.23	0.16
7	OCS	L10\%	0.04	0.05	0.03	0.03	0.03	0.06	0.07	0.05	0.06	0.05	0.07	0.09	0.07	0.15	0.08
7	OCS	H90\%	0.10	0.20	0.08	0.07	0.14	0.16	0.30	0.12	0.13	0.21	0.21	0.40	0.16	0.37	0.34

Table 4. Comparison of estimated reference points by three methods for the 15 shark stocks in the WCPFC managed areas. $c F_{\text {msm }}, c F_{\text {lim, }}$, and $c F_{\text {crash }}$ are combined from 1 Methods 1 to 4. L10\% and H90\% are 10\% and 90\% percentiles.

ID		Stock	Quantity $F_{\text {msm1 }}$		$F_{\text {msm } 2}$	$F_{\text {msm } 3}$	$\boldsymbol{c} \boldsymbol{F}_{\text {msm }}$	$F_{\text {lim1 }}$	$F_{\text {lim2 }}$	$F_{\text {lim3 }}$	cF ${ }_{\text {lim }}$	$F_{\text {crash1 }}$	$F_{\text {crash2 }}$	$F_{\text {crash } 3}$	$c F_{\text {crash }}$
	1	BSH-N	mean	0.10	0.19	0.14	0.14	0.14	0.28	0.22	0.21	0.19	0.38	0.29	0.29
	1	BSH-N	sd	0.04	0.08	0.07	0.08	0.06	0.11	0.11	0.11	0.08	0.15	0.14	0.15
	1	BSH-N	cv	0.43	0.40	0.49	0.52	0.43	0.40	0.49	0.52	0.43	0.40	0.49	0.52
	1	BSH-N	median	0.09	0.19	0.15	0.13	0.14	0.28	0.23	0.20	0.18	0.38	0.30	0.27
	1	BSH-N	L10\%	0.05	0.09	0.04	0.05	0.07	0.14	0.05	0.08	0.10	0.19	0.07	0.11
	1	BSH-N	H90\%	0.15	0.29	0.24	0.25	0.22	0.43	0.35	0.37	0.30	0.57	0.47	0.50
	2	BSH-S	mean	0.08	0.13	0.17	0.13	0.12	0.19	0.26	0.19	0.16	0.25	0.34	0.25
	2	BSH-S	sd	0.03	0.04	0.00	0.05	0.04	0.06	0.00	0.07	0.05	0.07	0.00	0.09
	2	BSH-S	cv	0.35	0.29	0.00	0.37	0.35	0.29	0.00	0.37	0.35	0.29	0.00	0.37
	2	BSH-S	median	0.08	0.13	0.17	0.13	0.12	0.19	0.26	0.19	0.16	0.25	0.34	0.26
	2	BSH-S	L10\%	0.05	0.08	0.17	0.06	0.07	0.12	0.26	0.09	0.09	0.16	0.34	0.12
	2	BSH-S	H90\%	0.11	0.17	0.17	0.17	0.17	0.26	0.26	0.26	0.22	0.34	0.34	0.34
	3	SMA-N	mean	0.06	0.02	0.03	0.04	0.09	0.04	0.05	0.06	0.12	0.05	0.06	0.08
	3	SMA-N	sd	0.03	0.04	0.01	0.03	0.04	0.05	0.01	0.04	0.06	0.07	0.01	0.06
	3	SMA-N	CV	0.48	1.73	0.21	0.87	0.48	1.42	0.21	0.78	0.48	1.30	0.21	0.75
	3	SMA-N	median	0.05	0.02	0.03	0.04	0.08	0.03	0.05	0.05	0.11	0.05	0.06	0.07
	3	SMA-N	L10\%	0.03	-0.02	0.02	0.01	0.04	-0.02	0.03	0.01	0.06	-0.02	0.05	0.01
	3	SMA-N	H90\%	0.09	0.07	0.04	0.07	0.14	0.11	0.06	0.11	0.19	0.14	0.08	0.15
	4	SMA-S	mean	0.06	0.00	0.03	0.03	0.09	0.01	0.05	0.05	0.12	0.02	0.06	0.07
	4	SMA-S	sd	0.03	0.03	0.01	0.04	0.05	0.04	0.01	0.05	0.06	0.05	0.01	0.06
	4	SMA-S	cv	0.51	15.69	0.21	1.14	0.51	4.25	0.21	0.98	0.51	2.80	0.21	0.93
	4	SMA-S	median	0.05	0.01	0.03	0.03	0.08	0.02	0.05	0.05	0.11	0.02	0.06	0.06
	4	SMA-S	L10\%	0.03	-0.05	0.02	-0.01	0.04	-0.05	0.03	0.00	0.05	-0.05	0.05	-0.01
	4	SMA-S	H90\%	0.10	0.04	0.04	0.07	0.15	0.06	0.06	0.11	0.20	0.08	0.08	0.14

Table 4 continues

ID		Stock	Quantity $F_{\text {msm } 1}$		$F_{\text {msm2 }}$	$F_{\text {msm } 3}$	$c F_{\text {msm }}$	$F_{\text {lim1 }}$	$F_{\text {lim2 }}$	$F_{\text {lim } 3}$	$\mathrm{cF}_{\text {lim }}$	$F_{\text {crash1 }}$	$F_{\text {crash2 }}$	$F_{\text {crash }}$	$c F_{\text {crash }}$
	6	FAL	mean	0.06	0.07	0.07	0.06	0.08	0.10	0.10	0.09	0.11	0.13	0.13	0.12
	6	FAL	sd	0.03	0.05	0.02	0.03	0.05	0.07	0.02	0.05	0.06	0.09	0.03	0.07
	6	FAL	CV	0.56	0.69	0.25	0.54	0.56	0.67	0.25	0.53	0.56	0.66	0.25	0.53
	6	FAL	median	0.05	0.07	0.07	0.07	0.07	0.10	0.11	0.10	0.10	0.13	0.14	0.13
	6	FAL	L10\%	0.02	0.01	0.04	0.02	0.03	0.01	0.06	0.04	0.04	0.01	0.09	0.05
	6	FAL	H90\%	0.10	0.13	0.08	0.10	0.15	0.19	0.12	0.15	0.21	0.25	0.16	0.21
	7	OCS	mean	0.07	0.12	0.06	0.08	0.10	0.18	0.09	0.12	0.14	0.24	0.12	0.16
	7	OCS	sd	0.03	0.06	0.02	0.05	0.04	0.09	0.03	0.07	0.06	0.12	0.04	0.09
	7	OCS	CV	0.41	0.51	0.30	0.58	0.41	0.50	0.30	0.58	0.41	0.50	0.30	0.57
	7	OCS	median	0.07	0.11	0.06	0.08	0.10	0.17	0.08	0.11	0.13	0.23	0.11	0.15
	7	OCS	L10\%	0.04	0.05	0.03	0.03	0.06	0.07	0.05	0.05	0.07	0.09	0.07	0.07
	7	OCS	H90\%	0.11	0.20	0.08	0.16	0.16	0.30	0.12	0.24	0.21	0.40	0.16	0.31
	8	BTH	mean	0.07	-0.01	0.00	0.02	0.10	0.00	0.01	0.04	0.14	0.00	0.01	0.05
	8	BTH	sd	0.03	0.04	0.01	0.04	0.05	0.04	0.01	0.06	0.07	0.05	0.02	0.08
	8	BTH	CV	0.47	-5.31	2.40	1.97	0.47	-35.45	1.83	1.63	0.47	11.06	1.61	1.53
	8	BTH	median	0.06	0.01	0.00	0.02	0.09	0.01	0.00	0.02	0.13	0.01	0.01	0.03
	8	BTH	L10\%	0.03	-0.06	-0.01	-0.03	0.05	-0.06	-0.01	-0.03	0.06	-0.06	-0.01	-0.03
	8	BTH	H90\%	0.12	0.03	0.02	0.08	0.17	0.05	0.02	0.12	0.23	0.07	0.03	0.16
	9	PTH	mean	0.06	0.02	0.03	0.04	0.09	0.04	0.04	0.06	0.13	0.05	0.05	0.08
	9	PTH	sd	0.03	0.03	0.01	0.03	0.05	0.04	0.01	0.04	0.07	0.05	0.02	0.06
	9	PTH	CV	0.53	1.07	0.34	0.82	0.53	0.96	0.34	0.78	0.53	0.91	0.34	0.78
	9	PTH	median	0.06	0.03	0.02	0.03	0.09	0.04	0.04	0.05	0.13	0.06	0.05	0.06
	9	PTH	L10\%	0.03	-0.01	0.02	0.01	0.05	-0.01	0.02	0.01	0.06	-0.01	0.03	0.02
	9	PTH	H90\%	0.10	0.06	0.04	0.08	0.15	0.09	0.06	0.12	0.20	0.11	0.08	0.16

Table 4 continues.

ID	Stock	Quantity $F_{\text {msm } 1}$		$F_{\text {msm2 }}$	$F_{\text {msm } 3}$	$c F_{\text {msm }}$	$F_{\text {lim1 }}$	$F_{\text {lim2 }}$	$F_{\text {lim } 3}$	$c_{\text {lim }}$	$F_{\text {crash1 }}$	$F_{\text {crash2 }}$	$F_{\text {crash }}$	$c F_{\text {crash }}$
10	ALV	mean	0.08	0.07	0.05	0.07	0.12	0.11	0.08	0.10	0.16	0.14	0.10	0.14
10	ALV	sd	0.03	0.03	0.02	0.03	0.05	0.05	0.02	0.05	0.07	0.07	0.03	0.06
10	ALV	CV	0.40	0.48	0.29	0.46	0.40	0.47	0.29	0.45	0.40	0.47	0.29	0.45
10	ALV	median	0.08	0.07	0.05	0.07	0.12	0.10	0.07	0.10	0.16	0.14	0.10	0.13
10	ALV	L10\%	0.04	0.03	0.04	0.04	0.06	0.04	0.06	0.06	0.09	0.05	0.07	0.07
10	ALV	H90\%	0.12	0.11	0.08	0.11	0.19	0.17	0.11	0.16	0.25	0.22	0.15	0.21
11	POR	mean	0.05	0.03		0.04	0.08	0.04		0.06	0.10	0.06		0.08
11	POR	sd	0.03	0.03		0.03	0.04	0.04		0.04	0.05	0.06		0.06
11	POR	CV	0.50	1.14		0.78	0.50	1.01		0.73	0.50	0.95		0.72
11	POR	median	0.05	0.03		0.04	0.07	0.04		0.06	0.09	0.06		0.08
11	POR	L10\%	0.03	-0.01		0.01	0.04	-0.01		0.01	0.05	-0.01		0.01
11	POR	H90\%	0.08	0.06		0.07	0.12	0.09		0.11	0.16	0.12		0.15
12	SPZ	mean	0.07	0.03		0.05	0.10	0.04		0.07	0.13	0.06		0.10
12	SPZ	sd	0.03	0.04		0.04	0.05	0.05		0.06	0.07	0.06		0.08
12	SPZ	CV	0.50	1.42		0.89	0.50	1.20		0.81	0.50	1.11		0.79
12	SPZ	median	0.06	0.02		0.05	0.09	0.03		0.08	0.12	0.04		0.10
12	SPZ	L10\%	0.03	-0.03		-0.01	0.04	-0.03		-0.01	0.06	-0.03		-0.01
12	SPZ	H90\%	0.11	0.07		0.10	0.17	0.11		0.14	0.22	0.14		0.19
13	SPL	mean	0.06	0.06	0.03	0.05	0.09	0.09	0.05	0.07	0.11	0.12	0.07	0.10
13	SPL	sd	0.02	0.02	0.01	0.02	0.03	0.03	0.02	0.03	0.05	0.05	0.02	0.05
13	SPL	CV	0.39	0.41	0.31	0.47	0.39	0.40	0.31	0.46	0.39	0.40	0.31	0.46
13	SPL	median	0.05	0.06	0.02	0.04	0.08	0.09	0.03	0.06	0.11	0.12	0.05	0.09
13	SPL	L10\%	0.03	0.03	0.02	0.02	0.05	0.04	0.03	0.03	0.06	0.06	0.05	0.05
13	SPL	H90\%	0.09	0.08	0.04	0.08	0.13	0.13	0.06	0.12	0.18	0.17	0.09	0.16

Table 4 continues

Table 5. Available data from WCPFC-SC11-2015/EB-IP-13 (number of studies in parenthesis) and relative quality of the estimated reference points for WCPFC key elasmobranchs species. Alternative r is adopted from regions outside Western and Central Pacific Ocean. New data are used for three stocks.

ID	Code	LHP			RP quality
1	BSH-N	$t_{0}(5)$	$T_{\text {max }}$ (3)	W.b (1)	High
		$L_{0}(3)$	L_{50} (3)	$M(2)$	
		$T_{\text {mat }}(2)$	$G p$ (2)	$\lambda(2)$	
		$K(5)$	Rc (2)	r (1)	
		$L_{\text {inf }}(6)$	Ls (2)	$r_{1.5 M}(1)$	
2	BSH-S	$t_{0}(2)$	$T_{\text {max }}(2)$	W.b (1)	Low
		Lo (0)	$L_{50}(2)$	$M(1)$	Alternative r
		$T_{\text {mat }}(1)$	$G p$ (1)	$\lambda(0)$	
		$K(2)$	Rc (0)	r (0) Alt	
		$L_{i n f}(2)$	Ls (1)	$r_{1.5 M}(0)$	
3	SMA-N	$t_{0}(5)$	$T_{\text {max }}$ (3)	W.b (2)	High
		$L_{0}(6)$	$L_{50}(5)$	$M(4)$	
		$T_{\text {mat }}(6)$	Gp (4)	$\lambda(4)$	
		$K(6)$	Rc (2)	$r(0)$	
		$L_{\text {inf }}(6)$	Ls (5)	$r_{1.5 M}(0)$	
4	SMA-S	$t_{0}(0)$	$T_{\text {max }}(1)$	W.b (1)	Low
		Lo (1)	$L_{50}(51$	$M(1)$	
		$T_{\text {mat }}(1)$	Gp (0)	$\lambda(0)$	
		$K(0)$	Rc (0)	r (0)	
		$L_{\text {inf }}(0)$	Ls (0)	$r_{1.5 M}(0)$	
5	LMA	$t_{0}(0)$	$T_{\text {max }}(0)$	W.b (0)	NA
		Lo (1)	$L_{50}(1)$	$M(0)$	
		$T_{\text {mat }}(0)$	Gp (0)	$\lambda(0)$	
		$K(0)$	$R c(0)$	$r(0)$	
		$L_{\text {inf }}(0)$	Ls (1)	$r_{1.5 M}(0)$	
6	FAL	$t_{0}(3)$	$T_{\text {max }}(3)$	W.b (1)	High ($L_{0}, T_{\text {mat }}, K, L_{\text {inf }}$, $T_{\text {max }}$ from Grant et al. 2018)
		Lo (5)	$L_{50}(5)$	$M(2)$	
		$T_{\text {mat }}(2)$	$G p(2)$	$\lambda(0)$	
		$K(3)$	Rc (1)	r (2)	
		$L_{\text {inf }}(2)$	Ls (4)	$r_{1.5 M}(1)$	
7	OWT/OCS	$t_{0}(1)$	$T_{\text {max }}(2)$	W.b (1)	Medium
		Lo (3)	$L_{50}(3)$	$M(1)$	Alternative r
		$T_{\text {mat }}(2)$	$G p$ (2)	$\lambda(0)$	
		$K(2)$	Rc (1)	r (0) Alt	
		$L_{\text {inf }}(2)$	Ls (5)	$r_{1.5 M}(1)$	
8	BTH	$t_{0}(1)$	$T_{\text {max }}(1)$	W.b (2)	Medium ($T_{\max }$ from Fu et al. 2018)
		Lo (2)	$L_{50}(1)$	$M(1)$	
		$T_{\text {mat }}(1)$	$G p(0)$	$\lambda(1)$	
		$K(1)$	Rc (0)	r (0)	
		$L_{\text {inf }}(1)$	Ls (1)	$r_{1.5 M}(1)$	

Table 5 continues

ID	Code	LHP			RP quality
9	PTH	$t_{0}(1)$	$T_{\max }(2)$	W.b (2)	Medium
		$L_{0}(1)$	$L_{50}(2)$	$M(2)$	
		$T_{\text {mat }}(1)$	$G p$ (1)	$\lambda(1)$	
		$K(1)$	Rc (0)	r (0)	
		$L_{\text {inf }}(1)$	Ls (1)	$r_{1.5 M}(1)$	
10	ALV	$t_{0}(1)$	$T_{\max }(2)$	W.b (0)	Medium
		$L_{0}(2)$	$L_{50}(2)$	$M(1)$	
		$T_{\text {mat }}(2)$	Gp (0)	$\lambda(1)$	
		$K(2)$	$R c$ (0)	r (0)	
		$L_{i n f}(2)$	Ls (1)	$r_{1.5 M}(1)$	
11	POR	$t_{0}(1)$	$T_{\max }(1)$	W.b (1)	Low ($T_{\text {max }}, K, M$ from Hoyle et al. 2017)
		$L_{0}(1)$	$L_{50}(1)$	$M(1)$	
		$T_{\text {mat }}(1)$	$G p(1)$	$\lambda(0)$	
		$K(1)$	$R c(1)$	$r(0)$	
		$L_{\text {inf }}(1)$	Ls (1)	$r_{1.5 M}(0)$	
12	SPZ	$t_{0}(1)$	$T_{\max }(1)$	W.b (1)	Low
		$L_{0}(2)$	$L_{50}(1)$	$M(0)$	
		$T_{\text {mat }}(1)$	$G p$ (1)	$\lambda(0)$	
		$K(1)$	Rc (0)	r (0)	
		$L_{\text {inf }}(1)$	Ls (1)	$r_{1.5 M}(0)$	
13	SPL	$t_{0}(0)$	$T_{\max }(1)$	W.b (1)	Medium
		$L_{0}(3)$	$L_{50}(1)$	$M(1)$	
		$T_{\text {mat }}(1)$	$G p$ (1)	$\lambda(0)$	
		$K(1)$	$R c(1)$	$r(1)$	
		$L_{\text {inf }}(1)$	Ls (1)	$r_{1.5 M}(1)$	
14	SPK	$t_{0}(0)$	$T_{\max }(1)$	W.b (1)	Low
		$L_{0}(1)$	$L_{50}(1)$	$M(0)$	
		$T_{\text {mat }}(1)$	$G p(1)$	$\lambda(0)$	
		$K(1)$	$R c(1)$	r (0)	
		$L_{\text {inf }}(1)$	Ls (1)	$r_{1.5 M}(0)$	
15	EUB	$t_{0}(0)$	$T_{\max }(1)$	W.b (1)	Low
		$L_{0}(2)$	$L_{50}(1)$	$M(0)$	
		$T_{\text {mat }}(1)$	$G p(1)$	$\lambda(0)$	
		$K(1)$	Rc (1)	r (0)	
		$L_{\text {inf }}(1)$	Ls (1)	$r_{1.5 M}(0)$	
16	RHN		$T_{\max }(1)$	W.b (0)	Low
		$L_{0}(3)$	$L_{50}(6)$	$M(1)$	
		$T_{\text {mat }}(2)$	Gp (0)	$\lambda(0)$	
		$K(2)$	Rc (0)	r (0)	
		$L_{\text {inf }}(2)$	Ls (1)	$r_{1.5 M}(0)$	

Table 6. Biological reference points, proposed ecological risk assessment categories, and ecological consequences for WCPFC bycatch species.

	F < $\mathrm{F}_{\mathrm{msm}}$	$F_{\text {lim }}>\mathrm{F} \geq \mathrm{F}_{\text {msm }}$	$\mathrm{F}_{\text {crash }}>\mathrm{F} \geq \mathrm{F}_{\text {lim }}$	$F \geq F_{\text {crash }}$
Risk	Low	Medium	High	Extreme high
Ecological consequence	Overfishing not occurring. May keep population above 50% of virgin level	Overfishing is occurring but population can be sustainable	May drive population to very low levels in longer term	Population is unsustainable in long term possibility of extinction

Table 7: Parameter values used in estimation of stock recruitment relationship.

Parameter	Value
$L_{\text {inf }}$	243.3 cm
K	$0.144 \mathrm{yr}^{-1}$
a_{0}	-0.849 yr
a_{c}	0 yr
$c 1$	5.859×10^{-6}
$c 2$	3.093
$c 3$	24.52
$c 4$	-0.16
$c 5$	-45.54
$c 6$	0.455
$M T$	$0.23 \mathrm{yr}^{-1}$
sr	0.5
S0	$0.965 \mathrm{yr}^{-1}$
S1	$1 \mathrm{yr}^{-1}$
S2	$0.993 \mathrm{yr}^{-1}$
S3	$\mathrm{e}^{-\mathrm{M}(\text { age }=0)}$
$S_{\text {cycle }}$	1 yr
age	20 yr

Figure 1. Comparison of estimated M from seven estimators for the 15 elasmobranch stocks. Estimator 7 is based on values from the literature.

Figure 2. Density distributions of estimated reference points for Blue shark in the North Pacific Ocean (BSH-N) from four alternative methods. For the SPR method, $F_{40 \%}$ is used as $F_{m s m}, F_{40 \%}$ as $F_{\text {lim }}$, and $F_{10 \%}$ as $F_{\text {crash }}$.

Figure 3. Density distributions of estimated reference points for Blue shark in the South Pacific Ocean (BSH-S) from three alternative methods.

Figure 4. Density distributions of estimated reference points for Shortfin mako shark in the North Pacific Ocean (SMA-N) from three alternative methods.

Figure 5. Density distributions of estimated reference points for Shortfin mako shark in the South Pacific Ocean (SMA-S) from three alternative methods.

Figure 6. Density distributions of estimated reference points for Silky shark in the Pacific Ocean (FAL) from four alternative methods using newly estimated life-history parameters (Grant et al. 2018).

Figure 7. Density distributions of estimated reference points for Oceanic whitetip shark in the Pacific Ocean (OCS) from four alternative methods.

Figure 8. Density distributions of estimated reference points for Bigeye thresher shark in the Pacific Ocean (BTH) from three alternative methods.

Figure 9. Density distributions of estimated reference points for Pelagic thresher shark in the Pacific Ocean (PTH) from three alternative methods.

Figure 10. Density distributions of estimated reference points for Common thresher shark in the Pacific Ocean (ALV) from three alternative methods.

Figure 11. Density distributions of estimated reference points for Porbeagle shark in the Pacific Ocean (POR) from three alternative methods.

Figure 12. Density distributions of estimated reference points for Smooth hammerhead shark in the Pacific Ocean (SPZ) from three alternative methods.

Figure 13. Density distributions of estimated reference points for Scalloped hammerhead shark in the Pacific Ocean (SPL) from three alternative methods.

Figure 14. Density distributions of estimated reference points for Great hammerhead shark in the Pacific Ocean (SPK) from three alternative methods.

Figure 15. Density distributions of estimated reference points for Winghead shark in the Pacific Ocean (EUB) from three alternative methods.

Figure 16. Density distributions of estimated reference points for Whale shark in the Pacific Ocean (RHN) from three alternative methods.

Figure 17. Comparison of estimated $F_{m s m}$ and $F_{\text {lim }}$ between Methods 1 to 4 for the 16 shark stocks (RP cannot be estimated for stock \#5 LMA).

Figure 18. Comparison of estimated $F_{m s m}$ between four alternative methods for the 16 shark stocks (RP cannot be estimated for stock \#5 LMA). The line indicates where $F_{x}=F_{y}$.

Figure 19. Methods 1 and 2 sensitivity to estimated maximum age. The example is $F_{m s m}$ for Blue shark in the Northern Pacific with all other life history parameters remaining unchanged. The vertical line is the estimated $t_{\text {max }}$.

Figure 20. Methods 1 and 2 sensitivity to estimated natural mortality. The example is $F_{m s m}$ for Blue shark in the Northern Pacific. The vertical line is the estimated M.

Figure 21. Relationship between reference points based on spawning potential ratio (SPR) and stock productivity measured as life time reproductive rate (x-axis). SPR $_{\text {MER }}$ is the spawning potential ratio at maximum excess recruitment in number, and SPR ${ }_{\text {crash }}$ below which the stock will become extinct.

Figure 22. Intrinsic population growth rate r as a function of natural mortality M based on Euler-Lotka equation and mean fecundity of sharks species in the WCPFC. The thin line is $r=M$.

Figure 23: Probability density distribution for von Bertalanffy steepness h, including uncertainties associated with maximum age and mean natural mortality.

7 Appendix 1: R code for testing stock-recruitment steepness

```
#---------------------
# Parameter values
#--------------------
# Age and growth
amax <- 20
Linf <- 243.3
k <- 0.144
a0 <- -0.849
ac <- 0 # First age, used in Lorenzen.
# Length-weight
c1 <- 5.859E-6
c2 <- 3.093
c1m <- 1.21E-5
c2m <- 2.94
# Maturity
c3 <- 24.52
c4 <- -0.16
# Littersize-length
c5 <- -45.54
c6 <- 0.455
# Natural mortality
MT <- 0.23 # Target natural mortality
sr <- 0.5
SO <- 0.965 # Occurrence rate of embryos from fertilised eggs, beta distributed
S1 <- 1 # Assumed, though max may actually be survival rate of pregnant females
S2 <- 0.993 # Neonates: proportion of abnormal embryos, beta distributed
# Reproduction
y <- 1 # Reproductive period
Scycle <- 1/y
#--------------------
# Functions
#---------------------
# vonB function
vb <- function(a, Linf, k, a0) Linf * (1-exp(-k * (a - a0)))
# M function
calcM <- function(amax, Linf, k, a0, MT, ac) {
    LL <- vb(seq(0, amax, 1), Linf, k, a0)
    Lc <- vb(ac, Linf, k, a0)
    (MT * (amax - ac) / log(Lc / (Lc + Linf * (exp(k * (amax - ac))- 1)))) * log(LL / (LL +
Linf * (exp(k) - 1)))
}
# am=20
# Mtest <- calcM(amax=am, Linf, k, a0, MT=0.23, ac=0)
# plot(0:am, Mtest, type="l", xlab = "Age")
# mean(Mtest)
# exp(-Mtest[2])
# L <- vb(0:am, Linf, k, a0)
# p_mat <- 1 / (1 + exp (c3 + c4 * L))
# plot(0:am, p_mat, type = "l")
```

```
# Combined function
calc_h <- function(a_s, sr, Wf) {
    h <- a_s * (1 - sr) * Wf / (4 + a s * (1 - sr) * Wf)
    return(h)
}
# Steepness function
est_steepness <- function(amaxx=amax, Linfx=Linf, kx=k, a0x=a0, MTx=MT,
                acx=ac, c1x=c1, c 2x=c2, c 3x=c3, c 4x=c4, c 5x=c5, c 6x=c6, srx=sr, S0x=S0,
                S1x=S1, S2x=S2, Scyclex=Scycle, rec age=1) {
    a <- 0:amaxx
    L <- vb(a, Linfx, kx, a0x) # Length at age
    Lc <- vb(acx, Linfx, kx, a0x) # Length of minimum age for estimating mean M
    p_mat <- 1 / (1 + exp(c3x + c4x * L)) # Maturity
    W-<- c1x * (L)^c2x # Length-weight relationship
    litter <- c5x + c6x * L # Fecundity
    litter[litter < 0] <- 0
    M <- calcM(amaxx, Linfx, kx, a0x, MTx, acx) # Natural mortality
    S3 <- exp(-M[1]) # Juvenile mortality. How old is S3? Assume 0
    Spre <- S0x * S1x * S2x * S3 # Total pre-recruit mortality
    Sac <- Sa <- vector("double", length = length(a))
    recind <- rec_age + 1
    Sac[recind] <- 1 # Recruitment at age rec age (should be 1)
    Sa <- exp (-M)
    for (i in recind:amaxx) {
        Sac[i + 1] <- Sac[i] * Sa[i]
    }
    Wfa <- Sac * W * p_mat # Female spawning biomass at age
    Wf <- sum(Wfa)
    # new individuals per spawning biomass, weighted by abundance at age
    alpha_s <- Spre * Scyclex * sum(Sac * p_mat * litter) / sum(Sac * p_mat * W)
    # alpha_s <- sum(litter) * Spre * Scyclex / sum(W)
    h <- calc_h(a_s=alpha_s, sr = srx, Wf = Wf)
    return(h)
}
#--------------------
# Results
#--------------------
est_steepness()
est_steepness(rec_age = 0)
est_steepness(amax=12)
est_steepness(amax=24)
est_steepness(MT=0.2)
est_steepness(MT=0.3)
est_steepness(ac = 0)
est_steepness(ac = 0.1)
est_steepness(ac = 1)
# Randomization
nsamp = 200000
MT_r <- rnorm(nsamp, mean = 0.23, sd=0.08)
amax_r <- sample(x=c(12, 15, 22, 29, 21, 20), nsamp, replace = TRUE)
stpp <- rep(0, nsamp)
for (i in 1:nsamp) {
    stpp[i] <- est_steepness(amaxx = amax_r[i], MTx = MT_r[i])
}
windows()
hist(stpp, xlim = c(0,1), nclass = 50, freq = FALSE, main = "Uncertainty distribution for
h", xlab = "h")
savePlot("steep_prior_MT_amax.png", type = "png")
```


CONTACT US

t 1300363400
+6139545 2176
e csiroenquiries@csiro.au
w www.csiro.au

AT CSIRO, WE DO THE
EXTRAORDINARY EVERY DAY
We innovate for tomorrow and help improve today - for our customers, all Australians and the world.

Our innovations contribute billions of dollars to the Australian economy every year. As the largest patent holder in the nation, our vast wealth of intellectual property has led to more than 150 spin-off companies.

With more than 5,000 experts and a burning desire to get things done, we are Australia's catalyst for innovation.
CSIRO. WE IMAGINE. WE COLLABORATE. WE INNOVATE.

FOR FURTHER INFORMATION

Oceans and Atmosphere

Dr Shijie Zhou
t +61738335968
e Shijie.Zhou@csiro.au
w www.csiro.au/OandA

