1 Extinction risk, reconstructed catches, and management of chondrichthyan fishes in the

2 Western Central Atlantic Ocean

- 3 Brendan S. Talwar^{1,2}, Brooke Anderson³, Cristopher G. Avalos-Castillo^{4, 5}, María del Pilar
- 4 Blanco-Parra^{6, 7, 8}, Alejandra Briones^{9, 10}, Diego Cardeñosa¹, John K. Carlson¹¹, Patricia
- 5 Charvet¹², Charles F. Cotton¹³, Zoe Crysler¹⁴, Danielle H. Derrick¹⁵, Michael R. Heithaus¹,
- 6 Katelyn B. Herman¹⁶, Olga Koubrak¹⁷, David W. Kulka¹⁸, Peter M. Kyne¹⁹, Oscar M. Lasso-
- 7 Alcalá²⁰, Paola A. Mejía-Falla^{21, 22}, Jorge Manuel Morales-Saldaña^{23, 24}, Beatriz Naranjo-
- 8 Elizondo^{25, 26}, Andrés F. Navia²², Nathan Pacoureau^{27, 28}, Juan C. Peréz-Jiménez²⁹, Riley A.
- 9 Pollom³⁰, Cassandra L. Rigby³¹, Eric V.C. Schneider^{2, 32}, Nikola Simpson³³, Nicholas K. Dulvy²⁷
- 10 *Corresponding author:*
- 11 Brendan S. Talwar; Institute of Environment, Department of Biological Sciences, Florida
- 12 International University, 3000 NE 151st Street, North Miami, FL 33181, USA;
- 13 <u>talwar.brendan@gmail.com</u>
- 14 Affiliations:
- ¹⁵ ¹Institute of Environment, Division of Coastlines and Oceans, Department of Biological
- 16 Sciences, Florida International University, 3000 NE 151st Street, North Miami, FL, 33181, USA
- ¹⁷ ²Exuma Sound Ecosystem Research Project, Cape Eleuthera Institute, Rock Sound, Eleuthera,
- 18 The Bahamas
- ³School of Life Sciences, Arizona State University, Tempe, AZ, USA
- 20 ⁴Centro de Estudios del Mar y Acuicultura, Universidad de San Carlos de Guatemala, Ciudad
- 21 Universitaria Zona 12, Ciudad de Guatemala, 01012, Guatemala
- ⁵Fundación Mundo Azul, Carretera a Villa Canales km 21-22 Finca Moran, 01069, Villa
 Canales, Guatemala
- ⁶Consejo Nacional de Ciencia y Tecnología, Insurgentes Sur No. 1582, Ciudad de México,
 03940, México
- ⁷División de Desarrollo Sostenible, Universidad de Quintana Roo, Blvd. Bahía s/n esq. Ignacio
- 27 Comonfort, Col. Del Bosque, Chetumal, Quintana Roo, 77019, México
- ⁸Fundación Internacional para la Naturaleza y la Sustentabilidad (FINS), Calle Larún Manzana
- 29 75, Lote 4, Andara, Chetumal, Quintana Roo, 77014, México
- ⁹Dirección de Regulaciones Pesqueras y Ciencia, Ministerio de la Industria Alimentaria, Cuba
- 31 ¹⁰Centro de Investigaciones Marinas de la Universidad de la Habana, Cuba
- ¹¹NOAA Fisheries Service, Southeast Fisheries Science Center, 3500 Delwood Beach Rd,
- 33 Panama City, FL, USA
- ¹²Programa de Pós-Graduação em Sistemática, Uso e Conservação da Biodiversidade (PPGSis),
- 35 Universidade Federal do Ceará (UFC), Fortaleza, CE, 60020-181, Brazil

- ¹³Department of Fisheries, Wildlife & Environmental Science, State University of New York at
- 37 Cobleskill, 114 Rockland Avenue, Cobleskill, NY USA
- ¹⁴IUCN SSC Shark Specialist Group, Simon Fraser University, Burnaby BC Canada
- ¹⁵Department of Fisheries and Oceans, Resource Management and Sustainability, Marine
- 40 Conservation Targets, Vancouver, British Columbia, Canada
- 41 ¹⁶Georgia Aquarium, Atlanta, Georgia, USA
- 42 ¹⁷Marine & Environmental Law Institute, Schulich School of Law, Dalhousie University, 6061
- 43 University Ave, PO BOX 15000, Halifax, NS B3H 4R2, Canada
- ¹⁸Department of Fisheries and Oceans, Northwest Atlantic Fisheries Centre, St John's,
- 45 Newfoundland, Canada
- ¹⁹Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin,
- 47 NT, Australia
- ²⁰Museo de Historia Natural La Salle (MHNLS), Fundación La Salle de Ciencias Naturales,
 Caracas, Venezuela
- ²¹Wildlife Conservation Society WCS Colombia, Av.5N # 22N-11, Cali, Colombia
- ²²Fundación colombiana para la investigación y conservación de tiburones y rayas SQUALUS,
- 52 Calle 10A # 72-35, Cali, Colombia
- ²³Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Republic of Panama
- ²⁴Department of Biology, McGill University, Montreal, Quebec H3A 1B1 Canada
- ²⁵Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa
- 56 Rica, San Pedro de Montes de Oca, San José, Costa Rica
- ²⁶Centro de Investigación en Estructuras Microscópicas (CIEMIC), Universidad de Costa Rica,
- 58 San Pedro de Montes de Oca, San José, Costa Rica
- ²⁷Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University,
 Burnaby, BC, Canada
- ²⁸Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State
- 62 University, Blacksburg, VA, USA
- ²⁹El Colegio de la Frontera Sur (ECOSUR), Av. Rancho Polígono 2-A, Ciudad Industrial,
- 64 Lerma, Campeche, México
- ⁶⁵ ³⁰IUCN SSC Global Center for Species Survival, Indianapolis Zoo, 1200 West Washington
- 66 Street, Indianapolis, Indiana, USA 46222
- ³¹College of Science and Engineering, James Cook University, Townsville, Queensland 4811,
- 68 Australia

³²Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building,

- 70 University of Glasgow, Glasgow G12 8QQ, UK
- ³³Sustainable Caribbean, Bridgetown, Barbados
- 72
- 73 ABSTRACT

Chondrichthyan fishes are among the most threatened vertebrates on the planet because 74 75 many species have slow life histories that are outpaced by intense fishing. The Western Central Atlantic Ocean, which includes the greater Caribbean, is a hotspot of chondrichthyan 76 77 biodiversity and abundance, but is historically characterized by extensive shark and ray fisheries and a lack of sufficient data for effective management and conservation. To inform future 78 79 research and management decisions, we analyzed patterns in chondrichthyan extinction risk, reconstructed catches, and regulations in this region. We summarized the extinction risk of 180 80 81 sharks, rays, and chimaeras using contemporary IUCN Red List assessments and found that over 82 one-third (35.6%) were assessed as Vulnerable, Endangered, or Critically Endangered largely due to fishing. Reconstructed catches from 1950 to 2016 reached their peak in 1992, then 83 declined by 40.2% through the end of the series. The United States, Venezuela, and Mexico were 84 responsible for most catches and hosted large proportions of the regional distributions of 85 86 threatened species; these countries therefore held the greatest responsibility for chondrichthyan management. The abundance and resolution of fisheries landings data were poor in much of the 87 region, and national-level regulations varied widely across jurisdictions. Deepwater fisheries 88 represent an emerging threat, although many deepwater chondrichthyans currently find refuge 89 90 beyond the depths of most fisheries. Regional collaboration as well as effective and enforceable management informed by more complete fisheries data, particularly from small-scale fisheries, 91 are required to protect and recover threatened species and ensure sustainable fisheries. 92

93 KEYWORDS

94 Fisheries, IUCN Red List, marine policy, rays, sharks, threats

95

- 96
- 97
- 98

99 1. INTRODUCTION

100 Fishing has outpaced the slow life histories of many sharks and their relatives (class 101 Chondrichthyes, hereafter 'sharks and rays'; Cortés, 2000; Worm et al., 2013) and has led to an 102 estimated one-third (37.5%) of sharks and rays being threatened with extinction (Dulvy et al., 103 2021a). Oceanic sharks and rays present a striking example; between 1970 and 2018, an 18-fold 104 increase in relative fishing pressure reduced their global abundance by 71% (Pacoureau et al., 105 2021). Sharks inhabiting coral reefs are similarly threatened, with fishing likely responsible for sharks being absent from almost 20% of reefs surveyed globally (MacNeil et al., 2020). The 106 depletion of shark and ray populations could lead to ecosystem-level consequences (Burkholder 107 108 et al., 2013; Estes et al., 2016; Ferretti et al., 2010) because many of these fishes are apex or 109 mesopredators that range widely and may affect ecosystem processes through predation and associated risk effects, competition, nutrient transport, and bioturbation (Flowers et al., 2021; 110 Heithaus et al., 2008, 2010; Heupel et al., 2014). 111

Increased concern for fisheries impacts on sharks and rays in recent decades gave rise to 112 113 numerous initiatives developed to stem or reverse population declines at the national and international level (Shiffman & Hammerschlag, 2016). In 1991, for example, the International 114 Union for Conservation of Nature (IUCN) Species Survival Commission (SSC) Shark Specialist 115 Group (SSG) was founded to promote the sustainable use and conservation of sharks and rays 116 (Fowler et al., 2005), and, in 1993, the United States implemented its Fishery Management Plan 117 for sharks in the Atlantic Ocean (NMFS, 1993). Additionally, in the late 1990s, the United 118 Nations (UN) Food and Agriculture Organization (FAO) developed the International Plan of 119 Action for Conservation and Management of Sharks (IPOA-Sharks), which recommended 120 countries create and implement their own National Plans of Action for sharks and rays (NPOA-121 Sharks; FAO, 1999). Other management measures (e.g., trade restrictions) were introduced over 122 the next twenty years, but their full implementation is a challenge (Lawson & Fordham, 2018), 123 and their effectiveness remains to be demonstrated on a global scale (Davidson et al., 2016). 124

In the wider Caribbean, robust shark and ray management is lacking (Davidson et al., 2016; Fowler et al., 2005), and any existing management has been described as a patchwork of inconsistent measures (Kyne et al., 2012). Further, the wider Caribbean was recently one of the most data-deficient regions for sharks and rays in the world (Dulvy et al., 2014). According to

the IUCN Red List of Threatened Species (hereafter 'IUCN Red List') in 2012, nearly half 129 (47%) of the region's shark and ray species were assessed as Data Deficient and nearly one in 130 131 five (19%) were assessed in a threatened category, primarily due to overfishing (Kyne et al., 2012). Some historical accounts and archaeological data suggest that fishing had depleted large 132 marine vertebrates in the Caribbean even before modern fishing technology and scientific 133 research expanded in the mid-1900s (Jackson et al., 2001; McClenachan et al., 2006; Wing & 134 Wing, 2001), although these conclusions are debated (e.g., see Baisre, 2010; McClenachan et al., 135 2010). As recently as the 1950s, however, sharks were still described as highly abundant (Viele, 136 1996; Ward-Paige et al., 2010), possibly illustrating the 'shifting baselines' concept (Pauly, 137 1995). 138

139 Contemporary trends in shark abundance in the wider Caribbean have been derived from time-series catch data from fisheries-independent surveys and United States-based fisheries 140 141 (including the pelagic longline fleet that covers much of the Caribbean). These data suggest declines in the abundance or size of some coastal (Cortés et al., 2002; Hayes et al., 2009; 142 McClenachan, 2009) and oceanic sharks (Baum & Blanchard, 2010; Cortés et al., 2007; Jiao et 143 al., 2009), particularly following intense fishing in the 1980s (Bonfil, 1997; Castro, 2013; 144 Musick et al., 1993). The magnitudes of some widely-reported declines in the region's shark 145 abundance are debated (see Baum et al., 2003; Baum and Myers, 2004; Burgess et al., 2005). 146 Fisher surveys (Graham, 2007) and spatial variation in relative abundance also suggest fishing 147 148 caused declines in some coastal shark populations – abundance is often highest in heavily managed exclusive economic zones (EEZs; MacNeil et al., 2020), marine reserves (Bond et al., 149 150 2012; MacNeil et al., 2020), shark sanctuaries (Clementi et al., 2021), and remote areas far from human population centers (Ward-Paige et al., 2010). There are, however, signs of recent stability 151 152 and/or recovery in some better-studied shark populations in the United States (Carlson et al., 153 2012; Peterson et al., 2017), The Bahamas (Hansell et al., 2018; Talwar et al., 2020), and Belize (Bond et al., 2017), largely due to targeted management that began in the 1990s (Castro, 2013; 154 155 Ward-Paige, 2017). Otherwise, a lack of data has challenged the assessment of shark population trends. 156

157 Ray (superorder Batoidea) population trends are poorly known in the wider Caribbean and, 158 for coastal species, trends vary spatially. Precipitous declines in sawfish (Pristidae) abundance 159 are well documented across the entire region, for example (Bonfil et al., 2017; Fernandez-

Carvalho et al., 2014; Thorson, 1982), but at least one highly managed, well-studied population 160 of Smalltooth Sawfish (Pristis pectinata, Pristidae) is stable and likely recovering in the United 161 162 States (Brame et al., 2019). Diver observations from 1994 to 2007 suggest that Yellow Stingray (Urobatis jamaicensis, Urotrygonidae) abundance declined on coral reefs but increased in some 163 areas where predator populations were overfished (e.g., Jamaica; Ward-Paige et al., 2011). 164 Important ray (and shark) habitats such as coral reef, seagrass, and mangrove ecosystems (White 165 & Sommerville, 2010) have also been degraded in the wider Caribbean (Jackson et al., 2014; 166 Polidoro et al., 2010; Waycott et al., 2009), which can lead to range contractions and increased 167 extinction risk (Yan et al., 2021). 168

169 Chimaera (i.e., ghost shark, order Chimaeriformes) population trends are unknown in the 170 wider Caribbean, but chimaeras typically reside offshore, are caught as bycatch, and have little 171 commercial value (Finucci et al., 2021). Globally, their contribution to total chondrichthyan 172 catch is very low (Dulvy et al., 2014). Further, chimaeras primarily reside at depths beyond the 173 maximum depth of most Caribbean fisheries (Finucci et al., 2021). Their populations, along with 174 the populations of deepwater sharks and rays, are probably stable as a result (Dulvy et al., 2014), 175 but remain understudied.

Recently, there have been efforts to reduce data deficiency and improve management for 176 sharks and rays in the region. In 2017, the FAO Western Central Atlantic Fishery Commission 177 178 (WECAFC), a regional fisheries advisory body that hosts members that fish or are located in FAO Major Fishing Area 31 (Western Central Atlantic, 'WCA') and the northern part of FAO 179 180 Major Fishing Area 41 (Southwest Atlantic), convened the first meeting of the working group on shark and ray conservation and management. The working group highlighted the need to 181 coordinate national and regional management and made several specific recommendations 182 regarding shark and ray fisheries (WECAFC, 2018). It also reviewed a Regional Plan of Action 183 (RPOA-Sharks), a regionally tailored version of the IPOA-Sharks meant to facilitate 184 collaboration in research, data collection, and management. Formal adoption of the RPOA-185 Sharks was intended for early 2020 (WECAFC, 2019), but it remains in draft form at the time of 186 187 this writing.

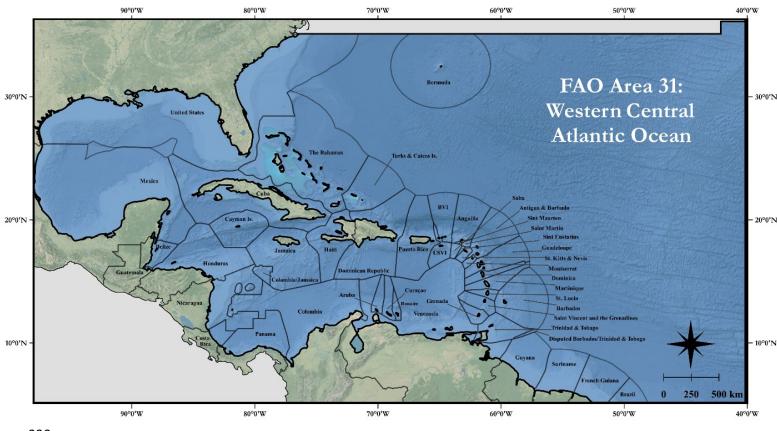
188 To inform future research and upcoming management decisions, we summarize updated 189 global assessments of shark and ray extinction risk for species found in the WCA using data

190 from the IUCN SSC SSG's Global Shark Trends Project (Kyne et al., 2020; Dulvy et al., 2021a).

191 We analyze extinction risk according to taxonomy, maximum depth of occurrence, and trophic

192 position. We then examine key threats, particularly fishing, and review current shark and ray

- 193 management at the international and country (states and territories) level.
- 194


195 2. MATERIALS AND METHODS

196 2.1 Application of the IUCN Red List Categories and Criteria

197 Twenty regional experts and members of the IUCN SSC SSG met for five days at the Cape Eleuthera Institute in Eleuthera, The Bahamas in June 2019. The IUCN Red List 198 199 Categories and Criteria (Version 3.1) were applied to 113 species of sharks and rays following the Guidelines for Using the IUCN Red List Categories and Criteria (IUCN, 2012; IUCN 200 Standards and Petitions Subcommittee, 2019). Assessments were conducted at the global level 201 (i.e., for the entire global population of each species). Data were collated on the taxonomy, 202 distribution, population status, habitat and ecology, major threats, use and trade, and 203 conservation measures for each species from peer-reviewed literature, fisheries statistics, grey 204 literature, and consultation with species and fisheries experts. For details on each of the eight 205 IUCN Red List Categories and the five Criteria used to assess each category of extinction risk, 206 see Mace et al. (2008), IUCN (2012), and IUCN Standards and Petitions Subcommittee (2019). 207 Briefly, a species is Extinct (EX) when no individuals remain alive and Extinct in the Wild (EW) 208 when it only survives in captivity or in naturalized populations outside its previous range. 209 Critically Endangered (CR) species face an extremely high risk of extinction in the wild, 210 Endangered (EN) species face a very high risk of extinction in the wild, and Vulnerable (VU) 211 212 species face a high risk of extinction in the wild. These CR, EN, and VU species are considered threatened. Near Threatened (NT) species are close to qualifying or are likely to qualify for a 213 threatened category in the future, and Least Concern (LC) species are widespread or abundant 214 taxa not currently qualifying for, nor close to qualifying for, a threatened category. Data 215 216 Deficient (DD) species lack sufficient information on either their distribution or population status 217 to adequately assess their extinction risk, and could potentially be LC, CR, or any Category in-218 between.

Draft assessments were prepared in the IUCN Species Information Service online 219 database, then reviews were solicited from at least two experts trained in applying the IUCN Red 220 221 List Categories and Criteria with knowledge of the species and fisheries at hand. A summary of the assessments was also provided to the entire IUCN SSC SSG (174 members) for their consult 222 and input prior to submission to the IUCN Red List Unit (Cambridge, UK) for further review and 223 quality checks. Assessments were then published on the IUCN Red List (version 2021-1, 224 www.iucnredlist.org; IUCN, 2021; see Data S3, Dulvy et al., 2021a). The assessments drafted at 225 this workshop made up the majority of those included in this study; the remainder were 226 conducted in the same manner at workshops elsewhere (e.g., oceanic species were assessed 227 during a 2018 workshop in Dallas, Texas in the southern United States). 228

229 2.2 Geographic & taxonomic scope

230

Figure 1: Map of United Nations Food and Agriculture Organization (FAO) Major Fishing

- 232 Area 31 in the Western Central Atlantic Ocean. National boundaries (Flanders Marine Institute,
- 233 2019) are in dark grey and other FAO Areas are shaded grey. Map base layer source: Esri®

The WCA extends from the eastern coast of French Guiana (5°00'N latitude) to the southeastern coast of the United States (36°00'N latitude). It includes the Atlantic Ocean, Gulf of Mexico, and Caribbean Sea from the east coast of North, Central, and South America to 40°00'W longitude (Figure 1; FAO, 2021). It includes waters attributed to 13 continental states, 13 island states, and over 20 territories (associated with Colombia, France, the Netherlands, United Kingdom, and United States), encompassing 14.6 million km².

240 We included all marine chondrichthyans assessed on the IUCN Red List that occur in the WCA, including residents and migrants. We excluded freshwater chondrichthyans because their 241 fisheries and management are separate from marine fishes and focused our narrative less on 242 243 chimaeras and oceanic sharks than other groups because they were evaluated in recent publications (Finucci et al., 2021; Pacoureau et al., 2021). We used the nomenclature and 244 authorities listed in the online Catalog of Fishes (Eschmeyer et al., 2017) and revisions of Sharks 245 of the World (Ebert et al., 2013, 2021) for sharks and chimaeras and Rays of the World (Last et 246 al., 2016) for rays. We used only global assessments, all of which were available online 247 (www.iucnredlist.org; IUCN, 2021). This review therefore reports the global status of species 248 occurring in the WCA rather than a region-specific assessment, although we note that the 249 assessments of endemic species are limited to the WCA. 250

251 2.3 Analyzing habitat, trophic level, and threat data

We coded each species according to the IUCN Major Threats and Habitats Classification 252 253 Schemes (http://www.iucnredlist.org/technical-documents/classification-schemes/habitatsclassification-scheme-ver3 and http://www.iucnredlist.org/technical-documents/classification-254 255 schemes/threats-classification-scheme) (Salafsky et al., 2008). Species were assigned to one or 256 more of the following habitat classifications: deep benthic, oceanic, neritic, wetlands, intertidal, and coastal/supratidal according to their known depth distribution. We extracted the maximum 257 depth of each species' depth distribution from the IUCN Red List assessments and compared it 258 across categories of extinction risk. We also extracted trophic level estimates from FishBase 259 (Froese & Pauly, 2021) for each species, then compared trophic levels across categories of 260 extinction risk. We attempted to analyze these data with linear models, but model residuals failed 261 the Shapiro-Wilk test of normality even after data transformation, so we used a non-parametric 262 Kruskal-Wallis test and a post-hoc Dunn's test to detect differences in both cases. We accounted 263

for multiple comparisons by adjusting p-values using the Benjamini-Hochberg method. Lastly, we coded threats to each species as either present or absent and summarized those threats for all species and then for threatened species only.

267 **2.4 Species distributions and conservation responsibility**

We mapped the distribution of chondrichthyans in the WCA using IUCN Red List species 268 269 distribution shapefiles that were built according to taxonomic records summarized in FAO 270 species catalogues (see Dulvy et al., 2014; Dulvy et al., 2021a), Rays of the World (Last et al., 2016), revisions of Sharks of the World (Ebert et al., 2013, 2021), and recent capture data, expert 271 input, and species checklists (e.g., Mejía-Falla et al., 2019; Tavares, 2019; Weigmann, 2016). 272 Ranges were clipped to the minimum and maximum depth of each species. We set the maximum 273 274 depth for species without a known depth range to the maximum confirmed depth of the family. We produced a species richness map for all sharks and rays by counting the number of polygons 275 276 where species distribution maps overlapped. We then used natural neighbor interpolation to interpolate between counts and clipped the output to exclude land. Due to imperfections in the 277 278 underlying data, these counts should be interpreted for broadscale patterns only. Maps were created with QGIS3 (www.qgis.org). 279

We estimated jurisdiction-specific conservation responsibility (CoR) to highlight the 280 281 jurisdictions with the greatest responsibility for conserving globally threatened sharks and rays 282 within the WCA as follows: we assigned threat scores to each species according to their 283 extinction risk, where LC was assigned a zero, NT a one, VU a two, EN a three, and CR a four. No species were assessed as EX or EW. For each jurisdiction (including all countries as well as 284 285 international waters), we multiplied the threat score of every species present by its proportional 286 range within the WCA in that jurisdiction (Kyne et al., 2020; Rodrigues et al., 2014). We took the sum of those values for each jurisdiction to calculate raw CoR values, then normalized them 287 from 0 to 1 to compare CoR across jurisdictions (where a 1 was assigned to the country with the 288 highest CoR). We then produced a map displaying CoR using Jenks natural breaks classification, 289 which reduces within-class variance and maximizes between-class variance. 290

291 **2.5 Reconstructed fisheries catch data**

We extracted reconstructed catch data from the Sea Around Us Project database (www.seaaroundus.org) to examine trends in shark and ray catches from 1950 to 2016 (Pauly et

al., 2020). The Sea Around Us database provides estimates of unreported catches (e.g., discards, 294 subsistence, recreational, and small-scale catches) combined with official figures reported by 295 296 member countries to the UN FAO (Zeller et al., 2016). We used data for the functional groups 'small to medium sharks ≤ 90 cm', 'large sharks ≥ 90 cm', 'small to medium rays ≤ 90 cm', and 297 'large rays \geq 90 cm' within FAO Area 31 only and then examined patterns in catches over time 298 by fishing entity (i.e., country) and taxonomy (Pauly & Zeller, 2015). Many countries in the 299 WCA have EEZs that extend beyond FAO Area 31, but we did not include catches from those 300 areas (e.g., southern Brazil or the Pacific coast of Central American countries). We did include 301 catches from foreign fleets (e.g., Spain) that occurred in the area. 302

303 **2.6 Management**

304 We collated the most recent stock assessment results for sharks and rays in the WCA from the International Commission for the Conservation of Atlantic Tunas (ICCAT; 305 https://www.iccat.int/Documents/Meetings/Docs/2017 SCRS REP ENG.pdf) and the United 306 Oceanic 307 States' National and Atmospheric Administration 308 (https://www.fisheries.noaa.gov/national/population-assessments/fishery-stock-status-updates). Assessments indicate a status of 'overfishing', 'overfished', or 'unknown', where overfishing 309 refers to fishing mortality or total catch compromising a stock's capacity to continuously 310 produce maximum sustainable yield, overfished refers to a stock having a low population size 311 312 that threatens its ability to reach maximum sustainable yield, and unknown refers to a stock that lacks definitions of overfishing and/or overfished or lacks the data to make a determination. 313

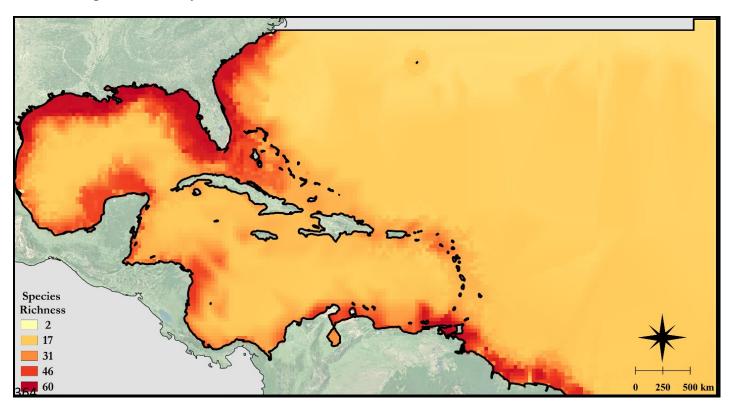
We estimated jurisdiction-specific Chondrichthyan Management Responsibility (CMR) to 314 315 reconcile CoR with historical shark and ray fishing and current shark and ray management. The 316 holistic CMR can identify countries that are responsible for high catches of threatened species while rewarding for management in an attempt to highlight 1) countries that may have a high 317 CoR but very low historical catches of sharks and rays and therefore perceive no need for robust 318 management, and 2) countries that may have no modern fisheries for sharks and rays because 319 previous fishing already depleted local populations, leading to limited management where it is 320 urgently required. We calculated CMR using the equation: 321

322

Eq 1: Chondrichthyan Management Responsibility $= \frac{Catch-weighted CoR}{Management Engagement}$

where 1) catch-weighted CoR is a country's raw CoR (non-normalized) multiplied by its total reconstructed catch (metric tons; mt) of sharks and rays from 1950 to 2016, and 2) Management Engagement (ME) is a country's percent engagement (0 to 100%) with thirteen management tools (assigned present or absent). These tools were the following:

- Fishing and Finning (3 tools): a ban on shark fishing; a ban on ray fishing; a ban on finning (e.g., a requirement to land fins with associated carcasses or naturally attached)
- UN FAO Plans (2 tools): NPOA–Sharks or RPOA–Sharks, UN FAO National or
 Regional Plan of Action to Prevent, Deter and Eliminate Illegal, Unreported and
 Unregulated (IUU) Fishing (NPOA–IUU or RPOA–IUU)
- Other Regulations (1 tool): a single category that included time/area closures, a ban on exports or imports of shark or ray products, species-specific measures, or gear restrictions relevant to sharks and rays
- Party / Signatory / Cooperator to (7 tools): WECAFC; ICCAT; Convention on 335 336 International Trade in Endangered Species of Wild Flora and Fauna (CITES); Convention on the Conservation of Migratory Species of Wild Animals (CMS); CMS 337 Memorandum of Understanding – Sharks (CMS MOU – Sharks); Protocol for Specially 338 Protected Areas and Wildlife (SPAW) to the Convention for the Protection and 339 340 Development of the Marine Environment of the Wider Caribbean Region; Port State Measures to Prevent, Deter and Eliminate Illegal, Unreported and Unregulated Fishing 341 342 (PSM).


We collected this information by searching the scientific and grey literature, UN FAO 343 documents, and news sources. We relied largely on summaries in other reports (Baker-Médard & 344 Faber, 2020; WECAFC, 2018; Koubrak et al., 2021; Kyne et al., 2012; Ward-Paige, 2017; Ward-345 Paige & Worm, 2017). Where a country's status was unclear or incomplete, we contacted in-346 347 country representatives for additional information. In few cases, all parties involved were unsure of the status of a country relative to a management tool, in which case we used our best 348 349 judgement in assigning status. Thus, this summary represents our best effort at collating these data, but it may contain errors, particularly where complex overlap occurs between island, 350 351 national, and international jurisdictions (e.g., Kingdom of the Netherlands). We note that these 13 management tools are not equivalent, and, in some cases, their presence could lead to
 unintended negative consequences (Castellanos-Galindo et al., 2021).

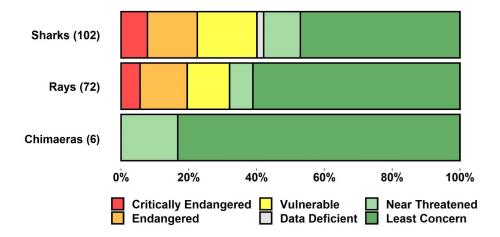
We omitted jurisdictions where the underlying data structure did not align across CMR components (e.g., where reconstructed catch data were unavailable) except in the case of Saint Martin, St. Barthelemy, and Sint Maarten, which we grouped. We used the mean of their ME and the sums of their CoR and reconstructed catches in this calculation. We then normalized CMR from 0 to 1 for ease of interpretation, where the larger the CMR, the more *unmitigated* risk and responsibility. We also used linear regression to analyze the relationships between CMR components, where a p-value < 0.05 was considered significant.

361

362 3. RESULTS

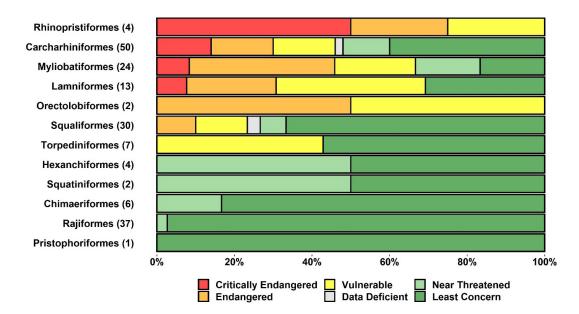
363 3.1 Species diversity

Figure 2: Chondrichthyan species richness in the Western Central Atlantic Ocean based on


366 species distribution maps from the IUCN Red List database (IUCN, 2021). Pixel size is roughly

- 367 1025 km². Areas outside of United Nations Food and Agriculture Organization Major Fishing
- 368 Area 31 are shaded grey. Map base layer source: Esri®

We identified 180 assessed shark and ray species in the WCA, which represent 15% of the 369 370 1,199 species assessed in the Global Shark Trends Project (Dulvy et al., 2021a). This included 371 102 sharks, 72 rays, and 6 chimaeras from 12 orders, 46 families, and 83 genera (Table S1). We identified 66 endemic species (36.7% of all species) and 14 near-endemic species (where a small 372 portion of the species' range extended into another FAO Area; 7.8% of all species). Species 373 richness was highest along the continental margins of North and South America and lowest in 374 oceanic waters (Figure 2). The neritic assemblage was dominated by carcharhiniforms and 375 myliobatiforms (60.4%; n = 58 of 96), the oceanic assemblage was dominated by squaliforms 376 and carcharhiniforms (61.4%; n = 35 of 57), and the deep slope was dominated by rajiforms and 377 squaliforms (58.4%; *n* = 59 of 101). 378


379 3.2 Extinction risk: descriptive patterns in taxonomy, habitat associations, and trophic 380 level

Over one-third (35.6%, n = 64 of 180) of all shark and ray species in the WCA were 381 threatened with an elevated risk of extinction (Table 1). Twelve species (6.7%) were Critically 382 383 Endangered, 25 species (13.9%) were Endangered, and 27 species (15%) were Vulnerable. Seventeen (9.4%) were Near Threatened, over half (53.9%, n = 97) of all species were Least 384 Concern, and two (1.1%) species were Data Deficient (Roughskin Spurdog (Cirrhigaleus asper, 385 Squalidae) and Carolina Hammerhead (Sphyrna gilberti, Sphyrnidae)). All threatened species 386 387 met Criterion A ('population reduction measured over the longer of ten years or three generations') and sub-criterion A2 ('population reduction observed, estimated, inferred, or 388 389 suspected in the past where the causes of reduction may not have ceased or may not be understood or may not be reversible'; IUCN, 2012). All NT species nearly met these same 390 391 criteria. Either sub-criterion A2b (population reduction based on 'an index of abundance appropriate to the taxon') or A2d (population reduction based on 'actual or potential levels of 392 exploitation'; IUCN, 2012) was also cited in each of these assessments. No species met Criterion 393 B (limited geographic range), Criterion C (small population size and decline), Criterion D (very 394 small or restricted population), or Criterion E (quantitative analysis indicating a probability of 395 extinction in the wild exceeding certain thresholds in the future). Out of 180 assessed species, 396 around half (48.9%, n = 88) had a decreasing population trend, 8 (4.4%) had an increasing 397 population trend, 70 (38.9%) were listed as stable, and 14 (7.8%) had an unknown population 398 399 trend.

400

- 401 *Figure 3*: Percentage of sharks, rays, and chimaeras found in the Western Central Atlantic in
- 402 *each IUCN Red List of Threatened Species category. The number of species in each group*
- 403 *appears in parentheses*

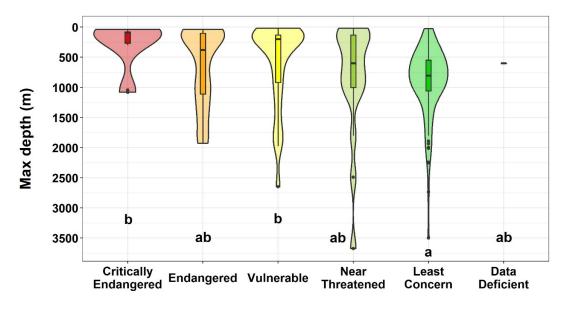

404

Figure 4: Percentage of each chondrichthyan order found in the Western Central Atlantic by

406 *IUCN Red List of Threatened Species category. The number of species in each order appears in*407 *parentheses*

408 Contrary to the global trend (Dulvy et al., 2021a), sharks were more threatened than rays in 409 the WCA, with 40.2% (n = 41) of sharks and nearly one-third of rays (31.9%, n = 23) threatened 410 with extinction (Figure 3). Seven (58.3%) of the twelve orders included at least one threatened 411 species (Figure 4). All species in Rhinopristiformes (100%, n = 4) and Orectolobiformes (100%,

412 n = 2) were threatened. Over two-thirds of species in Lamniformes (69.2%, n = 9) and 413 Myliobatiformes (66.7%, n = 16) were threatened. Nearly half (46%, n = 23) of the species in 414 Carcharhiniformes, the most speciose order in the WCA, were threatened. Notably, the second 415 most speciose order, Rajiformes, included no threatened species. Of the 45 families in the region, 416 25 (55.6%) included at least one species in a threatened category.

417

418 *Figure 5*: Violin plot of maximum depths of occurrence for all chondrichthyans found in the

419 Western Central Atlantic by IUCN Red List of Threatened Species category. Each dot represents

420 *an outlier, horizontal black lines indicate the median, and boxes indicate the interquartile range.*

421 Letters represent results of Dunns's post hoc tests for differences in maximum depth between

422 *extinction risk categories, where those sharing the same letter are not significantly different*

Sixteen families included only species assessed as LC. Nearly all (95.7%, n = 22) species in 423 Rajidae, the most speciose family in the region, were LC. Most (80.4%, n = 78) species assessed 424 as LC were associated with depth ranges deeper than 200 m; only 11.9% (n = 12 of 101) of 425 species found deeper than 200 m were threatened, and of those the majority (58.3%, n = 7 of 12) 426 were assessed as VU. Extinction risk varied with depth (Kruskal-Wallis $x^2 = 21.06$, df = 5, p < 427 0.05), where the maximum depth of LC species (906 \pm 588 m; mean \pm SD) was significantly 428 greater than the maximum depth of CR (289 \pm 390 m; mean \pm SD; z = -3.63, p < 0.05) and VU 429 species (613 \pm 729 m; mean \pm SD; z = 2.98, p < 0.05; Figure 5). Further, of 78 species with an 430 431 increasing or stable population trend, 83.3% (n = 65 of 78) were associated with the 'marine

432 deep benthic' habitat type. There were no differences in trophic levels reported in FishBase 433 among extinction risk categories (Kruskal-Wallis $x^2 = 6.82$, df = 5, p = 0.23).

434 **3.3 Endemicity & risk**

Of the 66 assessed species endemic to the WCA, 26 were sharks, 36 were rays, and 4 were chimaeras. The top three orders by number of endemic species were Rajiformes (n = 29), Carcharhiniformes (n = 15), and Squaliformes (n = 8). Two-thirds of the chimaeras in the WCA (66.6%; n = 4 of 6) were endemic.

No endemic species were assessed as DD. Eighty-nine percent (n = 59 of 66) of endemic 439 species were assessed as LC, and 4.5% (n = 3 of 66) were assessed as NT. Among sharks, many 440 (72%, n = 18 of 25) of the endemic, non-threatened species were lanternsharks (Etmopteridae) 441 and deepwater catsharks (Pentanchidae and Scyliorhinidae). Among rays, many (75.8%, n = 25442 of 33) were hardnose skates (Rajidae) and pygmy skates (Gurgesiellidae). No endemic chimaeras 443 were in a threatened category, but one endemic shark and three endemic rays were, including the 444 Venezuelan Dwarf Smoothhound (Mustelus minicanis, Triakidae; EN), Venezuelan Round Ray 445 (Urotrygon venezuelae, Urotrygonidae; EN), Colombian Electric Ray (Diplobatis colombiensis, 446 447 Narcinidae; VU), and Brownband Numbfish (Diplobatis guamachensis, Narcinidae; VU). Three near-endemic rays were also threatened - the Painted Dwarf Numbfish (Diplobatis picta, 448 Narcinidae; VU), Atlantic Guitarfish (Pseudobatos lentiginosus, Rhinobatidae; VU), and 449 450 Chupare Stingray (Styracura schmardae, Potamotrygonidae; EN).

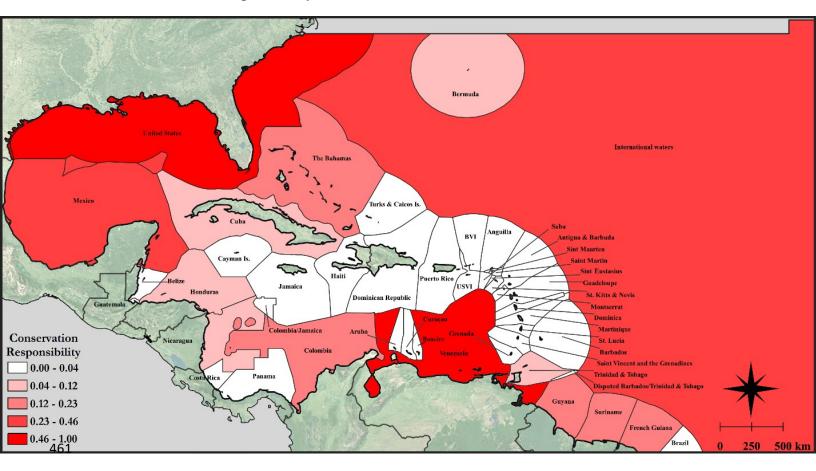
451

452

453

454

455

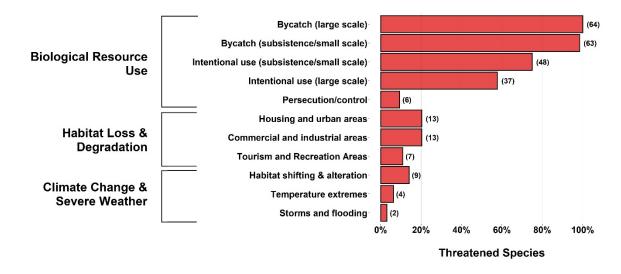

456

457

458

459

460 **3.4** Conservation responsibility


- 462 *Figure 6*: Map of chondrichthyan conservation responsibility for each jurisdiction in the
- 463 Western Central Atlantic Ocean, where scores are normalized by the maximum score (attributed
- to the USA) to display from 0 to 1. National boundaries are in dark grey (Flanders Marine
- 465 Institute, 2019). Regions outside of United Nations Food and Agriculture Organization Major

466 Fishing Area 31 are shaded grey. Map base layer source: Esri®

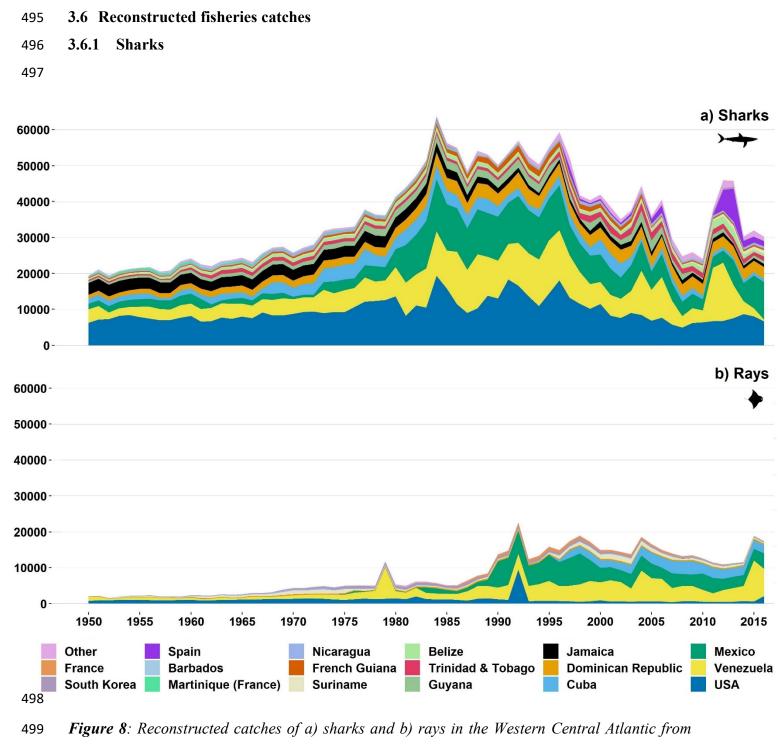
The five countries with the highest conservation responsibility (CoR) were the United States, Venezuela, Mexico, Guyana, and The Bahamas (Figure 6). International waters had the third highest CoR of all jurisdictions (Table S2). Combined, these six jurisdictions accounted for 66.8% of all CoR in the region.

- 471
- 472
- 473

474 **3.5** Key threats

476 *Figure 7*: Percentage of threatened sharks and rays in the Western Central Atlantic (n = 64)

477 affected by the most common threats listed in IUCN Red List assessments. The number of species


478 *affected by each threat appears in parentheses*

479 'Biological resource use' and, more specifically, 'fishing and harvesting aquatic resources', imperiled most sharks and rays (87.8%, n = 158 of 180). Threatened species were taken both 480 incidentally and intentionally in large and small-scale fisheries; all threatened species were 481 captured incidentally (100%, n = 64 of 64) and most were captured intentionally (81%, n = 52 of 482 483 64; Figure 7). The threat of overfishing was compounded by habitat loss and degradation and climate change. Habitat loss and degradation imperiled one quarter (26.6%, n = 17 of 64) of 484 485 threatened species primarily through residential and commercial development (and associated habitat modifications), which affected 20.3% (n = 13 of 64) of species. Less common pathways 486 487 to habitat loss and degradation included agriculture and aquaculture (6.3%, n = 4 of 64), energy production and mining (4.7%, n = 3 of 64), transportation and service corridors (4.7%, n = 3 of 488 64), human intrusions and disturbance (4.7%, n = 3 of 64), natural systems modifications (e.g., 489 dams; 1.6%, n = 1 of 64), and invasive and other problematic species (1.6%, n = 1 of 64). 490 491 Climate change and severe weather imperiled 14.1% (n = 9 of 64) of threatened species. Lastly, pollution (particularly land-based) imperiled 6.3% (n = 4 of 64) of threatened species. 492

493

475

494

500 1950 to 2016 by country. Those with < 10,000 metric tons of cumulative shark and ray catches

501 across all years are grouped as 'Other'. Catch data from Pauly et al. (2020) and underlying

502 *EEZ boundaries from Claus et al. (2014)*

503

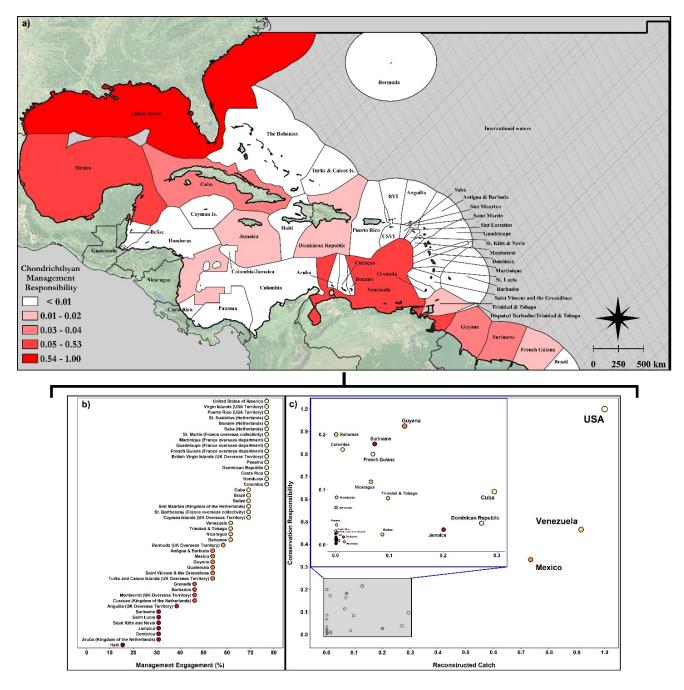
Metric Tons

Reconstructed shark catches in the WCA more than tripled in 34 years from 1950 (19,458 mt) to 1984 (63,815 mt), plateaued until 1997 (between 48,536 mt and 59,329 mt), then halved over the next decade (2010: 24,015 mt; Figure 8a). In 2011, catches increased to 37,763 mt, due in part to a 451% increase in Venezuelan catches from 2010 to 2011. Spanish catches also rose dramatically from 2009 (0.39 mt) to 2012 (5,701 mt). By 2014, catches of both countries declined to 24.9% of what they were in 2012. By 2016, the total reconstructed catch of sharks in the WCA was half (47.4%) of the peak catch in 1984.

Most shark catches in the region, as well as overall trends in catches, can largely be 511 attributed to fishing by the United States, Venezuela, Mexico, Cuba, the Dominican Republic, 512 513 and Jamaica (Table 2). Cuba's maximum annual catch of 4,562 mt occurred in 1977 during a 514 period of elevated catches from 1968 to 2003, when 3,295 mt (\pm 801 SD) were taken per year. Outside of that period, in 1950 - 1967 and 2004 - 2016, the average annual catch was 1,323 mt 515 (± 343 SD) per year. Jamaica's maximum annual catch peaked early in 1950 (3,336 mt) and 516 517 catches declined noticeably from 1978 (3,160 mt) to 1994 (834 mt), then remained low around a mean annual catch of 1,079 mt (± 248 SD). In contrast, catches by the Dominican Republic 518 increased four-fold from a low in 1950 (1,079 mt) to a peak in 1993 (4,390 mt), then remained 519 520 high around a mean annual catch of 3,277 mt (± 247 SD) through the end of the time series. Foreign fleets were responsible for 2.06% (49,468 mt) of all shark catches. 521

522 Taxonomic resolution in shark-specific catches was poor; 51.9% of all shark catches were listed only as Elasmobranchii or Chondrichthyes. Much of the regional shark catch from 523 524 1950 to 2016 was requiem shark (listed as Carcharhinidae or Carcharhinus), which made up 17.7% (426,597 mt) of all catches. Among all recorded shark species, Atlantic Sharpnose Shark 525 (Rhizoprionodon terraenovae, Carcharhinidae) made up the largest proportion of catches at 4.5% 526 mt). (109, 109)Atlantic Shark 527 followed by Nurse (Ginglymostoma cirratum, Ginglymostomatidae; 3.9%, 92,942 mt), Tiger Shark (Galeocerdo cuvier, Galeocerdidae; 3.1%, 528 73,567 mt), Blacktip Shark (Carcharhinus limbatus, Carcharhinidae; 2.6%, 62,075 mt), Blue 529 Shark (Prionace glauca, Carcharhinidae; 2.1%, 50,505 mt), Bonnethead Shark (Sphyrna tiburo, 530 Sphyrnidae; 2.0%, 49,256 mt), and Shortfin Mako (Isurus oxyrinchus, Lamnidae; 2.0%, 48,690 531 mt). From 2012 to 2013, Spain notably caught 14,318 mt of Blue Shark (96% of their total 532 catches of all species during that period). Every other species made up less than 2% of the total 533

catches, although some may be caught in much higher proportions but are difficult to identify atthe species level.


536 3.6.2 Rays

Reconstructed ray catches increased by an order of magnitude from 1950 (2,076 mt) to 537 the peak in 1992 (22,587 mt), then fluctuated between that and a low of 10,892 mt until the end 538 of the series (Figure 8b). Venezuela, Mexico, and the United States were responsible for the 539 540 largest catches of rays (Table 2). Cuba's catches increased in the 1990s to contribute substantially to regional catches by 1997 (although national landings data show this increase 541 occurring a decade earlier; PAN-Tiburones, 2015). Catches of rays in the United States were 542 unusually high in 1992 (9,477 mt; 94% of which were stingrays (Dasyatidae)), otherwise they 543 544 ranged between 408 mt and 2,130 mt. Foreign fleets were responsible for 6.46% (36,758 mt) of all ray catches. As with sharks, taxonomic resolution among recorded ray catches was poor; two-545 thirds (69%) of all rays were listed as only Batoidea or Rajiformes. The Southern Guitarfish 546 (reported as Rhinobatos percellens, now Pseudobatos percellens, Rhinobatidae) was caught 547 548 more than any other listed ray species (73,800 mt, 13% of rays) and is EN.

549 **3.7 Management**

Some shark and ray species (13.9%, n = 25 of 180) were listed on at least one of the following: CITES, CMS, or SPAW. Twenty species were listed on CITES (Appendix I: 2 species, Appendix II: 18 species; Table S1), all of which were also listed on CMS (Appendix I: 11, Appendix II: 9 species). Nine species were listed on SPAW (Annex II: 2, Annex III: 7 species), all of which were also listed on CITES and CMS. Three species were listed on only CMS in Appendix II: Dusky Shark (*Carcharhinus obscurus*, Carcharhinidae; EN), Blue Shark (NT), and Spiny Dogfish (*Squalus acanthias*, Squalidae; VU).

557 Stock assessments were conducted for the Gulf of Mexico, Atlantic, North Atlantic, or 558 Northwest Atlantic populations of 42 (23.3%, n = 42 of 180) shark and ray species that occur in 559 the WCA. Six (14.3%, n = 6 of 42) stocks were overfished and eight (19.1%, n = 8 of 42) were 560 not overfished (Table S1). Overfishing was occurring in four (9.5%, n = 4 of 42) stocks and not 561 occurring in ten (23.8%, n = 10 of 42). Twenty-eight (66.7%, n = 28 of 42) stocks were assigned 562 an overfished / overfishing status of 'unknown'.

Figure 9: Chondrichthyan Management Responsibility (a) and its components, which include management engagement with thirteen shark and ray management tools (b) and catch-weighted conservation responsibility (c). The Chondrichthyan Management Responsibility Score is normalized by the maximum score (attributed to the USA) to display from 0 to 1. Note that some jurisdictions were omitted and others grouped due to the structure of the underlying data. Catch data from Pauly, Zeller, and Palomares (2020) and underlying EEZ boundaries from Claus et al. (2014)

563

The type and degree of shark and ray management varied in the WCA (Table 3; see Table S3 for full details and references). The United States had the most detailed management framework that included species-specific catch quotas, time-area closures, gear restrictions, size restrictions, and more. Other countries in the region engaged very little with shark and ray management (e.g., Haiti; Figure 9b). Eleven countries prohibited commercial or all shark (n = 10) or ray (n = 9) fishing, although Honduras' prohibition on shark fishing included a notable exception for the retention and sale of incidentally caught sharks.

578 Many countries were party to some international agreements, but not others, resulting in a 579 complex matrix of obligations and regulations that in some cases varied even at the island level 580 (e.g., Kingdom of the Netherlands). Of all international management mechanisms, WECAFC 581 had the highest participation (100%), which meant that all countries were also covered by its 582 RPOA–IUU and will be covered by its RPOA–Sharks once it is finalized. Participation in CITES 583 was also high (97.8%); only Haiti was a non-party. The PSMA, a binding agreement that 584 combats IUU fishing, had the lowest participation (44.4%).

585 Three countries had 92% of Chondrichthyan Management Responsibility (CMR): the United States, Venezuela, and Mexico (Figure 9a). Just ten countries accounted for 99.3% of 586 CMR: the United States, Venezuela, Mexico, Guyana, Suriname, Cuba, Jamaica, French Guiana, 587 Dominican Republic, and Trinidad and Tobago (Table S4). Of those, Suriname and Jamaica had 588 589 noticeably low Management Engagement (ME) despite having either high Conservation Responsibility (CoR; Suriname) or high historical catches (Jamaica; Figure 9c). There was no 590 relationship between ME and either total reconstructed catch or CoR. However, there was a 591 positive relationship between CoR and total reconstructed catch (p < 0.05, adjusted $r^2 = 0.74$). 592

593

594 **4. DISCUSSION**

We provide the first comprehensive reassessment of extinction risk for sharks and rays that occur in the WCA and find this region to be a microcosm of the global challenge to their conservation. Thirty-six percent of sharks and rays in the WCA are threatened with an elevated risk of extinction, which is similar to the percentage of sharks and rays threatened globally (Dulvy et al., 2021a). An even larger proportion – nearly half of all sharks and rays in the WCA (48.9%) – exhibit a decreasing population trend across their global range. Overfishing is the

overwhelming threat to their populations and has driven declines in all threatened species. The 601 602 United States, Venezuela, and Mexico overshadow all other countries in the WCA in terms of 603 total reconstructed catch, conservation responsibility, and management responsibility for sharks 604 and rays. National-level regulations and engagement with international management mechanisms vary widely. In light of these findings, we consider patterns in species richness and extinction 605 risk, highlight species of concern, discuss fisheries trends such as finning, the importance of 606 607 small-scale fisheries, and shrinking refuge at depth, and identify opportunities for improved management. 608

609 **4.1 Species diversity**

The WCA is a hotspot of shark and ray biodiversity (Carpenter, 2002; Weigmann, 2016), 610 611 particularly for endemic (Derrick et al., 2020), evolutionarily distinct (Stein et al., 2018), and deepwater species (e.g., skates; Dulvy et al., 2021a; McEachran & Miyake, 1990). It is 612 613 comparable to temperate areas of high richness such as the Northeast Atlantic and Southeast Pacific Ocean, but, like coral reef diversity, this Caribbean fauna is only around half as rich as 614 615 the speciose Indo-West Pacific region (Weigmann, 2016). Species richness in the WCA is highest on the continental shelf, with notably high species richness in large areas of U.S. waters 616 (e.g., along the productive shelf in the Gulf of Mexico) and along the northern coast of South 617 America, particularly at the dynamic boundary between the tropics and subtropics (Dulvy et al., 618 619 2014, 2021; Ward-Paige et al., 2010). Longline fishery data suggest high species richness of oceanic sharks along Venezuela's islands and coast as well as the Guyana shelf, particularly 620 where seasonal upwelling occurs and freshwater from the Orinoco River and Guyanese river 621 drainages meets the Caribbean Sea (Castellanos et al., 2002; Cervigón, 2005; Muller-Karger & 622 Varela, 1990; Tavares & Arocha, 2008). Similarly, marine bony fishes exhibit high species 623 richness along continental Venezuela and Colombia, which could be driven by these same 624 patterns and enhanced by rocky coastlines (Cervigón, 2005; Linardich et al., 2019; Robertson & 625 Cramer, 2014). 626

We caution that species distributions are best understood in regions with extensive sampling but are still imperfectly known; U.S. waters, for example, exhibit high species richness and simultaneously receive substantial research effort and funding (Linardich et al., 2019; Miloslavich et al., 2010; Robertson & Cramer, 2014). Elsewhere, data gaps are more common, and distributions are particularly challenging to assign to countries in the southern and eastern
Caribbean Sea. Deepwater species distributions are data-poor, and records are sometimes limited
to a single specimen, which often reflects a lack of deep-sea fisheries and research (e.g.,
American Pocket Shark (*Mollisquama mississippiensis*, Dalatiidae), Kyne & Herman, 2020a;
Campeche Catshark (*Parmaturus campechiensis*, Pentanchidae), Kyne & Herman, 2020b).

636 **4.2 Extinction risk**

637 4.2.1 Spatial & temporal comparisons

The proportion of threatened sharks and rays in the WCA is higher today (35.6%) than it 638 was in 2012 (18.5%; Kyne et al., 2012), but is similar to the modern global estimate (32.6 – 639 45.5%; Dulvy et al., 2021a). This change is largely due to new information being incorporated 640 641 into species assessments. Only three species had a genuine change (i.e., a real change in the rate of decline, population size, range size, or habitat) in IUCN Red List Category since their last 642 643 assessment, where the status of all three worsened: Blacknose Shark (*Carcharhinus acronotus*, Carcharhinidae; previously NT, now EN), Night Shark (Carcharhinus signatus, Carcharhinidae; 644 645 previously VU, now EN), and Whale Shark (Rhincodon typus, Rhincodontidae; previously VU, now EN). None of these three species are endemic to the WCA, although much of the Blacknose 646 Shark's range is in this region. 647

648 Globally, most threatened sharks and rays occur in coastal shelf waters, particularly in the tropics (Dulvy et al., 2021a); we found the same trend for the subset of WCA species, where CR 649 650 and VU species occurred significantly shallower than LC species. As such, the bulk of Conservation Responsibility (CoR) fell on the countries with the largest EEZs that included the 651 652 most coastal, shelf-associated habitats (e.g., the United States, Venezuela, and Mexico) with two 653 exceptions. International waters and The Bahamas had high CoR despite consisting of only oceanic habitats or being an insular nation, respectively. International waters, in particular, cover 654 a large proportion of the distributions of wide-ranging and highly threatened species in the 655 WCA. The Bahamas also includes large expanses of threatened shark and ray habitat, supports 656 high species richness that characterizes the Florida Straits region, and has well-studied sharks 657 and rays. 658

The WCA was previously one of the most data-deficient regions in the world for sharks and rays (Dulvy et al., 2014). The proportion of DD species dropped from 47% (n = 71 of 151

assessed species) in 2012 (Kyne et al., 2012) to just 1.1% (n = 2 of 180) in 2021, marking 661 662 substantial progress in reducing data-deficient blind spots that can lead to flawed species-specific 663 management (Walls & Dulvy, 2020). Seventy-seven species that we included in our review, some of which were not previously recognized in the WCA, were assessed as DD in 2012. Of 664 those, the vast majority (76.6%, n = 59 of 77) are now LC and some (7.8%, n = 6 of 77) are NT. 665 Eleven (14.3%, n = 11 of 77) species formerly assessed as DD are now threatened at the global 666 667 level, including two CR (Smalltail Shark (Carcharhinus porosus, Carcharhinidae) and Scoophead Shark (Sphyrna media, Sphyrnidae)), five EN (Bramble Shark (Echinorhinus brucus, 668 Echinorhinidae), Lesser Devilray (Mobula hypostoma, Mobulidae), Chilean Devilray (Mobula 669 tarapacana, Mobulidae), Venezuelan Dwarf Smoothhound, and Chupare Stingray), and four VU 670 species (Bullnose Ray (Myliobatis freminvillii, Myliobatidae), Southern Eagle Ray (Myliobatis 671 goodei, Myliobatidae), Brazilian Sharpnose Shark (Rhizoprionodon lalandii, Carcharhinidae), 672 and Atlantic Nurse Shark). These eleven species need to be recognized and incorporated into 673 management plans in the WCA with an emphasis on the endemic Venezuelan Dwarf 674 Smoothhound and near-endemic Chupare Stingray. 675

The Roughskin Spurdog is the only previously assessed species that remains DD. It is a 676 poorly known deepwater species (73 - 600 m depth range) that may be caught as bycatch, but the 677 degree to which fishing affects its population is unknown (Finucci et al., 2020). The Carolina 678 Hammerhead is the other modern DD species. It was recently described, is difficult to identify 679 680 (Quattro et al., 2013), and was assessed as DD because its depth and geographic distribution, and hence interaction with fisheries, could not be determined (VanderWright et al., 2020). Given that 681 all other hammerhead sharks (Sphyrnidae) in the WCA are threatened, however, this status could 682 be masking a high level of extinction risk to the Carolina Hammerhead. 683

684 4.2.2 Species of concern

The WCA hosts a number of threatened oceanic sharks (e.g., mackerel sharks (Lamnidae), thresher sharks (Alopiidae), and some requiem sharks (Carcharhinidae)) and rays (e.g., devil rays (Mobulidae)), particularly in the Gulf of Mexico and U.S. Atlantic (Dulvy et al., 2021a; Pacoureau et al., 2021). Fisheries mortality has caused significant population declines in some of these species (e.g., Oceanic Manta Ray (*Mobula birostris*, Mobulidae); Miller and Klimovich, 2017); they are among the most threatened groups of sharks and rays in the region along with hammerheads, sawfishes, guitarfishes (Rhinobatidae), and very large, highly migratory species (e.g., Whale Shark), all of which are recognized as groups of extreme conservation concern (Dulvy et al., 2016; 2021; Pacoureau et al., 2021). These species are prominent on CITES, CMS, and SPAW appendices and annexes, which highlights the need for international cooperation in managing these species and for countries to meet their national-level commitments to these agreements.

697 Among the four threatened endemics in the WCA, the VU Colombian Electric Ray and 698 VU Brownband Numbfish are considered irreplaceable based on their small ranges (Dulvy et al., 699 2014). Although they are relatively productive, both species are captured in poorly managed and 700 intense artisanal demersal trawl fisheries throughout their small geographic ranges in Colombia 701 and Venezuela and are suspected to have declined by 30-49% over the past three generations (Pollom, Herman, et al., 2020b; Pollom, Herman, et al., 2020c). The other two endemic 702 threatened species in the WCA are the EN Venezuelan Dwarf Smoothhound and the EN 703 704 Venezuelan Round Ray. The former is targeted and caught as bycatch in trawl and longline fisheries off Venezuela and Colombia; it was inferred to have declined by > 99% over the past 705 three generations based on declining landings of smoothhounds (Triakidae) in Venezuela 706 707 (Pollom, Lasso-Alcalá, et al., 2020). The latter is captured in demersal trawl fisheries and artisanal beach seine fisheries in Colombia but is now rarely observed in catches in Venezuela; 708 its population is suspected to have declined by 50-79% in the last ten years (Pollom, Herman, et 709 710 al., 2020a).

The threatened near-endemic species (Painted Dwarf Numbfish, Atlantic Guitarfish, and 711 Chupare Stingray) are also subject to high fishing pressure in parts of their ranges (Dulvy et al., 712 713 2021b; Pollom et al., 2020; Pollom, Charvet, Faria, et al., 2020a). The Painted Dwarf Numbfish is captured in intense demersal trawl fisheries throughout its small range off northern South 714 715 America from at least as far west as Venezuela to Brazil (Pollom, Charvet, Faria, et al., 2020a) 716 and is considered irreplaceable (Dulvy et al. 2014). It may find some refuge from fishing at depth (Pollom, Charvet, Faria, et al., 2020a). The Atlantic Guitarfish finds some refuge from trawl 717 fisheries in the U.S. Gulf of Mexico but is a common bycatch species in Mexican shrimp trawl 718 fisheries and exposed to intense unmanaged fisheries elsewhere (Pollom et al., 2020). The 719 Chupare Stingray similarly has refuge at the northern part of its range (e.g., The Bahamas) but is 720 721 subject to high fishing pressure along the coasts of Venezuela, Colombia, the Guianas, and northern Brazil, where it is presently very rare (Dulvy et al., 2021b). Although the Daggernose
Shark (*Isogomphodon oxyrhynchus*, Carcharhinidae; CR), and Wingfin Stingray (*Fontitrygon geijskesi*, Dasyatidae; CR) are not near-endemic to the WCA, we consider them 'irreplaceable'
because of their threatened status and small ranges that extend from eastern Venezuela to the
northern coast of Brazil (Dulvy et al., 2014; Pollom, Charvet, Faria, et al., 2020b; 2020c).

Research is required on the life history, distribution, abundance, and fishery interactions of all threatened endemic, near-endemic, and irreplaceable species, the vast majority (77.8%, n =7 of 9) of which are rays. Conservation responsibility for these species falls solely on countries in the WCA, namely Venezuela, Colombia, Suriname, Guyana, French Guiana, and Brazil. We recommend these countries monitor the status and prioritize the management of these species.

732 4.3 Fisheries trends

Shark and ray catches peaked in the WCA (1992) before they peaked globally (2003; 733 Davidson et al., 2016; Pauly et al., 2020), but regional and global trends followed a similar 734 pattern: there was a substantial increase in catches and landings from 1950 to the 1990s/2000s, 735 followed by a period of decline. In the WCA, reconstructed catches declined 40.2% between 736 737 1992 and 2016 while overall fishing effort rose in the region by about 1.1% annually after 1950 (Anticamara et al., 2011). Thus, regional catch-per-unit-effort has probably declined by greater 738 than 50% over the equivalent of three generations for many shark and ray species (which would 739 740 result in a population reduction sufficient for a species to qualify as Endangered), suggesting 741 fishing is driving their extinction risk in the WCA.

742 4.3.1 Finning

Some of the most intense shark fishing in the WCA occurred from the 1970s to the early 743 1990s (Bonfil, 1997; Musick et al., 1993) as negative attitudes towards sharks and the demand 744 for and trade in shark fins increased (Castro, 2013; Worm et al., 2013). With increased demand, 745 some local fin prices also rose, even quadrupling in Guatemalan markets by the mid-2000s 746 (Graham, 2007). Numerous countries in the WCA participated in the fin trade (e.g., Guyana, 747 748 Trinidad and Tobago; Fowler et al., 2005); 21% of CR Scalloped Hammerhead (Sphyrna lewini, Sphyrnidae) fins sampled in Hong Kong, for example, came from the western Atlantic 749 (Chapman et al., 2009). But the global volume of fins imported into Hong Kong (i.e., demand) 750 decreased by 2013 (Shea & To, 2017) and was expected to decrease further in both Hong Kong 751

752 and China in subsequent years (Dent & Clarke, 2015). Fin prices also dropped in some parts of 753 the WCA as the global trade in shark meat products increased 4.5% per year from 2000 to 2011 754 (Dent & Clarke, 2015). In some places, meat overtook fins as the most profitable shark product (e.g., northeastern Brazil; Martins et al., 2018). By the mid-2010s, the contribution of Scalloped 755 Hammerhead fins from the Southwest Atlantic, Caribbean Sea, and Northwestern Atlantic 756 randomly sampled in Hong Kong markets was roughly 8.5% (Fields et al., 2020). Silky Shark 757 (Carcharhinus falciformis, Carcharhinidae) fin trimmings similarly sampled in markets in Hong 758 Kong and mainland China suggested almost no contribution from Atlantic populations 759 (Cardeñosa et al., 2020) despite the Silky Shark being the second most common species in the fin 760 761 trade at that time (Cardeñosa et al., 2018). These limited insights and a lack of evidence in the literature suggest little contemporary large-scale shark finning (the removal of fins and 762 discarding of its carcass at sea) in the WCA (Kyne et al., 2012), although finning does occur 763 illegally (e.g., finless carcasses are frequently landed at northern Brazilian ports notwithstanding 764 national law; Feitosa et al., 2018). Fins from landed carcasses also enter the fin trade through 765 legal pathways in even the WCA's most highly managed and developed fisheries (e.g., United 766 767 States; Dulvy et al., 2017; Ferretti et al., 2020).

768 4.3.2 The importance of small-scale fisheries & landings data

Even at low levels of effort, small-scale fishing can significantly reduce the biomass of 769 770 slow-growing fishes such as sharks and rays (Pinnegar & Engelhard, 2008) and affect critical life stages (e.g., juveniles in possible nursery habitats; Tagliafico et al., 2021). In the WCA, the size, 771 772 economic contribution, and catch of small-scale fleets has been increasing for decades (Baremore et al., 2021; Canty et al., 2019), and overfishing is occurring in nearly double the 773 774 percentage of small-scale fisheries (46%) as it is in commercial fisheries (28%; Singh-Renton & McIvor, 2015). The significance of small-scale fishing is highlighted by Mexico and Venezuela, 775 which we identified as two of the top three shark and ray fishing nations in the WCA; small-776 scale fishing boats comprise 97% of the marine fishing fleet in Mexico (Fernández et al., 2011), 777 and artisanal sources supply 94% of the shark catch in Venezuela (Marquez et al., 2019; Tavares, 778 2019). Yet, the WCA's small-scale fisheries are managed less intensely than its large-scale 779 commercial fisheries (Singh-Renton & McIvor, 2015), and, for those affecting sharks and rays, 780 small-scale fisheries are poorly known (Kyne et al., 2012) while large-scale fisheries are better-781

studied (e.g., see SouthEast Data, Assessment, and Review reports, <u>http://sedarweb.org/sedar-</u>
projects; Bonfil, 1997; Peterson et al., 2017; Tavares & Arocha, 2008).

784 The small-scale fisheries impacting sharks and rays in the WCA are heterogeneous and 785 widespread, and their effort and catch are poorly described (Bonfil, 1997). We found surprisingly little information on ray landings in the WCA and stress further monitoring despite few directed 786 787 ray fisheries in the region (e.g., in the United States, Cuba, and Mexico; Pérez-Jiménez & 788 Mendez-Loeza, 2015; WECAFC, 2018). Further, the WCA's country-level landings statistics 789 reported to the FAO have very low species-specific resolution (Dulvy et al., 2014; WECAFC, 2018), with over half of shark and ray catches identified as only 'chondrichthyan', 790 791 'elasmobranch', 'batoid', or 'rajiform'. Mexico, despite being the third largest shark and ray 792 fishing country in the WCA, records catches in only three categories – small sharks (< 1.5 m), large sharks (> 1.5 m), and rays (Pérez-Jiménez & Mendez-Loeza, 2015). Venezuela, despite 793 being the second largest shark and ray fishing country in the WCA, recorded sharks and rays as a 794 single category until 1990, then in three groups (miscellaneous sharks, Mustelus spp., and 795 miscellaneous rays) until 2007, after which finer level identification was confounded by a lack of 796 training for fisheries monitoring staff (Tavares, 2019). The situation in smaller shark and ray 797 fishing nations is similar; in Guatemala, only two government fisheries staff monitor its entire 798 ~150 km Caribbean coast, which hinders landings verification (Hacohen-Domené et al., 2020). 799 800 This poor resolution is not compatible with effective species-specific management. Some recent 801 studies have begun to fill these gaps by monitoring small-scale fisheries landings (e.g., Guyana – Kolmann et al., 2017; Venezuela – Marquez et al., 2019; Panama – Návalo et al., 2021). In the 802 Belizean shark fishery, for example, a new low-cost method of analyzing fisher-contributed 803 secondary shark fins was successful in determining species and size composition of catches and 804 805 may prove valuable across the WCA in the future (Quinlan et al., 2021). More research on 806 fishing effort, catch, and baseline abundance data is required to assess populations and adapt management priorities (Bizzarro et al., 2009; Kyne et al., 2012; Pérez-Jiménez & Mendez-Loeza, 807 808 2015).

809 4.3.3 Shrinking refuge at depth

Since 1950, global fisheries have increasingly expanded into the deep sea (Morato et al.,
2006). In the Atlantic Ocean, deepwater sharks like gulper sharks (Centrophoridae) and kitefin

sharks (Dalatiidae) occurring as deep as 1000 m were reported in fisheries landings as early as
1990 (Morato et al., 2006). Although we found many endemic and LC species in the WCA to be
associated with deep habitats that can provide refuge from fishing pressure (Dulvy et al., 2014,
2021; Walls & Dulvy, 2021), we note that this refuge may be shrinking as fishing activities
continue to develop in the region's deep waters (Arana et al., 2009; Baremore et al., 2016).

817 In the WCA, many deepwater habitats (> 200 m) are accessible to small-scale fishers due to the proximity of these habitats to shore, and consequently deepwater sharks and rays are 818 819 already caught as bycatch and sometimes targeted. Along the MesoAmerican Barrier Reef, for example, this access coupled with declining yields in coastal fisheries led to the emergence of 820 821 small-scale deepwater fisheries that use longlines, hook and line, traps, and gillnets to target 'red 822 snappers' (e.g., Queen Snapper (Etelis oculatus, Lutjanidae), Silk Snapper (Lutjanus vivanus, Lutjanidae), Blackfin Snapper (Lutjanus buccanella, Lutjanidae)) and groupers (e.g., 823 Yellowedge Grouper (Hyporthodus flavolimbatus, Serranidae), Misty Grouper (Hyporthodus 824 *mystacinus*, Serranidae)) between 100 and 550 m (Baremore et al., 2021; WECAFC, 2018). Most 825 small-scale deepwater fisheries in the WCA similarly target this snapper and grouper complex. 826 Off Guatemala, fishers catch and discard some small deepwater sharks and chimaeras, while they 827 target or retain others for meat or liver oil (Finucci et al., 2021; Hacohen-Domené et al., 2020; 828 Polanco-Vásquez et al., 2017). In Venezuela, overfishing of shallow water stocks has led to 829 830 deepwater (200-800 m) fishing north of Isla de Margarita and Paria Peninsula (eastern region, 831 near Trinidad) and along the coast of Falcón (western region, near Aruba), where endemic and near-endemic species of deepwater sharks, rays, and chimaeras are now caught (OM Lasso-832 Alcalá, unpublished data). Deepwater sharks are also targeted in Honduras (Baremore et al., 833 2016) and caught off Saba Bank (de Graaf et al., 2017), Curaçao (Van Beek et al., 2013), Belize 834 (Quinlan et al., 2021), northern Cuba (Ruiz-Abierno et al., 2021), and the southern Gulf of 835 836 Mexico (Pérez-Jiménez & Mendez-Loeza, 2015). In the northern Gulf of Mexico, deep reef-fish 837 longline fisheries and shrimp trawl fisheries also catch deepwater sharks as bycatch, most of 838 which are discarded (Scott-Denton et al., 2011; Scott-Denton & Williams, 2013; Zhang et al., 2014), and, in The Bahamas, recreational fishers often catch small deepwater sharks while 839 840 targeting red snappers with electric reels (BS Talwar, pers. obs.). Across these WCA fisheries, the Dusky Smoothhound (Mustelus canis, Triakidae; NT), Cuban Dogfish (Squalus cubensis, 841 842 Squalidae; LC), Atlantic Sixgill Shark (Hexanchus vitulus, Hexanchidae; LC), Sharpnose

Sevengill Shark (*Heptranchias perlo*, Hexanchidae; NT), Night Shark (EN), gulper sharks
(*Centrophorus* spp., Centrophoridae; EN where assessed), and some catsharks (Scyliorhinidae;
LC) are the most common deepwater species in landings (Baremore et al., 2021; de Graaf et al.,
2017; Hacohen-Domené et al., 2020; Marquez et al., 2019; Quinlan et al., 2021; Scott-Denton et al., 2011; Van Beek et al., 2013).

848 Although many of the WCA's deepwater sharks and rays are now currently assessed as LC, our knowledge of their biology and ecology remains incredibly limited. These species also 849 850 typically lack stock assessments (Table S1; Baremore et al., 2021; Kyne & Simpfendorfer, 2010), and many are intrinsically vulnerable to overfishing due to their life histories (García et 851 852 al., 2008; Simpfendorfer & Kyne, 2009; Rigby & Simpfendorfer, 2015). Thus, a precautionary 853 approach to their management should be emphasized if deepwater fisheries are further developed in the WCA (Simpfendorfer & Kyne, 2009), which some governments appear to be pursuing 854 (e.g., Belize; Baremore et al., 2021; Kyne et al., 2012). 855

856 4.4 Management opportunities and priorities

The WCA is geopolitically complex, with more maritime boundaries in the Caribbean alone 857 858 than in any other Large Marine Ecosystem (Martinez et al., 2017). It also contains highly developed, large countries with extensive fisheries management regimes (e.g., United States) 859 860 alongside economically challenged small island developing states with limited management capacity (e.g., Haiti). Nutrient-rich continental shelves host industrial fisheries while nutrient-861 862 poor coral reefs support artisanal fisheries a short distance away (Singh-Renton & McIvor, 2015). It is not surprising that approaches to shark and ray management vary widely in the region 863 864 and that challenges to improved management and regular stock assessment include consistency 865 and harmonization in data collection, fisheries monitoring, funding, training, and enforcement. Our findings underscore the objectives of the WECAFC RPOA-Sharks in meeting these 866 challenges (WECAFC, 2018). 867

Chondrichthyan Management Responsibility and its components (catch-weighted CoR and ME) should be interpreted carefully and only within the WCA; a country may have large shark and ray fisheries elsewhere that were not considered in our analysis. Catch-weighted CoR uses reconstructed catch data from the Sea Around Us Project which improves often low-resolution and sometimes incomplete data self-reported by countries to the FAO (Maharaj et al., 2018).

Colombia's reconstructed catch data for sharks and rays is underestimated, for example, because 873 Colombia does not report ray catches from large-scale fisheries, and many years of shark and ray 874 875 landings data are missing from government records (Caldas et al., 2009). Despite reconstructed catch data for Colombia showing no ray catches from 1950 to 2016, recent data indicate that rays 876 represent 7.2% of the total volume of small-scale fish and invertebrate catches at three locations 877 in the Colombian Caribbean (Squalus Foundation - AUNAP, unpublished data). Thus, 878 Colombia's catch-weighted CoR and non-normalized CMR are underestimated. Still, most 879 fishing in the Colombian Caribbean is small-scale and results in far fewer shark and ray catches 880 than in the WCA's major shark and ray fishing nations (PA Mejía-Falla, pers. obs.). Normalized 881 CMR, while imperfect due to these and similar errors in the underlying data, provides a relative 882 comparison between national-level catches at the best resolution available. 883

Taken as a relative measure, Chondrichthyan Management Responsibility can provide a 884 blueprint for regional management priorities and leadership. The countries with the highest CMR 885 in the WCA – the United States, Venezuela, and Mexico – have large expanses of nutrient-rich 886 ecosystems along the continental shelf which support their high reconstructed catches and 887 elevate their CoR. Even if these countries were fully engaged with every management 888 mechanism (i.e., had 100% ME), they would still dominate CMR because their catch-weighted 889 CoR is so high relative to other countries. A high CMR does not necessarily indicate current 890 891 overfishing, however. Despite leading the WCA in CMR (and catch-weighted CoR), the United 892 States currently offers *some* of the best examples of sustainable shark and ray fishing in the world and acts as a refuge for many threatened sharks and rays (Ferretti et al., 2020; 893 Simpfendorfer & Dulvy, 2017), some of which have experienced preliminary recoveries in U.S. 894 waters (Peterson et al., 2017). Alternatively, Mexico and Venezuela host data-poor fisheries 895 where reference points and stock status are largely unknown, and institutional management 896 897 capacity is lacking (Pérez-Jiménez & Mendez-Loeza, 2015; Tavares, 2019). Mexico, for example, is not a party to SPAW, CMS, or CMS MoU Sharks; it falls in the lower 50% of WCA 898 899 countries in management engagement despite its very high CMR.

The WCA's other major historical shark and ray fishing nations (e.g., Cuba, Dominican Republic, Jamaica) and those with high CoR (e.g., Guyana, Suriname, and French Guiana) formed a second set of countries with significant CMR. Jamaica and Suriname stand out as countries requiring improved management given their high CMR but low ME. Haiti's lack of 904 shark and ray management also requires immediate action. The high CoR of international waters calls attention to the importance of managing highly migratory sharks and rays through 905 906 international fisheries management bodies (Tavares & Arocha, 2008; Walls & Dulvy, 2021). Given 100% participation of WCA countries in WECAFC, its upcoming RPOA-Sharks provides 907 a unique opportunity to achieve that end, particularly given WECAFC's broad taxonomic and 908 geographic jurisdiction. In comparison, ICCAT's jurisdiction is limited to oceanic species caught 909 by fleets targeting tunas and tuna-like fishes (WECAFC, 2018). However, currently WECAFC 910 does not have the authority to adopt binding management measures. 911

Improved enforcement is required in much of the WCA, particularly in small-scale fisheries 912 913 (Kyne et al., 2012; Martins et al., 2018; Saavedra-Díaz et al., 2016). Sharks and rays are caught 914 and landed despite protected status in numerous countries (Feitosa et al., 2018; Gallagher et al., 2015; Van Beek et al., 2013). Along Guatemala's Caribbean coast, limited fisheries patrols and a 915 lack of funding for enforcement have resulted in unregulated fishing in Guatemalan waters and 916 roving bandit dynamics in neighboring EEZs such as Belize and Honduras (Berkes et al., 2006; 917 Graham, 2007; Hacohen-Domené et al., 2020). Shark fins may also move across international 918 borders to be sold in poorly regulated markets (Kyne et al., 2012). Ineffective management and 919 920 enforcement of marine protected areas (MPAs) is also common (Bustamante et al., 2014; Perera-Valderrama et al., 2018). In addition, extractive activities are allowed in many MPAs; only 0.5% 921 922 of the protected areas in the Caribbean associated with European Union and UK Overseas 923 Territories prohibit all extractive activities (Martinez et al., 2017). Generally, funding for enforcement is insufficient and the detection of illegal activity is too infrequent to encourage 924 925 compliance (although it varies by sub-region; Singh-Renton & McIvor, 2015). At the international level, even when a country is party to an international agreement or treaty, it may 926 927 not have implemented national regulations to meet its commitments (which are sometimes voluntary or non-binding; e.g., IPOA-Sharks, CMS MoU Sharks; Fischer et al., 2012). The 928 following WCA countries, for example, either partially meet or do not meet their mandatory 929 commitments to protected sharks and rays on CMS Appendix I: Antigua and Barbuda, Cuba, 930 Costa Rica, Honduras, Jamaica, Netherlands (Aruba and Curaçao), Panama, and the United 931 932 Kingdom (Bermuda, Anguilla, Montserrat, and the Turks and Caicos) (Lawson & Fordham, 2018). 933

Although we focused primarily on fisheries, national priorities can be established using other 934 value frameworks that provide alternative justification for shark and ray management. Shark and 935 936 ray tourism, for example, can offer a profitable, non-consumptive alternative to fishing for some species and some people (Gallagher & Hammerschlag, 2011; Kyne et al., 2012). The Bahamas 937 provides an example of how a small island developing state without sufficient fisheries 938 management and enforcement (Sherman et al., 2018) is still able to benefit from the non-939 extractive use of sharks and rays. As a regional leader in shark and ray ecotourism, it boasts the 940 world's largest shark diving economy, which generates \$113.8 million USD annually (Haas et 941 al., 2017). Although The Bahamas has a rich and abundant shark and ray fauna, over 90% of 942 national expenditures from shark dives came from dives focused on the Caribbean Reef Shark 943 (Carcharhinus perezi, Carcharhinidae; Haas et al., 2017), which is one of the most abundant and 944 ubiquitous reef-associated sharks in effectively managed areas in the WCA (MacNeil et al., 945 2020) and also offers tourist appeal in other locations (e.g., Belize; Graham, 2014). The Cayman 946 Islands also offers a long-standing example of successful non-extractive use; 'Stingray City', off 947 Grand Cayman, features tens of Southern Stingrays (Hypanus americanus, Dasyatidae) that 948 949 interact with tourists in what may be the oldest example of shark and ray tourism in the world (Ormond et al., 2016). This site plays a major role in ray-specific tourism generating up to \$50 950 951 million USD annually for the Cayman Islands (Vaudo et al., 2018), while shark-associated diving and non-extractive use generates an additional \$46.8 - \$62.6 million USD every year 952 953 (Ormond et al., 2016). Although shark and ray ecotourism is not without its challenges (Gallagher & Huveneers, 2018), under the right circumstances it can have a net conservation and 954 955 economic benefit (Gallagher et al., 2015) and may be appropriate for countries with low 956 reconstructed catches and high CoR (e.g., Colombia).

957 **4.5 Conclusions**

Sharks and rays are among the most threatened vertebrates on our planet, second only to the amphibians (Dulvy et al., 2021a). Protecting CR and EN sharks and rays from fishing, particularly endemic and near-endemic species, remains a regional and global priority (Dulvy et al., 2021a). Unmonitored small-scale fisheries in the WCA likely contribute heavily to shark and ray declines and may grow to threaten some shelf-associated deepwater species. Effective and enforceable fisheries management informed by basic species-specific data on abundance and catch is urgently required across the WCA. Managing shark and ray fisheries has the potential to

reduce mortality, halt declines, and promote recovery while supporting food security and
livelihoods through sustainable fishing of less-threatened species (Booth et al., 2019; Dulvy et
al., 2021a). A robust management toolbox is available to achieve that end (Booth et al., 2020;
MacNeil et al., 2020), but improved implementation of locally appropriate tools is required
(Davidson et al., 2016).

ACKNOWLEDGEMENTS

We thank all who volunteered their time and expertise to conduct IUCN Red List assessments. We thank E. Brooks, N. Higgs, and the staff of the Cape Eleuthera Institute for hosting the regional workshop. We thank Georgia Aquarium and Al Dove for supporting KBH. NKD was supported by Natural Science and Engineering Research Council, Canada and Canada Research Chairs program. This project was funded by the Shark Conservation Fund, a philanthropic collaborative pooling expertise and resources to meet the threats facing the world's sharks and rays. The scientific results and conclusions, as well as any views or opinions expressed herein, are those of the author(s) and do not necessarily reflect those of institutions or data providers. This is contribution No. XX from the Institute of Environment at FIU and No. XX from the Exuma Sound Ecosystem Research Project.

DATA AVAILABILITY STATEMENT

Underlying data are available through the Sea Around Us Project database (www.seaaroundus.org) and IUCN Red List website (www.iucnredlist.org).

REFERENCES

- Anticamara, J. A., Watson, R., Gelchu, A., & Pauly, D. (2011). Global fishing effort (1950-2010): Trends, gaps, and implications. *Fisheries Research*, *107*(1–3), 131–136. https://doi.org/10.1016/j.fishres.2010.10.016
- Arana, P., Alvarez-Perez, J. A., Pezzuto, P. R. (2009). Deep-sea fisheries off Latin America: An introduction. *Latin American Journal of Aquatic Research*, 37(3), 281–284. https://doi.org/10.3856/vol37-issue3-fulltext-1
- Baisre, J. A. (2010). Setting a baseline for Caribbean fisheries. *Journal of Island and Coastal Archaeology*, 5(1), 120–147. https://doi.org/10.1080/15564891003663943
- Baker-Médard, M., & Faber, J. (2020). Fins and (Mis)fortunes: Managing shark populations for sustainability and food sovereignty. *Marine Policy*, 113, 103805. https://doi.org/10.1016/j.marpol.2019.103805
- Baremore, I. E., Graham, R. T., Polanco-Vásquez, F., & Ochoa, G. (2016). Emerging deep-water fisheries of the Mesoamerican Barrier Reef. *Proceedings of the 68th Gulf and Caribbean Fisheries Institute*, 142–144.
- Baremore, I. E., Graham, R. T., & Witt, M. J. (2021). Fishing down the reef slope: Characteristics of the nearshore deepwater fisheries of MesoAmerica. Ocean and Coastal Management, 211, 105773. https://doi.org/10.1016/j.ocecoaman.2021.105773
- Baum, J. K., & Blanchard, W. (2010). Inferring shark population trends from generalized linear mixed models of pelagic longline catch and effort data. *Fisheries Research*, 102, 229–239. https://doi.org/10.1016/j.fishres.2009.11.006
- Baum, J. K., & Myers, R. A. (2004). Shifting baselines and the decline of pelagic sharks in the Gulf of Mexico. *Ecology Letters*, 7(2), 135–145. https://doi.org/10.1111/j.1461-0248.2003.00564.x
- Baum, J. K., Myers, R. A., Kehler, D. G., Worm, B., Harley, S. J., & Doherty, P. A. (2003). Collapse and conservation of shark populations in the Northwest Atlantic. *Science*, 299(5605), 389–392. https://doi.org/10.1126/science.1079777
- Berkes, F., Hughes, T. P., Steneck, R. S., Wilson, J. A., Bellwood, D. R., Crona, B., Folke, C., Gunderson, L. H., Leslie, H. M., Norberg, J., Nyström, M., Olsson, P., Österblom, H., Scheffer, M., & Worm, B. (2006). Globalization, roving bandits, and marine resources. *Science*, 311(5767), 1557–1558. https://doi.org/10.1126/science.1122804
- Bizzarro, J. J., Smith, W. D., Márquez-Farías, J. F., Tyminski, J., & Hueter, R. E. (2009). Temporal variation in the artisanal elasmobranch fishery of Sonora, Mexico. *Fisheries Research*, 97(1–2), 103–117. https://doi.org/10.1016/j.fishres.2009.01.009
- Bond, M. E., Babcock, E. A., Pikitch, E. K., Abercrombie, D. L., & Lamb, N. F. (2012). Reef sharks exhibit site-fidelity and higher relative abundance in marine reserves on the Mesoamerican Barrier Reef. *PLoS ONE*, 7(3), e32983. https://doi.org/10.1371/journal.pone.0032983
- Bond, M. E., Valentin-Albanese, J., Babcock, E. A., Abercrombie, D., Lamb, N. F., Miranda, A., Pikitch, E. K., & Chapman, D. D. (2017). Abundance and size structure of a reef shark population within a marine reserve has remained stable for more than a decade. *Marine Ecology Progress Series*, 576, 1–10. https://doi.org/10.3354/meps12241
- Bonfil, R. (1997). Status of shark resources in the Southern Gulf of Mexico and Caribbean: Implications for management. *Fisheries Research*, 29(2), 101–117. https://doi.org/10.1016/S0165-7836(96)00536-X
- Bonfil, R., Mendoza-Vargas, O. U., Ricaño-Soriano, M., Palacios-Barreto, P. Y., & Bolaño-

Martínez, N. (2017). Former widespread abundance and recent downfall of sawfishes in Mexico as evidenced by historical photographic and trophy records. *Fisheries*, *42*(5), 256–259. https://doi.org/10.1080/03632415.2017.1276339

- Booth, H., Squires, D., & Milner-Gulland, E. J. (2019). The neglected complexities of shark fisheries, and priorities for holistic risk-based management. *Ocean and Coastal Management*, *182*, 104994. https://doi.org/10.1016/j.ocecoaman.2019.104994
- Booth, H., Squires, D., & Milner-Gulland, E. J. (2020). The mitigation hierarchy for sharks: A risk-based framework for reconciling trade-offs between shark conservation and fisheries objectives. *Fish and Fisheries*, *21*(2), 269–289. https://doi.org/10.1111/faf.12429
- Brame, A. B., Wiley, T. R., Carlson, J. K., Fordham, S. V., Grubbs, R. D., Osborne, J., Scharer, R. M., Bethea, D. M., & Poulakis, G. R. (2019). Biology, ecology, and status of the smalltooth sawfish *Pristis pectinata* in the USA. *Endangered Species Research*, 39, 9–23. https://doi.org/10.3354/esr00952
- Burgess, G. H., Beerkircher, L. R., Cailliet, G. M., Carlson, J. K., Cortés, E., Goldman, K. J., Grubbs, R. D., Musick, J. A., Musyl, M. K., & Simpfendorfer, C. A. (2005). Is the collapse of shark populations in the Northwest Atlantic Ocean and Gulf of Mexico real? *Fisheries*, 30(9), 19–26. https://doi.org/10.1577/1548-8446(2005)30
- Burkholder, D. A., Heithaus, M. R., Fourqurean, J. W., Wirsing, A., & Dill, L. M. (2013). Patterns of top-down control in a seagrass ecosystem: could a roving apex predator induce a behaviour-mediated trophic cascade? *Journal of Animal Ecology*, 82(6), 1192–1202. https://doi.org/10.1111/1365-2656.12097
- Bustamante, G., Canals, P., Di Carlo, G., Gomei, M., Romani, M., Souan, H., & Vanzella-Khouri, A. (2014). Marine protected areas management in the Caribbean and Mediterranean seas: Making them more than paper parks. *Aquatic Conservation: Marine and Freshwater Ecosystems*, 24(S2), 153–165. https://doi.org/10.1002/aqc.2503
- Caldas, J. P., Diaz-Trujillo, E. M., García, C. B., & Duarte, L. O. (2009). Revisión histórica de la pesca de tiburones y rayas en el mar Caribe continental de Colombia. *Avances en el conocimiento de tiburones, rayas y quimeras de Colombia*, 97-131
- Canty, S., Funes, M., Box, S., Zylich, K., Derrick, B., Divovich, E., Lindop, A., Pauly, D., & Zeller, D. (2019). The hidden value of artisanal fisheries in Honduras. *Fisheries Management and Ecology*, 26(3), 249–259. https://doi.org/10.1111/fme.12346
- Cardeñosa, D., Feldheim, K., Fields, A. T., Shea, S. K. H., Babcock, E. A., Fischer, G. A., & Chapman, D. D. (2018). CITES-listed sharks remain among the top species in the contemporary fin trade. *Conservation Letters*, 11(4), e12457. https://doi.org/10.1111/conl.12457
- Cardeñosa, D., Fields, A. T., Babcock, E., Shea, S. K. H., Feldheim, K. A., Kraft, D. W., Hutchinson, M., Herrera, M. A., Caballero, S., & Chapman, D. D. (2020). Indo-Pacific origins of silky shark fins in major shark fin markets highlights supply chains and management bodies key for conservation. *Conservation Letters*, 14(3), e12780. https://doi.org/10.1111/conl.12780
- Carlson, J. K., Hale, L. F., Morgan, A., Burgess, G. (2012). Relative abundance and size of coastal sharks derived from commercial shark longline catch and effort data. *Journal of Fish Biology*, 80, 1749–1764. https://doi.org/10.1111/j.1095-8649.2011.03193.x
- Carpenter, K. E. (Ed.). (2002). The living marine resources of the Western Central Atlantic, Vol.
 1: Introduction, molluscs, crustaceans, hagfishes, sharks, batoid fishes, and chimaeras. In *FAO Species Identification Guide for Fishery Purposes and American Society of*

Ichthyologists and Herpetologists Special Publication No. 5.

- Castellanos, P., Varela, R., & Muller-Karger, F. (2002). Descripción de las áreas de surgencia al sur del Mar Caribe examinadas con el censor infrarrojo AVHRR. *Memoria de la Sociedad de Ciencias Naturales La Salle*, 154, 55–76.
- Castellanos-Galindo, G. A., Herrón, P., Navia, A. F., & Booth, H. (2021). Shark conservation and blanket bans in the eastern Pacific Ocean. *Conservation Science and Practice*, *3*(7), e428. https://doi.org/10.1111/csp2.428
- Castro, J. I. (2013). Historical knowledge of sharks: ancient lore, earliest attacks, American fisheries, and utilization. *Marine Fisheries Review*, 75(4), 1–26.
- Cervigón, F. (2005). La ictiofauna marina de Venezuela: una aproximación ecológica. *Boletín del Instituto Oceanográfico de Venezuela*, 44(1), 3-28.
- Chapman, D. D., Pinhal, D., & Shivji, M. S. (2009). Tracking the fin trade: genetic stock identification in western Atlantic scalloped hammerhead sharks *Sphyrna lewini*. *Endangered Species Research*, *9*, 221–228. https://doi.org/10.3354/esr00241
- Claus, S., De Hauwere, N., Vanhoorne, B., Souza Dias, F., Oset García, P., Hernandez, F., & Mees, J. (2014). Flanders Marine Institute. *World EEZ v8, MarineRegions.org*. Accessed at <u>http://www.marineregions.org</u> on 2021-07-30
- Clementi, G., Babcock, E., Valentin-Albanese, J., Bond, M., Flowers, K., Heithaus, M., Whitman, E., Zinnicq Bergmann, M., Guttridge, T., O'Shea, O., Shipley, O., Brooks, E., Kessel, S., & Chapman, D. (2021). Anthropogenic pressures on reef-associated sharks in jurisdictions with and without directed shark fishing. *Marine Ecology Progress Series*, 661, 175–186. https://doi.org/10.3354/meps13607
- Cortés, E. (2000). Life history patterns and correlations in sharks. *Reviews in Fisheries Science*, 8(4), 299–344. https://doi.org/10.1080/10408340308951115
- Cortés, E., Brooks, E., Scott, G. (2002). Stock assessment of large coastal sharks in the US Atlantic and Gulf of Mexico. National Marine Fisheries Service Southeast Fisheries Science Center, 222.
- Cortés, E., Brown, C. A., & Beerkircher, L. R. (2007). Relative abundance of pelagic sharks in the Western North Atlantic Ocean, including the Gulf of Mexico and Caribbean Sea. *Gulf* and Caribbean Research, 19(2), 37–52. https://doi.org/10.18785/gcr.1902.06
- Davidson, L. N. K., Krawchuk, M. A., & Dulvy, N. K. (2016). Why have global shark and ray landings declined: Improved management or overfishing? *Fish and Fisheries*, 17(2), 438– 458. https://doi.org/10.1111/faf.12119
- de Graaf, M., Brunel, T. P. A., Nagelkerke, L. A. J., & Debrot, A. O. D. (2017). Status and trends Saba Bank fisheries: 2015 (Issue C077/17). https://edepot.wur.nl/424549
- Dent, F., & Clarke, S. (2015). State of the global market for shark products. FAO Fisheries and Aquaculture Technical Paper No. 590. 187. http://www.fao.org/3/a-i4795e.pdf
- Derrick, D. H., Cheok, J., & Dulvy, N. K. (2020). Spatially congruent sites of importance for global shark and ray biodiversity. *PLoS ONE*, 15(7), e0235559. https://doi.org/10.1371/journal.pone.0235559
- Dulvy, N. K., Charvet, P., Pollom, R., Avalos, C., Blanco-Parra, M., Briones Bell-Iloch, A., Cardenosa, D., Derrick, D., Espinoza, E., Mejía-Falla, P. A., Morales-Saldaña, J. M., Naranjo-Elizondo, B., Navia, A. F., Simpson, N. J., & Schneider, E. V. C. (2021b). *Styracura schmardae. The IUCN Red List of Threatened Species 2021.* https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2021-1.RLTS.T60161A3090840.en
- Dulvy, N. K., Davidson, L. N. K., Kyne, P. M., Simpfendorfer, C. A., Harrison, L. R., Carlson, J.

K., & Fordham, S. V. (2016). Ghosts of the coast: global extinction risk and conservation of sawfishes. *Aquatic Conservation: Marine and Freshwater Ecosystems*, *26*, 134–153. https://doi.org/10.1002/aqc.2525

- Dulvy, N. K., Simpfendorfer, C. A., Davidson, L. N. K., Fordham, S. V., Bräutigam, A., Sant, G., & Welch, D. J. (2017). Challenges and priorities in shark and ray conservation. *Current Biology*, 27(11), R565–R572. https://doi.org/10.1016/j.cub.2017.04.038
- Dulvy, N. K, Fowler, S. L., Musick, J. A., Cavanagh, R. D., Kyne, P. M., Harrison, L. R., Carlson, J. K., Davidson, L. N. K., Fordham, S. V., Francis, M. P., Pollock, C. M., Simpfendorfer, C. A., Burgess, G. H., Carpenter, K. E., Compagno, L. J. V., Ebert, D. A., Gibson, C., Heupel, M. R., Livingstone, S. R., ... White, W. T. (2014). Extinction risk and conservation of the world's sharks and rays. *eLife*, *3*, 590. https://doi.org/10.7554/eLife.00590
- Dulvy, N. K, Pacoureau, N., Rigby, C. L., Pollom, R. A., Jabado, R. W., Ebert, D. A., Finucci, B., Pollock, C. M., Cheok, J., Derrick, D. H., Herman, K. B., Sherman, C. S., VanderWright, W. J., Lawson, J. M., Walls, R. H., Carlson, J. K., Charvet, P., Bineesh, K. K., Fernando, D., ... Simpfendorfer, C. A. (2021a). Overfishing drives over one-third of all sharks and rays toward a global extinction crisis. *Current Biology*, 1–15. https://doi.org/10.1016/j.cub.2021.08.062
- Ebert, D. A., Dando, M., & Fowler, S. (2021). *Sharks of the World: A Complete Guide*. Princeton University Press.
- Ebert, D. A., Fowler, S., & Compagno, L. J. V. (2013). *Sharks of the World: A Fully Illustrated Guide to the Sharks of the World*. Wild Nature Press.
- Eschmeyer, W. N., Fricke, R., & van der Laan, R. (2017). *Catalog of fishes: Genera, species, references*. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp
- Estes, J. A., Heithaus, M., McCauley, D. J., Rasher, D. B., & Worm, B. (2016). Megafaunal impacts on structure and function of ocean ecosystems. *Annual Review of Environment and Resources*, *41*, 83–116. https://doi.org/10.1146/annurev-environ-110615-085622
- FAO 2021. Atlantic, Western-Central (Major Fishing Area 31). Fisheries and Aquaculture Division, Rome. https://www.fao.org/fishery/en/area/31/en
- Feitosa, L. M., Martins, A. P. B., Giarrizzo, T., MacEdo, W., Monteiro, I. L., Gemaque, R., Nunes, J. L. S., Gomes, F., Schneider, H., Sampaio, I., Souza, R., Sales, J. B., Rodrigues-Filho, L. F., Tchaicka, L., & Carvalho-Costa, L. F. (2018). DNA-based identification reveals illegal trade of threatened shark species in a global elasmobranch conservation hotspot. *Scientific Reports*, 8(1), 1–11. https://doi.org/10.1038/s41598-018-21683-5
- Fernandez-Carvalho, J., Imhoff, J. L., Faria, V. V., Carlson, J. K., & Burgess, G. H. (2014). Status and the potential for extinction of the largetooth sawfish *Pristis pristis* in the Atlantic Ocean. *Aquatic Conservation: Marine and Freshwater Ecosystems*, 24(4), 478–497. https://doi.org/10.1002/aqc.2394
- Ferretti, F., Jacoby, D. M. P., Pfleger, M. O., White, T. D., Dent, F., Micheli, F., Rosenberg, A. A., Crowder, L. B., & Block, B. A. (2020). Shark fin trade bans and sustainable shark fisheries. *Conservation Letters*, 13(3), e12708. https://doi.org/10.1111/conl.12708
- Ferretti, F., Worm, B., Britten, G. L., Heithaus, M. R., & Lotze, H. K. (2010). Patterns and ecosystem consequences of shark declines in the ocean. *Ecology Letters*, 13(8), 1055–1071. https://doi.org/10.1111/j.1461-0248.2010.01489.x
- Fields, A. T., Fischer, G. A., Shea, S. K. H., Zhang, H., Feldheim, K. A., & Chapman, D. D.

(2020). DNA Zip-coding: identifying the source populations supplying the international trade of a critically endangered coastal shark. *Animal Conservation*, *23*(6), 670–678. https://doi.org/10.1111/acv.12585

- Finucci, B., Cheok, J., Cotton, C., Kulka, D., Neat, F., Rigby, C., Tanaka, S., & Walker, T. (2020). Cirrhigaleus asper. The IUCN Red List of Threatened Species 2020: E.T60209A3092852. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2020-3.RLTS.T60209A3092852.en
- Finucci, B., Cheok, J., Ebert, D. A., Herman, K., Kyne, P. M., & Dulvy, N. K. (2021). Ghosts of the deep – Biodiversity, fisheries, and extinction risk of ghost sharks. *Fish and Fisheries*, 22(2), 391–412. https://doi.org/10.1111/faf.12526
- Fischer, J., Erikstein, K., D'Offay, B., Guggisberg, S., & Barone, M. (2012). Review of the implementation of the International Plan of Action for the Conservation and Management of Sharks. In FAO Fisheries and Aquaculture Circular No. 1076.
- Flanders Marine Institute. (2019). *Maritime Boundaries Geodatabase: Maritime Boundaries and Exclusive Economic Zones (200NM), version 11.* https://doi.org/https://doi.org/10.14284/386
- Flowers, K. I., Heithaus, M. R., & Papastamatiou, Y. P. (2021). Buried in the sand: Uncovering the ecological roles and importance of rays. *Fish and Fisheries*, 22(1), 105–127. https://doi.org/10.1111/faf.12508
- Fowler, S. L., Cavanagh, R. D., Camhi, M., Burgess, G. H., Cailliet, G. M., Fordham, S. V., Simpfendorfer, C. A., & Musick, J. A. (2005). Sharks, rays and chimaeras: the status of the chondrichthyan fishes. Gland, Switzerland and Cambridge, UK, IUCN Species Survival Commission Shark Specialist Group. https://doi.org/10.2305/iucn.ch.2005.ssc-ap.9.en
- Froese, R., & Pauly, D. (2021). Fishbase. www.fishbase.org, version (02/2021)
- Gallagher A. J., Huveneers C. P. M. (2018). Emerging challenges to shark-diving tourism. *Marine Policy*, 96, 9–12. https://doi.org/10.1016/j.marpol.2018.07.009
- Gallagher, A. J., Vianna, G. M. S., Papastamatiou, Y. P., Macdonald, C., Guttridge, T. L., & Hammerschlag, N. (2015). Biological effects, conservation potential, and research priorities of shark diving tourism. *Biological Conservation*, 184, 365–379. https://doi.org/10.1016/j.biocon.2015.02.007
- García, V. B., Lucifora, L. O., & Myers, R. A. (2008). The importance of habitat and life history to extinction risk in sharks, skates, rays and chimaeras. *Proceedings of the Royal Society B: Biological Sciences*, 275(1630), 83–89. https://doi.org/10.1098/rspb.2007.1295
- Graham, R. T. (2007). Vulnerability Assessment of Sharks and Rays in Belize : Captures and Trade (Issue Technical Report 4).
- Hacohen-Domené, A., Polanco-Vásquez, F., Estupiñan-Montaño, C., & Graham, R. T. (2020). Description and characterization of the artisanal elasmobranch fishery on Guatemala's Caribbean coast. *PLoS ONE*, 15(1), e0227797. https://doi.org/10.1371/journal.pone.0227797
- Hansell, A. C., Kessel, S. T., Brewster, L. R., Cadrin, S. X., Gruber, S. H., Skomal, G. B., & Guttridge, T. L. (2018). Local indicators of abundance and demographics for the coastal shark assemblage of Bimini, Bahamas. *Fisheries Research*, 197, 34–44. https://doi.org/10.1016/j.fishres.2017.09.016
- Hayes, C. G., Jiao, Y., Cortés, E. (2009). Stock assessment of scalloped hammerheads in the Western North Atlantic Ocean and Gulf of Mexico. North American Journal of Fisheries Management, 29, 1406–1417. https://doi.org/10.1577/m08-026.1

- Heithaus, M. R., Frid, A., Vaudo, J. J., Worm, B., & Wirsing, A. J. (2010). Unraveling the ecological importance of elasmobranchs. In J. C. Carrier, J. A. Musick, & M. R. Heithaus (Eds.), *Sharks and Their Relatives II: Biodiversity, Adaptive Physiology, and Conservation*. (pp. 627–654). CRC Press.
- Heithaus, M. R., Frid, A., Wirsing, A. J., & Worm, B. (2008). Predicting ecological consequences of marine top predator declines. *Trends in Ecology and Evolution Evolution*, 23(4), 202–209. https://doi.org/10.1016/j.tree.2008.01.003
- Heupel, M. R., Knip, D. M., Simpfendorfer, C. A., & Dulvy, N. K. (2014). Sizing up the ecological role of sharks as predators. *Marine Ecology Progress Series*, 495, 291–298. https://doi.org/10.3354/meps10597
- IUCN. (2012). *IUCN Red list categories and criteria: Version 3.1, 2nd ed.* Gland, Switzerland and Cambridge, UK: IUCN.
- IUCN Standards and Petitions Subcommittee. (2019). *Guidelines for using the IUCN Red List Categories and Criteria. Version 14. Prepared by the Standards and Petitions Subcommittee.* IUCN, Gland, Switzerland and Cambridge, UK.
- Jackson, J., Kirby, M., Berger, W., Bjorndal, K., Botsford, L., Bourque, B. J., Bradbury, R., Cooke, R., Erlandson, J., Estes, J. A., Hughes, T. P., Kidwell, S., Lange, C. B., Lenihan, H. S., Pandolfi, J. M., Peterson, C. H., Steneck, R. S., Tegner, M. J., & Warner, R. R. (2001). Historical overfishing and the recent collapse of coastal ecosystems. *Science*, 293(5530), 629–637. https://doi.org/10.1126/science.1059199
- Jackson J. B. C., Donovan M. K., Cramer K. L., Lam V. V. (Eds). (2014). Status and trends of Caribbean coral reefs: 1970-2012. *Global Coral Reef Monitoring Network, IUCN*. Gland, Switzerland
- Jiao, Y., Hayes, C., Cortés, E. (2009). Hierarchical Bayesian approach for population dynamics modelling of fish complexes without species-specific data. *ICES Journal of Marine Science*, 66, 367–377. https://doi.org/10.1093/icesjms/fsn162
- Kolmann, M. A., Elbassiouny, A. A., Liverpool, E. A., & Lovejoy, N. R. (2017). DNA barcoding reveals the diversity of sharks in Guyana coastal markets. *Neotropical Ichthyology*, 15(4), 1–8. https://doi.org/10.1590/1982-0224-20170097
- Koubrak, O., Horrocks, J., Kingma, I., Svoboda, A., Somma, A., Pauly, A., Hill, M., Thompson, C., Vail, C., Fries, E., & Pivard, S. (2021). Recommendations for an effective management of sharks and rays species listed in Annex III: A report of the SPAW species working group. Ninth Meeting of the Scientific and Technical Advisory Committee (STAC) to the Protocol Concerning Specially Protected Areas and Wildlife (SPAW) in the Wider Caribbean Region, 16
- Kyne, P. M., & Simpfendorfer, C. A. (2010). Deepwater Chondrichthyans. In J. C. Carrier, J. A. Musick, & M. R. Heithaus (Eds.), *Sharks and Their Relatives, II: Biodiversity, Adaptive Physiology, and Conservation* (pp. 37–113). CRC Press
- Kyne, P.M., & Herman, K. (2020a). Mollisquama mississippiensis. The IUCN Red List of Threatened Species 2020: E.T153198442A153199019. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK
- Kyne, P. M., & Herman, K. (2020b). Parmaturus campechiensis. The IUCN Red List of Threatened Species 2020. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2020-3.RLTS.T60230A3096513.en
- Kyne, P. M., Carlson, J. K., Ebert, D. A., Fordham, S. V., Bizzarro, J. J., Graham, R. T., Kulka, D. W., Tewes, E. E., Harrison, L. R., & Dulvy, N. K. (2012). *The Conservation Status of*

North American, Central American, and Caribbean Chondrichthyans. IUCN Species Survival Commission Shark Specialist Group

- Kyne, P. M, Jabado, R. W., Rigby, C. L., Dharmadi, Gore, M. A., Pollock, C. M., Herman, K. B., Cheok, J., Ebert, D. A., Simpfendorfer, C. A., & Dulvy, N. K. (2020). The thin edge of the wedge: extremely high extinction risk in wedgefishes and giant guitarfishes. *Aquatic Conservation: Marine and Freshwater Ecosystems*, 30(7), 1337–1361. https://doi.org/10.1101/595462
- Last, P., Naylor, G., Séret, B., White, W., de Carvalho, M., & Stehmann, M. (2016). *Rays of the World*. CSIRO publishing
- Lawson, J. M., & Fordham, S. V. (2018). *Sharks Ahead: Realizing the Potential of the Convention on Migratory Species to Conserve Elasmobranchs*. https://docs.wixstatic.com/ugd/5c8a4b c7b7dd1abd1e4c2d9ea26f88a87a0edd.pdf
- Linardich, C., Ralph, G. M., Robertson, D. R., Harwell, H., Polidoro, B. A., Lindeman, K. C., & Carpenter, K. E. (2019). Extinction risk and conservation of marine bony shorefishes of the Greater Caribbean and Gulf of Mexico. *Aquatic Conservation: Marine and Freshwater Ecosystems*, 29(1), 85–101. https://doi.org/10.1002/aqc.2959
- Mace, G. M., Collar, N. J., Gaston, K. J., Hilton-Taylor, C., Akçakaya, H. R., Leader-Williams, N., Milner-Gulland, E. J., & Stuart, S. N. (2008). Quantification of extinction risk: IUCN's system for classifying threatened species. *Conservation Biology*, 22(6), 1424–1442. https://doi.org/10.1111/j.1523-1739.2008.01044.x
- MacNeil, M. A., Chapman, D. D., Heupel, M., Simpfendorfer, C. A., Heithaus, M., Meekan, M., Harvey, E., Goetze, J., Kiszka, J., Bond, M. E., Currey-Randall, L. M., ... (2020). Global status and conservation potential of reef sharks. *Nature*, 583(7818), 801–806. https://doi.org/10.1038/s41586-020-2519-y
- Marquez, P., Tavares, R., & Ariza, L. A. (2019). Elasmobranch species in the artisanal fishery of Sucre State, Venezuela. *Ciencias Marinas*, 45(4), 181–188. https://doi.org/10.7773/cm.v45i4.3018
- Martinez, C., Rockel, S., & Vieux, C. (2017). European Overseas coastal and marine protected areas - overview of coastal and marine conservation efforts in the European Union's Overseas Countries and Territories and Outermost Regions.
- Martins, A. P. B., Feitosa, L. M., Lessa, R. P., Almeida, Z. S., Heupel, M., Silva, W. M., Tchaicka, L., & Nunes, J. L. S. (2018). Analysis of the supply chain and conservation status of sharks (Elasmobranchii: Superorder Selachimorpha) based on fisher knowledge. *PLoS ONE*, 13(3), e0193969. https://doi.org/10.1371/journal.pone.0193969
- McClenachan, L. (2009). Documenting loss of large trophy fish from the florida keys with historical photographs. *Conservation Biology*, *23*(3), 636–643. https://doi.org/10.1111/j.1523-1739.2008.01152.x
- McClenachan, L., Hardt, M., Jackson, J., & Cooke, R. (2010). Mounting evidence for historical overfishing and long-term degradation of Caribbean marine ecosystems: Comment on Julio Baisre's "setting a baseline for Caribbean fisheries." *Journal of Island and Coastal Archaeology*, 5(1), 165–169. https://doi.org/10.1080/15564891003656178
- McClenachan, L., Jackson, J. B. C., & Newman, M. J. H. (2006). Conservation implications of historic sea turtle nesting beach loss. *Frontiers in Ecology and the Environment*, 4(6), 290– 296. https://doi.org/10.1890/1540-9295(2006)4[290:CIOHST]2.0.CO;2
- McEachran, J., & Miyake, T. (1990). Zoogeography and bathymetry of skates (Chondrichthyes, Rajoidei). In H. Pratt, S. Gruber, & T. Taniuchi (Eds.), *Elasmobranchs as Living*

Resources: Advances in the Biology, Ecology, Systematics, and the Status of the Fisheries (pp. 305–326). Technical report National Marine Fisheries Service 90, National Oceanic & Atmospheric Administration.

- Mejía-Falla, P., Navia, A., & Salcedo-Reyes, J. (2019). Checklist of marine elasmobranchs of Colombia. *Universitas Scientiarum*, 24, 164–199.
- Miller, M. H., Klimovich, C. (2017). Endangered Species Act status review report: Giant Manta Ray (*Manta birostris*) and Reef Manta Ray (*Manta alfredi*). Report to National Marine Fisheries Service, Office of Protected Resources, Silver Spring, MD. 128 pp.
- Miloslavich, P., Díaz, J. M., Klein, E., Alvarado, J. J., Díaz, C., Gobin, J., Escobar-Briones, E., Cruz-Motta, J. J., Weil, E., Cortés, J., Bastidas, A. C., Robertson, R., Zapata, F., Martín, A., Castillo, J., Kazandjian, A., & Ortiz, M. (2010). Marine biodiversity in the Caribbean: Regional estimates and distribution patterns. *PLoS ONE*, 5(8), e11916. https://doi.org/10.1371/journal.pone.0011916
- Morato, T., Watson, R., Pitcher, T. J., & Pauly, D. (2006). Fishing down the deep. *Fish and Fisheries*, 7, 24–34. https://doi.org/10.1111/j.1467-2979.2006.00205.x
- Muller-Karger, F., & Varela, R. J. (1990). Influjo del Río Orinoco en el Mar Caribe: Observaciones con el CZCS desde el espacio. *Memoria de la Sociedad de Ciencias Naturales La Salle*, *50*, 361–390.
- Musick, J. A., Branstetter, S., & Colvocoresses, J. A. (1993). Trend in shark abundance from 1974-1991 for the Chesapeake Bight region of the U.S. mid- Atlantic coast. In S. Branstetter (Ed.), Conservation Biology of Elasmobranchs: NOAA Technical Report NMFS 115.
- Návalo, J., Mark, J., Victoria, V., & Morales-Saldaña, J. M. (2021). A preliminary assessment of shark captures by a small-scale fishery in the central Caribbean coast of Panama. *Journal of Applied Ichthyology*, 37, 790–794. https://doi.org/10.1111/jai.14211
- NMFS (National Marine Fisheries Service). (1993). Fishery management plan for sharks of the Atlantic Ocean. US Department of Commerce, Silver Spring, MD.
- Pacoureau, N., Rigby, C. L., Kyne, P. M., Sherley, R. B., Winker, H., Carlson, J. K., Fordham, S. V., Barreto, R., Fernando, D., Francis, M. P., Jabado, R. W., Herman, K. B., Liu, K. M., Marshall, A. D., Pollom, R. A., Romanov, E. V., Simpfendorfer, C. A., Yin, J. S., Kindsvater, H. K., & Dulvy, N. K. (2021). Half a century of global decline in oceanic sharks and rays. *Nature*, 589(7843), 567–571. https://doi.org/10.1038/s41586-020-03173-9
- PAN-Tiburones, 2015. Plan de Acción Nacional de Conservación y Manejo de Condrictios de la República de Cuba. Ministerio de la Industria Alimentaria. La Habana, Cuba. 49 p.
- Pauly, D., & Zeller,, D. (Eds.) (2015). Catch Reconstruction: concepts, methods and data sources. Sea Around Us (www.seaaroundus.org). University of British Columbia.
- Pauly, D., Zeller, D., & Palomares, M. (Eds.). (2020). Sea Around Us Concepts, Design and Data (searoundus.org).
- Pauly, D. (1995). Anecdotes and the shifting baseline syndrome of fisheries. *Trends in Ecology* & *Evolution*, 10(10), 430. https://doi.org/10.1016/S0169-5347(00)89171-5
- Perera-Valderrama, S., Hernández-Ávila, A., González-Méndez, J., Moreno-Martínez, O., Cobián-Rojas, D., Ferro-Azcona, H., Milián-Hernández, E., Caballero-Aragón, H., Alcolado, P. M., Pina-Amargós, F., Hernández-González, Z., Espinosa-Pantoja, L., & Rodríguez-Farrat, L. F. (2018). Marine protected areas in Cuba. *Bulletin of Marine Science*, 94(2), 423–442. https://doi.org/10.5343/bms.2016.1129
- Pérez-Jiménez, J. C., & Mendez-Loeza, I. (2015). The small-scale shark fisheries in the southern

Gulf of Mexico: Understanding their heterogeneity to improve their management. *Fisheries Research*, *172*, 96–104. https://doi.org/10.1016/j.fishres.2015.07.004

- Peterson, C. D., Belcher, C. N., Bethea, D. M., Driggers, W. B., Frazier, B. S., & Latour, R. J. (2017). Preliminary recovery of coastal sharks in the south-east United States. *Fish and Fisheries*, 18(5), 845–859. https://doi.org/10.1111/faf.12210
- Pinnegar, J. K., & Engelhard, G. H. (2008). The "shifting baseline" phenomenon: A global perspective. *Reviews in Fish Biology and Fisheries*, 18(1), 1–16. https://doi.org/10.1007/s11160-007-9058-6
- Polanco-Vásquez, F., Hacohen-Domené, A., Méndez, T., Pacay, A., & Graham, R. T. (2017). First record of the chimaera *Neoharriota carri* (Bullis and Carpenter 1966) in the Caribbean of Guatemala. *Marine Biodiversity Records*, 10(1), 8–11. https://doi.org/10.1186/s41200-016-0104-8
- Polidoro, B. A., Carpenter, K. E., Collins, L., Duke, N. C., Ellison, A. M., Ellison, J. C., Farnsworth, E. J., Fernando, E. S., Kathiresan, K., Koedam, N. E., Livingstone, S. R., Miyagi, T., Moore, G. E., Nam, V. N., Ong, J. E., Primavera, J. H., Salmo, S. G., Sanciangco, J. C., Sukardjo, S., ... Yong, J. W. H. (2010). The loss of species: mangrove extinction risk and geographic areas of global concern. *PLoS ONE*, 5(4), e10095. https://doi.org/10.1371/journal.pone.0010095
- Pollom, R., Charvet, P., Blanco-Parra, M., Cardenosa, D., Derrick, D., Espinoza, E., Herman, K., Morales-Saldaña, J. M., Naranjo-Elizondo, B., Pacoureau, N., Pérez Jiménez, J.C., Schneider, E. V. C., Simpson, N. J., & Dulvy, N. K. (2020). *Pseudobatos lentiginosus. The IUCN Red List of Threatened Species 2020: e.T161743A896981.* https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2020-3.RLTS.T161743A896981.en
- Pollom, R., Charvet, P., Faria, V., Herman, K., Lasso-Alcalá, O., Marcante, F., Mejía-Falla, P.A., Navia, A.F., Nunes, J. & Rincon, G. (2020a). *Diplobatis picta. The IUCN Red List of Threatened Species 2020: e.T61404A3103753*. https://dx.doi.org/10.2305/IUCN.UK.2020-3.RLTS.T61404A3103753.en
- Pollom, R., Charvet, P., Faria, V., Herman, K., Lasso-Alcalá, O., Marcante, F., Nunes, J. & Rincon, G. (2020b). Fontitrygon geijskesi. The IUCN Red List of Threatened Species 2020: e.T60153A104172152. https://dx.doi.org/10.2305/IUCN.UK.2020-3.RLTS.T60153A104172152.en
- Pollom, R., Charvet, P., Faria, V., Herman, K., Lasso-Alcalá, O., Marcante, F., Nunes, J., Rincon, G. & Kyne, P.M. (2020c). *Isogomphodon oxyrhynchus. The IUCN Red List of Threatened Species 2020: e.T60218A3094144*. https://dx.doi.org/10.2305/IUCN.UK.2020-3.RLTS.T60218A3094144.en
- Pollom, R., Herman, K., Lasso-Alcalá, O., Mejía-Falla, P. A., & Navia, A. F. (2020a). Urotrygon venezuelae. The IUCN Red List of Threatened Species 2020: e.T63156A124463656. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2020-3.RLTS.T63156A124463656.en
- Pollom, R., Herman, K., Lasso-Alcalá, O., Mejía-Falla, P. A., & Navia, A. F. (2020b). Diplobatis guamachensis. The IUCN Red List of Threatened Species 2020: e.T61402A124456675. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2020-3.RLTS.T61402A124456675.en
- Pollom, R., Herman, K., Lasso-Alcalá, O., Mejía-Falla, P., Navia, A., & Rincon, G. (2020c). Diplobatis colombiensis. The IUCN Red List of Threatened Species 2020: e.T61401A124456571. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2020-3.RLTS.T61401A124456571.en

- Pollom, R., Lasso-Alcalá, O., Mejía-Falla, P. A., Navia, A. F., & Herman, K. (2020). Mustelus minicanis. The IUCN Red List of Threatened Species 2020. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2020-2.RLTS.T60205A124452001.en
- Quattro, J. M., Driggers, W. B., Grady, J. M., Ulrich, G. F., & Roberts, M. A. (2013). *Sphyrna gilberti* sp. nov., a new hammerhead shark (Carcharhiniformes, Sphyrnidae) from the western Atlantic Ocean. *Zootaxa*, *3702*(2), 159–178. https://doi.org/10.11646/zootaxa.3702.2.5
- Quinlan, J. R., O'Leary, S. J., Fields, A. T., Benavides, M., Stumpf, E., Carcamo, R., Cruz, J., Lewis, D., Wade, B., Amato, G., Kolokotronis, S. O., Clementi, G. M., & Chapman, D. D. (2021). Using fisher-contributed secondary fins to fill critical shark-fisheries data gaps. *Conservation Biology*, 35(3), 991–1001. https://doi.org/10.1111/cobi.13688
- Rigby, C., & Simpfendorfer, C. A. (2015). Patterns in life history traits of deep-water chondrichthyans. *Deep Sea Research Part II: Topical Studies in Oceanography*, *115*, 30–40. https://doi.org/10.1016/j.dsr2.2013.09.004
- Robertson, D. R., & Cramer, K. L. (2014). Defining and dividing the Greater Caribbean: Insights from the biogeography of shorefishes. *PLoS ONE*, 9(7), e102918. https://doi.org/10.1371/journal.pone.0102918
- Rodrigues, A. S. L., Brooks, T. M., Butchart, S. H. M., Chanson, J., Cox, N., Hoffmann, M., & Stuart, S. N. (2014). Spatially explicit trends in the global conservation status of vertebrates. *PLoS ONE*, 9(11), e113934. https://doi.org/10.1371/journal.pone.0113934
- Ruiz-Abierno, A., Márquez-Farías, J. F., Miller, V., Angulo-Valdés, J. A., & Hueter, R. E. (2021). Seasonal abundance and size structure of sharks taken in the pelagic longline fishery off northwestern Cuba. *Marine and Coastal Fisheries*, 13(3), 289–305. https://doi.org/10.1002/mcf2.10152
- Saavedra-Díaz, L. M., Pomeroy, R., & Rosenberg, A. A. (2016). Managing small-scale fisheries in Colombia. *Maritime Studies*, 15(1), 6. https://doi.org/10.1186/s40152-016-0047-z
- Salafsky, N., Salzer, D., Stattersfield, A. J., Hilton-Taylor, C., Neugarten, R., Butchart, S. H. M., Collen, B., Cox, N., Master, L. L., O'Connor, S., & Wilkie, D. (2008). A standard lexicon for biodiversity conservation: Unified classifications of threats and actions. *Conservation Biology*, 22(4), 897–911. https://doi.org/10.1111/j.1523-1739.2008.00937.x
- Scott-Denton, E., Cryer, P. F., Gocke, J. P., Harrelson, M. R., Kinsella, D. L., Pulver, J. R., Smith, R. C., & Williams, J. A. (2011). Descriptions of the U.S. Gulf of Mexico reef fish bottom longline and vertical line fisheries based on observer data. *Marine Fisheries Review*, 73(2), 1–26.
- Scott-Denton, E., & Williams, J. A. (2013). Observer coverage of the 2010-2011 Gulf of Mexico reef fish fishery. US Department of Commerce, NOAA Technical Memorandum NMFS-SEFSC-646.
- Shea, K. H., & To, A. W. L. (2017). From boat to bowl: Patterns and dynamics of shark fin trade in Hong Kong — implications for monitoring and management. *Marine Policy*, 81, 330– 339. https://doi.org/10.1016/j.marpol.2017.04.016
- Shiffman, D. S., & Hammerschlag, N. (2016). Shark conservation and management policy: a review and primer for non-specialists. In *Animal Conservation* (Vol. 19, Issue 5, pp. 401– 412). Blackwell Publishing Ltd. https://doi.org/10.1111/acv.12265
- Simpfendorfer, C. A., & Dulvy, N. K. (2017). Bright spots of sustainable shark fishing. *Current Biology*, 27(3), R97–R98. https://doi.org/10.1016/j.cub.2016.12.017
- Simpfendorfer, C. A., & Kyne, P. M. (2009). Limited potential to recover from overfishing raises

concerns for deep-sea sharks, rays and chimaeras. *Environmental Conservation*, 36(2), 97–103. https://doi.org/10.1017/S0376892909990191

- Singh-Renton, S., & McIvor, I. (2015). Review of current fisheries management performance and conservation measures in the WECAFC area. In FAO Fisheries and Aquaculture Technical Paper No. 587. http://www.fao.org/documents/card/en/c/da5cd80f-0e6e-427b-9ac1-9f0be50cf1c5/
- Stein, R. W., Mull, C. G., Kuhn, T. S., Aschliman, N. C., Davidson, L. N. K., Joy, J. B., Smith, G. J., Dulvy, N. K., & Mooers, A. O. (2018). Global priorities for conserving the evolutionary history of sharks, rays and chimaeras. *Nature Ecology and Evolution*, 2, 288– 298. https://doi.org/10.1038/s41559-017-0448-4
- Tagliafico A., Rangel M. S., Ehemann N. R., Rago N. E., & Broadhurst M. K. (2021). Reproductive aspects of seven threatened shark species captured by artisanal fisheries in the southern Caribbean Sea. *Regional Studies in Marine Science*, 42, 101646. https://doi:10.1016/j.rsma.2021.101646
- Talwar, B. S., Stein, J. A., Connett, S. M. H., Liss, S. A., & Brooks, E. J. (2020). Results of a fishery-independent longline survey targeting coastal sharks in the eastern Bahamas between 1979 and 2013. *Fisheries Research*, 230, 105683. https://doi.org/10.1016/j.fishres.2020.105683
- Tavares, R. (2019). Current status of sharks and rays (Pisces : Elasmobranchii) in the Venezuelan Caribbean Sea: biodiversity, fishery and conservation. *Ciencia Pesquera*, 27(2), 33–52.
- Tavares, R., & Arocha, F. (2008). Species diversity, relative abundance and length structure of oceanic sharks caught by the Venezuelan longline fishery in the Caribbean Sea and western-Central Atlantic. *Zootecnia Tropical*, 26(4), 489–503.
- Thorson, T. B. (1982). The impact of commercial exploitation on sawfish and shark populations in Lake Nicaragua. *Fisheries*, 7(2), 2–10. https://doi.org/10.1577/1548-8446(1982)007<0002:tioceo>2.0.co;2
- Van Beek, I. J. M., Debrot, A. O., & de Graaf, M. (2013). Elasmobranchs in the Dutch Caribbean: current population status, fisheries, and conservation. *Proceedings of the 65th Gulf and Caribbean Fisheries Institute*, 65, 147–155.
- VanderWright, W., Carlson, J., Pollom, R., & Dulvy, N. (2020). Sphyrna gilberti. IUCN Red List of Threatened Species 2020: E.T152783714A172115852, https://dx.doi.org/10.2305/IUCN.UK.2020-3.RLTS.T152783714A172115852.en
- Viele, J. (1996). The Florida Keys: A History of the Pioneers. Pineapple Press.
- Walls, R. H. L., & Dulvy, N. K. (2020). Eliminating the dark matter of data deficiency by predicting the conservation status of Northeast Atlantic and Mediterranean Sea sharks and rays. *Biological Conservation*, 246(April 2019), 108459. https://doi.org/10.1016/j.biocon.2020.108459
- Walls, R. H. L., & Dulvy, N. K. (2021). Tracking the rising extinction risk of sharks and rays in the Northeast Atlantic Ocean and Mediterranean Sea. *Scientific Reports*, 11(1), 1–15. https://doi.org/10.1038/s41598-021-94632-4
- Ward-Paige, C. A. (2017). A global overview of shark sanctuary regulations and their impact on shark fisheries. *Marine Policy*, 82, 87–97. https://doi.org/10.1016/j.marpol.2017.05.004
- Ward-Paige, C. A., Mora, C., Lotze, H. K., Pattengill-Semmens, C., McClenachan, L., Arias-Castro, E., & Myers, R. A. (2010). Large-scale absence of sharks on reefs in the greater-Caribbean: A footprint of human pressures. *PLoS ONE*, 5(8), e11968. https://doi.org/10.1371/journal.pone.0011968

- Ward-Paige, C. A., Pattengill-Semmens, C., Myers, R. A., & Lotze, H. K. (2011). Spatial and temporal trends in yellow stingray abundance: Evidence from diver surveys. *Environmental Biology of Fishes*, 90, 263–276. https://doi.org/10.1007/s10641-010-9739-1
- Ward-Paige, C. A., & Worm, B. (2017). Global evaluation of shark sanctuaries. Global Environmental Change, 47, 174-189. https://doi.org/10.1016/j.gloenvcha.2017.09.005
- Waycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S., Calladine, A., Fourqurean, J. W., Heck, K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Short, F. T., & Williams, S. L. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. *Proceedings of the National Academy of Sciences of the United States of America*, 106(30), 12377–12381. https://doi.org/10.1073/pnas.0905620106
- WECAFC. (2018). Report of the First Meeting of the WECAFC /OSPESCA/CRFM/CITES/CFMC Working Group on Shark Conservation and Management (Issue October 17-19, 2017). http://www.fao.org/3/i8718en/I8718EN.pdf
- WECAFC. (2019). Terms of Reference and Updated Workplan of (selected) Working Groups. WECAFC/XVII/2019/Ref.28
- Weigmann, S. (2016). Annotated checklist of the living sharks, batoids and chimaeras (Chondrichthyes) of the world, with a focus on biogeographical diversity. *Journal of Fish Biology*, 88(3), 837–1037. https://doi.org/10.1111/jfb.12874
- White, W. T., & Sommerville, E. (2010). Elasmobranchs of topical marine ecosystems. In J. C. Carrier, J. A. Musick, & M. R. Heithaus (Eds.), *Sharks and their Relatives, Vol. II* (pp. 159–239). CRC Press.
- Wing, S. R., & Wing, E. (2001). Prehistoric fisheries in the Caribbean. *Coral Reefs*, 20, 1–8. https://doi.org/10.1007/s003380100142
- Worm, B., Davis, B., Kettemer, L., Ward-Paige, C. A., Chapman, D., Heithaus, M. R., Kessel, S. T., & Gruber, S. H. (2013). Global catches, exploitation rates, and rebuilding options for sharks. *Marine Policy*, 40(1), 194–204. https://doi.org/10.1016/j.marpol.2012.12.034
- Yan, H. F., Kyne, P. M., Jabado, R. W., Leeney, R. H., Davidson, L. N. K., Derrick, D. H., Finucci, B., Freckleton, R. P., Fordham, S. V., & Dulvy, N. K. (2021). Overfishing and habitat loss drives range contraction of iconic marine fishes to near extinction. *Science Advances*, 7(7), eabb6026. https://doi.org/10.1126/sciadv.abb6026
- Zeller, D., Palomares, M. L. D., Tavakolie, A., Ang, M., Belhabib, D., Cheung, W. W. L., Lam, V. W. Y., Sy, E., Tsui, G., Zylich, K., & Pauly, D. (2016). Still catching attention: Sea Around Us reconstructed global catch data, their spatial expression and public accessibility. *Marine Policy*, 70, 145–152. https://doi.org/10.1016/j.marpol.2016.04.046
- Zhang, X., Cortés, E., Courtney, D., & Scott-Denton, E. (2014). Shrimp Fishery Bycatch Estimates for Smoothhound Sharks in the Gulf of Mexico, 1972-2012. SEDAR39-DW-05. SEDAR, North Charleston, SC. 18 pp.

Table 1: The number and percentage of chondrichthyans found in the Western Central Atlantic by IUCN Red List of Threatened Species category. Totals for the threatened categories, which include Critically Endangered, Endangered, and Vulnerable, appear in italics

IUCN Red List category	Red List status: All species (%)	Red List status: Sharks (%)	Red List status: Rays (%)	Red List status: Chimaeras (%)
Critically Endangered	12 (6.7)	8 (7.8)	4 (5.6)	0 (0)
Endangered	25 (13.9)	15 (14.7)	10 (13.9)	0 (0)
Vulnerable	27 (15)	18 (17.6)	9 (12.5)	0 (0)
Near Threatened	17 (9.4)	11 (10.8)	5 (6.9)	1 (16.7)
Least Concern	97 (53.9)	48 (47.1)	44 (61.1)	5 (83.3)
Data Deficient	2 (1.1)	2 (2)	0 (0)	0 (0)
Total threatened	64 (35.6)	41 (40.2)	23 (31.9)	0 (0)

Table 2: Total reconstructed catch of sharks and rays in the Western Central Atlantic (WCA; FAO Major Fishing Area 31) from 1950 to 2016 by country. Note that each country's catch outside of the WCA was omitted. Underlying data is from Sea Around Us (Pauly et al., 2020). mt, metric tons

Origin of fleet	Country	Shark catch (mt)	Ray catch (mt)	Shark & Ray catch (mt)
WCA	United States	646,031	74,292	720,323
	Venezuela	467,135	192,310	659,445
	Mexico (Atlantic)	387,410	141,355	528,765
	Cuba	159,636	52,724	212,360
	Dominican Republic	177,517	17,894	195,411
	Jamaica	144,568		144,568
	Guyana	92,368		92,368
	Trinidad & Tobago	69,138	1,051	70,189
	Belize	62,514		62,514
	Suriname	17,562	34,473	52,035
	French Guiana	49,564	265	49,829
	Nicaragua (Caribbean)	31,093	16,049	47,142
	Martinique (France)	11,603	44	11,647
	Barbados	10,665		10,665
	Colombia	9,278		9,278
	Costa Rica (Caribbean)	4,544		4,544
	Turks & Caicos Isl. (UK)	2,180		2,180
	Antigua & Barbuda	1,565		1,565
	Grenada	1,479		1,479
	Panama (Caribbean)	1,201		1,201
	St Martin†	1,178		1,178
	Honduras (Caribbean)	1,168		1,168
	Saint Vincent & the Grenadines	1,083	10	1,093
	Guatemala (Caribbean)		872	872

Origin of fleet	Country	Shark catch (mt)	Ray catch (mt)	Shark & Ray catch (mt)
	Guadeloupe (France)	701	96	797
	Saint Barthelemy (France)	723		723
	Bahamas	720		720
	Curaçao	664		664
	Saint Lucia	522	59	581
	Cayman Isl. (UK)	485		485
	Bermuda (UK)	438		438
	Aruba (Netherlands)		301	301
	Bonaire (Netherlands)	279		279
	Dominica	129	0	129
	Montserrat (UK)	63	0	63
	Haiti	15	39	55
	British Virgin Isl. (UK)	37		37
	Brazil	26		26
	Anguilla (UK)		12	12
	Saba and St. Eustatius (Netherlands)			
	Saint Kitts and Nevis			
	U.S. Virgin Islands (USA)			
	Puerto Rico (USA)			
Foreign	Spain	28,405		28,405
	South Korea	4,079	14,561	18,640
	France		16,363	16,363
	Japan	1,972	5,834	7,807
	Unknown Fishing Country	7,746	-	7,746
	Taiwan	6,320		6,320
	Portugal	673		673
	China	111		111

Origin of fleet	Country	Shark catch (mt)	Ray catch (mt)	Shark & Ray catch (mt)
Vanu	atu	75		75
Canao	la	64		64
Nethe	erlands	22		22
Philip	pines	0.2		0.2
Denm	ark	0.1		0.1
Swed	en	0.0001		0.0001
	Total	2,404,751	568,603	2,973,354

Table 3: Country-level management information, where NPOA–Sharks is a National Plan of Action for the Conservation and Management of Sharks; RPOA–Sharks is a Regional Plan of Action for the Conservation and Management of Sharks; other regulations include time/area closures, a ban on exports of shark or ray products, species-specific measures, or gear restrictions relevant to chondrichthyans; NPOA–IUU is a National plan of action to prevent, deter and eliminate Illegal, Unreported and Unregulated (IUU) Fishing; RPOA–IUU is a Regional plan of action to prevent, deter and eliminate Illegal, Unreported and Unregulated (IUU) Fishing; PSM is the Agreement on Port State Measures; WECAFC is the Western Central Atlantic Fishery Commission; CITES is the Convention on International Trade in Endangered Species of Wild Fauna and Flora; ICCAT is the International Commission for the Conservation of Atlantic Tunas; CMS is the Convention of Migratory Species of Wild Animals; CMS Sharks MoU is the Memorandum of Understanding on the Conservation of Migratory Sharks; and SPAW is the Convention for the Protection and Development of the Marine Environment of the Wider Caribbean Region Specially Protected Areas and Wildlife Protocol. 'Coop.' stands for cooperator (a special status in ICCAT with similar rights and obligations to a contracting party) and 'Sig.' stands for signatory (where a country has yet to ratify CMS). 'N/A' stands for not applicable (where a country is beyond the convention area of an international mechanism). Cells containing a 'No' are highlighted in grey. 'Country' refers to all states and territories. Full annotated table available in Supporting Information

Country	Shark fishing ban	Ray fishing ban	Finning ban	NPOA– or RPOA– Sharks¶	Other regulations	NPOA– or RPOA–IUU	PSM	WECAFC ††	CITES ‡‡	ICCAT §§	CMS ¶¶	CMS Sharks MoU†††
Anguilla	No	No	No	No	No	RPOA	No	Yes	Yes	Yes	No	No
Antigua & Barbuda	No	No	Yes	NPOA	Yes	NPOA, RPOA	No	Yes	Yes	No	Yes	No
Aruba	No	No	No	No	No	RPOA	No	Yes	Yes	No	No	No
Bahamas	Yes	No	Yes	No	Yes	RPOA	Yes	Yes	Yes	No	No	No
Barbados	No	No	No	No	No	RPOA	Yes	Yes	Yes	Yes	No	No
Belize	No	Yes	Yes	NPOA‡, RPOA	Yes	NPOA, RPOA	No	Yes	Yes	Yes	No	No
Bermuda	No	No	Yes	No	No	RPOA	No	Yes	Yes	Yes	Yes	Yes
Bonaire	Yes	Yes	Yes	No	Yes	RPOA	No	Yes	Yes	No	Yes	Yes

Country	Shark fishing ban	Ray fishing ban	Finning ban	NPOA– or RPOA– Sharks¶	Other regulations	NPOA– or RPOA–IUU	PSM	WECAFC ††	CITES ‡‡	ICCAT §§	CMS ¶¶	CMS Sharks MoU†††
Brazil	No	No	Yes	NPOA	Yes	RPOA	No	Yes	Yes	Yes	Yes	Yes
British Virgin Islands	Yes	Yes	Yes	No	Yes	RPOA	No	Yes	Yes	Yes	Yes	Yes
Cayman Islands	Yes	Yes	Yes	No	No	RPOA	No	Yes	Yes	Yes	Yes	Yes
Colombia	Yes	Yes	Yes	NPOA	Yes	RPOA	No	Yes	Yes	No	No	Yes
Costa Rica	No	No	Yes	NPOA, RPOA	Yes	RPOA	Yes	Yes	Yes	Coop.	Yes	Yes
Cuba	No	No	Yes	NPOA	Yes	RPOA	Yes	Yes	Yes	No	Yes	No
Curaçao	No	No	No	No	No	RPOA	No	Yes	Yes	Yes	Yes	No
Dominica	No	No	No	No	No	RPOA	Yes	Yes	Yes	No	No	No
Dominican Republic	Yes	Yes	Yes	RPOA	Yes	RPOA	No	Yes	Yes	No	Yes	No
French Guiana	No	No	Yes	No	Yes	RPOA	Yes	Yes	Yes	Yes	Yes	Yes
Grenada	No	No	No	No	No	RPOA	Yes	Yes	Yes	Yes	No	No
Guadeloupe	No	No	Yes	No	Yes	RPOA	Yes	Yes	Yes	Yes	Yes	Yes
Guatemala	No	No	Yes	NPOA, RPOA	Yes	RPOA	No	Yes	Yes	Yes	No	No
Guyana	No	No	Yes	No	No	RPOA	Yes	Yes	Yes	Coop.	No	No
Haiti	No	No	No	No	No	RPOA	No	Yes	No	No	No	No
Honduras	Yes†	No	Yes	RPOA	Yes	RPOA	No	Yes	Yes	Yes	Yes	No
Jamaica	No	No	No	No	No	RPOA	No	Yes	Yes	No	Sig.	No
Martinique	No	No	Yes	No	Yes	RPOA	Yes	Yes	Yes	Yes	Yes	Yes
Mexico	No	No	Yes	NPOA	Yes	RPOA	No	Yes	Yes	Yes	No	No
Montserrat	No	No	No	No	No	RPOA	No	Yes	Yes	Yes	Yes	Yes
Nicaragua	No	No	Yes	NPOA, RPOA	No	RPOA	Yes	Yes	Yes	Yes	No	No
Panamá	No	No	Yes	NPOA, RPOA	Yes	RPOA	Yes	Yes	Yes	Yes	Yes	No
Puerto Rico	No	No	Yes	NPOA	Yes	NPOA, RPOA	Yes	Yes	Yes	Yes	No	Yes
Saba	Yes	Yes	Yes	No	Yes	RPOA	No	Yes	Yes	No	Yes	Yes
Saint Kitts and Nevis	No	No	No	No	No	NPOA, RPOA	Yes	Yes	Yes	No	No	No
Saint Lucia	No	No	No	No	No	RPOA	No	Yes	Yes	No	No	No

<u> </u>												
Country	Shark fishing ban	Ray fishing ban	Finning ban	NPOA– or RPOA– Sharks¶	Other regulations	NPOA– or RPOA–IUU	PSM	WECAFC ††	CITES ‡‡	ICCAT §§	CMS ¶¶	CMS Sharks MoU†††
Saint Vincent & the Grenadines	No	No	Yes	No	No	RPOA	Yes	Yes	Yes	Yes	No	No
Sint Maarten	Yes	Yes	Yes	No	Yes	RPOA	No	Yes	Yes	No	Yes	No
St. Barthelemy	No	No	Yes	No	Yes	RPOA	Yes	Yes	Yes	No	Yes	Yes
St. Eustatius	Yes	Yes	Yes	No	Yes	RPOA	No	Yes	Yes	No	Yes	Yes
St. Martin	No	No	Yes	No	Yes	RPOA	Yes	Yes	Yes	Yes	Yes	Yes
Suriname	No	No	No	No	No	RPOA	No	Yes	Yes	Coop.	No	No
Trinidad & Tobago	No	No	Yes	No	No	RPOA	Yes	Yes	Yes	Yes	Yes	No
Turks and Caicos Islands	No	No	No	No	Yes	RPOA	No	Yes	Yes	Yes	Yes	Yes
United States	No	No	Yes	NPOA	Yes	NPOA, RPOA	Yes	Yes	Yes	Yes	No	Yes
Venezuela	No	No	Yes	NPOA	Yes	RPOA	No	Yes	Yes	Yes	No	No
Virgin Islands	No	No	Yes	NPOA	Yes	NPOA, RPOA	Yes	Yes	Yes	Yes	No	Yes
Percent Participation	22.2	20.0	71.1	35.6	60.0	100	44.4	100	97.8	64.4	53.3	42.2

[†]Formed in 2011, but modified in 2016 to allow the retention and sale of incidentally caught sharks.

‡NPOA specifically for sharks on the high seas.

§Lawson and Fordham (2018)

Note that there is a draft WECAFC Regional Plan of Action that has yet to be adopted. <u>http://www.fao.org/ipoa-sharks/national-and-</u>regional-plans-of-action/en/

††Members: http://www.fao.org/fishery/rfb/wecafc/en#Org-OrgsInvolved

‡‡Parties: <u>https://cites.org/eng/disc/parties/chronolo.php?order=field_official_name&sort=asc</u>

§§Parties: https://iccat.int/en/contracting.html

Parties: <u>https://www.cms.int/en/parties-range-states</u>

titParties: https://www.cms.int/sharks/en/signatories-range-states

Parties: https://www.car-spaw-rac.org/?Who-we-are

Supporting Information

Table S1: List of chondrichthyans included in this review, including their category of extinction risk according to global assessments by the IUCN, their CITES Appendix, CMS Appendix, and SPAW Annex status, and results of stock assessments according to the United States or ICCAT by region (where 'Atl' is Atlantic and 'GoM' is Gulf of Mexico). Overfishing refers to fishing mortality being higher than it is at maximum sustainable yield and overfished refers to a stock having a low population size that threatens its ability to reach maximum sustainable yield. Species are organized alphabetically within broad taxonomic groups

Group	Scientific Name ^{†,‡}	Common Name	IUCN	CITES§	CMS	SPAW ^{††}	Stock	Stock Assessment Results ^{‡‡}		
Group	Scientific Name ¹¹	Common Name	IUCN	CITES	CIVIS "	51 A W	Overfishing	Overfished	Region	
Sharks	Alopias superciliosus	Bigeye Thresher Shark	VU	II	II		Unknown	Unknown	Atl	
	Alopias vulpinus	Common Thresher Shark	VU	II	II		Unknown	Unknown	Atl, GoM	
	Apristurus canutus [†]	Hoary Catshark	LC							
	Apristurus parvipinnis [†]	Smallfin Catshark	LC							
	Apristurus riveri [†]	Broadgill Catshark	LC							
	Carcharhinus acronotus	Blacknose Shark	EN				Yes	Yes	Atl	
	Carcharhinus altimus	Bignose Shark	NT				Unknown	Unknown	Atl	
	Carcharhinus brevipinna	Spinner Shark	VU				Unknown	Unknown	Atl, GoM	
	Carcharhinus falciformis	Silky Shark	VU	II	II	III	Unknown	Unknown	Atl, GoM	
	Carcharhinus galapagensis	Galapagos Shark	LC				Unknown	Unknown	Atl	
	Carcharhinus isodon	Finetooth Shark	NT				No	No	Atl, GoM	
	Carcharhinus leucas	Bull Shark	VU				Unknown	Unknown	Atl, GoM	
	Carcharhinus limbatus	Blacktip Shark	VU				No	No	Atl, GoM	
	Carcharhinus longimanus	Oceanic Whitetip Shark	CR	II	Ι	III	Unknown	Unknown	Atl, GoM	
	Carcharhinus obscurus	Dusky Shark	EN		II		Yes	Yes	Atl, GoM	
	Carcharhinus perezi	Caribbean Reef Shark	EN				Unknown	Unknown	Atl	
	Carcharhinus plumbeus	Sandbar Shark	EN				No	Yes	Atl, GoM	
	Carcharhinus porosus	Smalltail Shark	CR				Unknown	Unknown	Atl	
	Carcharhinus signatus	Night Shark	EN				Unknown	Unknown	Atl	
	Carcharias taurus	Sand Tiger Shark	CR				Unknown	Unknown	Atl	
	Carcharodon carcharias	White Shark	VU	II	Ι		Unknown	Unknown	Atl	

Crown	Scientific Name ^{†, ‡}	Common Name	UICN	CITES	CMS	SPAW ^{††}	Stock	Assessment Re	sults ^{‡‡}
Group	Scientific Name"	Common Name	IUCN	CHES		SPAW	Overfishing	Overfished	Region
	Centrophorus granulosus	Gulper Shark	EN						
	Centrophorus uyato	Little Gulper Shark	EN						
	Centroscyllium fabricii	Black Dogfish	LC						
	Centroscymnus coelolepis	Portuguese Dogfish	NT						
	Centroscymnus owstonii	Roughskin Dogfish	VU						
	Cetorhinus maximus	Basking Shark	EN	II	Ι		Unknown	Unknown	Atl
	Chlamydoselachus anguineus	Frilled Shark	LC						
	Cirrhigaleus asper	Roughskin Spurdog	DD						
	Dalatias licha	Kitefin Shark	VU						
	Deania profundorum	Arrowhead Dogfish	NT						
	Echinorhinus brucus	Bramble Shark	EN						
	Eridacnis barbouri [†]	Cuban Ribbontail Catshark	LC						
	Etmopterus bigelowi	Blurred Lanternshark	LC						
	Etmopterus bullisi [†]	Lined Lanternshark	LC						
	Etmopterus carteri [†]	Carter Gilbert's Lanternshark	LC						
	Etmopterus gracilispinis	Broadbanded Lanternshark	LC						
	Etmopterus hillianus [‡]	Caribbean Lanternshark	LC						
	Etmopterus perryi [†]	Dwarf Lanternshark	LC						
	Etmopterus pusillus	Smooth Lanternshark	LC						
	Etmopterus robinsi [†]	West Indian Lanternshark	LC						
	Etmopterus schultzi [†]	Fringefin Lanternshark	LC						
	Etmopterus virens [†]	Green Lanternshark	LC						
	Galeocerdo cuvier	Tiger Shark	NT				Unknown	Unknown	Atl, GoM
	Galeus antillensis [†]	Antilles Catshark	LC						
	Galeus arae [†]	Roughtail Catshark	LC						
	Galeus cadenati [†]	Longfin Sawtail Catshark	LC						
	Galeus springeri [†]	Springer's Sawtail Catshark	LC						
	Ginglymostoma cirratum	Atlantic Nurse Shark	VU				Unknown	Unknown	Atl, GoM
	Heptranchias perlo	Sharpnose Sevengill shark	NT				Unknown	Unknown	Atl
	Hexanchus griseus	Bluntnose Sixgill Shark	NT				Unknown	Unknown	Atl

Group	Scientific Name ^{†, ‡}	Common Name	IUCN	CITES §	CMS	SPAW ^{††}	Stock	Assessment F	Results ^{‡‡}
Group	Scientific Ivanie ¹⁷ *	Common Mame	IUUN	CHES	UIVIS"	51 A W	Overfishing	Overfished	Region
	Hexanchus vitulus [†]	Atlantic Sixgill Shark	LC				Unknown	Unknown	Atl
	Isistius brasiliensis	Smalltooth Cookie-cutter Shark	LC						
	Isistius plutodus	Largetooth Cookie-cutter Shark	LC						
	Isogomphodon oxyrhynchus	Daggernose Shark	CR						
	Isurus oxyrinchus	Shortfin Mako Shark	EN	II	II		Yes	Yes	North Atl (ICCAT)
	Isurus paucus	Longfin Mako Shark	EN	II	II		Unknown	Unknown	Atl
	Lamna nasus	Porbeagle	VU	II	II		No	Yes	Northwest Atl (ICCAT)
	Megachasma pelagios	Megamouth Shark	LC						
	Mitsukurina owstoni	Goblin Shark	LC						
	$Mollisquama\ mississippiensis^\dagger$	American Pocket Shark	LC						
	Mustelus canis	Dusky Smoothhound	NT				No	No	Atl; GoM smoothhound complex
	Mustelus higmani	Smalleye Smoothhound	EN						1
	Mustelus minicanis [†]	Venezuelan Dwarf Smoothhound	EN						
	Mustelus norrisi	Narrowfin Smoothhound	NT				No	No	GoM smoothhound complex
	Mustelus sinusmexicanus [†]	Gulf of Mexico Smoothhound	LC				No	No	GoM smoothhound complex
	Negaprion brevirostris	Lemon Shark	VU				Unknown	Unknown	Atl, GoM
	Odontaspis ferox	Ragged-tooth Shark	VU						,
	Odontaspis noronhai	Bigeye Sand Tiger	LC				Unknown	Unknown	Atl
	Oxynotus caribbaeus [†]	Caribbean Roughshark	LC						
	Parmaturus campechiensis [†]	Campeche Catshark	LC						
	Prionace glauca	Blue Shark	NT		II		No	No	North Atl (ICCAT)
	Pristiophorus schroederi [†]	Bahamas Sawshark	LC						× /

Crown	Scientific Name ^{†, ‡}	Common Name	IUCN	CITES §	CMS¶	SPAW ^{††}	Stock	Assessment Re	esults ^{‡‡}
Group	Scientific Name"*	Common Name	IUCN	CITE2.		SFAW	Overfishing	Overfished	Region
	Pseudocarcharias kamoharai	Crocodile Shark	LC						
	Pseudotriakis microdon	False Catshark	LC						
	Rhincodon typus	Whale Shark	EN	II	Ι	III	Unknown	Unknown	Atl
	Rhizoprionodon lalandii	Brazilian Sharpnose Shark	VU						
	Rhizoprionodon porosus	Caribbean Sharpnose Shark	VU				Unknown	Unknown	Atl
	Rhizoprionodon terraenovae	Atlantic Sharpnose Shark	LC				No	No	Atl, GoM
	Schroederichthys maculatus [†]	Narrowtail Catshark	LC						
	Schroederichthys tenuis \ddagger	Slender Catshark	LC						
	Scyliorhinus boa	Boa Catshark	LC						
	Scyliorhinus hesperius [†]	Whitesaddled Catshark	LC						
	Scyliorhinus meadi †	Blotched Catshark	LC						
	Scyliorhinus retifer [‡]	Chain Catshark	LC						
	Scyliorhinus torrei [†]	Cuban Catshark	LC						
	Somniosus microcephalus	Greenland Shark	VU						
	Somniosus rostratus	Little Sleeper Shark	LC						
	Sphyrna gilberti	Carolina Hammerhead	DD						
	Sphyrna lewini	Scalloped Hammerhead	CR	II	II	III	Yes	Yes	Atl, GoM
	Sphyrna media	Scoophead Shark	CR						
	Sphyrna mokarran	Great Hammerhead Shark	CR	II	II	III	Unknown	Unknown	Atl, GoM
	Sphyrna tiburo	Bonnethead Shark	EN				Unknown	Unknown	Atl, GoM
	Sphyrna tudes	Smalleye Hammerhead	CR						
	Sphyrna zygaena	Smooth Hammerhead Shark	VU	II	II	III	Unknown	Unknown	Atl, GoM
	Squaliolus laticaudus	Spined Pygmy Shark	LC						
	Squalus acanthias	Spiny Dogfish	VU		II		No	No	Atl Coast
	Squalus clarkae [‡]	Genie's Dogfish	LC						
	Squalus cubensis	Cuban Dogfish	LC						
	Squatina david [†]	David's Angelshark	NT						
	Squatina dumeril [‡]	Sand Devil	LC				Unknown	Unknown	Atl
	Zameus squamulosus	Velvet Dogfish	LC						
Rays	Aetobatus narinari	Whitespotted Eagle Ray	EN						

	Saiantific Namatit	Compose Nome	HICN	CITES §	CMS¶	SPAW ^{††}	Stock	Assessment Re	sults ^{‡‡}
oup	Scientific Name ^{†,‡}	Common Name	IUCN	CITE ₂	UMD	SPAW	Overfishing	Overfished	Region
-	Bathytoshia centroura	Roughtail Stingray	VU						0
	Benthobatis marcida [†]	Caribbean Blind Numbfish	LC						
	Breviraja claramaculata [†]	Brightspot Skate	LC						
	Breviraja colesi [†]	Lightnose Skate	LC						
	Breviraja mouldi [†]	Mould's Skate	LC						
	Breviraja nigriventralis [†]	Blackbelly Shortskate	LC						
	Breviraja spinosa [†]	Spinose Skate	LC						
	Cruriraja atlantis [†]	Atlantic Pygmy Skate	LC						
	Cruriraja cadenati [†]	Broadfoot Pygmy Skate	LC						
	Cruriraja poeyi [†]	Poey's Pygmy Skate	LC						
	Cruriraja rugosa [‡]	Rough Pygmy Skate	LC						
	Dactylobatus armatus [†]	Skillet Skate	LC						
	Dactylobatus clarkia	Hook Skate	LC						
	Diplobatis colombiensis †	Colombian Electric Ray	VU						
	Diplobatis guamachensis [†]	Brownband Numbfish	VU						
	Diplobatis picta [‡]	Painted Dwarf Numbfish	VU						
	Dipturus bullisi [‡]	Tortugas Skate	LC						
	Dipturus garricki [‡]	San Blas Skate	LC						
	Dipturus olseni [†]	Spreadfin Skate	LC						
	Dipturus oregoni [†]	Hooktail Skate	LC						
	Dipturus teevani	Caribbean Skate	LC						
	Fenestraja atripinna [†]	Blackfin Pygmy Skate	LC						
	Fenestraja cubensis [†]	Cuban Pygmy Skate	LC						
	Fenestraja ishiyamai [†]	Plain Pygmy Skate	LC						
	Fenestraja plutonia [†]	Pluto Pygmy Skate	LC						
	Fenestraja sinusmexicanus [†]	Gulf Pygmy Skate	LC						
	Fontitrygon geijskesi	Wingfin Stingray	CR						
	Gurgesiella atlantica [‡]	Atlantic Pygmy Skate	LC						
	Gymnura altavela	Spiny Butterfly Ray	EN						
	Gymnura lessae [‡]	Lessa's Butterfly Ray	LC						

Group	Scientific Name ^{†,‡}	Common Name		CITES §	CMS¶	SPAW ^{††}	Stock Assessment Results ^{‡‡}		
			IUCN				Overfishing	Overfished	Region
	Gymnura micrura	Smooth Butterfly Ray	NT						
	Hypanus americanus	Southern Stingray	NT						
	Hypanus guttatus	Longnose Stingray	NT						
	Hypanus sabinus [‡]	Atlantic Stingray	LC						
	Hypanus say	Bluntnose Stingray	NT						
	Leucoraja garmani	Rosette Skate	LC						
	Leucoraja lentiginosa [†]	Freckled Skate	LC						
	Leucoraja yucatanensis [†]	Yucatán Skate	LC						
	Mobula birostris	Oceanic Manta Ray	EN	II	Ι	III			
	Mobula hypostoma	Lesser Devilray	EN	II	Ι				
	Mobula mobular	Giant Devilray	EN	II	Ι				
	Mobula tarapacana	Chilean Devilray	EN	II	Ι				
	Mobula thurstoni	Bentfin Devilray	EN	II	Ι				
	Myliobatis freminvillii	Bullnose Ray	VU						
	Myliobatis goodei	Southern Eagle Ray	VU						
	Narcine bancroftii [†]	Caribbean Numbfish	LC						
	Neoraja carolinensis †	Carolina Dwarf Skate	LC						
	Pristis pectinate	Smalltooth Sawfish	CR	Ι	Ι	II			
	Pristis pristis	Largetooth Sawfish	CR	Ι	Ι	II			
	Pseudobatos lentiginosus [‡]	Atlantic Guitarfish	VU						
	Pseudobatos percellens	Southern Guitarfish	EN						
	Pseudoraja fischeri [†]	Fanfin Skate	LC						
	Pteroplatytrygon violacea	Pelagic Stingray	LC						
	Rajella fuliginea [†]	Sooty Skate	LC						
	Rajella purpuriventralis†	Purplebelly Skate	LC						
	Rhinoptera bonasus	American Cownose Ray	VU						
	Rhinoptera brasiliensis	Brazilian Cownose Ray	VU						
	Rostroraja ackleyi [†]	Ocellate Skate	LC						
	Rostroraja bahamensis [†]	Bahama Skate	LC						
	Rostroraja cervigoni [†]	Venezuela Skate	NT						

Group	Scientific Name ^{†, ‡}	Common Name	IUCN	CITES §	CMS¶	SPAW ^{††}	Stock Assessment Results ^{‡‡}		
Group							Overfishing	Overfished	Region
	Rostroraja eglanteria	Clearnose Skate	LC						
	Rostroraja texana [†]	Roundel Skate	LC						
	Schroederobatis americana [†]	American Legskate	LC						
	Springeria folirostris [†]	Leafnose Legskate	LC						
	Springeria longirostris [†]	Longnose Legskate	LC						
	Styracura schmardae [‡]	Chupare Stingray	EN						
	Tetronarce occidentalis	Western Atlantic Torpedo Ray	LC						
	Torpedo andersoni †	Caribbean Torpedo	LC						
	Urobatis jamaicensis [†]	Yellow Stingray	LC						
	Urotrygon microphthalmum	Smalleye Round Ray	CR						
	Urotrygon venezuelae [†]	Venezuelan Round Ray	EN						
Ghost	Chimaera bahamaensis [†]	Bahamas Ghostshark	LC						
Sharks	Chimaera cubana †	Cuban Chimaera	LC						
	Hydrolagus alberti †	Gulf Chimaera	LC						
	Hydrolagus mirabilis	Large-eyed Rabbitfish	LC						
	Neoharriotta carri [†]	Dwarf Sicklefin Chimaera	NT						
	Rhinochimaera atlantica	Broadnose Chimaera	LC						
	TEndemie to EAO Area 21								

[†]Endemic to FAO Area 31

[‡]Near-endemic to FAO Area 31

[§]Convention on International Trade in Endangered Species of Wild Fauna and Flora. Retrieved from:

https://cites.org/eng/app/appendices.php

[¶]Memorandum of Understanding on the Conservation of Migratory Sharks. Retrieved from: https://www.cms.int/sharks/en/species ^{††}Specially Protected Areas and Wildlife. Retrieved from: http://www.car-spaw-

rac.org/IMG/pdf/annexes_i_ii_iii_of_spaw_protocol_revised_cop10_honduras_2019.pdf

‡‡Stock status updates as of June 30, 2021. Results retrieved from: <u>https://www.fisheries.noaa.gov/national/population-assessments/fishery-stock-status-updates and https://www.iccat.int/Documents/Meetings/Docs/2017_SCRS_REP_ENG.pdf</u>

Table S2: Conservation responsibilities (CoRs) for all chondrichthyans in the Western Central Atlantic Ocean across 44 countries and territories as well as international waters. CoR is a function of extinction risk and proportional species distributions within a given jurisdiction and is normalized from 0 to 1

Country	CoR
United States	1.0000
Venezuela	0.4655
International waters	0.4121
Mexico	0.3330
Guyana	0.2152
The Bahamas	0.1997
Suriname	0.1827
Colombia	0.1726
French Guiana (France)	0.1641
Nicaragua	0.1141
Cuba	0.0962
Honduras	0.0859
Trinidad & Tobago	0.0841
Bermuda (UK)	0.0673
Dominican Republic	0.0389
Panama	0.0358
amaica	0.0274
Puerto Rico (USA)	0.0250
Furks and Caicos Islands (UK)	0.0222
Haiti	0.0199
Belize	0.0185
Aruba (Netherlands)	0.0143
Barbados	0.0138
Cayman Islands (UK)	0.0124
Antigua & Barbuda	0.0121
Anguilla (UK)	0.0100
Guadeloupe (France)	0.0094
British Virgin Islands (UK)	0.0093
Grenada	0.0088
Brazil	0.0087
Bonaire/St. Eustatius/Saba (Netherlands)	0.0078
Costa Rica	0.0073
US Virgin Islands (USA)	0.0064
Curaçao (Netherlands)	0.0058

Country	CoR
Saint Vincent & the Grenadines	0.0057
Martinique (France)	0.0053
Dominica	0.0032
Saint Kitts and Nevis	0.0025
Saint Martin, Saint Barthelemy (France)	0.0024
Saint Lucia	0.0022
Colombia/ Jamaica	0.0019
Guatemala	0.0012
Montserrat (UK)	0.0011
Sint Maarten	0.0002
Disputed Barbados/Trinidad & Tobago	0.0001

 Table S3: See separate Excel file.

Table S4: Chondrichthyan Management Responsibility Scores ('CMR Score') for countries in the Western Central Atlantic Ocean. CMR Score is a function of each country's engagement with thirteen management tools that range from national-level fishing bans to participation in international trade agreements (called Management Engagement), extinction risk and proportional species distributions within a given jurisdiction (called Conservation Responsibility), and total reconstructed catch of sharks and rays from 1950 to 2016. CMR Scores are normalized from 0 to 1, where the highest score (USA) was assigned a 1. The higher the CMR Score, the more unmitigated responsibility to manage sharks and rays. Note that some territories were omitted due to the nature of the underlying data

Country	Chondrichthyan Management Responsibility Score
United States	1.00000
Venezuela	0.53274
Mexico	0.34925
Guyana	0.03942
Suriname	0.03300
Cuba	0.03150
Jamaica	0.01373
French Guiana (France)	0.01135
Dominican Republic	0.01055
Trinidad & Tobago	0.01025
Nicaragua	0.00933
Colombia	0.00222

Belize	0.00178
Barbados	0.00034
The Bahamas	0.00025
Honduras	0.00014
Turks and Caicos Islands (UK)	0.00010
Martinique (France)	0.00009
Panama	0.00006
Bermuda (UK)	0.00005
Costa Rica	0.00005
Antigua & Barbuda	0.00004
Grenada	0.00003
Aruba	0.00001
Saint Vincent & the Grenadines	0.00001
Guadeloupe (France)	0.00001
Cayman Islands (UK)	0.00001
Curaçao (Netherlands)	0.00001
Haiti	0.00001
Saint Martin, St. Barthelemy, Sint	0.00001
Maarten (France, Netherlands)	
Saint Lucia	0.00000
Bonaire, Sint Eustatius, Saba	0.00000
(Netherlands) Guatemala	0.00000
Dominica	0.00000
British Virgin Islands (UK)	0.00000
Brazil	0.00000
	0.00000
Anguilla (UK)	
Montserrat (UK)	0.00000
Puerto Rico (USA)	0.00000
Saint Kitts and Nevis	0.00000