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Incidental catch of nontarget species (bycatch) is a major barrier to
ecological and economic sustainability in marine capture fisheries.
Key to mitigating bycatch is an understanding of the habitat require-
ments of target and nontarget species and the influence of hetero-
geneity and variability in the dynamic marine environment. While
patterns of overlap among marine capture fisheries and habitats
of a taxonomically diverse range of marine vertebrates have been
reported, a mechanistic understanding of the real-time physical
drivers of bycatch events is lacking. Moving from describing patterns
toward understanding processes, we apply a Lagrangian analysis to a
high-resolution ocean model output to elucidate the fundamental
mechanisms that drive fisheries interactions. We find that the likeli-
hood of marine megafauna bycatch is intensified in attracting
Lagrangian coherent structures associated with submesoscale and
mesoscale filaments, fronts, and eddies. These results highlight how
the real-time tracking of dynamic structures in the oceans can support
fisheries sustainability and advance ecosystem-based management.
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Managing the competing demands of resource extraction
and biodiversity conservation is a central challenge in main-

taining ecosystem function across terrestrial and marine systems (1,
2). In the oceans, overharvesting, habitat degradation, and bycatch—
incidental catch that is unwanted, unused, or unmanaged (3)—are
global-scale barriers to fisheries sustainability. Seafood is a major
protein source for more than 3 billion humans worldwide (4),
and the importance of a sustainable supply will increase with the
rapidly rising global population (5). Prioritizing the ecological
sustainability of marine fisheries is crucial to preventing ecosys-
tem collapse and protecting food sources and future livelihoods
in fisheries-reliant communities (6, 7).
Nontarget catch represents an estimated 40% by mass of all

marine catch (3) and has been identified as the most serious global
threat to a diverse array of marine vertebrates including sea tur-
tles, seabirds, marine mammals, pinnipeds, and elasmobranchs (3,
8–10). Marine megafauna populations face a range of cumulative
anthropogenic stressors, particularly in coastal zones under in-
tensive human use (11), and many are of immediate conservation
concern (12–14). Life history characteristics such as long life span,
low fecundity, late maturity, and wide-ranging movements exac-
erbate the ecological impacts of fisheries bycatch, as populations
struggle to buffer anthropogenic pressure. The removal of high-
trophic level species, described as trophic downgrading (15, 16),
causes substantial changes in ecosystem function (12) and reduces
the profitability of fisheries (5).
To halt or reverse these trends, bycatch mitigation measures

such as changes to fishing gear and practice and fishing effort
reallocation and redistribution have been successfully imple-
mented in many fisheries (17, 18). However, the relative success
of these mitigation options relies upon management effort being

both well-targeted in space and time, and effectively enforced.
Spatial fisheries management solutions, such as Marine Protected
Areas, time-area closures, or gear modification zones, require a
scale-matched understanding of the spatiotemporal dynamics of
fisheries and of the habitat preferences of both target species and
bycatch-sensitive populations.
Bycatch hotspots and trends have been explored using spatially

and temporally explicit fisheries data at global (9, 10, 19–21),
ocean-basin (22–24), national (25, 26), and regional (27, 28)
scales. However, previous studies have predominantly focused on
correlations and long-term patterns of spatiotemporal overlap
among fisheries and high-use habitats of marine vertebrates (23,
24, 29) and are often population—or species—specific. While
these studies have yielded important insights into the location of
bycatch hotspots, seldom do the analytical techniques used ac-
count for spatiotemporal dynamics, yield insights at management-
relevant spatial (kilometers to tens of kilometers) or temporal
(daily, weekly, monthly) scales, or attempt to identify the funda-
mental physical drivers that underlie observed patterns.
It is well-established that biophysical coupling at submesoscale

and mesoscale [hereafter (sub)mesoscale] features such as frontal
systems and eddies can result in productive foraging habitats for
marine predators (29–32). Fronts, eddies, and filaments can become
hotspots of productivity through nutrient enrichment, turbulent
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vertical mixing (33, 34), proliferation of phytoplankton, and physical
aggregation of zooplankton (35). These processes of biophysical
coupling attract midlevel consumers such as small pelagic fish and
gelatinous zooplankton, which are themselves prey items for marine
megafauna such as seabirds, turtles, cetaceans, pinnipeds, sharks,
and large teleost fishes. Marine predators of multiple taxa are
known to exploit these accessible and predictable foraging oppor-
tunities (32, 36, 37), as are the fisheries that target both bait fish and
large predatory teleosts that are found in higher numbers in asso-
ciation with submesoscale structures (38). Hence, (sub)mesoscale
structures can concentrate forage resources, fish, fisheries, and
predators into hotspots of bycatch risk to marine vertebrates.
Broad-scale regions of increased fisheries bycatch risk have

been identified using overlap-based analyses that map oceanic
structures using common remotely sensed measures of the
physical environment such as sea surface temperature (SST) and
surface chlorophyll-a concentration (23, 24, 28, 39–41). Front
frequency and frontal probability indices have highlighted broad-
scale regions of persistent frontal activity as core foraging habitats
of marine megafauna, and hotspots of fisheries overlap (29), but
are more useful for identifying patterns over seasonal, annual, or
climatological scales than for resolving real-time interactions.
Time-matched remotely sensed data have been used to examine
correlations among catch rates of key targeted species (e.g., tuna
and billfish) and contemporaneous mesoscale structures, using
SST, chlorophyll-a, and sea level anomalies (SLA) (42–44). Sat-
ellite tracking studies have related animal movements to thermal
fronts in SST fields, or chlorophyll-a fronts in ocean color fields,
through the derivation of gradient-based metrics (45), spatial SD,
or histogram-based edge detection (46). While these techniques
have advanced our understanding of structure and function in
pelagic systems, they cannot adequately resolve the influence of
the dynamic submesoscale flow field in driving real-time fisheries
interactions. Objective validation of the functional responses of
marine predators, and of fisheries, to dynamic structures is com-
plex and reliant on acquisition of data at sufficient scales to link
pattern and process (47).
An alternative technique is to use Lagrangian methods to

identify dynamic structures in ocean surface velocity fields.
For example, the Finite-Time or Finite-Size Lyapunov Exponents
[FT(S)LE] can be applied to sequences of surface velocity fields to
identify Lagrangian coherent structures (LCS) in the surface flow
(48). LCS are material curves that map dynamic flow features (49)
and are known to contribute to the structuring of marine ecosys-
tems (50). LCS mapping identifies attracting structures in the
surface flow field using ridges in backward-in-time FT(S)LE and
repelling structures using forward-in-time FT(S)LE. LCS mapping
is emerging as a powerful technique in marine spatial ecology and
has been used to identify habitats of marine predators such as seals
(37, 51), seabirds (52), and baleen whales (36, 53) and to evaluate
the design of Marine Protected Areas (54). However, FSLE
derived from satellite altimetry fields is served only as a coarse
resolution (0.25°), 3-d composite, limiting its utility for inferring
real-time mechanistic linkages. The periodicity of satellite over-
passes (1 wk to 10 d) can result in over-smoothing in the velocity
field defined through altimetry, reducing the temporal and spatial
resolution in the resultant FSLE product, and satellite altimetry
can exhibit lower performance in upwelling regions, such as the
California Current System (CCS), than elsewhere.
Here, we present a high-resolution LCS mapping product

derived from daily velocity fields of a data assimilative CCS con-
figuration of the Regional Ocean Modeling System (ROMS). We
take a detailed, multispecies approach to quantifying the influence
of the dynamic physical environment on the likelihood of marine
megafauna bycatch in the CCS. Seasonal wind-driven upwelling in
the CCS, a global marine biodiversity hotspot, results in the de-
velopment of rich feeding grounds that support vast numbers of
marine vertebrates, both migrant and resident (39), many of which

are protected under international and US federal legislation
(Marine Mammal Protection Act 1972; Endangered Species Act
1973). The CCS is a highly energetic eastern boundary upwelling
system with a complex, dynamic flow field characterized at the
submesoscale by fronts, eddies, and filaments. Using a spatially
explicit time series (1990–2010) of National Oceanic and Atmo-
spheric Administration (NOAA) fisheries observer data from a
drift gillnet fishery, coupled with high-resolution FTLE fields
derived from ROMS, we explore how attracting LCS influence the
likelihood of fisheries interactions with both exploited and
protected marine megafauna.

Results
Attracting LCS, and the spatiotemporal evolution of these con-
voluted and dynamic features, were mapped daily over the CCS
domain for the period 1990–2010 (Fig. 1). Our findings demon-
strate that over the 21-y period examined, fisheries effort in the
California drift gillnet fishery was significantly more likely to be
associated with increased magnitude of FTLE, establishing that
this fishery targets attracting LCS associated with (sub)mesoscale
surface structures such as upwelling filaments, fronts, and eddies.
The locations of gillnet sets on haul-out were more likely than
unfished locations to be associated with attracting LCS (as indi-
cated by the median FTLE magnitude; seeMethods). The slope of
the relationship between the probability of fishing vessel presence
and the strength of the attracting LCS field was highly significant
in all model iterations (SI Appendix).
The primary target species of this drift gillnet fishery is broadbill

swordfish Xiphias gladius. Several secondary target species are
incidentally caught yet retained for sale (e.g., Pacific bluefin tuna
Thunnus orientalis, pelagic thresher shark Alopias pelagicus, com-
mon thresher shark Alopias vulpinus, shortfin mako shark Isurus
oxyrinchus, smooth hammerhead shark Sphyrna zygaena, opah
Lampris guttatus), and a range of nontarget species are caught as
bycatch (e.g., blue shark Prionace glauca, ocean sunfishMola mola,
leatherback turtle Dermochelys coriacea, loggerhead turtle Caretta
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Fig. 1. Attracting LCS in the California Current System, mapped as a daily
field using FTLEb applied to zonal and meridional velocity fields from Cal-
ifornia Current configuration of the ROMS (65).
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caretta, California sea lion Zalophus californianus, northern elephant
seal Mirounga angustirostris).
We found a highly significant influence of FTLE magnitude on

swordfish catch probability (Fig. 2 A and B and SI Appendix).
Swordfish were more likely to be caught in drift gillnets, and in
higher numbers, when sets were associated with attracting LCS.
Other predatory fishes including economically valuable, and vul-
nerable, Pacific bluefin tuna, several species of shark (common
thresher, pelagic thresher, shortfin mako, smooth hammerhead,
blue shark), opah, and ocean sunfish were landed as secondary
targets or bycatch significantly more frequently, and in higher
numbers, in attracting LCS (Figs. 2 and 3 and SI Appendix). In

particular, attracting LCS strongly influenced rates of blue shark
bycatch (Fig. 3 E and F and SI Appendix).
Moreover, our analyses revealed a pattern of increased risk of

entanglement of protected species including cetaceans, sea turtles,
and pinnipeds in association with attracting LCS (Fig. 4 and SI
Appendix). While rates of marine megafauna bycatch in the
fishery have decreased substantially since the introduction in
2001 of a large-scale seasonal closure designed to reduce sea
turtle bycatch (the Pacific Leatherback Conservation Area), the
observed pattern of increased bycatch likelihood of attracting LCS
held true for the protected marine vertebrate group including sea
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Fig. 2. Effect of FTLEb on probability of capture (A, C, E, and G) and catch
per trip (B, D, F, and H) of target or secondary target species, (A and B)
broadbill swordfish, (C and D) opah, (E and F) shortfin mako shark, and (G
and H) bluefin tuna. Higher magnitude of negative FTLEb indicates number
and strength of attracting Lagrangian coherent structures in the vicinity of
each gillnet set. Shaded gray polygons show 95% confidence intervals.
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Fig. 3. Effect of FTLEb on probability of incidental capture and predicted
bycatch densities of nontarget pelagic fish species. Taxon-specific probability
of bycatch (A, C, E, and G) and total bycatch per trip (B, D, F, and H) for
(A and B) all bycatch species, (C and D) all shark species, (E and F) blue shark,
and (G and H) ocean sunfish. Higher magnitude of negative FTLEb indicates
number and strength of attracting Lagrangian coherent structures in the
vicinity of each gillnet set. Shaded gray polygons show 95% confidence in-
tervals.
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turtles, such as the endangered loggerhead and critically endan-
gered leatherback turtles, cetaceans listed under the Marine
Mammal Protection Act (MMPA 1972) such as sperm whales
Physeter macrochephalus, humpback whalesMegaptera novaeangliae,
beaked whales and delphinids, and MMPA-listed northern ele-
phant seals M. angustirostris.
Comparing probabilities of capture and predictions of total catch

across the range of species with which the fishery interacted over
the 21-y study period (Figs. 2–4 and SI Appendix) yields valuable
information regarding which species are more at risk in association
with the bycatch hotspots in LCS. For example, our models predict
catch rates of 40 swordfish, 60 blue shark, 75 mola, and 10 bluefin
tuna per fishing trip, associated with intense LCS fields (Figs. 2 and
3). Bluefin tuna are less likely to be caught than swordfish, blue
shark, or mola, but have considerably higher economic value and
conservation interest.

Discussion
Given the pressing need to reduce bycatch while maintaining
fisheries profitability, understanding the role of the dynamic
physical environment in structuring the distributions of marine
megafauna is essential in designing sustainable fisheries solu-
tions. Our results provide an objective demonstration of the ef-
fect of (sub)mesoscale LCS in the spatial structuring of marine
ecosystems and, hence, fisheries bycatch interactions. The
established mechanistic function of (sub)mesoscale structures in
aggregating low trophic level organisms (33–35, 55) suggests that
the observed intensification of bycatch risk in LCS is mediated
through regulation of forage resource availability for marine
predators of both exploited and protected status.
In contrast with previous work documenting long-term, broad-

scale patterns of overlap between fisheries and core habitats of
marine vertebrates (23, 24, 29, 41), this study uses high-resolution
Lagrangian products time-matched with spatially explicit fisheries
data to quantify the influence of (sub)mesoscale structures on
fisheries effort, catch rates, and the likelihood of marine verte-
brate bycatch events across multiple taxa. Our approach focuses
on the biophysical processes that underlie fisheries interactions,
yielding important insights into the influence of the contempora-
neous physical environment at spatial and temporal scales that are
relevant to the design of conservation and management initiatives,
particularly in developing tools for spatially dynamic ocean man-
agement (56–60).
Importantly, we find evidence of intensified likelihood of fish-

eries interactions in attracting LCS that holds true for target spe-
cies, secondary targets, and bycatch-sensitive species. Catch rates of
a diverse array of species, including elasmobranchs of management
concern (e.g., blue shark, shortfin mako, common thresher, pelagic

thresher), large teleost fish such as bluefin tuna, opah, andM. mola,
and of protected species including cetaceans, sea turtles, and pin-
nipeds, are higher in association with LCS. Our analyses indicate
that these are not coincidental interactions, as gillnet set locations
are strongly associated with attracting LCS. Communication with
the fisher community supports the hypothesis that the fishery ac-
tively targets (sub)mesoscale surface structures, which can be in-
dicated by lines of advected drifting foam and debris at the surface.
Some LCS are also coincident with SST discontinuities that are
visible in satellite imagery, although many features do not have a
signature in SST. A strategy of targeting attracting LCS appears to
be profitable in that it increases the probability of catching greater
numbers of the target species (see also ref. 38), but may in fact be
counterproductive in also increasing the likelihood of interactions
with protected species, which the fishery seeks to avoid.
Our findings suggest that including derived ocean features such as

LCS in the design of dynamic ocean management solutions could
facilitate bycatch reduction in marine fisheries (57). For example,
dynamic time-area closures could track regions of intense sub-
mesoscale variability, such as persistent frontal zones (32), or areas in
which attracting LCS manifest frequently, such as the peripheries of
eddies and upwelling filaments. However, developing effective spa-
tial tools for fisheries sustainability relies upon a knowledge of the
factors that delineate and separate the distributions of target and
nontarget species (44). In data-rich systems such as the CCS, using
species distribution models (SDMs) that can resolve the relative
distributions of target and nontarget species can inform fisheries of
resource distributions and facilitate separation of catch and bycatch
hotspots (40, 58, 59). Including LCS as predictors in these SDMs
has potential to enhance predictive capabilities for separating fine-
scale habitat preferences of target and bycatch-sensitive species,
particularly where species-specific mechanistic responses to the
contemporaneous physical environment are considered explicitly.
Our multispecies quantification of catch and bycatch probabilities
enables the development of preferential catch–bycatch strategies
based on near real-time environmental conditions (see also ref. 59).
Alongside dynamic time-area closures, fine-scale set positioning

with respect to LCS, as well as gear modifications for depth se-
lectivity, could allow for continued exploitation of aggregations of
target species while reducing bycatch risk. For example, the ob-
served functional responses of tunas to submesoscale thermal
fronts establishes that teleost fish are likely to be closer to the
surface when exploiting thermal resources on the warm side of a
front, and deeper in the water column when targeting forage re-
sources on the cold side (47). This suggests that a strategy tar-
geting surface aggregations on the warm side of a convergent front
could avoid interactions with other nontarget endothermic pred-
ators exploiting the same bait fish aggregation near the thermo-
cline beneath the cooler side of the front.
Vertical niche separation also confers opportunity for fine-scale

selectivity through the targeting of particular depth ranges, as
pelagic habitats are structured over three dimensions. Dissimilar
foraging ecology, physiological constraints, and diel vertical mi-
gratory behavior influence the use of the water column by different
species and age classes of large pelagic fish (61). For example,
whole-body endothermy in opah allows the fish to remain in
deeper, colder water for extended periods (62), whereas poikilo-
therms with organ-specific countercurrent heat exchange such as
tuna and swordfish are more sensitive to thermal constraints and
appear to use thermal fronts to maximize energetic efficiency in
foraging (47). Moreover, air-breathing endotherms such as marine
mammals and seabirds exhibit divergent depth utilization strategies
to those of true pelagics such as sharks and large teleost fishes.
Depth utilization by air-breathing predators is limited by physio-
logical constraints, which necessitate regular dives interspersed by
forays to the surface to breathe. Therefore, it would be reasonable
to expect species-specific patterns of depth utilization around
(sub)mesoscale structures, which could be exploited to target
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Fig. 4. Effect of FTLEb on (A) probability of incidental capture of protected
species (cetaceans, sea turtles, pinnipeds) and (B) total bycatch of protected
species per trip. Higher magnitude of negative FTLEb indicates number and
strength of attracting Lagrangian coherent structures in the vicinity of each
gillnet set. Shaded gray polygons show 95% confidence intervals.
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certain species while avoiding others. Indeed, vertical niche sep-
aration has informed the imposition of regulation in the California
drift gillnet fishery that requires fishermen to set nets at least 10 m
below the surface, in an effort to avoid interactions with air-
breathing species. Further gear modifications to improve se-
lectivity through the targeting of different depth ranges could
facilitate progress toward the goal of reducing bycatch.
High-resolution, data-assimilative ocean models have vast po-

tential to generate tools for spatial fisheries management through
improved understanding of species’ dynamic distributions over
broad scales and in three dimensions (63). By calculating FTLE
from velocity fields of a data-assimilative ocean model, we better
quantify physical drivers of fishery interactions than the coarse-scale
overlap analyses that precede this study. Using FTLE fields derived
from regional ocean models (e.g., ROMS) has several distinct ad-
vantages over satellite-based products. Data-assimilative ocean
models validate and adjust hindcasts and nowcasts using real-time
satellite and in situ observations. Physical data are of higher spatial
resolution (here, ROMS outputs are 0.1° compared with 0.25°) and
temporal frequency (daily fields as opposed to 3-d composites) than
those available from satellite altimetry. Ocean models provide full
velocity fields, while only geostrophic flow can be calculated from
satellite altimetry. The ocean model output includes gap-free at-
mospheric forcing (e.g., wind stress) and physical ocean fields (e.g.,
temperature, salinity, zonal, and meridional velocities) at the same
resolution, enabling the construction of SDMs at management-
relevant scales (63). Importantly, ocean models also resolve the
full 3D ocean, allowing exploration of subsurface features and
conferring opportunity to improve understanding of vertical niche
separation and species-specific mechanistic responses to physical
conditions.
Further studies that use ocean models to address the influence

of (sub)mesoscale biophysical processes on dynamic species
distributions would be highly informative in developing ecosystem-
based fisheries management. For example, improving under-
standing of the mechanistic function of repelling LCS, and of
different types of frontal systems (i.e., thermal vs. chlorophyll-a;
convergent vs. divergent), could elucidate further the spatial
structuring of plankton communities, dynamics of prey aggrega-
tions, and niche separation of higher trophic levels (55, 64). In turn,
this would enhance our operational capacity to predict fine-scale
habitat utilization by both exploited and protected marine
vertebrates.
Given the complexity of the bycatch problem, a suite of comple-

mentary solutions will be necessary to support a sustainable seafood
supply sufficient to meet future demand. Our results highlight the
conservation and management value of understanding the mech-
anisms through which the physical environment structures marine
species distributions. Including high-resolution Lagrangian metrics
in future investigations of the spatiotemporal dynamics of marine
capture fisheries, and in the development of tools for dynamic
ocean management, has considerable potential for enhancing
fisheries sustainability and blue growth.

Methods
The spatial distribution of attracting LCS (convergent structures) for the CCS is
estimated using modeled surface ocean currents produced from an imple-
mentation of ROMS with four-dimensional variational (4D-Var) data assim-
ilation (65). Data assimilation is used to combine the observations and the
numerical model to obtain the best linear unbiased estimate of the circulation
(66, 67) and accurately capture the complex ocean circulation of the CCS,
which is characterized by energetic mesoscale variability and pronounced
seasonal upwelling driven by alongshore wind stress and wind stress curl. We
use the ROMS 4D-Var daily posterior circulation estimate at 1/10° (roughly
10 km) horizontal resolution to estimate attracting LCS as ridges of the
backward-in-time FTLE (FTLEb) field. We acknowledge that 10 km may appear
relatively coarse compared with the spatial scales of fishing. However, FLTE has
been shown to be surprisingly robust to noise and low spatial resolution ve-
locity fields (68). FTLEmeasures the maximum separation of close-by particles of

a time-dependent flow field after a fixed, finite particle advection time. Large
FTLE values identify regions where the stretching induced by mesoscale and
submesoscale activity is strong and are typically organized in convoluted lines
encircling submesoscale filaments. A ridge (line of local maxima) in the FTLE
field can be used to predict passive tracer fronts induced by horizontal ad-
vection and stirring. Those lines have been shown to contribute to the struc-
turing of marine ecosystems (36, 37, 48). In this study, we compute FTLE on a
regular grid with 0.0125° horizontal resolution (∼1 km). The final separation is
computed as the maximum separation after a particle advection time of 10 d,
which is the typical mesoscale eddy-turnover time in the region.

Fisheries effort was determined using data from the NOAA Fisheries
Onboard Observer Program for the drift gillnet fishery. Fisheries observers
recorded the location and time of haul-out of 7,996 gillnet sets deployed over
a total of 1,357 fishing trips during the drift gillnet operating seasons (May–
January) of 1990–2010 and coincident catch and nontarget catch data for
each set. Observer coverage rates over this period are estimated at 15%.
Fishing trips started from 28 ports along the US West Coast, with the ma-
jority of vessels docking in Southern California (San Diego: 51%, Morro Bay:
12%, Los Angeles: 8%; see ref. 63).

We explored the distribution of fisheries effort in relation to LCS by
comparing the locations of gillnet sets with unfished locations sampled using
random walkers parameterized to vessel movements. We compared the
strength of the LCS field in the proximity (median over a 3- × 3-pixel radius;
grid resolution 0.0125°) of each set location (presence) with that surround-
ing a location that was available to, but not actively targeted by, that fishing
vessel on the same day (absence). These absence locations were generated
using a randomization procedure based on random walkers parameterized
using the distributions of departure angles, distances from port to the first
set, turning angles, and distances between successive sets from all vessels
that used that matching port. We generated five sets of simulated absences
and iteratively resampled from this full presence–absence dataset to fit a
binomial generalized linear model with a presence–absence response 1,000
times. All analyses were conducted using R v.3.3.1 (69).

We interrogated fisheries observer data to generate one master target
catch dataset containing the locations, dates, and times of gillnet sets with
and without swordfish catch and total catch for each successful set. To
quantify the influence of attracting LCS on target catch, measured as (i)
presence–absence of swordfish per set and (ii) the total number of swordfish
caught per set, we calculated the median FTLEb over a 3- × 3-pixel window
centered on each set location. We used the cumulative sum over each fishing
trip to generate a single per-trip FTLEb metric, avoiding pseudoreplication at
the trip level. We then used Generalized Additive Models (GAMs) to model
the influence of LCS on (i) the probability of the presence of swordfish and
(ii) cumulative total catch, as separate responses.

We used a binomial error family and logistic link function for presence–
absence responses, and a negative binomial error family with a logarithmic
link function for count responses. For count models, we used inbuilt theta
estimation (“mgcv” package for R), checked models for overdispersion, and
retained only models where the overdispersion metric was <1.4. Models
were selected on the basis of parameter significance, percentage deviance
explained, adjusted-R2, and comparison of Aikaike’s Information Criterion
score against a null model of intercept-only. Model assumptions pertaining
to GAMs, including normality and homogeneity of variance, were explicitly
considered in model construction and checked using plots of residuals
against fitted values and predictors where appropriate (70). The same pro-
tocol was applied to secondary targets of the fishery, including opah, bluefin
tuna, thresher sharks, and shortfin mako sharks.

Wemodeled the correlation between total bycatch over each fishing trip
and the sum of the strength of the attracting LCS field associated with each
gillnet set in the same trip, using the same modeling protocol. We matched
location and date information with the concomitant protected species
catch dataset to obtain metrics of the incidence (0/1) and total catch of each
nontarget species per gillnet set. Bycatch events were less frequent, and
involved lower numbers, than catch rates of target species, and so we
summarized the data in taxon-specific groupings for modeling (SI Ap-
pendix). For some species, such as blue shark Prionace glauca (caught in
54% of all sets, with a total catch of 21,146 in 21 y), sample sizes were
sufficient to model a species-specific response. The rare nature of bycatch
events involving protected marine vertebrates resulted in low taxon-
specific sample sizes, so we combined all protected cetaceans, sea tur-
tles, and pinnipeds into a single group for analysis.
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