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Abstract
Spatial management for highly migratory species (HMS) is difficult due to many species’ mobile habits and the dynamic 
nature of oceanic habitats. Current static spatial management areas for fisheries in the United States have been in place for 
extended periods of time with limited data collection inside the areas, making any analysis of their efficacy challenging. 
Spatial modeling approaches can be specifically designed to integrate species data from outside of closed areas to project 
species distributions inside and outside closed areas relative to the fishery. We developed HMS-PRedictive Spatial Modeling 
(PRiSM), which uses fishery-dependent observer data of species’ presence–absence, oceanographic covariates, and gear 
covariates in a generalized additive model (GAM) framework to produce fishery interaction spatial models. Species fishery 
interaction distributions were generated monthly within the domain of two HMS longline fisheries and used to produce a 
series of performance metrics for HMS closed areas. PRiSM was tested on bycatch species, including shortfin mako shark 
(Isurus oxyrinchus), billfish (Istiophoridae), and leatherback sea turtle (Dermochelys coriacea) in a pelagic longline fishery, 
and sandbar shark (Carcharhinus plumbeus), dusky shark (C. obscurus), and scalloped hammerhead shark (Sphyrna lewini) 
in a bottom longline fishery. Model validation procedures suggest PRiSM performed well for these species. The closed area 
performance metrics provided an objective and flexible framework to compare distributions between closed and open areas 
under recent environmental conditions. Fisheries managers can use the metrics generated by PRiSM to supplement other 
streams of information and guide spatial management decisions to support sustainable fisheries.

Introduction

Highly migratory species (HMS) including tunas, sharks, 
swordfish and billfishes are, by definition, broadly distrib-
uted and have large migratory ranges. Spatial management 

for HMS can be challenging due to their highly mobile hab-
its and the dynamic nature of oceanic habitats (Hyrenbach 
et al. 2000; Hazen et al. 2018). There are worldwide calls 
to expand spatial protections for such species, including 
marine protected areas (MPAs), shark sanctuaries, and other 
designations; however, there are a number of challenges to 
delineating appropriate locations and boundaries that will 
tangibly enhance conservation (Davidson and Dulvy 2017; 
Derrick et al. 2020). The U.S. National Marine Fisheries 
Service (NMFS) uses spatial management areas and/or 
measures (e.g., closed areas, gear-restricted areas, essential 
fish habitat, etc.) to achieve a variety of conservation goals 
for HMS (e.g., Charleston Bump Closed Area; NMFS 2019). 
In general, these areas were designed to reduce bycatch of 
overfished stocks and/or species protected under the Endan-
gered Species Act (ESA) or Marine Mammal Protection Act 
(MMPA). However, some of the existing static areas along 
the U.S. east coast that restrict HMS fishing have been in 
place for extended periods of time (15–20 years) and the 
ability to evaluate their continued effectiveness is hampered 
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by a lack of data, especially fishery-dependent data (e.g., 
logbooks, at-sea observers) (NMFS 2019). Additionally, 
the purpose and need for the establishment of certain areas 
may now be mitigated by additions of newer regulations 
and changes in fishing techniques or improvements in stock 
status, creating potential conservation redundancies in regu-
lations or even potentially obviating the need for restrictions 
on certain static areas.

The NMFS Atlantic HMS Management Division has pri-
oritized pursuing ways to facilitate data collection in existing 
closed areas (i.e., a form of spatial fisheries management 
where certain areas are closed to specific fishing activities), 
possibly including opportunities for fishery-dependent and 
-independent sampling within these areas (NMFS 2019). 
However, such efforts can be expensive, time-consuming, 
and polarizing. Fortunately, spatial statistical tools like spe-
cies distribution and habitat suitability modeling are avail-
able to help address these important management questions 
without on-the-water field sampling in closed areas (Hobday 
and Hartmann 2006; Brodie et al. 2018; Welch et al. 2019a). 
Spatial modeling approaches can be specifically designed to 
integrate existing species distribution data from outside of 
closed areas (e.g., observer data, survey data, tagging data) 
with available environmental covariates (e.g., sea surface 
temperature, depth, chlorophyll) to project species distri-
butions and habitat suitability (Brodie et al. 2018; White 
et al. 2019) inside and outside closed areas relative to the 
fishery. When a data source is fishery-dependent, there is an 
inherent bias of that data source towards fishermen behavior 
such as fishing location, fishing depth, gear type and time of 
fishing (Lynch et al. 2012; Conn et al. 2017; Thorson et al. 
2020). Selecting this type of data source that results in the 
influence of the fishery on model outputs (species–fishery 
interactions) can be appropriate and possibly preferred when 
evaluating spatial management that was designed to limit 
interactions between certain species and that fishery. There-
fore, we refer to the models described below as fishery inter-
action spatial models. In addition to using model outputs 
from the fishery interaction spatial models for evaluation of 
HMS spatial management, these types of models could also 
allow for more dynamic spatial management (Hobday and 
Hartmann 2006; Brodie et al. 2017; Welch et al. 2019b). 
Specifically, models can objectively assess the appropri-
ate timing, location, and size of areas that restrict fishing, 
accounting for short- and long-term environmental changes.

The U.S. Atlantic HMS pelagic longline (PLL) fishery 
and shark bottom longline (BLL) fishery are two fisheries 
directly managed by NMFS. The HMS PLL fishery pri-
marily targets swordfish (Xiphias gladius) and yellowfin 
tuna (Thunnus albacares), while the HMS BLL fishery 

targets various coastal shark species. Both fisheries have 
existing spatial management areas. For example, the 
Charleston Bump Closed Area (Fig. 1a), implemented in 
2001, is closed to the PLL fishery from February through 
April and was originally designed to reduce bycatch and 
fishing mortality of undersized swordfish, billfish, and 
other overfished and protected species within the U.S. PLL 
fishery (NMFS 2019). The Mid-Atlantic Shark Closed 
Area (Fig. 1b), implemented in 2005, is closed to the 
BLL fishery from January through July (with the excep-
tion of one vessel that participates in the shark research 
fishery) to primarily protect juvenile sandbar and dusky 
sharks from fishing while occupying offshore nursery 
habitat (NMFS 2019). Given the difficulties in obtaining 
fishery data inside a closed area, the performance of these 
management areas for achieving their conservation objec-
tives has not been fully evaluated since implementation. 
However, long-term changes in stock status, fishing effort 
and composition, regulatory regimes, gear configurations, 
and environmental conditions warrant such evaluations as 
mismatches between species distribution and closed areas 
can result in negative conservation and/or socioeconomic 
impacts for affected fisheries. On the other hand, evalua-
tions may validate these time- and area-based restrictions.

At-sea observer programs have been in place for the 
PLL and BLL fisheries since the early 1990s (Beerkircher 
et  al. 2002; Morgan et  al. 2009; Mathers et  al. 2018). 
These observer programs detail fishery practices and catch 
information for both fisheries from a sample of total trips 
each year (typically 10–15% for PLL and 5–8% for BLL 
from 2005 to 2019, except for the BLL shark research 
fishery which has 100% coverage for a small number of 
participating vessels and that operates inside and outside 
the Mid-Atlantic Shark Closed Area). Below we describe 
HMS-PRedictive Spatial Modeling (PRiSM) that forms 
the basis for an analytical framework for the assessment of 
HMS spatial fisheries management. Specifically, PRiSM 
deliberately uses available fishery-dependent data from 
both observer programs from the two fisheries to develop 
fishery interaction spatial models and predictions both 
within and outside of closed areas to generate a series of 
spatial fisheries management assessment metrics to evalu-
ate closed areas that impact the fisheries. Here, PRiSM 
is tested on a subset of bycatch species in each fishery to 
assess two closed areas, Charleston Bump Closed Area 
and the Mid-Atlantic Shark Closed Area. The approach 
could have broad applicability to other regions and fisher-
ies that have static spatial management areas and provide 
the opportunity for fisheries management to respond more 
rapidly to changing conditions over time.
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Methods

Observer program datasets

The observer program datasets each consisted of gear, set/
haul information, and catch of each species (Fig. 1a, b). Data 
from the PLL observer program were considered from 1992 
to 2018, while the BLL observer program data were limited 
to 2005–2019 because data prior to 2005 were collected 
using a different data collection protocol that limited data 
comparison.

Model species

Three focal species or species groups that are high priori-
ties for the reduction in bycatch or bycatch mortality were 
selected for initial modeling in each fishery. For the PLL 
fishery, we selected the billfish group, where the catch 
of all billfish species (Makaira nigricans, Kajikia albida, 
Istiophorus albicans, Tetrapturus pfluegeri, Tetrapturus 
georgii) was combined over the dataset (occurrence rate in 
sets: 40%); shortfin mako shark (Isurus oxyrinchus) (27%); 
and leatherback sea turtle (Dermochelys coriacea) (6%). 

Billfish were selected because the possession of billfish 
on PLL vessels is prohibited (50 C.F.R. § 635.71(c)(1) 
2021) and they are an important group of species to the 
recreational fishing community. Aggregation of the billfish 
species was necessary and appropriate to improve sam-
ple size. We selected the shortfin mako shark because the 
species is currently overfished and overfishing is occur-
ring (NMFS 2020a). Also, PLL fishermen can only keep 
a shortfin mako shark if it is dead at haul back and the 
haul is observed by an in-person observer or via electronic 
monitoring (50 C.F.R. § 635.21(c)(1)(iv) 2021). Leather-
back sea turtles were selected because they are listed as 
endangered under the ESA (35 F.R. 8491 1970), and are 
thus subject to ESA protections in the PLL fishery (NMFS 
2020b).

For the BLL fishery, three shark species were selected: 
sandbar shark (Carcharhinus plumbeus) (occurrence rate 
in sets: 78%), dusky shark (Carcharhinus obscurus) (23%), 
and scalloped hammerhead (Sphyrna lewini) (29%). All 
three species are overfished (NMFS 2020a). In addition, 
the Mid-Atlantic Shark Closed Area was designed specifi-
cally to protect juvenile sandbar and dusky sharks (68 F.R. 
74746 2004).

Fig. 1  a Density of Pelagic Longline Observer Program sets from 
1997 to 2018 and the Charleston Bump Closed Area. b Density of 
Bottom Longline Observer Program sets from 2005 to 2019 and the 
Mid-Atlantic Shark Closed Area. Densities were generated for 0.25º 
grid cells and any grid cells where less than three vessels were pre-

sent were removed for confidentiality purposes. Although grid cells 
are not present in certain areas due to confidentiality, the full latitudi-
nal extent of the pelagic and bottom longline fishery extends from 6° 
N to 50° N and 24.8° N to 38.4° N, respectively
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Gear covariates

To account for the behavior of fishermen whose use of fish-
ing gear may have differed (e.g., hook type, hook size, bait 
type, hook depth, set time, etc.) based on target species or 
gear and bait regulations, a series of gear-related covariates 
were incorporated into the PLL models. A hook configura-
tion covariate was created with five categories based on the 
number of hooks at each hook type and size (i.e., using natu-
ral breaks in the data): J hook, where all hooks in a set were 
J hooks; smaller than or equal to 16/0 circle hooks; larger 
than 16/0 circle hooks; mixed circle hook, where all hooks 
in a set were circle hooks of various sizes; and mixed, where 
both J and circle hooks were present in a set. A bait type 
covariate was also created with four categories: squid, when 
only squid was used in a set; fish, when only fish were used 
in a set; other, when fish or squid were not used as bait in 
the set (e.g. artificial); and mix, when a combination of the 
previous three bait types were used on a set. The maximum 
hook depth and the hour the set began were assigned to each 
set and were also considered in the models.

A series of gear-related covariates were also generated 
and considered in the BLL models. A hook configuration 
covariate was developed with four categories using natural 
breaks in the data: smaller than 12/0 J hook; larger than or 
equal to 12/0 J hooks; smaller than or equal to 16/0 circle 
hooks; and larger than 16/0 circle hooks. Similar to above, 
a bait type covariate was also created with three categories: 
teleost, elasmobranch, or unknown. Mean set depth and the 
hour the set began were also considered in the models.

Environmental covariates

Environmental covariates selected for the PLL models 
have been used to describe habitat distributions of similar 
pelagic species in past studies (Hazen et al. 2013; Brodie 
et al. 2018; Farchadi et al. 2019). Three static covariates 
were used, including, bathymetry, rugosity, and lunar illu-
mination. Bathymetry data were obtained from ETOPO1 
(https:// www. ngdc. noaa. gov/ mgg/ global/ global. html) at a 
1 min resolution. Rugosity was calculated as the standard 
deviation of bathymetry over a 0.25º square. Lunar illumina-
tion was extracted from the oce package v.1.2 in R v.3.6.1 
(Kelley and Richards 2020) and represented the fraction of 
the moon’s visible disk that is illuminated. Lunar illumina-
tion was selected because it has been known to impact the 
vertical distribution of swordfish (Lerner et al. 2013). Most 
dynamic environmental covariates were extracted as daily 
fields from a Copernicus Marine Environmental Monitoring 
Service (CMEMS) Global Ocean Physics Reanalysis prod-
uct over 1993–2018 at a 1/12º resolution. Environmental 
covariates chosen from CMEMS included sea surface tem-
perature (SST), sea surface height (SSH), ocean mixed layer 

depth (MLD), and northward and eastward seawater veloc-
ity. SST standard deviation (SST SD) was calculated from 
SST over a 0.25º square. Chlorophyll-a (Chla) was extracted 
from the ERDDAP ESA CCI Ocean Colour Product at an 
eight-day mean instead of daily to reduce contamination by 
cloud cover/weather conditions. Chla data spanned from 
1997 to 2018 and had a resolution of 0.04º. All environmen-
tal covariates were extracted over the entire spatial domain 
(described below) of the PLL (5º N to 51.5º N; 98º W to 
37º W).

The majority of environmental covariates selected for the 
BLL models are known to impact the habitat use of coastal 
shark species (Conrath and Musick 2008; Froeschke et al. 
2010; Ward‐Paige et al. 2015; Crear et al. 2020). Two static 
covariates were used, including bathymetry and rugosity. 
Data from both covariates were obtained using the meth-
ods described above. Most dynamic environmental covari-
ates were extracted as daily fields from HYCOM + NCODA 
Global 1/12 Analysis over 2005–2019 at a 1/12º resolution 
(Ferris 2019) rather than using CMEMS because HYCOM 
had sea surface and bottom salinity from the same product. 
Environmental covariates chosen from HYCOM included 
SST, sea surface salinity (SSS), bottom temperature, bottom 
salinity, and SSH. Similar to above, SST SD and bottom 
temperature SD were calculated from SST and bottom tem-
perature, respectively. Turbidity in the units of Secchi disk 
depth (m) was extracted from a CMEMS product at a 4 km 
resolution from 1997 to 2019. Lastly, Chla was extracted 
using the same methods described above. Environmental 
covariates were extracted over the same spatial domain as 
those for the PLL.

Each environmental covariate was matched to each 
set/haul of the PLL or BLL dataset based on the date and 
location. Data for PLL were matched from 1997 to 2018 
(10,116 sets/hauls) due to the limited temporal range of 
Chla, whereas data for the BLL were matched from 2005 
to 2019 (1123 sets/hauls), due to data limitation pre-2005. 
The matched datasets were checked for positive bathymetry 
values and to ensure the environmental covariates and set/
haul data were matched correctly. A small number of outli-
ers were removed when a species occurred in an unlikely 
environment, which may have resulted from species misi-
dentification. Fishing effort was calculated as the number 
of hooks multiplied by soak time.

Model design

Fishery interaction spatial models were designed strictly for 
the Western North Atlantic Ocean, excluding the Gulf of 
Mexico, so all sets west of the southern tip of Florida (80.5º 
W) were removed from each species or species group data-
sets. We used a generalized additive model (GAM) frame-
work for the fishery interaction spatial models because of 

https://www.ngdc.noaa.gov/mgg/global/global.html
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its ability to handle nonlinear relationships with habitat data 
(Hastie and Tibshirani 1990; Wood 2006). Following similar 
habitat modeling studies (Brodie et al. 2018; McHenry et al. 
2019), we used species presence/absence as the response 
variable and thus a binomial distribution. In addition to the 
above environmental and gear covariates, month, year, day 
of year, latitude, and longitude were considered as covari-
ates for the fishery interaction spatial models. The log of 
effort was included as an offset variable in the model so 
that the model could take into account each set’s effort. The 
equations for the full models considered for PLL and BLL 
species are below in (1) and (2), respectively:

where doy is day of year, bat is bathymetry, rug is rugosity, 
bot temp is bottom temperature, bot temp sd is bottom tem-
perature standard deviation, vo is northward current veloc-
ity, uo is eastward current velocity, and turb is turbidity. All 
analyses were conducted in R v.3.6.1 (R Core Team 2020).

All diagnostics described below were conducted on the 
full model (i.e., all covariates were included, see Eqs. 1 and 
2). When two covariates were collinear, one of those covari-
ates was removed. For example, maximum hook depth was 
not included in the PLL models because it was collinear 
with sea surface height. The smoothing functions for the 
covariates were thin plate regression splines. Temporal auto-
correlation was assessed through auto-correlation function 
(acf) plots and variance inflation factors (VIF), and spatial 
autocorrelation was evaluated through variograms for each 
species fishery interaction spatial model. When temporal 
autocorrelation was present in various species’ models, we 
tried to reduce or eliminate it by switching the year covari-
ate to a random effect and often replaced month with day 
of the year of each set in the model with a cubic regres-
sion spline. We attempted to include the 2D smooth term of 
latitude and longitude to reduce the spatial autocorrelation 
present. However, concurvity, which is when a smooth term 

(1)

Y ∼ factor(month) + factor(year)

+ s(doy) + s(lat, lon)

+ factor(hook config) + factor(bait)

+ s(max hook depth)

+ s(set time) + s(lunar) + s(bat)

+ s(rug) + s(sst) + s(ssh) + s(chla) + s(mld)

+ s(vo) + s(uo) + s(sstsd) + log(effort)

(2)

Y ∼ factor(month) + factor(year) + s(doy)

+ s(lat, lon) + factor(hook config) + factor(bait)

+ s(mean set depth) + s(set time) + s(bat)

+ s(rug) + s(sst) + s(bot temp) + s(sss)

+ s(bot sal) + s(ssh) + s(chla) + s(sstsd)

+ s(bot temp sd) + s(turb) + log(effort)

can be estimated by another smooth term, was often present 
between the spatial term and other environmental covariates. 
Because of the presence of concurvity and an often weak 
spatial autocorrelation trend in the models, for the majority 
of species, we did not include the 2D smooth term for space.

Model selection was divided into two steps. In the first 
step, models were developed and run that consisted of vari-
ous combinations of environmental covariates while leaving 
the gear covariates out. The best model was selected for the 
first step using Akaike information criterion (AIC), which 
evaluates relative model performance while penalizing for 
additional model parameters, or when appropriate, expert 
opinion (e.g., the authors’ biological expertise applied in 
rare instances where modeled distributions extended into 
areas beyond a species’ known range). In the second step, 
models were developed and run that consisted of the envi-
ronmental covariates from the best model from step one and 
different combinations of gear covariates. The overall best 
model was selected from the second step using AIC. Once 
the best combination of covariates was identified, the num-
ber of knots within each smoother was adjusted to remove 
unrealistic noise in the marginal response output, while also 
optimizing the model’s deviance explained. If models were 
overdispersed, the quasibinomial family was used, which 
allows overdispersion to be modeled (McCullagh and Nelder 
1989). All models were fit using the mgcv package v.1.8.33 
in R v.3.6.1 (Wood 2011). Predictions over each covariate 
were generated using marginal means (Searle et al. 1980) 
and estimates of uncertainty were produced from 1000 boot-
strapped samples (Efron and Tibshirani 1993).

Fishery interaction spatial models were evaluated using 
three different cross-validation approaches (random, spatial, 
and temporal) using the dismo package v.1.3.3 in R v.3.6.1 
(Hijman et al. 2017; Roberts et al. 2017). The first was a 
tenfold cross-validation, where the observations were ran-
domly divided into ten equally sized groups. One group was 
selected as the test dataset and used for prediction while the 
other nine were used to train the model. This process was 
repeated so that each group served as the test dataset. Area 
under the receiver operating curve (AUC) and true skill sta-
tistic (TSS) were used to assess the predictive performance 
of the models on new data. AUC values range from 0 to 1, 
where a value of 0.5 indicates the prediction is no different 
than random, whereas a value closer to 1 indicates perfect 
model prediction (Fielding and Bell 1997). TSS ranges from 
− 1 to 1, where a value of 0 means the model performed no 
better than random and a value of 1 indicates perfect model 
performance (Allouche et al. 2006).

The second approach was a spatial validation method to 
ensure the model was adequate at predicting over all areas 
throughout the model domain. Spatial blocks were generated 
over the domain of the fishery and systematically assigned 
a group number using the blockCV package v.2.1.1 in R 



 Marine Biology         (2021) 168:148 

1 3

  148  Page 6 of 17

v.3.6.1 (Valvi et al. 2019). The size of the spatial blocks 
and the number of groups (i.e., folds) were selected so that 
the amount of presences and absences were similar among 
the groups. Similar to above, one group was selected as the 
test dataset and used for prediction while the other groups 
were used to train the model. The process was repeated so 
that each group served as the test dataset and AUC and TSS 
were used to assess the predictive performance of the model.

The third approach was a temporal validation method to 
ensure the model was accurately predicting over the pro-
jected time period (2016–2018; see the next section for 
explanation). Temporal groups (i.e., folds) were assigned 
to each year and similar to above, cross-validation was per-
formed so that each group was identified as the test data-
set once. AUC and TSS were averaged over projected time 
period years.

Habitat projection

Species fishery interaction distributions were projected over 
recent mean historical conditions (2016–2018) each month 
to best represent present conditions. Each of the dynamic 
environmental covariates used in the fishery interaction spa-
tial models for PLL and BLL species was averaged each 
month from 2016 to 2018 at each grid cell. The resolution 
of all environmental covariates was rescaled to match that 
of the covariate with the coarsest resolution (1/12º). Fishery 
interaction spatial models were then applied to their respec-
tive mean environmental covariates for each month, which 
generated monthly species fishery interaction distribution 
outputs (herein referred to as ‘occurrence probabilities’), 
ranging from 0 to 1.

Closed area performance metrics

To aid fishery managers in evaluating the performance of 
HMS closed areas, we developed four objective metrics that 
utilized the monthly occurrence probabilities of each spe-
cies. All metrics described below were intended to provide 
a framework within PRiSM that fishery managers may use to 
make further determinations of a closed area. These metrics 
and their results are not indicative of what fishery managers 
may or may not do in the future; rather they only present 
additional information that managers could use.

Prior to calculating each metric, we reduced the 
monthly occurrence probabilities domain to likely fish-
ing areas. This was done using the 95% kernel utilization 
distribution (KUD) of the fishery over the entire PLL or 
BLL observer program dataset. Due to the large extent and 
range of the PLL fishery (Fig. 1a), the domain resulted 
in a continuous polygon that engulfed the U.S. exclusive 
economic zone (EEZ) along the U.S. east coast. Any areas 
inside the KUD that occurred in estuaries, 1 km from the 

U.S. coastline, within other countries’ EEZs, or extended 
beyond the maximum extent of the fishery were removed 
because fishing by U.S. PLL vessels did not occur in those 
areas. Unlike the PLL fishery, the BLL fishery strictly 
occurs inside the U.S. EEZ and primarily occurs off of 
North Carolina and Florida (Fig. 1b). Therefore, a separate 
95% KUD was calculated to represent the BLL fishery 
domain, which was a continuous polygon that extended 
between those two states. Any areas inside the KUD that 
occurred outside the U.S. EEZ, inside an estuary, or deeper 
than 500 m were removed because fishing did not occur 
in those areas. Monthly occurrence probabilities that 
occurred inside their respective 95% KUDs were deemed 
inside the fishery domain and were used for the metrics.

The first metric compared the monthly mean occurrence 
probability of each species inside the closed area (Charles-
ton Bump Closed Area for PLL species and Mid-Atlantic 
Shark Closed Area for BLL species) to the observed occur-
rence rate of that species in the fishery domain outside the 
closed area (Metric 1). This metric was only assessed dur-
ing the months the closed areas were in effect (Charleston 
Bump: February–April; Mid-Atlantic Shark Area: Janu-
ary–July) because during the other months, actual occur-
rence rates inside the closed areas could be determined. 
This metric allowed evaluation of the closed areas for the 
species when fishing was prohibited. Under this metric, 
a closed area may be considered effective at protecting a 
species or species group if the estimated occurrence prob-
abilities in the closed area are higher than the observed 
occurrence rate outside the closed area.

The next three metrics are related to species’ “high-
risk” area or habitat. High-risk area represented areas 
where the top x% of occurrence probabilities for a species 
occurred (i.e., high-risk areas defined as areas where fish-
ery interactions are most likely to occur within the fishery 
domain). First, we determined the occurrence probability 
that represented the high-risk area value threshold. For 
example, if x was 25%, then the occurrence probability 
threshold was the value when 25% of all occurrence prob-
abilities over all months were greater than or equal to that 
value. High-risk area each month was defined as areas 
where occurrence probabilities were equal to or greater 
than the occurrence probability threshold. Defining a value 
for x allowed us to place a weight on each species based 
on the level of management importance, where the higher 
the x, the more of that species’ occurrence probabilities 
we would incorporate as ‘high risk.’ We determined the 
value of x based on the status of each species or species 
group and listed the corresponding occurrence probability 
threshold (Table 1). The value of x for species listed as 
endangered or threatened under the ESA was 50 and 40%, 
respectively, because ESA listing implies a greater man-
agement importance and more risk-averse approach. The 
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value for x of species that fall under the Magnuson–Ste-
vens Fishery Conservation and Management Act (MSA) 
and where overfishing is occurring, that are overfished, 
and/or have high community importance was 25%.

The first of the three metrics related to individual species 
high-risk area compared high-risk area that occurred inside 
the closed area to areas outside the closed area (Metric 2). 
The ratio between the median high-risk area occurrence 
probability within the closed area and the median high-risk 
area occurrence probability outside the closed area was 
calculated each month. It was assumed that if the closed 
area is doing well at protecting the highest risk area for a 
species’, then the ratio would be > 1 when the closed area 
was closed. For the next metric, we calculated the percent 
area of individual species high-risk area that occurred inside 
the closed area each month (Metric 3). For the final metric, 
we calculated the percent of the closed area with individual 
species high-risk area each month (Metric 4). It is assumed 
that if the closed areas are effectively protecting these spe-
cies, Metrics 3 and 4 will be maximized while the areas are 
closed. For these two metrics, all values inside the high-risk 
area were treated equally, meaning the occurrence probabili-
ties were ignored and only the presence of high-risk area in 
a grid cell was considered.

Results

For PLL models, the best model for billfish, mako shark, 
and leatherback sea turtle had a deviance explained of 34.3, 
20.3, and 14.1%, respectively. For BLL models, the devi-
ance explained for the best models were 49, 38.3, and 47.2% 
for sandbar shark, dusky shark, and scalloped hammerhead, 
respectively (Table 2). For all six species and for the three 

validation approaches (random, spatial, and temporal), the 
predictive performance of the models was considered to be 
either fair (AUC > 0.70) or good (AUC > 0.80) (Swets 1988; 
Buckley et al. 2011) (Table 2). Marginal mean prediction 
plots indicate the relationship between species probability 
of occurrence and each covariate, while all other covariates 
are at their mean. Marginal mean predictions of the prob-
ability of occurrence for the billfish species group in the 
PLL and the dusky shark in the BLL at each covariate in the 
respective species’ best model are in Figs. 2 and 3, respec-
tively. An example of a monthly occurrence probability map 
(trimmed to the fishery domains) for a PLL (billfish species) 
and BLL (dusky shark) species on average between 2016 and 
2018 is in Fig. 4a, b, respectively. Monthly maps of upper 
and lower bounds of occurrence probability (using standard 
errors) for each species were also examined and indicated 
uncertainty was relatively low within the fishery domains. 
All species’ marginal means plots and monthly occurrence 
probability maps (including upper and lower bounds maps) 
can be found in Supplementary Information 1 Figs S1–S4 
and Supplementary Information 1 Figs S5–S10, respectively.

Closed area performance metrics

Performance metrics described below in the context of both 
closed areas were used solely to demonstrate the PRiSM 
framework. These results do not represent definitive assess-
ments of either closed area, nor are they indicative of what 
fishery managers may or may not do in the future.

Performance metrics often showed similar trends but 
varied from species to species in the PLL fishery for the 
Charleston Bump Closed Area. In Metric 1 (comparing 
mean occurrence probabilities inside versus observed mean 
occurrence rates outside the closed area during closure 
months), mako sharks had a higher mean occurrence prob-
ability inside Charleston Bump Closed Area compared to 
the observed mean occurrence rate outside during all three 
months Charleston Bump Closed Area was closed (Fig. 5b). 
On the other hand, for the billfish species group, the 
observed mean occurrence rate outside the closed area was 
higher during all three months (Fig. 5c). For leatherback sea 
turtles mean occurrence probability inside was very similar 
to the observed mean occurrence rate outside in February 
and March, but in April the observed mean occurrence rate 
was higher (Fig. 5a).

Species’ high-risk area varied from month to month 
which ultimately impacted the three metrics calculated 
from the high-risk area. An example of mapped species 
high-risk area for the PLL species for a given month is in 
Fig. 6a–c, while maps for all months can be found in the 
Online Resource 1 Fig S11. For example, there was no high-
risk area within the PLL fishery domain for the billfish group 
in November or December. For Metric 2, ratios between 

Table 1  The six species statuses used to determine the top x% of 
occurrence probabilities and corresponding occurrence probability 
threshold needed to calculate each species’ high-risk area

Acronyms are Endangered Species Act (ESA) and Magnuson–Ste-
vens Fishery Conservation and Management Act

Species Species status x% Probability 
threshold

Leatherback Sea turtle ESA/endangered 50 0.03
Mako shark MSA/overfished/

overfishing
25 0.54

Billfish species Group MSA/community 
importance

25 0.37

Dusky shark MSA/overfished / 
overfishing

25 0.51

Sandbar shark MSA/overfished / 
overfishing

25 0.9987

Scalloped Hammerhead MSA/overfished / 
overfishing

25 0.83
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median occurrence probabilities for species high-risk area 
inside and outside the closed area were calculated, where 
a value > 1 meant that the high-risk area was higher risk 
inside the closed area compared to outside the closed area. In 
addition, the closer the ratio was to 1 the closer the median 
values were to each other. For the leatherback sea turtle and 
mako shark, ratios were > 1 for all three months Charles-
ton Bump Closed Area was closed (Feb–Apr; Fig. 7a, b). 
On the other hand, the ratios from Feb–Apr for the billfish 
group equaled zero, meaning there was no high-risk area 
inside Charleston Bump Closed Area during those months 
(Fig. 7c).

Metric 3 (the percent of  high-risk area found inside the 
closed area) varied substantially among months and spe-
cies. While the Charleston Bump Closed Area was closed, 
3–4.6%, 1.7–3.8%, and 0% of leatherback sea turtle, mako 
shark, and the billfish species group high-risk areas occurred 
inside the closed area, respectively (Fig. 9a). Billfish's high-
risk area did not occur inside the closed area until after it 
was opened. Increases in percent of high-risk area in the 

Charleston Bump Closed Area for multiple species began in 
November and continued through January and then began 
to decrease in March and April. For Metric 4, the percent 
of closed area with high-risk area, ranged from 0 to 100%, 
where 100% would mean that all of the closed area rep-
resented high-risk area. During the closure of Charleston 
Bump Closed Area, high-risk area of leatherback sea turtle, 
mako shark, and the billfish species group covered between 
28 and 90%, 42 and 45%, and 0% of the closed area, respec-
tively (Fig. 10a). A large percentage of the closed area 
(> 80%) was also covered by leatherback high-risk area dur-
ing November, December, and January.

Similar to PLL, the four performance metrics showed 
similar patterns, but varied for the three species in the BLL 
fishery for the Mid-Atlantic Shark Closed Area. Metric 1 
showed that the mean occurrence probability inside the Mid-
Atlantic Shark Closed Area was higher than the observed 
mean occurrence rate outside the closed area for all seven 
months of the Mid-Atlantic Shark Closed Area for all three 
species (Fig. 5d–f).

Table 2  Information about the observed occurrence rate of each 
species in their respective fishery, as well as the best model covari-
ates (with the exception of temporal covariates, e.g. year), deviance 

explained from the best model, and predictive performance metrics 
from the three validation approaches for each species

The actual covariate names are as follows: lunar lunar illumination; bat bathymetry; rug rugosity; sst sea surface temperature; chla chlorophyll 
a; ssh sea surface height; mld mixed layer depth; vo vertical current velocity; uo horizontal current velocity; sstsd sea surface temperature stand-
ard deviation; bt bottom temperature; bs bottom salinity; btsd bottom temperature standard deviation; turb turbidity; hook hook configuration; 
bait bait type; set hour hour the set began; set lat begin set latitude; set lon begin set longitude

Species Occurrence (% 
of sets)

Best model covariates Deviance 
explained (%)

Validation approach AUC TSS

Billfish group 40 sst, ssh, chla, mld, 34.4 Random 0.85 0.56
vo, uo, sstsd, Spatial 0.81 0.52
hook, bait, set hour Temporal 0.82 0.51

Mako shark 27 lunar, bat, rug, sst, chla, 20.3 Random 0.80 0.48
ssh, mld, vo, sstsd, Spatial 0.72 0.35
bait, set hour Temporal 0.81 0.51

Leatherback sea turtle 6 bat, rug, sst, chla, 14.1 Random 0.77 0.44
ssh, vo, uo, Spatial 0.71 0.33
set hour Temporal 0.70 0.43

Sandbar shark 78 bat, bt, bs, 49.0 Random 0.87 0.65
sst, ssh, chla Spatial 0.81 0.55

Temporal 0.88 0.71
Dusky shark 23 bat, bt, bs, chla, 38.3 Random 0.79 0.51

btsd, sstsd, set hour Spatial 0.72 0.38
set lat, set lon Temporal 0.72 0.48

Scalloped hammerhead 29 bat, bt, bs, turb, ssh, 47.2 Random 0.78 0.48
btsd, sstsd, set hour, Spatial 0.75 0.40
bait, set lat, set lon Temporal 0.70 0.42
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Unlike for the PLL species, for all BLL species, there 
was species high-risk area for every month within the BLL 
fishery domain. An example of mapped individual species 
high-risk area for the BLL species for a given month is in 
Fig. 6d–f, while maps for all months can be found in the 
Online Resource 1 Fig. S12. Metric 2 (ratios of median 
values) showed that dusky shark high-risk area inside the 
Mid-Atlantic Shark Closed Area was better than high-risk 
area outside the closed area for five of the seven months 
the closed area is closed (Fig. 8a). During two of the seven 
months, scalloped hammerhead high-risk area was better 
inside the closed area compared to outside (Fig. 8c). For 

sandbar sharks, a lot of the fishery domain had very high 
occurrence probabilities across months (> 0.99), which 
resulted in a very high occurrence probability threshold 
(0.9987; Table 1). This likely occurred because sandbar 
sharks were more abundant in the bottom longline and were 
targeted in the shark research fishery. This resulted in similar 
median values for each month and thus ratios very close to 
one for sandbar shark (Fig. 8b).

While the Mid-Atlantic Shark Area was closed, 
6.0–25.3%, 5.3–12.6%, and 12.1–50.9% of dusky shark, 
scalloped hammerhead, and sandbar shark high-risk areas 
occurred inside the closed area, respectively based on 

Fig. 2  Marginal mean predictions of probability of occurrence for the 
billfish species group in the pelagic longline at each covariate in the 
best model. The black line shows the actual marginal means for each 
covariate, while the grey area (and error bars for Hook Configuration 
and Bait Type) represents the 95% confidence intervals generated 
through bootstrapping. Hook configurations abbreviations are circle 

hook mixed (CM), J hook (J), larger than 16/0 circle hook (> 16/0C), 
mixed of circle and J hooks (M), and smaller than or equal to 16/0 
circle hook (< = 16/0C). Abbreviated covariates are SST—sea surface 
temperature; SST SD—sea surface standard deviation; SSH—sea sur-
face height
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Metric 3 (Fig. 9b). For Metric 4, approximately 10.4–86.8%, 
2.5–61.1%, and 0.8–90.6% of the Mid-Atlantic Shark Area 
was covered by dusky shark, scalloped hammerhead, and 
sandbar shark high-risk area, during the closure respectively 
(Fig. 10b). Starting in June and July (last 2 months of clo-
sure), the percentages substantially drop compared to prior 
months. November or December was the first month where 
the percentages began to increase again (Fig. 10b).

Discussion

Species distribution and habitat modeling methods have a 
growing number of applications in marine resource man-
agement (Hobday and Hartmann 2006; Becker et al. 2016; 
Welch et al. 2019b). Such modeling, which takes advantage 

of more widely accessible machine learning and high-per-
formance computing platforms, has the potential to aid a 
variety of fisheries management goals in a dynamic and 
shifting ocean environment (Holsman et al. 2019). PRiSM 
is directly applicable because it produces models that reflect 
spatial interaction potential in a fishery (by only using fish-
ery-dependent data and incorporating detailed gear infor-
mation specific to the fishery) and then directly linking it 
to the spatial management area for that corresponding fish-
ery. This internal consistency could allow managers to use 
PRiSM results to supplement other streams of information 
and guide current and future spatial management decisions 
in each unique fishery.

Based on the three model validation metrics conducted 
and the applicability of the closed area metrics, we have 
demonstrated the utility of PRiSM for fishery managers to 

Fig. 3  Marginal mean predictions of probability of occurrence for 
the dusky shark in the shark bottom longline at each covariate in the 
best model. The black line shows the actual marginal means for each 
covariate, while the grey area represents the 95% confidence intervals 

generated through bootstrapping. Bottom temperature SD stands for 
bottom temperature standard deviation and SST SD stands for sea 
surface temperature standard deviation
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assess the performance of multiple closed areas on a subset 
of species. Three cross-validation approaches demonstrated 
fair to good model performance for all six species that were 
robust to temporal and spatial structure in the data. The 
closed area metrics provide an objective way to assess vari-
ous areas while incorporating the fishery domain, species 
high-risk areas, and the location of the closed area. PRiSM 
can be expanded or adapted to more species and regions 
as well as other fisheries. For example, PRiSM could be 
applied to multiple target and non-target species caught in 
the PLL and BLL fisheries (e.g., yellowfin tuna, silky shark, 
loggerhead turtle), and other regions such as the Gulf of 
Mexico. As long as there are sufficient fisheries data and 
corresponding spatial management areas, the framework of 
PRiSM can be applied to other regions and fisheries.

The metrics for the species used in this study and closed 
areas under recent environmental conditions suggests that 
the closed areas may be performing adequately during some 
times for some species, but also that there may be opportuni-
ties for improvement. Using multiple metrics, there appear 
to be months and areas within the Charleston Bump and 
Mid-Atlantic Shark Closed Areas that offer protection for 
the species considered. In contrast, results also suggest that 
protections could be improved with shifts in the timing, 
size, and/or location of these closed areas. Generating these 
metrics for other relevant species and areas may provide a 

standardized approach for evaluating current and future spa-
tial management efforts. It is important to note that the spe-
cies and closed areas used in this study are intended to dem-
onstrate PRiSM as a proof of concept, and that no results 
or interpretations are definitive. Ultimately, PRiSM is one 
of several techniques that provide managers with informa-
tion that they could use to assess the performance of closed 
areas. It is important, given historical and projected impacts 
of climate change on fisheries/fishing communities (Rogers 
et al. 2019; Champion et al. 2021), changes in fishing tech-
niques and regulations, and other long-term environmental 
and socioeconomic shifts, that these static closed areas be 
assessed regularly to ensure that their purported benefits are 
maintained without resulting in unnecessary harm to fishing 
communities.

Like any other spatial model, there are limits to this 
approach, such as the level of uncertainty in the model as 
well as in the environmental data used to generate the model 
and ultimately to predict over. Model uncertainly can be 
influenced by many factors, including low sample size (i.e., 
number of positive occurrences) and the absence of covari-
ates in the model that may be important in driving the occur-
rence rate of species in a fishery. Specifically, for species 
that do not occur enough in a fishery or whose model perfor-
mance is low, PRiSM would not be an appropriate technique 
to apply. In addition, the temporal period over which species 

Fig. 4  a Estimated billfish fishery interaction distribution outputs 
(occurrence probabilities) during average February conditions from 
2016 to 2018 within the pelagic longline fishery domain (light blue). 
The closed area (green) is Charleston Bump. b Estimated dusky shark 

fishery interaction distribution outputs (occurrence probabilities) dur-
ing average February conditions from 2016 to 2018 within the bottom 
longline fishery domain (light blue). The closed area (green) is the 
Mid-Atlantic Shark Closed Area
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occurrence probability is predicted will directly impact the 
assessment metrics. For example, occurrence probabilities 
may drastically differ when predicting over monthly average 
conditions over three recent years (used in this study) com-
pared to over one recent year or compared to over weekly 
averages. Therefore, it is important that the temporal period 
selected is justified. This should be based on the temporal 
resolution (e.g., month) the area is managed under, when 
area assessment is needed, and when (if any) adjustments 
are made to the area.

Further model validation could occur if enough data 
inside closed areas are able to be collected either through 
fishery-dependent or fishery-independent methods such as 

surveys, tagging studies, or cooperative research with fish-
ing vessels. Although tagging studies provide insight into 
actual species habitat use and distribution, it does lack the 
fishery component (e.g., fishermen decisions: hook type/
size, bait type, set time, and depth of set), which certainly 
impacts whether an individual organism is caught or not. 
Despite these differences, it is still good practice to test or 
compare model output and performance on other data if 
possible (Chatfield 1995; Thorne et al. 2019). For example, 
mako shark fishery interaction distributions from our model 
shifted latitudinally with season, a pattern also observed 
in satellite-tagged mako sharks (Vaudo et al. 2016). Also, 
it appears that dusky sharks may prefer areas within the 

Fig. 5  Monthly mean occurrence probability inside the closed area 
(red line) and the observed mean occurrence rate outside the closed 
area (black line) during the months the areas were closed (Metric 
1). For leatherback sea turtle (a), mako shark (b), and the billfish 
group (c) the referred closed area is the Charleston Bump Closed 

Area which is closed to the pelagic longline from Feb–Apr. For 
dusky shark (d), sandbar shark (e), and scalloped hammerhead (f) the 
referred closed area is the Mid-Atlantic Shark Closed Area which is 
closed to bottom longline from Jan–Jul
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Mid-Atlantic Shark Closed Area 1–2 months prior to the 
closure, a similar observation found in an acoustic tracking 
study on juvenile dusky sharks (Bangley et al. 2020). It is 
important to note, similar to the PLL closed area metrics, 
observed catch rates of PLL bycatch species (mako shark 
and leatherback sea turtle) from 2016 to 2018 were often 
relatively high between December and January inside the 
Charleston Bump Closed Area. The observed catch rates for 
the species considered for the BLL were relatively high in 
December inside the Mid-Atlantic Shark Closed Area, fol-
lowing similar trends found in the BLL closed area metrics. 
These similarities found in the observer data for both fisher-
ies and in datasets of a different nature (tagging datasets), 
validates PRiSM further.

PRiSM may have the capacity to be extended into other 
uses and applications beyond the assessment of existing 
closed areas. It could be used, along with other fisheries 
information, to determine locations of monitoring areas 
or help optimize the location, size, and timing of potential 
new or modified closed areas. Proposed spatial management 
areas can be run through PRiSM’s metrics with species’ 
PRiSM model occurrence probabilities until the metrics are 
optimized while ensuring significant target species habitat 
is available to the fishery. An approach like PRiSM can be 
used to help improve essential fish habitat designations and 
assess the impacts of various marine uses on HMS, such as 
offshore energy development (Friedland et al. 2021).

Fig. 6  Individual species high-risk area (top x% of occurrence prob-
abilities) within their respective fishery domains (95% kernel utiliza-
tion distribution) in light blue for the month of April for the pelagic 
longline species; billfish species group (BILFH, a), shortfin mako 
shark (SMA, b), and leatherback sea turtle (TLB, c) and for the bot-

tom longline species; dusky shark (DS, d), sandbar shark (SB, e), and 
scalloped hammerhead (SHH, f). The fishery domain for the pelagic 
longline also includes the U.S. EEZ. The Charleston Bump Closed 
Area and Mid-Atlantic Shark Closed Area are indicated by the light 
green outline on their respective maps
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Techniques like PRiSM create the opportunity for evalu-
ation of more dynamic management approaches that allow 
for the refinement of managed areas to the temporal and 
spatial scales of the dynamic ocean (Lewison et al. 2015; 
Dunn et al. 2016). For example, dynamic management tools 
such as EcoCast use habitat modeling techniques similar 
to PRiSM to generate real-time maps that indicated areas 
where fisheries bycatch was minimized and fisheries tar-
get catch was maximized (Hazen et al. 2018; Welch et al. 
2019a). Hazen et al. (2018) estimated that dynamic closures 
could achieve comparable bycatch risk reduction at a frac-
tion of the size (2–10 × smaller) of static closed areas. In the 
Eastern Tuna and Billfish Fishery in Australia, habitat mod-
eling was used to generate three spatial management zones 
based on the probability of southern bluefin tuna occurrence 

every 2 weeks (Hobday and Hartmann 2006). Fishermen 
had access to these zones based on observer coverage and 
available share of southern bluefin tuna quota. Seasonal fore-
casts (3–4 month lead time) were also created and used to 
help managers and fishermen prepare for potential habitat 
shifts (Hobday et al. 2011). PRiSM has the capability to 
assess and recommend spatial management areas at finer 
temporal resolutions and potentially project spatial manage-
ment areas months in advance if needed by fishery manag-
ers. With that being said, a number of criteria have to be 
met first, including, skillful physical forecasts that exist and 
ecological skill relative to the skillful physical variables. 
As oceanographic data increase in accuracy and resolution, 
and our understanding of the relationships between fish and 
their environment improve, it becomes more appropriate to 
account for shifting ocean dynamics in how fish are man-
aged. This could benefit both species in need of conservation 

Fig. 7  Ratios of median values each month inside and outside the 
Charleston Bump Closed Area (Metric 2). Species monthly ratios are 
calculated as (median high-risk area occurrence probability inside the 
closed area)/(median high-risk area occurrence probability outside 
the closed area). Values above 1 (the dashed line) indicate when high-
risk area was even higher risk inside the closed area compared to out-
side the closed area. The shaded grey area indicates the months the 
Charleston Bump Closed Area is closed to pelagic longline. Months 
where there are no values indicate when no high-risk area occurred 
inside the fishery domain

Fig. 8  Ratios of median values each month inside and outside the 
Mid-Atlantic Shark Closed Area (Metric 2). Species monthly ratios 
are calculated as (median high-risk area occurrence probability inside 
the closed area)/(median high-risk area occurrence probability out-
side the closed area). Values above 1 (the dashed line) indicate when 
high-risk area was higher inside the closed area compared to outside 
the closed area. The shaded grey area indicates the months the Mid-
Atlantic Shark Closed Area is closed to bottom longline
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and fishermen who already use these types of data to inform 
their fishing locations.

The PRiSM framework we have developed provides 
an approach to rapidly assess spatial management areas 
for two different HMS fisheries using widely available 
modeling techniques and routinely collected fishery-
dependent data from outside of closed areas. Given the 
ongoing need to balance the conservation of HMS stocks 
and bycatch species with the long-term sustainability of 
fisheries that catch them, PRiSM provides an adaptable 
framework to optimize marine spatial management to 
achieve multiple objectives. With longstanding static 
spatial management in need of evaluation and potential 
change within U.S. HMS fisheries, PRiSM represents a 
useful approach that could help guide spatial manage-
ment and support sustainable fisheries.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00227- 021- 03951-7.
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