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SUMMARY 
 

We obtain estimates of life history parameters and steepness from the FishLife database that 
contains the metanalytical information from Fishbase and from Myers Legacy data. The first 
stage in the estimation process was to conduct the analysis using the existing records in the 
FishLife database. The second stage was to update the analysis with most recent life-history 
parameters being applied in the 2023 ICCAT Blue Shark assessment. Finally, we compare the 
results of the parameters derived using FishLife with those using Leslie Matrix approaches.  The 
set of life-history parameters and steepness can form the basis for priors in assessments and 
Operating Models for Management Strategy Evaluation.  

 
RÉSUMÉ 

 
Nous avons obtenu des estimations des paramètres du cycle de vie et de la pente à partir de la 
base de données FishLife qui contient les informations méta-analytiques de Fishbase et des 
données de Myers Legacy. La première étape du processus d'estimation a consisté à effectuer 
l'analyse en utilisant les registres existants dans la base de données FishLife. La deuxième étape 
a consisté à mettre à jour l'analyse avec les paramètres du cycle de vie les plus récents appliqués 
dans l'évaluation du requin peau bleue de l’ICCAT de 2023. Enfin, nous avons comparé les 
résultats des paramètres obtenus avec FishLife avec ceux obtenus avec les approches de la 
matrice de Leslie. L'ensemble des paramètres du cycle de vie et de la pente peuvent constituer la 
base des distributions a priori dans les évaluations et des modèles opérationnels pour l'évaluation 
de la stratégie de gestion.  

 
RESUMEN 

 
Obtenemos estimaciones de los parámetros del ciclo vital y de la inclinación a partir de la base 
de datos FishLife que contiene la información metanalítica de FishBase y de los datos de Myers 
Legacy. La primera etapa del proceso de estimación consistió en realizar el análisis a partir de 
los registros existentes en la base de datos FishLife. La segunda etapa consistió en actualizar el 
análisis con los parámetros más recientes del ciclo vital aplicados en la evaluación del tiburón 
azul de 2023 de ICCAT. Por último, comparamos los resultados de los parámetros derivados 
utilizando FishLife con los obtenidos mediante los enfoques de la matriz de Leslie.  El conjunto 
de parámetros del ciclo vital y la inclinación puede constituir la base para las distribuciones 
previas en evaluaciones y los modelos operativos para la evaluación de estrategias de 
ordenación.  
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1. Introduction 
 
Life history parameters including von Bertalanffy growth, natural mortality, age at maturity, and steepness form 
some of the basic ingredients for many stock assessment models. But it can be challenging to determine such age-
specific demographic parameters. These difficulties can be due to data being unavailable, the data being 
unrepresentative, or ageing uncertainty. Another challenge is that in some cases, the statistical methods used to 
estimate these parameters are unreliable. Consider the von Bertalanffy growth parameters: the difficulties in 
estimating growth parameters and particularly the effects of historical fishing mortality and of size-selective 
sampling have long been known (Lee 1912; Ricker 1969; Parma and Deriso 1988) yet statistical methods that 
attempt to address these effects have not been very successful at estimating the underlying “true” parameters from 
simulated data (Taylor et al. 2005, Goodyear 2019). Given that any given point estimate of a life history parameter 
can be wrong, it is useful to define distributions for all life history parameters of interest. While it is difficult to 
include such distributions in stock assessments that rely on non-linear minimizers like AD Model Builder (Fournier 
et al. 2012), these distributions can be used for stock assessment with Bayesian methods like Sampling Importance 
Resampling (Hilborn et al. 1994, Walters et al. 2006). A second option is to use such parameter distributions in 
Operating Models for Management Strategy Evaluation (Punt et al. 2016). In MSE, having a multi-variate 
distribution of life-history parameters and steepness means avoiding some of the problems of having arbitrary 
grids of fixed parameters for natural mortality and steepness; by using the whole matrix of uncertainty for life-
history and productivity parameters, there is an appropriate correlation structure. This therefore avoids unrealistic 
combinations of life history parameters and steepness (Taylor et al. 2022a, Taylor et al. 2022b). 
 
Cortés (2016) documented several methods for deriving productivity parameters, one of which was based on multi-
variate distributions of some life-history parameters. Multiple methods have been used to derive intrinsic rates of 
growth for stock assessment (McCallister et al. 2001) and similar methods relying on life history parameters have 
been developed to determine steepness (Mangel et al. 2011). These have been applied in stock assessment for 
scombrid fishes (Mangel et al. 2011), Xiphiidae (Brodziac and Mangel 2012, Taylor et al. 2022), and 
chondrichthyan fish (e.g., Cortés and Semba. 2020). Given the relationships between the life history and 
productivity parameters, Cortés (2016) argued for obtaining estimates of all required vital rates simultaneously, so 
the resulting productivity parameters are consistent with the life-history parameters that determine them. 
 
Thorson et al. (2020) defined a new method for jointly estimating life history parameters and steepness. 
Thorson et al. (2017) used a multivariate model for trait evolution along a taxonomic tree, while using replicated 
samples for each individual species to distinguish trait evolution from residual covariance. This method generates 
multivariate distributions for life-history parameters and the productivity parameter steepness, h, (Mace and 
Doonan 1988). This model, available in the R package FishLife allows users to extract a set of life-history 
parameters by taxonomic group. Fishlife combined data from both the Fishbase database and the RAM Legacy 
Stock Assessment Database that is the descendant of Myers et al. (1999) meta-analysis of recruitment steepness 
(Mace and Doonan 1988) and/or Goodyear Compensation Ration (Goodyear 1980).  Fishlife allows users to obtain 
matrices of life-history parameters including steepness at varying degrees of taxonomic resolution.  
 
Here we apply the FishLife method to blue sharks and compare its results to those obtained using vital rates and 
the Leslie matrix methods (SCRS/2023/115).  
 
 
2. Materials and Methods 
 
Thorson et al. (2023) used a data-integrated life-history model, which extends a simple model of evolutionary 
dynamics to field-measurements of life-history parameters (Thorson et al. 2017) as well as historical records of 
spawning output and subsequent recruitment from the meta-analytical results of Myers and Mertz (1998). The 
approach is a modification of the evolutionary model used by Thorson et al. (2017) to fit both adult life-history 
parameters as well as stock-recruit measurements for over 150 fish populations worldwide. Thorson et al (2017) 
assumed that life-history parameters xg for taxon g evolve to deviate from the parameters xp(g) for their taxonomic 
parent p(g), where this deviation follows a multivariate normal distribution.  Thorson et al. (2023) extended the 
Thorson et al. (2017) model to predict stock-recruit parameters by fitting to records of 225 spawning stock size 
and subsequent recruitment estimates from the RAM Legacy Stock Assessment Database. Each stock-recruit study 
with a corresponding vector of life-history and steepness estimates. This evolutionary model predicts recruitment 
productivity (the intrinsic rate of growth r and steepness, h) and recruitment variability (sigma_R) as well as life 
history parameters including natural mortality, maturity, growth, and size (see Table 1 for a list of symbols). It 
uses these to predict intrinsic growth rates for all described fishes. 
 

https://github.com/James-Thorson-NOAA/FishLife
https://www.fishbase.se/
https://www.re3data.org/repository/r3d100012095
https://www.re3data.org/repository/r3d100012095
https://www.re3data.org/repository/r3d100012095
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We apply this model to blue shark stock in the Atlantic Ocean. For illustrative purposes, we show the distribution 
of life history parameters for blue shark ancestors (i.e., class Chondrichthyes, order Carcharhiniformes, and family 
Carcharhinidae) but only consider the data at species-level resolution for the purpose of estimating the distribution 
of life-history parameters and productivity parameters steepness, h and the intrinsic rate of population growth, r. 
We focus on presenting eight key life-history parameters and h (Table 1). To visualize the resulting distribution 
for the FishLife model, we approximate it with a multivariate normal distribution (MVN)  as 
 
MVN=μ∑          (1) 
 
where μ is the vector of means and ∑ is the covariance matrix. We drew 10000 samples from the MVN to visualize 
the parameter densities. To view the correlations between key life-history parameters in the FishLife MVN 
analysis, we solved for the correlation matrix 𝜏𝜏 as: 
 
𝜏𝜏 = 𝐷𝐷−1 ∑𝐷𝐷−1          (2) 
 
where D is the diagonal of ∑. 
 
FishLife has the capacity to update life-history parameters with user-specified data. We did not explore this option 
because while the life-history parameters can be updated, productivity parameters cannot be associated with the 
update. Having separate sets of life-history parameters and productivity parameters would have been contrary to 
our objective of producing a joint distribution for productivity and life-history parameters. 
 
Comparison with demographic parameter estimates 
 
We explore the differences between the Fishlife’s MVN parameter estimates, and the values used in 
SCRS/2023/115’s Leslie matrix estimates for both the northern and southern Atlantic stocks. 
 
We explore a third option for developing a multivariate distribution of life-history parameters for blue shark. The 
SPMpriors R package can generate demographic parameters with tuning from FishLife. The package operates by 
searching for the life history parameter set in FishLife and then updating these estimates with prior probability 
distributions for the Loo, K, tmax, tm, length at maturity Lm and h. Apart from h, which takes a uniform 
distribution, the other parameters’ prior distributions are assumed to be normal.  For h, we use the 95% upper and 
lower confidence limit on h (see Cortés and Taylor Table 3) to define the parameters of the normal distribution 
Cortés and Taylor 2023’s Table 5. For Loo, K, tmax, tm we use values described in Cortés and Taylor’s Table 1 
and Table 2 for northern and southern stock respectively. For M, we use the mean and CV from the Leslie Matrix 
model estimates. For length at maturity, Anonymous 2015 report ranges of 192-208 and 168-188, respectively. 
Given that the SPMpriors package requires that the input be priors with normal distributions, we assume that 
 

𝐿𝐿𝑚𝑚,𝑛𝑛~𝑁𝑁(200,4) 
for the northern n stock and 

𝐿𝐿𝑚𝑚,𝑠𝑠~𝑁𝑁(178,5) 
 
for the southern s stock. 
 
 
3. Results and Discussion 
 
Fishlife Results 
 
Figure 1 shows the Fishlife’s predictive MVN distribution for 12 life-history variables of blue shark (Prionace 
glauca) as well as the predictive distribution for genus Prionace and its ancestral taxa. The shape and size of the 
ellipses represent the correlation and the covariance of each parameter pair at each ancestral taxonomic level. This 
figure represents some expected patterns, namely that as the analysis is conducted at higher degrees of taxonomic 
resolution the covariance (the area of the ellipses in Figure 1) gets smaller. At the coarsest taxonomic resolution 
i.e., the subclass Elasmobranchii, there is a large spread of parameter values. For most combination of parameters 
such as M, K, L∞, W∞, the covariance shrinks markedly as taxonomic level increases in resolution, but for 
recruitment autocorrelation (rho) and the variation in recruitment (Sigma_R), it remains high. This is likely because 
these parameters are usually poorly determined in most fisheries stock assessments.   
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Similarly, covariance in the productivity parameters (h and r) remains uncertain at the species level. In stock 
assessments, productivity and the unfished biomass or recruitment are often poorly determined because the data 
lack contrast to estimate them reliably (Ludwig and Walters, 1985; Magnusson and Hilborn 2007). Barring the 
unusual situation where the data stock was depleted and allowed to recover, estimates of productivity and the 
unfished state are confounded because there is not enough information in the data to distinguish between a stock 
that had a high unfished state but low productivity (i.e., low h) and vice versa. Accordingly, it is reasonable to 
expect a wide range of steepness or r values for a given taxon in the RAM legacy database. These expectations 
were realized: the range of credible values for h ranges from 0.2 to about 0.83 and rmax from about 0.003 to 0.45; 
this is a huge variability.  It would encompass the h for the SA stock (0.78) and the rmax values for both stocks 
(0.39 and 0.30) obtained with the stochastic Leslie matrix approach SCRS/2023/115. 
 
Figure 2 is the correlation matrix of the Fishlife MVN parameters. They correlated in expected ways but at 
different magnitudes. For example, tm was positively correlated with Lm and tmax as expected: age at maturity 
increases as maximum age increases and is also associated with longer length at maturity; and M was negatively 
correlated with tm, tmax, and Lm. But the magnitude of the correlation coefficient for other combinations was 
much smaller than expected. Whereas the predictive distribution’s correlation coefficient between Linf and K was 
-0.06 (Figure 2). Other analyses have shown that the correlation between K and L∞ can be much higher: 
Cummings et al. (2016) showed these parameters having a median correlation coefficient of -0.69 and Helser et al. 
(2007) showed that for Pacific rockfishes this correlation coefficient is -0.85. Most importantly this correlation 
coefficient differs from the correlation coefficient estimated in SCRS/2023/115 where the correlation coefficient 
for North Atlantic blue shark was 0.98.  
 
Figure 3 shows the density of log parameter estimates for blue shark estimated using FishLife and Figure 4 shows 
the exponentiated values log parameter estimates of h, K, L∞, M, tm, and tmax.  Summary statistics for h, M and r 
are shown in Table 3 and their corresponding density estimates in Figure 5.  
 
Comparison between Fishlife estimates and demographic methods 
 
The Fishlife MVN normal method and the methods used to h and r from life history parameters (Cortés and Taylor 
2023, SCRS/2023/115) represent different hypotheses about how productivity parameters like h and r can be 
predicted. Fishlife determines h and r by estimating correlations between stock-recruit parameters either across 
related taxa or with life-history parameters (Thorson et al. 2019).  In addition to being fundamentally different 
hypotheses, the data sources are also different. The FishLife MVN method uses life-history values from Fishbase 
and Myers and Mertz (1998) whereas SCRS/2023/115 uses a set of life-history parameter estimates agreed-upon 
at Anonymous 2023 (BSH DP reference). Accordingly, we expected results would be different. 
 

The prediction that h estimates would differ between the two methods was realized. Values for h are very different 
for both methods. While the mean estimates of h for northern and southern stocks are similar at 0.84 and 0.78, 
respectively, the mean MVN h estimate was 0.36 (Table 3). The density of the Lesley matrix estimates for northern 
and southern stocks’ steepness are not monotonic. Both have bimodal shapes. Densities of the MVN estimates for 
M and those generated using the Leslie matrix methods are shown in Figure 5 (center).  Estimates of M were more 
similar between the methods that they were for h (Table 3) with means of approximately 0.2 for all. The standard 
deviations of M for the MVN method were higher than for the Leslie matrix method estimates (Table 3).  
 

As expected, differences between values of r determined using the different methods resemble the differences 
between the h estimates, with the FishLife MVN distribution having a much smaller mean (0.04) than the means 
estimated in Cortés and Taylor, 2023 using the Lesley matrix (Table 3 and Figure 5, bottom) with means of 0.40 
and 0.29 for North (NA) and South Atlantic (SA) stocks respectively. Taylor and Cortés 2023 (Table 4) mean 
estimates of r using multiple methods other than the Leslie matrix/Euler-Lotka equation were in the order of 0.22 
and 0.13 for NA and SA stocks, respectively.  While taking means across multiple methods presents a wide range 
of uncertainty, the Leslie matrix method is the most complete because it uses all the life history information 
available whereas the other methods make simplifying assumptions; the Lesley matrix mean estimates were 0.39 
and 0.29 for the north and south Atlantic, respectively (Taylor and Cortés 2023, Table 5). Even using the most 
conservative length-based method to compute M with the Leslie matrix approach, r estimates are well above the 
mean FishLife MVN estimate at 0.28 and 0.14 for the NA and SA respectively.  
 

The dramatic differences between the FishLife MVN estimates cast some doubt on the veracity of the Fishlife 
results for sharks. The mean value of rmax=0.04 (a value of 0.019 is obtained using Fishlife for P. glauca with no 
ancestors) makes little sense because this is one of the most productive shark species. In addition, it is also difficult 
to understand how that the family carcharhinidae with multiple less productive species would have mean values 
almost 3 times the rmax value of blue sharks (Table 2).  The inconsistencies are not limited to the Carcharhinidae 
either, Thorson’s (2020) Table 4 reports r values of 0.02 for both carcharhiniformes and lamniformes, species. 
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Updating the FishLife MVN estimates with the demographic parameters inputs and outputs (M and h) resulted in 
more defensible parameter estimates than the MVN estimates or obtained directly from Fishlife. The updated 
marginal posterior distribution of the multivariate normal distribution MVN* are shown in Figure 6  and Figure 
7 for the southern and northern stocks, respectively. For r, the posterior distributions were updated substantially 
by using priors. The updated means and standard deviations for MVN* are in Table 4 and Table 5 for the North 
and South respectively. While the mean r value (standard deviations in parentheses) from the original MVN 
estimate for blue sharks generally was 0.06(0.04) (Table 3)  the mean MVN* estimate was 0.33 (0.35) and for the 
southern stock the MVN* estimate was stock 0.175(0.37) (Table 5). There were similarly large updates for h 
(Figure 6 and Figure 7).  Other than for h and r, updates to other parameter estimates were relatively small. 
 
The results of this analysis suggest that for at least the shark taxa, Fishlife should be used with caution. They depart 
significantly from other analyses conducted estimating the productivity (as determined by h and r). While the 
addition of prior distributions helped bring these analyses into more realistic ranges, the fact that the posteriors 
were updated so much by the addition of the priors suggests that the FishLife database data are not very informative 
for these parameters. For immediate use in any application such as stock assessment, we would suggest that results 
from Table 4 and Table 5 or the demographic estimates in Cortés and Taylor 2023 be used. 
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Table 1. Key life history parameters 
 

Parameter Symbol 
Asymptotic weight Winf 
Temperature - 
Age at maturity Tm 
Maximum age tmax 
Natural mortality M 
vonBertalanffy K K 
Length at maturity Lm 
Asymptotic length L∞ 
Beverton-holt steepness h 

 
 
Table 2. Summary of productivity parameter extracts from FishLife by taxonomic resolution including steepness 
h, and intrinsic rate of growth (r), and their corresponding standard deviations (sd) by taxonomic level (rows). 
  

  mean h sd h r sd r 
Carcharhiniformes 0.36 0.19 0.11 0.21 
Carcharinidae 0.35 0.18 0.11 0.17 
Prionace glauca 0.31 0.13 0.04 0.05 

 
 
Table 3.  Summary statistics for natural mortality, steepness and intrinsic rate of growth for Leslie Matrix estimates 
and MNV summaries.  
 

Description name mean median sd 
Fishlife MNV Natural Mortality M 0.20 0.20 0.04 
Leslie matrix natural mortality N M.N 0.18 0.18 0.02 
Leslie matrix natural mortality S M_S 0.20 0.20 0.02 
Fishlife MNV steepness h 0.36 0.35 0.10 
Leslie matrix steepness N h.N 0.84 0.86 0.11 
Leslie matrix steepness S h.S 0.78 0.80 0.13 
Fishlife MNV instrinsic rate of growth r 0.06 0.05 0.04 
Leslie matrix intrinsic rate of growth N r.N 0.40 0.39 0.14 
Leslie matrix intrinsic rate of growth S r.S 0.29 0.30 0.06 

 
 
Table 4. Summary statistics of the updated marginal posterior densities for life history parameters MVN* for 
northern blue shark 

Parameter mean sd 
G 15.58 2.39 
K 0.12 0.01 
Lm 211.53 23.23 
Loo 332.80 20.22 
M 0.19 0.04 
h 0.72 0.14 
r 0.36 0.38 
rho 0.71 0.21 
sigR 0.36 0.17 
tm 9.59 3.00 
tmax 20.00 4.66 
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Table 5. Summary statistics of the updated marginal posterior densities for life history parameters MVN* for 
southern blue shark 
 

key mean sd 
G 14.76952 2.144897 
K 0.12568 0.012903 
Lm 212.0238 22.76178 
Loo 333.308 17.92035 
M 0.204985 0.037461 
h 0.552287 0.164321 
r 0.189709 0.26628 
rho 0.598457 0.222734 
sigR 0.381533 0.165158 
tm 9.062892 3.243581 
tmax 19.56061 4.244346 
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Figure 1. Predictive distribution for 12 life-history variables of blue shark (Prionace glauca) as well as the 
predictive distribution for genus Prionace and its ancestral taxa (Class, Chondrichthye, Order Carcharhiniformes 
and family Carcharhinidae). Panels show the 95% predictive distribution for all life-history variables in the Fishlife 
database: individual growth (x-axis) and natural mortality rate (y-axis; top-left right); asymptotic maximum weight 
(x-axis) and asymptotic maximum length (y-axis; top-right panel); maximum age (x-axis, middle left panel) and 
age at maturity (y-axis; middle-left panel); length at maturity (x-axis, middle right) and average temperature for 
the species’ spatial distribution (y-axis; middle-right panel); as well as standard deviation in recruitment, Sigma_R 
(x-axis) and recruitment autocorrelation (y axis; bottom left panel). 
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Figure 2. Correlation between the key life-history parameters and steepness h. Parameter symbols are listed in 
Table 1. 
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Figure 3. Log density of FishLife parameter densities 
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Figure 4. Density plots of steepness (h), vonBertalanffy metabolic growth parameter (K), asymptotic size (L∞), 
natural mortality (M), age at maturity (tm), and maximum age (tmax). 
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Figure 5. Comparison of density estimates for MVN  and Leslie matrix estimates of steepness h, natural mortality 
M, and intrinsic rate of growth r (x, value). d.hN and d.hS are the Leslie matrix densities of steepness for northern 
and southern stocks. d.rN, d.rS are the Leslie matrix estimates for the intrinsic rate of growth for northern and 
southern stocks. dM.N and dM.S are the Leslie matrix estimates of the densities for natural mortality. fl.h, fl.M, 
and fl.r are the MVN estimate for steepness h, natural mortality M, and intrinsic rate of growth r. 
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Figure 6. Updated posterior distributions for life history and productivity parameters for the southern blue shark 
stock. L∞ is the asymptotic size, K is the vonBertalanffy growth parameter, Lm is the length at maturity, h is the 
Beverton-Holt steepness, sigR is marginal standard deviation of recruitment variability, rho is the autocorrelation 
of recruitment variability, r is the intrinsic rate of growth and G is the generation time. 
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Figure 7. Updated posterior distributions for life history and productivity parameters for the northern blue shark 
stock. L∞ is the asymptotic size, K is the vonBertalanffy growth parameter, Lm is the length at maturity, h is the 
Beverton-Holt steepness, sigR is marginal standard deviation of recruitment variability, rho is the autocorrelation 
of recruitment variability, r is the intrinsic rate of growth and G is the generation time. 
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