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Abstract 

Species Distribution Models (SDMs) are valuable predictive tools to anticipate bycatch risk in fisheries. 

Bycatch of sea turtles, which are of conservation concern worldwide, could negatively affect 

populations through direct mortality or decreased post-release fitness. With a better understanding 

of the environmental variables driving their distribution, one could provide successful bycatch 

mitigation strategies. However, this remains an important knowledge gap for sea turtles in the 

Western Indian Ocean. To address this, we used two modelling approaches, namely logistic regression 

and Random Forest, to identify and quantify the importance of 15 candidate environmental predictors 

for loggerhead (TTL), olive ridley (LKV), and green (TUG) turtles. Using on-board observer data from 

the French pelagic longline and purse seine fisheries, we show that sea surface height and the Dipole 

Mode Index could be important predictors of bycatch events for the three turtle species. Our results 

should prove useful to select appropriate environmental variables depending on the focal species to 

fit SDMs from bycatch data. Nevertheless, the modelling approaches used here have limitations that 

warrant consideration. We discuss those and provide recommendations for further improvement. 
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Introduction 

Species Distribution Models (SDMs) are useful tools for Dynamic Ocean Managements (Abrahms et al., 

2019; Hazen et al., 2017; Maxwell et al., 2015) and are promising to reduce bycatch:target species 

ratios (Hazen et al., 2018; Howell et al., 2008; Stock et al., 2020). For large marine species, such models 

are commonly fitted using presence data from tracking studies but true absence data are lacking in 

this case, which requires generating pseudo-absences using a variety of techniques (Hazen et al., 2021; 

Iturbide et al., 2015; O'Toole et al., 2021; Raymond et al., 2015). On-board observer data from fisheries 

are extremely valuable since they provide true absences. Although they might not cover uniformly the 

full distributional range of focal bycatch species, they can feed SDMs to produce bycatch risk maps and 

thus inform mitigation strategies.  

Many types of SDMs exist and their application has become easier for non-statisticians via R packages. 

In addition, most of the environmental variables potentially driving the distribution of marine species 

are now available at more ecologically relevant spatiotemporal scales thanks to advances in remote 

sensing techniques and global climate reanalyses. This allowed recent studies to fill substantial 

knowledge gaps regarding the habitat characteristics of many marine species, including sea turtles 

(Chambault et al., 2020; Chambault et al., 2021b; Chambault et al., 2021c; Scales et al., 2015) that are 

negatively affected by fisheries worldwide (Wallace et al., 2013). The main challenge now lies in the 

choice of the most suited SDMs and predictive variables, especially for sea turtles in the Western Indian 

Ocean for which we know very little about their pelagic habitat. 

Our ultimate goal is to use SDMs to predict sea turtle distribution in the Western Indian Ocean and 

provide recommendations to reduce bycatch risk in pelagic longline and purse seine fisheries. Here we 

present preliminary results on the influence of a series of environmental variables on bycatch risk of 

three sea turtle species using observer data from the French pelagic longline and purse seine fisheries. 

 

Material and methods 

1. Case studies 

The loggerhead turtle (FAO code: TTL) is the most common turtle bycatch in drifting longlines (2007-

2021), representing 50.35% of the individuals incidentally caught (Table 1). Olive ridley turtles (FAO 

code: LKV) and green turtles (FAO code: TUG) are the most commonly caught turtles in purse seines 

on floating object-associated tuna schools (2005-2021), representing together more than 50% of the 

individuals (Table 1). As case studies, we focused on these three situations (Fig. 1). We did not consider 

bycatch events in purse seines on free-swimming tuna school because the number of individuals 

caught remains very small for every turtle species (Table 1).  

Table 1: Number of turtles caught (and relative proportions) in drifting longlines (DLL) and purse seines 

on floating object-associated tuna school (PS-FOB) or free-swimming tuna school (PS-FSC). Species: 

loggerhead turtles (TTL), olive ridley turtles (LKV), green turtles (TUG), leatherback turtles (DKK), 

hawksbill turtles (TTH), and unidentified species (TTX). 

Species DLL PS-FOB PS-FSC 

TTL 145 (50.35%)* 16 (10.53%) 1 (7.14%) 

LKV 22 (7.63%) 52 (34.21%)* 2 (14.29%) 

TUG 45 (15.62%) 40 (26.32%)* 3 (21.43%) 

DKK 38 (13.19%) 1 (0.66%) 2 (14.29%) 
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TTH 15 (5.2%) 24 (15.79%) 6 (42.86%) 

TTX 23 (7.99%) 19 (12.5%) 0 (0%) 

Total caught 288 152 14 

* Case studies presented here. 

 

 

2. Modelling approach 

To identify the environmental drivers potentially involved in bycatch events, we used two modelling 

approaches: the logistic regression (i.e., parametric approach via a generalized linear model) and the 

Random Forest (i.e., non-parametric approach via a machine-learning algorithm for classification). In 

Figure 1: Fishing events (white circles) and 
bycatch locations (red dots) of loggerhead 
turtles in drifting longlines (TTL-DLL) and olive 
ridley and green turtles in purse seines on 
floating object-associated tuna school (LKV-PS-
FOB and TUG-PS-FOB, respectively). Grey 
polygons delineate the boundaries of all 
exclusive economic zones in the study area. 
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both cases, we treated each bycatch event with at least one individual as a presence location. We 

chose the logistic regression for its interpretability regarding the relationship between predictors and 

presence/absence probabilities and the Random Forest for its ability to cope with complex interactions 

among the predictor variables (Cutler et al., 2007) and its good predictive performance in species 

distribution modelling (Chambault et al., 2021a; Scales et al., 2016; Siders et al., 2020; Stock et al., 

2020). We performed our analyses using R version 4.2.1 (R Core Team, 2022).  

2.1. Logistic regression 

For each species, we built generalized linear models with a binomial distribution and a logit function 

to predict presence/absence probabilities from a series of environmental predictors (see Table 2) using 

functions from the ‘stats’ R package. To avoid multicollinearity issues (Zuur et al., 2010), we first 

removed highly correlated variables one by one until no absolute correlation higher than 0.6 remained 

in our datasets. We then performed a model selection based on the lowest Akaike Information 

Criterion corrected for finite sample size (AICc) by comparing all possible combinations of 

environmental predictors (without interaction terms) and we considered all models with a difference 

in AICc values below (or equal to) two as best candidates (Burnham & Anderson, 2002). To evaluate 

the influence of each environmental variable on the likelihood to catch at least one turtle, we compare 

the odds ratios from the best candidate models. In short, odds ratios greater than one suggest that a 

bycatch event is more likely to occur as the predictor increases while odds ratios below one indicate 

that the event is less likely to occur. Finally, we computed bycatch probabilities within the range of 

each predictor according to the best model while holding the others constant at their respective 

means. 

2.2. Random Forest 

As the Random Forest approach is less sensitive to multicollinearity (Cutler et al., 2007), we considered 

all environmental variables as potential predictors and we subsequently evaluated their importance in 

the classification procedure (i.e., their predictive power). Using functions from the ‘caret’ R package, 

we trained a series of random forests via a k-fold cross-validation procedure repeated 5 times and 

varying the following parameters: k (number of test/training partitions of the dataset: 10, 5, and 3), 

mtry (number of randomly selected predictors: number of predictors minus one), ntree (number of 

trees in the forest: 50, 250, 500, 1000, and 2500), nodesize (minimum size of terminal nodes: from 5 

to 50 every 5), and maxnodes (maximum amount of terminal nodes: from 5 to 50 every 5). We 

conducted this exploratory grid search to identify the set of parameters that were more likely to yield 

good performances based on the area under the receiver operating characteristic curve (AUC). The 

AUC is a measure of a classifier’s ability to discriminate between true and false positives, where values 

close to 1 indicate very good classification performances (typically between 0.9 and 1) and values close 

to 0.5 near-complete failures (typically between 0.5 and 0.6). During this first step, we retained the set 

of parameters associated with AUC values greater than (or equal to) the 97.5th percentile (i.e., the best 

performing ones among all trained random forests) and we trained again the random forests with 

these best candidate parameters. From this second series of random forests, we retained the ones 

with AUC values greater than (or equal to) 0.6 to identify the environmental variables that have the 

most predictive power.  

3. Environmental variables 

We extracted the following variables within a 25-km radius ellipsoidal buffer around presence/absence 

locations and we computed the inverse-distance weighted average when relevant (see “_idw” in the 

variables’ short name). We chose those variables for their potential role in the ecology of highly mobile 
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marine species (Abrahms et al., 2019; Becker et al., 2020; Brodie et al., 2018; Chambault et al., 2021b; 

Hazen et al., 2018; Scales et al., 2017; Virgili et al., 2019).  

Table 2: Environmental variables considered in this study. 

Variable Short name Source 

Bathymetry (m) - 15 arc-
second spatial resolution 

elevation_idw https://www.gebco.net/data_and_products/gridded_bathymetry_data  

Distance to the coast (m) dist_coast Calculated from bathymetry data 

Distance to the 200-m 
isobath (m) 

dist_isobath200m Calculated from bathymetry data 

Distance to seamounts 
(m) 

dist_seamount Calculated from the location of seamounts (http://data.unep-
wcmc.org/datasets/41) 

Sea surface temperature 
(°C) - daily; 0.083° spatial 
resolution 

thetao_idw https://resources.marine.copernicus.eu/product-
detail/GLOBAL_MULTIYEAR_PHY_001_030/INFORMATION  

Sea surface temperature 
gradient (°C) - daily 

thetao_grad Calculated from sea surface temperature data (maximum-minimum 
within the ellipsoidal buffer) 

Mixed layer thickness 
(m) - daily; 0.083° spatial 
resolution 

mlotst_idw https://resources.marine.copernicus.eu/product-
detail/GLOBAL_MULTIYEAR_PHY_001_030/INFORMATION  

Sea surface height above 
geoid (m) - daily; 0.083° 
spatial resolution 

zos_idw https://resources.marine.copernicus.eu/product-
detail/GLOBAL_MULTIYEAR_PHY_001_030/INFORMATION  

Finite size Lyapunov 
exponent (days-1) - daily; 
0.04° spatial resolution 

fsle_max_idw https://www.aviso.altimetry.fr/en/data/products/value-added-
products/fsle-finite-size-lyapunov-exponents.html  

Eddy kinetic energy 
(m2/s2) - daily 

eke_idw Calculated from surface zonal and meridional velocities 
(https://resources.marine.copernicus.eu/product-
detail/GLOBAL_MULTIYEAR_PHY_001_030/INFORMATION) using the 
following formula: (U2+V2)/2 

Net primary production 
(mg C m-2 day-1) - daily; 
0.083° spatial resolution 

npp_idw https://resources.marine.copernicus.eu/product-
detail/GLOBAL_MULTIYEAR_BGC_001_033/INFORMATION  

Zooplankton biomass (g 
C m-2) - daily; 0.083° 
spatial resolution 

zooc_idw https://resources.marine.copernicus.eu/product-
detail/GLOBAL_MULTIYEAR_BGC_001_033/INFORMATION  

Epipelagic micronekton 
biomass (g C m-2) - daily; 
0.083° spatial resolution 

mnkc_epi_idw https://resources.marine.copernicus.eu/product-
detail/GLOBAL_MULTIYEAR_BGC_001_033/INFORMATION  

Total micronekton 
biomass in the epipelagic 
zone* (g C m-2) - daily; 
0.083° spatial resolution 

mnkc_tot_idw Calculated from micronekton biomass data 
(https://resources.marine.copernicus.eu/product-
detail/GLOBAL_MULTIYEAR_BGC_001_033/INFORMATION) using the 
following formula: epipelagic micronekton + (24 - day length) x 
(migrant upper mesopelagic micronekton + highly migrant lower 
mesopelagic micronekton) 

Dipole mode index (°C) - 
monthly 

dmi https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/  

 

Results 

We retained 14 logistic models for loggerhead turtles (TTL) in drifting longlines (DLL), 9 for olive ridley 

turtles (LKV) and 26 for green turtles (TUG) in purse seines on floating object-associated tuna school 

(PS-FOB), with odds ratios ranging between 0 and 5 (Fig. 2). For every species, all best models 

estimated very similar odds ratios. According to the best model for TTL, the probability to catch at least 

one turtle increases as elevation_idw decreases, and increases with mlotst_idw, mnkc_tot_idw, and 

thetao_grad (Supp. Info Fig. S1). For LKV, bycatch probabilities increase with dist_coast, 

https://www.gebco.net/data_and_products/gridded_bathymetry_data
http://data.unep-wcmc.org/datasets/41
http://data.unep-wcmc.org/datasets/41
https://resources.marine.copernicus.eu/product-detail/GLOBAL_MULTIYEAR_PHY_001_030/INFORMATION
https://resources.marine.copernicus.eu/product-detail/GLOBAL_MULTIYEAR_PHY_001_030/INFORMATION
https://resources.marine.copernicus.eu/product-detail/GLOBAL_MULTIYEAR_PHY_001_030/INFORMATION
https://resources.marine.copernicus.eu/product-detail/GLOBAL_MULTIYEAR_PHY_001_030/INFORMATION
https://resources.marine.copernicus.eu/product-detail/GLOBAL_MULTIYEAR_PHY_001_030/INFORMATION
https://resources.marine.copernicus.eu/product-detail/GLOBAL_MULTIYEAR_PHY_001_030/INFORMATION
https://www.aviso.altimetry.fr/en/data/products/value-added-products/fsle-finite-size-lyapunov-exponents.html
https://www.aviso.altimetry.fr/en/data/products/value-added-products/fsle-finite-size-lyapunov-exponents.html
https://resources.marine.copernicus.eu/product-detail/GLOBAL_MULTIYEAR_PHY_001_030/INFORMATION
https://resources.marine.copernicus.eu/product-detail/GLOBAL_MULTIYEAR_PHY_001_030/INFORMATION
https://resources.marine.copernicus.eu/product-detail/GLOBAL_MULTIYEAR_BGC_001_033/INFORMATION
https://resources.marine.copernicus.eu/product-detail/GLOBAL_MULTIYEAR_BGC_001_033/INFORMATION
https://resources.marine.copernicus.eu/product-detail/GLOBAL_MULTIYEAR_BGC_001_033/INFORMATION
https://resources.marine.copernicus.eu/product-detail/GLOBAL_MULTIYEAR_BGC_001_033/INFORMATION
https://resources.marine.copernicus.eu/product-detail/GLOBAL_MULTIYEAR_BGC_001_033/INFORMATION
https://resources.marine.copernicus.eu/product-detail/GLOBAL_MULTIYEAR_BGC_001_033/INFORMATION
https://resources.marine.copernicus.eu/product-detail/GLOBAL_MULTIYEAR_BGC_001_033/INFORMATION
https://resources.marine.copernicus.eu/product-detail/GLOBAL_MULTIYEAR_BGC_001_033/INFORMATION
https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/
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dist_seamount, dmi, mnkc_tot_idw, and thetao_grad (Supp. Info Fig. S2). For TUG, bycatch 

probabilities decrease with dist_coast and increase with dmi (Supp. Info Fig. S3). 

To evaluate the importance of our candidate environmental predictors, we retained 284 random 

forests for TTL, 386 for LKV, and 36 for TUG (Fig. 3). For TTL, there is no clear consensus in the 

contribution of each predictor, except for dist_coast, dist_isobath200m, and zooc_idw for which at 

least 97.5% of the forests agreed on a contribution below 50%. For LKV, at least 97.5% of the forests 

agreed on a contribution above 50% for dmi and zos_idw, and below 50% for thetao_grad, dist_coast, 

and dist_isobath200m. For TUG, at least 97.5% of the forests agreed on a contribution above 50% for 

zos_idw and npp_idw, and below 50% for dist_isobath200m, dist_coast, dist_seamount, and eke_idw. 

Overall, a consistent pattern emerged for dmi with a median importance above 50% and a clear 

positive effect on bycatch of the three turtle species (Table 3). For zos_idw, which has a similarly high 

importance across the three species, we found an opposite incidence on bycatch probabilities when 

comparing TTL and LKV with TUG. We observed the same situation for fsle_max_idw, although this 

predictor is potentially worthless for TUG and not powerful for the two other species. 
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Figure 2: Odds ratios of the best logistic models 
for loggerhead turtles in drifting longlines (TTL-
DLL) and olive ridley and green turtles in purse 
seines on floating object-associated tuna school 
(LKV-PS-FOB and TUG-PS-FOB, respectively). 
Black dots represent the median and horizontal 
lines the 2.5th and 97.5th percentiles. Red dots 
indicate odds ratios of the best model (i.e., with 
the lowest AICc). Vertical dashed lines indicate 
the situation where a predictor would have no 
effect on the probability to catch at least one 
turtle. 
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Table 3: Environmental variables with a clear positive (odds ratio >1.15) or negative (odds ratio <0.85) 

effect on the odds to catch at least one turtle. The variables with a median importance over 50% likely 

have good predictive power while the ones below 20% are probably worthless. Letter codes indicate 

whether loggerhead turtles in drifting longlines (TTL) and olive ridley and green turtles in purse seines 

on floating object-associated tuna school (LKV and TUG, respectively) met these conditions. 

Variable Odds ratio >1.15 Odds ratio <0.85 Importance >50% Importance <20% 

elevation_idw   TTL   

dist_coast    TTL, LKV, TUG 

dist_isobath200m    TTL, LKV 

dist_seamount   LKV TUG 

thetao_idw TUG  LKV TTL 

thetao_grad TTL, LKV  TUG LKV 

Figure 3: Variable importance (i.e., AUC of 
each variable scaled to 100%) of the best 
random forests for loggerhead turtles in 
drifting longlines (TTL-DLL) and olive ridley and 
green turtles in purse seines on floating object-
associated tuna school (LKV-PS-FOB and TUG-
PS-FOB, respectively). Black dots represent the 
median and horizontal lines the 2.5th and 97.5th 
percentiles. Red dots indicate variable 
importance of the best forest (i.e., with the 
highest AUC). Vertical dashed lines indicate the 
situation where a variable would have a 
predictive power half as high as the best one. 
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mlotst_idw   LKV  

zos_idw TUG TTL, LKV TTL, LKV, TUG  

fsle_max_idw TTL, LKV TUG  TUG 

eke_idw  TTL, TUG LKV TUG 

npp_idw   TUG  

zooc_idw   TUG TTL  

mnkc_epi_idw   LKV  

mnkc_tot_idw   TTL, LKV  

dmi TTL, LKV, TUG  TTL, LKV, TUG  

 

Discussion 

Our study sheds light on the environmental variables that potentially relate to bycatch events of 

loggerhead turtles (TTL) in drifting longlines (DLL) and olive ridley (LKV) and green turtles (TUG) in purse 

seine on on floating object-associated tuna school (PS-FOB). We found that sea surface height above 

geoid (zos_idw) and the Indian Ocean Dipole Mode Index (dmi) might be important predictors of 

bycatch for these three species. 

Interestingly, our results suggest that sea surface height above geoid influences bycatch events in 

opposite directions for loggerhead and olive ridley turtles in one hand and green turtles in the other 

hand, with increasing bycatch risk of loggerhead and olive ridley turtles at higher surface heights. 

Because high surface heights occur in upwelling regions, this reinforces a previous finding that 

loggerhead turtles likely forage in highly productive waters around mesoscale eddies and thermal 

fronts (Scales et al., 2015) and this could be the case for olive ridley turtles too as shown here. The 

reason why bycatch events of green turtles more likely occur at lower surface heights remains unclear, 

but could well be due to very different foraging strategies as adult green turtles are mostly herbivorous 

(Esteban et al., 2020) and the two other species carnivorous (Colman et al., 2014; Revelles et al., 2007).  

We found that the Dipole Mode Index likely relates to bycatch events of the three species in the same 

direction, where it is more likely to catch at least one turtle with higher values of this climate index. 

Positive values of the Dipole Mode Index indicate warmer than average waters in the tropical western 

Indian Ocean and cooler than average waters in the tropical eastern Indian Ocean (Saji et al., 1999). In 

this situation, anomalous winds affect a series of oceanographic processes through feedbacks that 

influence evaporation, upwelling, and the thermocline depth (An et al., 2022). Such modifications in 

abiotic conditions could have large-scale ecosystem impacts causing regional depletion or 

augmentation of food resources for the three turtles species studied here.   

Overall, we highlighted clear positive and negative effects of a series of oceanographic variables on 

bycatch of our three focal turtle species. These preliminary results can serve as a baseline for further 

development of Species Distribution Models (SDMs) using the most important environmental 

predictors identified in Table 3. However, both modelling approaches used here (namely, logistic 

regression and Random Forest) have limitations that must be addressed. For instance, one could use 

generalized additive models instead of logistic regressions to handle better non-linear and non-

monotonic relationships via smooth functions, albeit at the expense of interpretability and with an 

increased risk of overfitting. In addition, we treated each bycatch event as a presence location – hence 

predicting the probability to catch at least one individual – but  one could use delta-models to jointly 

model bycatch probability and the number of individuals likely to be caught while accounting for fishing 

effort and location (e.g., Stock et al., 2020; Stock et al., 2019). Provided that fishing events often catch 

multiple individuals at once, this approach can be advantageous because the environmental variables 

driving the occurrence and the density of individuals could be different. In practice, however, delta-

models are difficult to apply to sea turtles because they typically represent rare bycatch events with 
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too few multiple-individual catches to fit meaningfully the positive component of delta-models (i.e., 

number of individuals). In our case, bycatch of loggerhead turtles in drifting longlines consisted in 

3.22% of non-zero observations (with only 6/145 events with multiple individuals), and, in purse seines 

on floating object-associated tuna school, 0.66% for olive ridely turtles and 0.6% for green turtles (with 

respectively 7/52 and 0/40 events with multiple individuals). Random Forest is a good alternative to 

overcome issues related with such severely imbalanced data. However, this might result in good 

predictive performance for absences (i.e., the majority class) but not for presences (He & Garcia, 2009). 

This might explain why the random forests retained in our study yielded fairly good, but not ideal, 

overall performances (i.e., with high sensitivity but low specificity and maximum AUC values of 0.64, 

0.7, and 0.66, respectively for loggerhead, olive ridley and green turtles; Fig. 3). With a similar 

percentage of non-zero observations, Stock et al. (2020) predicted bycatch of loggerhead and 

leatherback turtles in the Pacific Ocean with AUC values over 0.8 by implementing two alternative 

sampling techniques to the Random Forest algorithm: (1) setting the sample size to a proportion of the 

number of presences (down-sampling), and (2) combining down-sampling of the absences with over-

sampling of the presences (SMOTE; Chawla et al., 2002). Using a third alternative sampling technique, 

an iterative procedure using bootstrapping and balancing over an ensemble of random forests (ERFs), 

Siders et al. (2020) reached even greater predictive performances for other rarely caught species. This 

recent improvement of the Random Forest approach will prove useful to refine the results presented 

here, and model sea turtle distribution and bycatch risk in the Western Indian Ocean. 
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Supplementary information 

Supplementary information includes Figs S1-3. 

 

 Figure S1: Response curve of the environmental 
variables from the best logistic model for 
loggerhead turtles in drifting longlines (TTL-DLL). 
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Figure S2: Response curve of the environmental 
variables from the best logistic model for olive 
ridley turtles in purse seines on floating object-
associated tuna school (LKV-PS-FOB). 
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 Figure S3: Response curve of the environmental 
variables from the best logistic model for green 
turtles in purse seines on floating object-
associated tuna school (TUG-PS-FOB). 


