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Abstract

We compare judgments of green turtle (Chelonia mydas) captures elicited from

local gillnet skippers and not-for-profit conservation organization employees

operating in a small-scale fishery in Peru, to capture rates calculated from a

voluntary at-sea observer program operating out of the same fishery. To reduce

cognitive biases and more accurately quantify uncertainty in our experts’ judg-
ments, we followed the IDEA (“Investigate,” “Discuss,” “Estimate,” and

“Aggregate”) structured elicitation protocol. The elicited mean monthly esti-

mates of green turtle gillnet captures within summer and winter fishing sea-

sons were higher than the equivalent green turtle capture rates calculated

from the fisheries observer data; however, no statistically significant differ-

ences were identified when comparing the means of the datasets using

bootstrap hypothesis tests (winter observed difference-in-means: 83.15, adj

mean ± SD = 42.39 ± 32.59; summer observed difference-in-means: 68.58, adj

mean ± SD = 54.06 ± 41.22). We investigated respondent performance in rela-

tion to the observer data capture rates. The not-for-profit employees scored

high on accuracy and calibration performance metrics. The gillnet skippers’
judgments ranked higher on informativeness yet lower on accuracy and cali-

bration, potentially reflective of overconfident judgments. This research pre-

sents a new context for using the IDEA protocol, which may prove helpful for

rapid, exploratory evaluations of capture and bycatch impact in data-limited

small-scale fishery management scenarios.
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1 | INTRODUCTION

The incidental capture and subsequent mortality (bycatch)
of vulnerable marine species, such as turtles, is a known

conservation issue in many small-scale fisheries around
the world (Alfaro-Shigueto et al., 2018; Peckham et al.,
2007). The extent to which species of conservation concern
are adversely impacted by many coastal fisheries, however,
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remains a major knowledge gap—data paucity having
been identified as one of the key challenges to address in
the management of the small-scale fisheries subsector
(FAO, 2018). Small-scale fisheries encompass traditional,
low-technology, low-capital fishing methods. A single
small-scale fishery can comprise a diverse array of vessels
(often of small but varying sizes), participants, locations,
resource, and gears (Khalil, Conforti, Ergin, & Gennari,
2017). This heterogeneity can make gathering comprehen-
sive empirical data on capture and bycatch rates a chal-
lenge due to the complexity that these social–ecological
systems represent (Dietz, Ostrom, & Stern, 2003).

Obtaining reliable data on the incidental capture and
mortality of vulnerable species is, nonetheless, necessary
to achieve ecologically and socioeconomically sustainable
fisheries (Suuronen & Gilman, 2019). At-sea, human
observer programs can produce accurate data on the inci-
dental rates of capture and bycatch in fisheries. However,
independent validation of the data is essential, and effec-
tive implementation of observer programs in small-scale
fisheries can be complex and expensive (Bartholomew
et al., 2018; Suuronen & Gilman, 2019). Note that here
we define capture as everything that is caught and
retained in fishing gear, and bycatch as capture that is
discarded at sea, dead or injured to an extent where death
is the result; following the definitions in Hall (1996). Fur-
ther complexity arises because observer coverage is rarely
available for an entire fleet; capture and bycatch esti-
mates are often inferred from a subset of fishing trips,
typically using models to help control for sampling biases
(Benoît & Allard, 2009). Electronic monitoring programs
are increasingly trialed and implemented in both large-
(Ames, Leaman, & Ames, 2007; Needle et al., 2014) and
small-scale fisheries (Bartholomew et al., 2018)—trials in
small-scale fisheries appear promising, with accuracy
similar to at-sea human observers at lower cost. Despite
clear potential in the use of electronic monitoring in fish-
eries, multiple studies evaluating the technology note
that improvements are still needed to detect certain spe-
cies, and recording of catch released below the water
level or in areas outside the camera view remains a major
limitation (Bartholomew et al., 2018; Gilman et al., 2019;
Suuronen & Gilman, 2019). Post-trip interviews of skip-
pers and crews also quantify capture and bycatch in
small-scale fisheries (Alfaro-Shigueto et al., 2018; Goetz,
Read, Santos, Pita, & Pierce, 2013). These data often take
the form of questionnaires and provide the cheapest and
most rapid source of information—at times supporting
near real-time management measures (Drew, 2005).
Quickly obtaining a broad understanding of protected
species’ capture and bycatch rates can be particularly use-
ful in small-scale fisheries, in which data are often lim-
ited (or entirely absent). While significant potential exists

for post-trip questionnaires to support rapid evaluations
of incidental captures to inform bycatch impact in data-
limited fishery scenarios, questionnaire-based interviews
are often considered to be less reliable than data collected
using observer programs as they are subject to individual
respondent's biases and heuristics (Suuronen & Gil-
man, 2019).

In conservation, expert knowledge (substantive infor-
mation on a particular topic that is not widely known by
others; Martin et al., 2012) can be used to inform the
decision-making process. This is due to the need to make
timely management decisions about complex and
dynamic environments, particularly in data-limited sce-
narios, unique circumstances, or when predictions under
uncertainty are required (Burgman et al., 2011; Cook,
Hockings, & Carter, 2010). When drawing on expert
knowledge, however, it is essential to account for the
contextual biases and heuristics that individuals bring
with them, as these can affect the validity of the informa-
tion they give and the subsequent management actions
that result (Kynn, 2008; O'Hagan et al., 2006). The need
to design and implement effective conservation strategies
that are rigorous, robust, repeatable, and include an esti-
mate of uncertainty has resulted in structured, evidence-
based elicitation protocols such as the widely used Delphi
method, which provides feedback from experts over suc-
cessive questionnaire rounds (Cooke, 1991; Helmer-
Hirschberg, Brown, & Gordon, 1966).

While elicited data are not a substitute for empirical
data, structured protocol techniques prove informative in
various fishery management settings when empirical data
are not readily available. For example, this approach has
been used in a risk assessment for New Zealand's critically
endangered M�aui dolphin (Cephalorhynchus hectori maui;
Currey, Boren, Sharp, & Peterson, 2012), and to evaluate
and rank threats to sea turtle populations in several fishing
systems (Klein et al., 2017; Riskas, Tobin, Fuentes, &
Hamann, 2018; Williams, Pierce, Hamann, & Fuentes,
2017). When fisheries lack the data and resources to
implement more comprehensive observer procedures, sig-
nificant potential exists to apply structured elicitation pro-
tocols to expert opinion to reduce personal biases and
heuristics, and to quantify the associated uncertainty.

Peru's small-scale fisheries significantly impact
marine biodiversity through capture and bycatch (Alfaro-
Shigueto et al., 2010). The gillnet, the most commonly
utilized gear (Castillo, Fernandez, Medina, & Guevara-
Carrasco, 2018), has been identified as a major sink for
several species of sea turtle of conservation concern
(Alfaro-Shigueto et al., 2011, 2018; Alfaro-Shigueto,
Dutton, Van Bressem, & Mangel, 2007). Peru's current
regulatory structure does little to help mitigate fishing-
related mortalities of protected species like sea turtles in
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the country's small-scale fisheries. With limited govern-
ment efficacy, not-for-profit organizations play a role in
filling data gaps and implementing conservation inter-
ventions to minimize protected species capture and
bycatch. For example, not-for-profit organizations in Peru
implement and maintain volunteer observer programs
with small-scale fishers, and undertake post-trip inter-
views of skippers and crews (Alfaro-Shigueto et al., 2011,
2018). Conservation efforts such as these highlight the
need for further management actions to help reduce vul-
nerable species captures in small-scale fishing systems.
To improve rapid, exploratory evaluations of marine
megafauna captures in data-limited small-scale fishery
management scenarios, we compare at-sea human
observer data from a small-scale fishery to the incidental
capture estimates of green turtles obtained using a struc-
tured elicitation protocol.

In this study, we use the IDEA protocol (“Investigate,”
“Discuss,” “Estimate,” and “Aggregate”), which follows a
modified Delphi method, incorporating many suggested
adaptations to structured elicitation protocols that have
been used in previous conservation research. Specifically,
the protocol uses a four-step elicitation process to reduce
overconfidence (Speirs-Bridge et al., 2010), encourages
consultation with a diverse group of experts (Burgman
et al., 2011), affords experts the opportunity to examine
one another's estimates and to reconcile the meanings of
questions through discussion, and uses performance-based
mathematical aggregation of judgments (Hanea, McBride,
Burgman, & Wintle, 2016). To date, the protocol has pro-
duced robust estimates in several studies (e.g., Hanea
et al., 2016; Hanea, McBride, Burgman, & Wintle, 2016;
Hemming, Walshe, Hanea, Fidler, & Burgman, 2018; van
Gelder, Vodicka, & Armstrong, 2016), and shows promise
as an effective tool for rapidly assessing capture and
bycatch rates in small-scale fisheries.

The aims of this research were to (a) investigate if the
IDEA protocol could support a rapid assessment of inci-
dental captures of protected species (green turtles
Chelonia mydas) occurring in a coastal gillnet fishery
where sea turtle mortalities are a known conservation
issue, (b) quantify the associated uncertainty, and
(c) evaluate participant performance by comparing these
estimates to incidental capture rates calculated from at-
sea observer data obtained from the same fishery.

2 | METHODS

2.1 | Study system

San Jose, Lambayeque, Peru (6�460 S, 79�580 W) is a
coastal fishing community with a high density of gillnet

vessels (Alfaro-Shigueto et al., 2010). The fishing-related
mortality of several turtle species is known and problem-
atic, including the East Pacific population of green turtles
(C. mydas) and the critically endangered East Pacific pop-
ulation of leatherback turtles (Dermochelys coriacea;
Alfaro-Shigueto et al., 2011; Alfaro-Shigueto et al., 2018).
A voluntary at-sea, human observer program has been
running with San Jose's gillnet skippers since 2007; how-
ever, coverage has not been comprehensive (Alfaro-
Shigueto et al., 2007, 2010). Structured questionnaires
have also been used to further knowledge of turtle cap-
ture and bycatch rates in the area (Alfaro-Shigueto et al.,
2011, 2018). Several fishers in the San Jose community
have been exposed to conservation interventions, work-
ing with a not-for-profit organization on at-sea technol-
ogy trials to mitigate and record turtle captures
(Bartholomew et al., 2018; Ortiz et al., 2016), and partak-
ing in workshops to teach better handling procedures for
turtle releases post capture.

The inshore-midwater gillnet fleet comprises vessels
with small closed bridges that range in capacity from 5 to
32 gross registered tonnage (GRT), locally known as
“lancha” (Guevara-Carrasco & Bertrand, 2017). Vessel
numbers fluctuate both seasonally and annually, as fish-
ers migrate from inland areas seeking fishing work dur-
ing favorable weather conditions. Over the past decade
the San Jose inshore-midwater gillnet fleet has been
reducing in size as fishers shift their vessels from han-
dling gillnets to jigging gear to catch giant Humboldt
squid Dosidicus gigas. Fleet size of the San Jose inshore-
midwater gillnet fishery was approximately 60 vessels in
2008, with numbers decreasing to between 28 and 18 in
the summer and winter of 2017, respectively (Alfaro-
Shigueto et al., 2010; Supporting Information). A winter
survey in San Jose in 2017 (July–September estimated
that 15 inshore-midwater vessels actively fished, primar-
ily with gillnets, while three additional vessels used gill-
nets but primarily fished with another gear type. Another
small-scale gillnet fleet comprised of small, open-welled
vessels known as “chalana,” with a capacity range of 1–8
GT, also operates from San Jose in the inshore fishing
area (Arlidge et al., 2020). All respondents in the current
study were part of a wider elicitation survey investigating
the efficacy of turtle capture and bycatch reduction strat-
egies in the San Jose fishing system. Only the inshore-
midwater fleet is the focus of this comparative study
because observer data were not available for the inshore
gillnet fleet.

We separately assessed two seasonal categorizations
due to the differences in fishing effort between winter
and summer conditions in the Lambayeque coastal fish-
eries. Summer is usually considered to be December–
February (3 months), but information provided by a

ARLIDGE ET AL. 3 of 14



government fisheries scientist in San Jose during a key
informant interview noted that summer-like conditions
span December–May (Arlidge et al., 2020), with this lon-
ger seasonal division supported by capture reports from
the Lambayeque region (Guevara-Carrasco & Bertrand,
2017). Here we classify the San Jose winter fishing season
as June–November and the summer fishing season as
December–May.

2.2 | Estimates of turtle encounters

To elicit judgments of incidental captures of green turtles
in gillnets set by San Jose inshore-midwater vessels, par-
ticipants were asked to consider a counterfactual scenario
in which a total gear switch occurred, from gillnets to a
fishing gear that results in very little chance of turtle cap-
tures (such as lobster potting or trolling—a form of
handline fishing). Estimates were provided as a monthly
reduction in green turtle encounters with gillnets for the
entire San Jose inshore-midwater fleet. Capture reduction
estimates for leatherback turtles were also elicited, but
small numbers make these less reliable than the green
turtle estimates (Supporting Information). Participants
were asked to assume 100% compliance with the counter-
factual scenario. Judgments were given for summer and
winter fishing periods. These data were collected as part
of a wider study that elicited expert judgments on the
efficacy of a range of turtle capture and bycatch reduction
strategies that will be used to inform a marine megafauna
mitigation model (Milner-Gulland et al., 2018).

2.3 | Expert elicitation procedure

We use the IDEA protocol with a combination of face-to-
face group meetings and individual interviews over two
elicitation rounds.

2.3.1 | Participant selection

We used simple random sampling by number generator
to select gillnet skippers from a census list (n = 168) of
skippers that were actively fishing during a wider survey
period of July 1–September 30, 2017. The expert group
(n = 5) comprised three local gillnet skippers of inshore-
midwater vessels (representing 20% of the actively fishing
inshore-midwater gillnet skippers in San Jose), and two
not-for-profit conservation organization employees
(JAS & JCM). Both of the not-for-profit employees have
carried out regular research and conservation action in
the study site area and more widely along the western

South American coastline. They have expertise in turtle
ecology and the implementation of management strate-
gies to reduce protected species mortalities in small-scale
fisheries.

2.3.2 | Elicitation format

Data were elicited through individual face-to-face inter-
views over two elicitation rounds. Because lancha fishers
spend little time on land between fishing trips of
1–13 days (averaging 7 days; Alfaro-Shigueto et al., 2010),
this resulted in no time in which the lancha gillnet skip-
pers were all on land, following an initial scoping meet-
ing. Hence the decision was made to interview them
separately.

2.3.3 | Stage 1: Introductory meeting

The first stage of the elicitation procedure was under-
taken in a face-to-face group meeting. We met with the
invited participants and discussed the context of the elici-
tation procedure with them, including providing an over-
view of the IDEA protocol, the method, study rationale,
and the rules of participation. We ensured that free,
prior, informed consent to participate was given, in
accordance with our ethics permission (CUREC 1A; Ref
No: R52516/RE001 and R52516/RE002).

2.3.4 | Stage 2: Investigate (Round 1)

Question format followed a four-point estimation method
that has been shown to reduce overconfidence when
eliciting individual judgments (Speirs-Bridge et al., 2010).
This involves giving a (a) lower bound, (b) upper bound,
(c) best guess, and (d) a level of confidence that the real
value lies between these limits. Participants were asked to
give estimates of the expected reduction in green turtle cap-
tures in gillnets within the winter and summer fishing sea-
sons, for the scenario shifting gillnets to lobster potting or
trolling. Estimates were given as monthly gillnet encoun-
ters, unless another time period was specified by the partic-
ipants (e.g., turtle gillnet encounters per season). In cases
when turtle captures per season were given, estimates were
divided by the total number of months in the season.

2.3.5 | Stage 3: Analysis and feedback

In the four-step question format, participants implicitly
specify credible intervals for their estimates. For example,
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if in response to the question about how confident they
are about their estimate, a participant says that they
expect the true value to fall between their stipulated
lower and upper limits in 7 of 10 cases; that implies a
70% credible interval. Prior to providing the first round of
feedback, we standardized the participants’ estimated
intervals to 90% credible intervals to allow them to see
the uncertainties across their estimates on a consistent
scale. Linear extrapolation was used to standardize par-
ticipants’ elicited lower (l) and upper (u) uncertainty bou-
nds to 90% credible bounds (Hemming, Burgman, et al.,
2018). The standardized lower (lsi) and upper (usi) bounds
were calculated as:

lsi =B− B−Lð Þ× S
C

� �� �
ð1Þ

usi =B+ U−Bð Þ× S
C

� �� �
ð2Þ

where lsi is the standardized lower estimate, usi is the
standardized upper estimate, B is the best guess, L is the
lowest estimate, U is the upper estimate, S is the level of
credible intervals to be standardized to, and C is the level
of confidence given by participant. Any adjusted intervals
that fell outside of reasonable bounds (i.e., negative
values) were truncated at their extremes (i.e., to zero).

Following standardization, estimates were combined
using quantile aggregation, in which the arithmetic mean
of participants’ estimates is calculated for the lower, best,
and upper estimates for each question (Hemming, Bur-
gman, et al., 2018). Graphs for each question were gener-
ated to display the estimates of each participant (labeled
with codenames that each respondent was individually
aware of) and the group aggregate mean. This output
was presented to the participants for use in the discussion
and re-estimation phase that followed (Supporting
Information).

2.3.6 | Stages 4 and 5: Discussion and
re-estimation (Round 2)

The discussion and re-estimation phase took place
through individual face-to-face interviews, led by the facil-
itator (BIE) with support from the coordinator and analyst
(WNSA; Hemming, Burgman, et al., 2018). We provided
hard copies of each question's graphical output to the par-
ticipants; this included justification comments from the
other participants (when given) and any questions from
the analyst (Supporting Information). No participants
declined to partake in the second elicitation round.

2.3.7 | Stage 6: Final aggregation and
review

Following the second elicitation round, the revised data
were analyzed and aggregated. We presented first and
second round estimates, along with the arithmetic mean
for the group's best, lower, and upper estimates to each
participant in plot and table form for a final review. Par-
ticipants were allowed to make fine-scale adjustments to
their own estimates if desired; no participants did this.

2.4 | Statistical analysis

2.4.1 | Fisheries observer data

To obtain information on the turtle captures per trip, that
is, capture per unit effort rates, for San Jose gillnet vessels
against which to compare elicited estimates, we analyzed
longitudinal panel data. These data were recorded by
onboard observers operating in the inshore-midwater
gillnet flee from San Jose as part of a wider at-sea volun-
teer observer program run by our local not-for-profit col-
laborators (JAS, JCM). Captures per trip (n = 461) were
averaged across seasonal (summer and winter) and
annual periods (n = 10). Observed trips were across
32 different inshore-midwater gillnet vessels with varying
vessel and net sizes. Historical vessel numbers for the
inshore-midwater gillnet fleet were obtained from shore-
based surveys (Alfaro-Shigueto et al., 2010; Escudero,
1997); for years with no known vessel size, an interpo-
lated approximation was used (Supporting Information).
Mean green turtle captures per trip/per season were then
converted to mean captures per trip/per month within
each season by averaging across each season's months
(Supporting Information). Descriptive statistics are pres-
ented as mean, standard deviation (SD), and minimum
and maximum 90% confidence intervals (CI).

Using the observer dataset (n = 461), we extrapolated
green turtle capture rates from the proportion of the
inshore-midwater fleet covered by observers to the wider
gillnet fleet. We categorized vessel GRT into size classes,
and then weighted these size classes using binomial logit
Generalized Linear Mixed Models (GLMMs) using maxi-
mum likelihood estimation and AIC model selection
criteria. GLMMs were constructed in R version 3.6.1
(R Core Team, 2019) using the nlme package (Pinheiro
et al., 2012). Explanatory variables were selected a priori
and included GRT, season, year, gillnet soak time (the
time the net spends in the water), net length (km), and
crew number as fixed effects. Vessel identification was
included in the model as a random effect. We tested for
fixed versus random effects using the Hausman test in
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the plm package in R, failing to reject the null hypothesis
of random effects (against fixed effects; Croissant & Millo,
2008; Supporting Information). To avoid collinearity
among variables in the model, Spearman's rho
(rs) correlation coefficients were calculated for pairs of
variables (Akoglu, 2018). Any highly correlated variables
(r > .8) would not be used together in the models. None
of the variables selected a priori were correlated enough
to warrant removal from the model (Supporting Informa-
tion). After regressing sea turtle capture rates upon the
independent variables, we tested for serial correlation
and present serial correlation consistent standard errors.
We then used the model's coefficients to weight the over-
all probability of capture of each turtle species by weight
class (GRT) across the inshore-midwater gillnet fleet. We
also modeled leatherback turtle capture rates; however,
the low capture rate recorded (n = 7) resulted in little
predictive power in the model (Supporting Information).

2.4.2 | Comparing data sources

The small sample size in our elicitation group precludes
directly comparing the dataset to the capture rates calcu-
lated from the observer dataset using a large-sample test
such as an independent two-sample t-test. Instead, we
used a bootstrap method to simulate the expected distri-
bution of monthly turtle capture rates calculated per sea-
son from the elicitation dataset and the observer dataset,
and compare the two (Efron & Tibshirani, 1993). The
bootstrap methodology (Supporting Information) consists
of generating a null data set that has the same number of
subjects as in the original data set by randomly selecting
subjects from the control group with replacement and
using the whole series of repeated measurements from
each randomly selected control subject (Nadziejko, Chi
Chen, Nádas, & Hwang, 2004). We tested the null
hypothesis that, within each fishing season, the mean
monthly number of green turtle captures in the San Jose
inshore-midwater gillnet fleet calculated from the elicita-
tion exercise is the same as the capture rate calculated
from the observer data. All analysis was carried out using
core packages in R version 3.6.1 (R Core Team, 2019).

2.4.3 | Performance-based metrics for
elicitation estimates

Participants were not asked to define whether their best
estimates represent a mean, mode, or median, nor were
they asked to specify the quantiles of distribution (i.e., how
the residual uncertainty their interval judgments were dis-
tributed outside of their bounds; Hemming, Walshe, et al.,

2018). Under more standard elicitation circumstances,
mean, median, or mode data may be requested from
respondents. In the current study, however, it was not
deemed socially appropriate to ask gillnet skippers to spec-
ify these measures. We therefore chose metrics that are not
based on continuous probability distributions. Instead,
participants’ performance was evaluated using three
performance-based metrics: (a) accuracy of point (best) esti-
mates, (b) calibration of interval judgments, and c3) infor-
mativeness of interval judgments (after McBride, Fidler, &
Burgman, 2012; Hemming, Walshe, et al., 2018; Figure 1).

Accuracy of point estimates (Accuracy) is classified as
the distance of the respondent's best estimate from the
turtle capture rates calculated from the observer data
(typically referred to as the realized truth; Einhorn,
Hogarth, & Klempner, 1977; Larrick & Soll, 2006). Accu-
racy was measured by calculating the average log-ratio

Monthly green turtle captures in winter

0 100 200 300 500400

Mean

L05

L04

L03

L02

L01

FIGURE 1 Respondents’ elicitation estimates for monthly

green turtle gillnet captures in winter that are used to explain the

accuracy, calibration, and informativeness performance metrics.

Participants present estimates (L01–L05) with Round 2 best

estimates (grey circles) and associated credible intervals (horizontal

lines). The group mean is represented by the red circle. The red

dotted line represents the capture rates estimated from the observer

data. Participants (L01, L05) are the most informative (smallest

credible interval) and their informativeness intervals do not capture

the realized truth (which if done over multiple questions would

mean they are poorly calibrated). Participant (L02) is the least

accurate (best estimate is furthest from the realized truth) and the

least informative (largest credible interval. Participant (L04) has the

most accurate estimate (closest best estimate to the realized truth),

and their credible interval encompasses the realized truth (which if

done over multiple questions will result in a good calibration

score). Inspired by Hemming, Walshe, et al. (2018)
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error (ALRE) for participants’ judgments. To calculate
ALRE, we first standardized each response by the range
of responses for that question, known as range-coding
(Hemming, Walshe, et al., 2018; McBride et al., 2012).
Range-coding minimizes the effect that one or a few very
divergent responses have on the accuracy measure
(Burgman et al., 2011). Calibration of interval judgment
(Calibration) measures the proportion of questions
answered by a respondent for which their intervals cap-
ture the realized truth, with a score of 0.9 representing
perfect calibration. The perfect calibration threshold is
set at 0.9 because participants were asked to provide 90%
credible intervals, therefore a participant would be con-
sidered perfectly calibrated if they capture the truth for
9 out of 10 questions answered. We used the standardized
upper and lower values of participants’ intervals and the
standardized level of confidence associated with those
intervals (Hemming, Hoffman, et al., 2018). Informative-
ness of interval judgment (Informativeness) measures the
width (i.e., maximum minus minimum) of the partici-
pant's intervals relative to the total range provided by
participants for a question (the highest maximum across
all respondents, minus the lowest minimum across all
respondents; Supporting Information). The performance-
based metric analysis was undertaken in R using quantile
aggregation code available on the open-science frame-
work (Hemming, Hoffman, et al., 2018).

3 | RESULTS

Five respondents comprising three gillnet skippers and
two not-for-profit employees participated in the elicita-
tion procedure for the inshore-midwater fleet. The group
comprised four males and one female. Respondent age
was 27–50 years. Fishing experience for skippers was
11–17 years (Supporting Information).

3.1 | Elicited judgments for turtle
captures

The group's green turtle confidence bounds were 129–227
individuals per month (Table 1). We used participants’
monthly green turtle capture rates with gillnets to infer
capture rates for the six-monthly summer (mean = 850,
range = 771–1,022) and winter (mean = 1,234,
range = 1,105–1,363) seasons. We then summed the sea-
sonal estimates to obtain an annual capture rate
(mean = 2,084, range = 1,876–2,385; Table 1). As a sup-
plementary analysis, participants’ judgment of leather-
back capture was also explored (Supporting Information).

3.2 | Comparison of participant
judgments with onboard observer data

We analyzed onboard observer records from the inshore-
midwater gillnet fleet in San Jose from August 2007 to
March 2019. Over 461 inshore-midwater fishing trips,
observers recorded the capture of 379 turtles in gillnets.
Species proportions were 86.8% green sea turtles
(n = 329), 9.2% olive ridley turtles (n = 35), 1.8% leather-
back sea turtles (n = 7), and 2.1% unidentified (n = 8). Of
the 379 turtles captured, 62% were released alive without
visible injury, 28% alive with minor injuries, and 8% were
returned dead (Table 2). Observer coverage for the fleet is
low, representing approximately 1–4% of net deploy-
ments over the 11-year, 7-month monitored period
(Supporting Information). As observer deployments
occur on a volunteer basis with skippers, sampling selec-
tion bias is likely. No vessels were observed in the
2010–2012 fishing years.

The most parsimonious model for green turtle capture
included the variables GRT, season (winter and summer),
fishing year, soak time, and a random effect for skipper-

TABLE 1 Extrapolated mean estimates of green turtle captures in San Jose inshore-midwater gillnets in summer and winter, between

expert elicitation and at-sea observer datasets

Temp. Grp.

Expert elicitation data (n = 5) Observer data (n = 461)

Mean best (B) Std. lower 90 CI (lsi) Std. upper 90 CI (usi) Mean Min 90 CI Max 90 CI

Monthly/winter 141.67 128.54 58.51 58.51 46.49 66.02

Monthly/summer 205.67 184.14 227.09 137.09 108.93 154.69

Total winter 850 771.25 1,022.12 351.07 278.96 396.14

Total summer 1,234 1,104.85 1,362.55 822.54 653.59 928.13

Annual 2,084 1,876.1 2,384.67 1,173.61 932.55 1,324.28

Notes: Values are based on elicited monthly estimates of the efficacy of the management strategy of gear switching from gillnets to potting or trolling, and
onboard observer data obtained from the period August 2007–May 2019. Temp. Grp., temporal grouping; winter represents the cold weather months of June to

November, summer represents the warm weather months of December to May.
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vessel (Table 3). The skipper-vessel effect includes the
effect of both the vessel and the skipper, the latter which
can cannot be measured or distinguished from the avail-
able data. There may also be a relationship between the
skipper and vessel size. Larger vessels were more likely to
capture turtles in a given trip than those with small capac-
ities, after controlling for fishing effort. This may be a
result of larger vessels having the ability to hold larger
nets and stay at sea fishing for longer periods, as well as
covering a larger fishing area because they can carry more
petrol and oil, larger quantities of ice for their catch, and
more supplies for the crew. Fishing across a larger fishing
area may result in larger vessels having access to different
fishing grounds where there are more turtles. Based on
this model, we extrapolated the observer data to produce
a mean annual gillnet capture estimate of 1,174 (range
933–1,324) green turtle individuals (Table 1).

We ran two bootstrap hypothesis tests (each of 10,000
resamples with replacement) for the mean monthly esti-
mates of green turtle gillnet captures within summer and
winter fishing seasons. For both winter and summer, we
found no statistically significant difference at the 95%
confidence level in the mean monthly capture estimates
of green turtle between the elicited data and the observed
data (winter observed difference-in-means: 83.15, adj
mean ± SD = 42.39 ± 32.59; p = .1177; summer observed
difference-in-means: 68.58, adj mean ± SD = 54.06
± 41.22; p = .309).

Participant L05 (not-for-profit) judged lower capture
rates for green turtles than estimated from the observer
data. Participant L04's (not-for-profit) judgment intervals
encompassed the observer data for both seasonal esti-
mates (Figure 2). In contrast, participants L02 and L03
(gillnet skippers) estimated significantly higher capture

TABLE 2 Turtle bycatches and captures per trip in gillnets of inshore-midwater vessels launching from San Jose in the period August

2007–May 2019, based on an onboard observer program, using trip as the unit of effort

Turtle
species n

Released without
injury

Released
injured Dead

State
unknown

Captures per trip (n = 461)

Mean SD
Min
90% CI

Max
90% CI

Green 329 199 100 23 7 0.71 1.98 0.53 0.89

Leatherback 7 6 0 1 0 0.02 0.12 0.01 0.03

Olive ridley 35 24 6 5 0 0.08 0.46 0.04 0.12

Unidentified 8 4 2 0 2 0.02 0.21 0.00 0.04

Total 379 233 108 29 9 0.82 2.10 0.63 1.01

Abbreviation: CI, confidence interval.

TABLE 3 Coefficients of the best

fit model for predicting probability of

turtle capture

Green turtle capture

Reference Random effects Intercept Residual n

Vessel SD 0.02837082 0.2556781 32

Fixed effects Coefficient SEa p-value

Intercept −0.014 0.026 .59

GRT

Reference = 0 < 4 GRT 4 < 8 GRT 0.036 0.030 .2362

8 < 12 GRT 0.050 0.026 .0646

>12 GRT 0.104 0.083 .2193

Year

Reference = Year (2007–2010) Year (2011–2014) 0.153 0.022 .0000*

Year (2015–2019) 0.012 0.014 .3862

Season

Reference = season (winter) Season (summer) 0.036 0.012 .0028*

Soak time 0.001 0.001 .60

aSerial correlation-consistent standard errors.
*Significant at the 0.05 confidence level.
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rates across both winter and summer seasons. Partici-
pants L02 and L03 adjusted their estimates downwards
between Round 1 and Round 2 in the modified Delphi
method, to be closer to the value estimated from the
observer data. This indicates that new information from
the discussion between elicitation rounds influenced par-
ticipant L02 and L03's calibration and accuracy of judg-
ment. Participant L01 (gillnet skipper) estimated closer to
the realized truth and to the not-for-profit participants
than the other two skippers (Figure 2).

3.3 | Performance metrics

Participant performance was evaluated by occupation
groupings (skippers versus not-for-profit), comparing
elicited estimates for the total gillnet ban to the capture
rates calculated from the observer data (Figure 3). The
not-for-profit employees were on average more accurate
(lower ALRE score), better calibrated (their credible
intervals encompassed the realized truth over more ques-
tions elicited), but less informative (they specified larger

FIGURE 2 Respondents mean monthly estimates of green turtle captures in gillnets compared to extrapolated catch rates calculated

from the observer data (red dotted line) with associated uncertainty bounds for the observer data (light red band). Elicited estimates are

based on consideration of a possible gear switch from gillnets to trolling or lobster potting for all vessels in the San Jose inshore-midwater

gillnet fleet. Monthly estimates were made for summer and winter fishing seasons. Experts assumed 100% compliance with the total gear

switch scenario. Uncertainty bars have been adjusted to reflect 90% credible intervals for each expert's response

Round 1

R
ou

nd
 2

Accuracy Calibration Informativeness

FIGURE 3 Scatterplots show the change in each individual's estimates (n = 5) between Round 1 and Round 2, where they were

assessing the total number of turtle captures across the inshore-midwater fleet (from the total gillnet ban scenario) using three performance

variables (accuracy, calibration, and informativeness). If dots fall below the line in the “accuracy” or “informativeness” plots, individuals
improved their scores on these measures. In the “Calibration” plot, dots above the line indicate individuals who increased the number of

realized truths captured between their upper and lower bounds (a score of 0.9 represents perfect calibration)
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credible intervals) than the skippers. The skippers scored
higher on informativeness than the not-for-profit
employees, but lower on accuracy. Two of the five partici-
pants improved the accuracy of their estimates between
the two elicitation rounds, and one improved informa-
tiveness. Participants did not improve the calibration of
their estimates between the elicitation rounds (there was
no increase in the number of realized truths captured
between their upper and lower bounds). This is poten-
tially reflective of overconfidence or attitudes toward risk
from the skippers, leading to them submitting estimates
with tight confidence bounds (high informativeness) that
underestimate uncertainty (low accuracy).

4 | DISCUSSION

Our estimates of green turtle captures in the San Jose
inshore-midwater gillnet fleet, obtained from both the
observer data and the group estimates from the expert
elicitation, indicate detrimental bycatch rates for turtle
populations like the endangered green turtle and the
critically endangered East Pacific leatherback turtle pop-
ulation (assessed in Supporting Information) as both spe-
cies are highly vulnerable to fishing pressure (Lutcavage,
2017; Spotila, Reina, Steyermark, Plotkin, & Paladino,
2000). While our elicited estimates focused on capture
rates, the observer data found 7% of captured green tur-
tles died and 38% were returned to sea injured, indicat-
ing the potential for a high percentage of estimated
captures to result in mortality (Table 2). Green and
leatherback turtles are far ranging and traverse multiple
nations’ waters in their lifetimes. The southeast Pacific
waters that these species swim through (Bailey et al.,
2012; Eckert, 2012) are fished by multiple small-scale
fisheries where observer programs are limited or not cur-
rently established (Salas, Chuenpagdee, Seijo, & Charles,
2007; Sara, 2011). For example, questionnaire-based sur-
veys estimated that small-scale fisheries-related turtle
mortality across seven Ecuadorian harbors was 13,302
turtles per year (Alfaro-Shigueto et al., 2018). The IDEA
protocol offers potential to improve data paucity on inci-
dental capture and bycatch rates in data-limited fisheries
such as those in the southeast Pacific by offering a
decision-making process to more accurately quantify
uncertainty and control for respondents’ personal biases
and heuristics.

The bootstrap hypothesis testing approach allowed us
to compare the means of our two datasets despite small
sample sizes. A high level of variation in total fleet size
across observed fishing years meant that for observed
years where no quantitative total fleet size estimates were
available from shore-based surveys (Alfaro-Shigueto

et al., 2010; Escudero, 1997), we were required to use an
interpolated approximation of fleet size. This uncertainty
must be considered when interpreting the results. Despite
the need to approximate fleet size, the methods used in
the current study demonstrate that the IDEA protocol
can provide broad estimates of protected species captures
in small-scale fishery systems that are informative.

Both of the not-for-profit employees’ judgments of
green turtle captures were consistently closer to the
observer data than the group mean. This finding con-
trasts with a number of Delphi-based elicitation studies
that found that pooled group judgments consistently out-
perform individuals (Burgman, 2015; Burgman et al.,
2011). These results may be reflective of two of the three
gillnet skippers who were consistently overestimating
when compared to the observer data. Due to the elicita-
tion group's small sample size these estimations had a
measurable effect on the pooled group means. Related to
the small sample size, sample selection bias could also
impact the results. Overestimation has been observed
when gathering data from both small-scale fishers
(O'Donnell, Pajaro, & Vincent, 2010) and scientific
experts (Burgman et al., 2011; Oedekoven, Fleishman,
Hamilton, Clark, & Schick, 2015). While the four-step
elicitation method we employed is more likely to reduce
overconfidence than three-point procedures (Speirs-
Bridge et al., 2010), it is possible that an overconfident
attitude towards risk influenced several of our fishers’
judgments (Figure 2). One of the three gillnet skippers
(participant L01) estimated closer to the observer data
and not-for-profit employees than the other two gillnet
skippers. Therefore, the overestimating gillnet skippers’
judgments could also be reflective of their actual experi-
ence, given the spatially and temporally dynamic nature
of turtle captures.

Participant L01 was the only skipper in the study who
was a member of a protected species capture and bycatch
reduction cooperative currently being trialed in San Jose
by the not-for-profit conservation organization with
which we were working. Exposure to conservation-
oriented fishing practices aimed at reducing impact to
sea turtles may have increased this fisher's awareness of
fishing-related turtle mortality and contributed to this
participant's estimates more accurately reflecting fleet-
wide capture rates calculated from the observer data.

In addition to potential biases being present in the
respondents’ estimations, it is possible that inferences
made when extrapolating the observed capture rate to
the wider fleet using captures per trip weightings from
the GLMM did not accurately approximate turtle cap-
tures across the fleet. For example, estimates could be
biased or inaccurate due to the rarity of positive turtle
capture events, which can be sensitive to extrapolation
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from low percentage coverage rates because the data are
often zero inflated (Babcock, Pikitch, & Hudson, 2003).
The GLMM focused on the potential for a deployment
effect (i.e., sample selection bias) as a result of a non-
random assignment of observers on vessels within the
inshore-midwater fleet. Observer programs in which par-
ticipation is voluntary, such as our current case study,
are often more prone to deployment biases than pro-
grams that require vessels to routinely take onboard
observers when fishing licenses are issued and in which
observers are randomly assigned (Borges, Zuur, Rogan, &
Officer, 2004). GRT was selected a priori as a good vari-
able to account for the potential deployment bias, which
can arise due to difficulty in placing observers on the
smallest vessels, varying range distributions of vessels
that results in different spatial and temporal overlap with
turtle species, time at sea, and weather. As expected, both
green and leatherback turtle capture estimates increased
slightly with the captures per trip weighted by GRT class,
compared to a straight extrapolation of the captures per
trip rate by month (Supporting Information). There is
also the possibility of an observer effect that results from
fishers changing their behavior as a result of an observer
being present onboard (Liggins, Bradley, & Kennelly,
1997). Because this effect occurs at the vessel level it can
be hard to detect, especially when modeling a small
amount of observer data as in the current study. The
presence of an observer onboard a vessel can cause skip-
pers to fish away from their traditional sites, modify their
fishing effort, operate their gear differently, retain catch
that may have previously been discarded, or release
bycatch that may have previously been retained. While
observer effects have been found to be more distinct in
fisheries with trip quotas (Gillis, Peterman, & Pikitch,
1995), few studies have attempted to disentangle deploy-
ment and observer effects on monitoring fishing trips.
While our GLMM helps to account for potential non-
random sample selection bias (Cotter & Pilling, 2007),
any bias from an observer effect ultimately must be
addressed during data collection rather than post hoc
during data analysis (Benoît & Allard, 2009).

We successfully implemented the IDEA protocol in
our case study fishery system. However, protocol adapta-
tions were necessary due to the inshore-midwater gillnet
skippers rarely overlapping with one another during the
few days they spent on shore during our 3-month survey
period. The methodological modification included hold-
ing two elicitation rounds facilitated through face-to-face
interviews rather than a face-to-face group meeting or
over email or web forum. Participants were provided
with comprehensive comments and questions from the
other participants both between Round 1 and Round
2, and after Round 2, on printed paper in their native

language (Spanish) and they then discussed these ver-
bally with the facilitator (BIE). Continual discussion
about specific questions was restricted as a result of the
modified format. In addition, the gillnet skippers inter-
viewed were not comfortable writing their responses,
preferring to have the questions read aloud, followed by
discussion of potential misinterpretation, verbally noting
their answer, and then asking the facilitator to record
their response. This may be due to some of the gillnet
skippers in our case study fishery having difficulty read-
ing and writing. Scenarios preventing group meetings
can be numerous in the field and while far less than
ideal, the notes and facilitator were able to assist in clari-
fying uncertainties or misinterpretations held by respon-
dents. In addition, requests were made to record
interviews. Respondents were also encouraged by the
facilitator to provide comprehensive explanations for
their reasoning behind each estimate as detailed expla-
nations support other respondents in understanding the
knowledge and rationale behind each respondent's esti-
mate, and therefore help to better weigh each estimate
against their own (Hemming, Burgman, et al., 2018).
While the IDEA protocol is simple to understand and we
were able to undertake it in this individualized way with
resource users in our case study system, further investi-
gation into possible local resource user-specific adapta-
tions to modern elicitation protocols would be a
beneficial area of future research.

This research has applied the IDEA protocol in a new
context of conservation research and natural resource
management, to estimate the total number of green tur-
tles captured in a small-scale gillnet fishery and compare
these estimates to capture rates calculated from observer
data obtained from the same fleet. Our analysis reveals
high green turtle capture rates in the San Jose inshore-
midwater gillnet fleet. We demonstrate that the IDEA
protocol can be implemented to quantify uncertainty and
control for personal biases and heuristics when inter-
viewing respondents in small-scale fishing systems, and
highlight that both observer data and elicitation estimates
are approximations of an unknown truth. While the
IDEA protocol was implemented successfully, minor
methodological modifications were necessary to obtain
participants’ judgments. Future research could investi-
gate how best to adapt the protocol to a range of local
resource user contexts. Furthermore, comparing elicita-
tion estimates to an observed value obtained from an
observer program provided informative data on partici-
pant performance when combined with a bootstrap
hypothesis testing of means analysis. We encourage
researchers and practitioners implementing elicitation
studies with local resource users to draw on multiple
sources of comparable data.
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