
 

 

 

 

 

PATTERNS OF ABUNDANCE AND COMMUNITY DYNAMICS IN ATLANTIC COASTAL 

SHARKS 

 

 

 

A Thesis 

Presented to 

The Faculty of the School of Marine Science 

The College of William and Mary in Virginia 

 

In Partial Fulfillment 

Of the Requirements for the Degree of 

Master of Science 

 

 

 

By 

Cassidy Peterson 

2016 

 

  



 

ii 
 

Table of Contents 

Acknowledgements .................................................................................................................................................. iv 

List of Tables ................................................................................................................................................................. v 

Table of Figures ......................................................................................................................................................... vi 

Abstract ....................................................................................................................................................................... viii 

General Introduction ................................................................................................................................................ 2 

Chapter 1: Reconciling conflicting indices to estimate relative coastal shark abundance ........ 20 

Abstract ................................................................................................................................................................. 21 

Introduction ........................................................................................................................................................ 22 

Methods ................................................................................................................................................................ 24 

Results ................................................................................................................................................................... 30 

Discussion ............................................................................................................................................................ 33 

Conclusion ............................................................................................................................................................ 39 

Acknowledgements .......................................................................................................................................... 40 

References ............................................................................................................................................................ 41 

Chapter 2: Species interactions and density dependence of coastal shark communities ......... 60 

Abstract ................................................................................................................................................................. 61 

Introduction ........................................................................................................................................................ 62 

Methods ................................................................................................................................................................ 65 

Results ................................................................................................................................................................... 69 

Discussion ............................................................................................................................................................ 72 

Acknowledgements .......................................................................................................................................... 82 

References ............................................................................................................................................................ 83 

Appendix .................................................................................................................................................................. 103 

VITA ............................................................................................................................................................................ 128 

 

  



 

iii 
 

Preface 

Chapter 1 will be submitted for publication in Fish and Fisheries, and Chapter 2 will be 

submitted for publication in Marine Ecology Progress Series. Both chapters are formatted 

under the respective guidelines of each journal.  
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Abstract 

Broad scale analyses of shark population and community dynamics are particularly 
challenging given the complex life history strategies employed and their vast migratory 
patterns. Consequently, studies are generally limited to analyzing small-scale, localized 
dynamics that can be examined from easily accessible, nearshore environments. In 
particular, fishery-independent shark surveys are frequently limited by spatial political 
boundaries, such that they only sample a discrete portion of a migratory coastal shark’s 
distribution. Given the age- and sex-structured movements of these species, a localized 
survey is likely unable to represent stock-wide changes in abundance, such that several small 
ranging surveys are treated as independent measures of abundance. Survey-based trends in 
abundance frequently display data conflict, likely due to high levels of uncertainty and 
variable timing in migrations. Similarly, sharks within communities interact, with the 
capacity of one species to alter the population size and growth rate of another species. 
However, these interactions have never been assessed at a wide geographic scale. In the 
current thesis, I used generalized linear models (GLMs) to estimate annual indices of 
abundance from eight species of Atlantic coastal sharks from six fishery-independent 
surveys along the U.S. east coast and within the Gulf of Mexico. These conflicting indices of 
abundance were input into a dynamic factor analysis (DFA) model with large-scale climatic 
indices and anthropogenic forces as covariates to produce simplified species-specific trends 
of abundance for each species throughout the sampled distribution. These common trends 
were then input into a multivariate, first-order autoregressive, state-space (MARSS-1) model 
to estimate interspecies interactions and density dependence. These broad-scale interactions 
were compared to localized interactions generated from conducting MARSS-1 analyses on 
GLM-based indices of abundance calculated from individual surveys. Resulting DFA common 
trends suggested that large coastal species followed similar patterns of abundance since 
1975, where abundance was high at the beginning of the time series, declined into the early 
1990s, was depressed for a length of time corresponding to age at maturity, and then showed 
initial signs of rebounding. The small coastal species showed more regional variability in 
abundance, likely due to separate Atlantic and Gulf of Mexico stocks for several of these 
species. Broad-scale community analysis results showed that seven out of ten coastal shark 
populations exhibited density dependence, and an additional seven interspecies interactions 
were identified that significantly influence the population growth rate of affected species. 
The localized, survey-specific MARSS-1 modeling results produced different results, 
suggesting that small scale results cannot be extrapolated across the entire stock. 
Nevertheless, results from these survey-specific models greatly assisted interpretation of the 
large scale results. Overall, by analyzing coastal shark population and community dynamics 
from a broader perspective, we can interpret broad trends in abundance and account for 
interactions that were previously unknown. These results may assist in assessment efforts 
by reducing conflicting information input into stock assessment models, and accounting for 
community relationships that may affect population growth rate of various species.  
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General Introduction 

Shark biology 

Sharks are members of the class Chondrichthyes, comprised of all cartilaginous 

fishes, which appeared during the early Paleozoic (>400 mya). Chondrichthyes are divided 

into two subclasses: Holocephali (chimaeras) and Elasmobranchii (sharks, skates and rays; 

Helfman et al. 2009). Modern sharks (Division: Neoselachii) arose 250 mya (Grogan et al. 

2012), and displayed calcified vertebral centra, smaller and more flexible fin supports 

(ceratotrichia), a protrusible upper jaw, a tooth replacement mechanism, and a subterminal 

mouth, among other morphological traits. The Neoselachians are comprised of two 

subdivisions, Selachii (sharks) and Batoidea (skates and rays). The Selachians represent a 

diverse subdivision, comprised of two superorders, nine orders, and 34 families (Helfman et 

al. 2009).  

Sharks have evolved to be apex predators, such that they have few (if any) natural 

predators. Hence, sharks have a slow metabolism relative to teleost (bony fish) species, 

grow slowly, have extended longevities, and generally reach large sizes. Consequently, 

sharks attain sexual maturity at late ages (Helfman et al. 2009). Because of their trophic 

status, sharks have evolved a life history strategy that is dependent on the absence of 

predators. For example, sharks allocate substantial maternal investment towards forming 

relatively large, survivable offspring in exchange for low fecundity.  

All Chondrichthyans reproduce internally, and elasmobranchs employ three main 

reproductive strategies: 1) oviparity involves laying eggs within which embryos develop, 2) 

ovoviviparity (aplacental viviparity) involves females carrying self-contained, developing 

embryos within one or each of their two uteruses without any other nutritional assistance, 

and 3) viviparity is where females carry embryos and give further nutritional assistance to 
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the growing embryos through placental attachment. Although, these broad classifications 

are complicated by additional reproductive strategies involving additional forms of 

maternal nourishment, including secretion of intra-uterine milk (histotroph) and 

supplementary ovulated fertilized or unfertilized follicles (yolk-filled eggs; oophagy). In 

exchange for the relatively extreme maternal investment, fecundities are low (2-50 

pups/litter), and reproductive cycles are long. Within species that give live birth, gestation 

periods range from 9-24 months, and some species require a one to two year resting period 

to undergo vitellogenesis (production of yolk) before they can mate and undergo ovulation 

(Castro 2009; Conrath and Musick 2012). Hence, lifetime reproductive capacity is extremely 

low for elasmobranchs.  

Following parturition, adult females immediately leave pupping grounds to avoid 

cannibalizing their young, and neonates receive no further maternal investment. Some 

species with larger birth sizes or fast initial growth rates use broad coastal areas to pup, 

other species use discrete nursery areas (typically productive estuarine environments) to 

avoid predation until they reach a sufficient size, after which the risk of predation decreases 

(Grubbs 2010). Within nursery areas, first year mortality has been predicted to be as high 

as 90% in a carcharhinid species (Heupel and Simpfendorfer 2002), although it has been 

proposed that first-year survival changes as a mechanism for density-dependent 

compensation (Gruber et al. 2001; Cortés et al. 2012).  

Sharks are known to make large north-south and inshore-offshore migration in 

response to temperature changes for the main purposes of prey abundance and 

reproduction (Grubbs 2010; Castro 2011). Ontogenetic changes in migratory patterns 

emerge as sharks tend to aggregate based on sex, size, and maturity, such that migrations 

tend to become larger with increasing size (Grubbs 2010). Some coastal and pelagic species 

have been known to make trans-oceanic migrations (Kohler et al. 1998).  



 

4 
 

All elasmobranchs are carnivorous (Helfman et al. 2009), and shark diets have been 

shown to undergo ontogenetic changes. Furthermore, as diet is dependent on the prey field 

available, diets generally change over space. Consequently, sharks have the capacity to 

change trophic level over time and space. Changing diet coupled with the migratory nature 

of sharks suggests that the role of a shark within a given community is temporary, with the 

capacity to fluctuate over time and with changing conditions (i.e. prey abundance; Grubbs 

2010). 

Shark fisheries  

Sharks were considered underutilized until the 1930s, before which few, small 

artisanal shark fisheries existed within the U.S. In 1938, a shark fishery was prompted by 

demand for vitamin A found within shark liver (NMFS 1993), located within the Caribbean 

Sea, off the Florida coast, within the Gulf of Mexico, and off the Pacific coast (Wagner 1966). 

Synthetic vitamin A production in 1950 coupled with little use for other shark products and 

overfishing resulted in a largely abandoned fishery (Wagner 1966; NMFS 1993). The 

subsequent increase in shark populations in the absence of fishing led to complaints that 

sharks were damaging commercial fishing gear and target fishes, particularly within the 

trawl fishery, tuna purse seine fishery, Spanish mackerel fishery in Florida, and the shrimp 

trawl fishery. It was proposed that targeting sharks for harvest would rectify this problem 

(Wagner 1966).  

Again, in the mid-1970s, sharks were deemed an underutilized natural resource as 

other commercially important stocks were declining, and commercial fishermen were 

encouraged to target sharks (Musick et al. 1993; ASMFC 2012; SEDAR 2012; McCandless et 

al. 2014). Increased demand for shark meat, cartilage, and fins drove the expansion of the 

fishery (NMFS 1993; ASMFC 2008). Notably, foreign demand for shark fins led to the 

practice of ‘finning,’ in which fins are removed from the shark after capture, and the carcass 
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is discarded (NMFS 1993). Commercial landings of sharks peaked in 1989 (ASMFC 2008), 

which led to the development of the first shark fishery management plan (FMP; SEDAR 

2012). Sharks are primarily commercially targeted using bottom longlines and gillnets 

(ASMFC 2012). Furthermore, sharks are frequently captured as bycatch within several 

other commercial fisheries (i.e. pelagic longlines, Berkeley and Campos 1988; shrimp trawl, 

SEDAR 2013, etc.).  

Recreational shark fishing has historically existed along the US east coast, within the 

Gulf of Mexico, and Caribbean Sea, when sharks were considered “the poor man’s marlin” 

(ASMFC 2008). After the release of the movie “Jaws” in 1975, public excitement stimulated 

the development of a directed recreational fishery (Musick et al. 1993; Cortés et al. 2006). 

Because of the ubiquitous nature of sharks, easy accessibility within nearshore 

environments facilitated the expansion of the recreational fishery. Currently, shark 

recreational fishing is dominated by charter vessels (ASMFC 2008).  

Shark population decline 

The slow life history strategy employed by sharks results in extremely low intrinsic 

rates of population increase (Au et al. 2015), which when coupled with the increase of 

directed commercial and recreational fishing pressure led to drastic population declines 

into the 1990s. The magnitude of this decline has been contentiously debated within the 

scientific literature over the last several years. Initially, Musick et al. (1993) noted declines 

in abundance of 60-80% for four species (sandbar, dusky, sand tiger, and tiger) of sharks 

caught within the Virginia Institute of Marine Science (VIMS) longline survey since 1974. 

Within 15 years of the onset of industrial exploitation, Myers and Worm (2003) proposed 

that all exploited fishes had decreased by 80% before scientific monitoring began. In the 

northwest Atlantic Ocean, purported declines from 60% (grouped coastal species) up to 

90% (hammerhead sharks) from 1986 abundances were estimated from pelagic longline 
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data for several coastal and pelagic shark species (Baum et al. 2003). Furthermore, 

accounting for the existence of baseline shifts, Baum and Myers (2004) infamously 

proposed declines of up to 99% of pelagic species from pelagic longline data, despite low 

sample sizes and statistical insignificance. Consequently, these studies were rebutted by 

Burgess et al. (2005a), who stated that the conclusions drawn in Baum et al. (2003) and 

Baum and Myers (2004) were sensationalized, and not founded on accurate or sufficient 

information. Additional responses followed (Baum et al. 2005; Burgess et al. 2005b).  

Results from the University of North Carolina’s shark longline survey showed 

declines of 87% for sandbar sharks, 93% for blacktip sharks, 97% for tiger sharks, 98% for 

scalloped hammerhead sharks, and 99% or more for dusky, bull, and smooth hammerhead 

sharks (Myers et al. 2007), despite the limited spatial coverage of the survey (i.e. two fixed 

stations sampled bi-weekly from April to November; Schwartz et al. 2010). Within the VIMS 

longline survey, substantial population declines (sandbar shark 82% decline, dusky shark 

96% decline, sand tiger shark 99.8% decline, tiger shark 97.5% decline relative to 1974 

values) were inferred from declining catch-per-unit-effort (CPUE) data, despite changes in 

operational procedures (i.e. soak time, bait type, etc.; Ha 2005). Baum and Blanchard (2010) 

suggested declines of 76% in hammerhead and large coastal species from pelagic longline 

commercial fishery data. Contrarily, by 2009, the abundance of four coastal shark species 

(spinner, bull, lemon, tiger) showed signs of increase (14%, 12%, 6%, 3%, respectively) 

within the commercial bottom longline fishery, indicating stability or preliminary recovery 

(Carlson et al. 2012). 

The 2002 LCS stock assessment suggested that while the Gulf of Mexico blacktip 

shark stocks experienced low levels of depletion from virgin abundance (8-23% decline), 

the sandbar sharks experienced a much larger decline (64-71% from virgin level; SEDAR 

2006). The Atlantic blacktip shark stock likely faced greater declines than the Gulf of Mexico 
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stock, considering the directed shark fishery along the U.S. east coast primarily targeted 

sandbar and blacktip sharks (SEDAR 2012). By 2009, the sandbar shark was estimated to be 

at 35% of virgin biomass and depletions had begun approaching zero (SEDAR 2011), while 

the Gulf of Mexico blacktip shark stock was estimated to be at 85-90% of virgin biomass in 

2010 (SEDAR 2012).  

While SCS species underwent declines of generally smaller magnitudes, due to their 

life history strategy, they have a higher capacity to recover (Au et al. 2015). In 2006, the SCS 

complex was estimated to have declined by 15% of virgin abundance (finetooth declined by 

10%, blacknose declined by 17%, Atlantic sharpnose declined by 35-40%, and bonnethead 

declined by 35% with respect to virgin levels; SEDAR 2007). However, in 2009, when 

assessed as separate populations, the blacknose declines were shown to be much greater 

(Atlantic blacknose stock declined by 80%, and Gulf of Mexico blacknose stock declined by 

85% relative to virgin levels; SEDAR 2011). Similarly, the bonnethead abundance was ~30-

40% of virgin levels in 2012, while the Atlantic sharpnose abundance increased to 50-55% 

of virgin abundance (SEDAR 2013). 

Ecological impacts of sharks 

The ecological effects of these depletions in apex predator abundance have also 

been debated contentiously. Several studies postulate that sharks control their food web via 

top-down regulation, and after shark populations are fished to low levels, mesopredatory 

release and subsequent trophic cascades result (Myers et al. 2007; Baum and Worm 2009; 

Ferretti et al. 2010; Burkholder et al. 2013). However, claims that sharks regulate 

community structure have also been refuted in the scientific literature due to the 

complexity, duplicity, and diversity of marine food webs (Grubbs et al. 2016).  

Contrarily, Heithaus et al. (2008; 2010) stress that trophic cascades are not 

necessarily manifested in a vertical manner. Risk effects, or indirect effects of sharks (i.e. 



 

8 
 

antipredator behaviors in which prey species inhabit suboptimal environments to avoid 

predation; Heupel and Heuter 2002), can have larger impacts on community structure than 

predatory effects, especially considering the density-dependent compensation experienced 

by many marine species. These indirect effects can also result in trophic cascades. Impacts 

of changing predator abundance are likely to result in unexpected or unintuitive 

consequences due to the complex nature of marine communities. Hence, effects of sharks 

may not directly impact population growth rates of mesopredators (Heithaus et al. 2008; 

2010). In particular, changes in shark abundance are most likely to cause ecosystem effects 

when: the shark species is preying upon or inducing antipredatory behavior in longer-lived 

species, the shark species of concern is the primary predator for a limited number of prey 

species, the shark species preys upon a keystone or high trophic-level species, the shark 

species alters community structure, the shark species preys on a species during a life 

history stage where density dependence occurs, or there are no other predators of the same 

trophic level present in the ecosystem (Heithaus et al. 2010). It has also been proposed that 

sharks (and other apex predatory species) have a stabilizing effect on their ecosystem 

(Britten et al. 2014; Heithaus et al. 2010).  

Shark management history  

The first U.S. shark (FMP) was established in 1993 by the U.S. Secretary of 

Commerce as a result of overexploitation leading to declining abundances. Because 

sufficient information was not available to present species-specific management measures, 

39 species of sharks were grouped into three categories for management: large coastal 

species (LCS), small coastal species (SCS), and pelagic species. The LCS group included 

sandbar (Carcharhinus plumbeus), blacktip (C. limbatus), dusky (C. obscurus), spinner (C. 

brevipinna), silky (C. falciformis), bull (C. leucas), bignose (C. altimus), tiger (Galeocerdo 

cuvier), sand tiger (Carcharias taurus), lemon (Negaprion brevirostris), night (C. signatus), 
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nurse (Ginglymostoma cirratum), great hammerhead (Sphyrna mokarran), and scalloped 

hammerhead (S. lewini) sharks. The SCS group consisted of Atlantic sharpnose 

(Rhizoprionodon terraenovae), Caribbean sharpnose (R. porosus), bonnethead (S. tiburo), 

blacknose (C. acronotus), smalltail (C. porosus), finetooth (C. isodon), and Atlantic angel 

(Squatina dumerili) sharks. Lastly, the pelagic species group was comprised of shortfin 

mako (Isurus oxyrinchus), longfin mako (I. paucus), thresher (Alopias vulpinus), bigeye 

thresher (A. superciliosus), oceanic whitetip (C. longimanus), porbeagle (Lamna nasus), and 

blue (Prionace glauca) sharks. The shark FMP assumed the goals of halting commercial 

fishery growth, creating recreational bag limits, eliminating finning, and establishing a data 

collection program within the shark fishery. Evidence of overfishing was noted within the 

LCS group between 1986 and 1992, as the LCS group is the target of the shark fishery 

(NMFS 1993), likely due to their large body (and fin) sizes and close proximity to land 

(Dulvy et al. 2014).  

Consequently, a LCS rebuilding plan was initiated that reduced catch by 34% per 

year in an effort to rebuild the stock by 5% each year to MSY levels, which was projected to 

be achieved by 1995-1999. These semi-annual quotas closed the fishery once reached. 

While the SCS and pelagic species groups were not overfished, the pelagic group 

experienced significant exploitation. A quota, similar to that established for LCS, was 

implemented for the pelagic species group, and SCS fishing continued unrestricted. 

Additional management measures included recreational bag limits, a ban on finning, 

implementation of a data collection and data reporting system (i.e. mandatory logbooks, 

dock interviews, observer coverage), and permit requirements, among others (NMFS 1993).  

Unfortunately, the semi-annual quotas were quickly exceeded, promoting a derby-

style fishery. Additional management measures were implemented in 1994 to help alleviate 

this reaction. A 1994 stock assessment found that recovery of the LCS group would take up 
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to 30 years, and any increase in quota would not allow the group to recover. The SCS and 

pelagic species groups were also found to have low productivities (NMFS 2003). In 1996, 

the Magnuson-Stevens Act was reauthorized by congress, which called for all exploited 

fisheries to be rebuilt and maintained at levels that will produce optimal yield of the fishery, 

conservation and management measures to be based on the ‘best scientific information 

available,’ mandating consideration of socioeconomic impacts, minimization of bycatch 

and/or bycatch mortality, and identification and protection of essential fish habitat (EFH), 

among others (NMFS 2003, NMFS 2015). A subsequent assessment in 1996 found that LCS 

stocks were not rebuilding under the current management scheme, and called for a 50% cut 

in commercial quota and recreational bag limits, and an additional cut to the SCS quota, 

effective in 1997. Five shark species were also listed as prohibited. In response to these 

drastic reductions in quota, the Southern Offshore Fishing Association (SOFA), along with 

other commercial fishermen and shark dealers, filed a lawsuit against the Secretary of 

Commerce. In 1998, the court ruled that NOAA fisheries was responsible for conducting a 

thorough analysis on the economic effects of limiting catch, which was not completed. 

Nevertheless, 1997 landings quotas were maintained following an economic impact 

assessment. In 1998, an LCS stock assessment found that the LSC complex would not 

recover under the 1997 quotas. Consequently and in response to the reauthorization of the 

Magnuson-Stevens Act, a new FMP was established in 1999 that encompassed all Atlantic 

highly migratory species (HMS; Atlantic tunas, swordfish, and sharks; NMFS 2003).  

The 1999 FMP continued management measures concerning sharks, including 

increased observer coverage, and continued limited access and reporting, while reducing 

commercial quotas and recreational bag limits, implementing minimum size requirement 

for recreational fishers, counted dead discards against the federal quota, implemented 

ridgeback/non-ridgeback categories within the LCS group (based on the presence/absence 
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of a ridge along the dorsal surface of the body), and created a new deep water/other sharks 

management unit, which was later eliminated. Species-specific quotas were implemented 

for porbeagle and blue sharks, and the following sharks became prohibited: whale 

(Rhincodon typus), basking (Cetorhinus maximus), sand tiger, bigeye sand tiger (O. ferox), 

white (Carcharodon carcharias), dusky, night, bignose, Galapagos (C. galapagensis), 

Caribbean reef (C. perezii), narrowtooth (C. brachyurus), longfin mako, bigeye thresher, 

sevengill (Notorynchus cepedianus), sixgill (Hexanchus griseus), bigeye sixgill (H. 

nakamurai), Caribbean sharpnose, smalltail, and Atlantic angel sharks (NMFS 1999). In 

response to the 1999 FMP, SOFA, Bluewater Fisherman’s Association, and the Recreational 

Fishing Alliance sued NOAA fisheries over Atlantic coastal shark management, pelagic shark 

management, and recreational measures, respectively. While the latter two lawsuits were 

dismissed as the court affirmed NOAA fisheries was acting in accordance with the 

Magnuson-Stevens Act, SOFA and NOAA fisheries did not reach a settlement until the year 

2000, which required peer-review of stock assessments. As the 1998 assessment failed 

peer-review, 1997 quotas were maintained until an emergency rule was established for the 

2002 fishing year. Consequently, in 2002, SCS and LCS shark stock assessments were 

conducted, which indicated that finetooth sharks were experiencing overfishing, the LCS 

complex was overfished and overfishing was occurring, and sandbar sharks were 

experiencing overfishing. This assessment passed peer review, initiating the 

implementation of Amendment 1 to the 1999 FMP, which set regional quotas, established 

trimester fishing seasons, adjusted quotas and time/area closures, and updated EFH (NMFS 

2003).  

In 2006, a new Atlantic HMS FMP was enacted that namely established mandatory 

workshops for shark fishermen and HMS dealers, considered action to rebuild and 

eliminate overfishing of finetooth sharks, and contemplated alterations to the previously 
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established time/area closures (NMFS 2006). A series of amendments were added to this 

2006 FMP that updated EFH (NMFS 2009), implemented a shark research program, 

required sharks to be landed with fins naturally attached (NMFS 2007), updated species-

specific and group management as new assessments provided the best available data, and 

developed rebuilding programs as needed (NMFS 2007; 2010; 2013; 2015). Particular 

management actions with relevance to the current study include introduction of a shark 

research fishery in 2007, within which special permits are required. Sandbar sharks became 

prohibited outside of the research fishery (NMFS 2007). Finally, blacknose sharks were 

removed from the SCS quota such that a rebuilding plan could be implemented (NMFS 

2010). 

Current shark status 

 The 2006 LCS stock assessment determined that species-specific assessments 

should be conducted, because the various life history and productivity differences of each 

stock result in nonsensical results when all species are pooled (SEDAR 2006). The most 

recent finetooth shark assessment, determined that finetooth sharks were not overfished 

and no overfishing was occurring (SEDAR 2007). Current shark assessments utilize state-

space, age-structured production models (SSASPMs; SEDAR 2011; 2012; 2013). The current 

status of Atlantic blacktip sharks and Gulf of Mexico blacknose sharks are unknown due 

model fitting problems (SEDAR 2006; 2011; 2012). Most recent assessments indicate that 

the sandbar shark was overfished but was not experiencing overfishing (SEDAR 2011), the 

Atlantic blacknose stock was overfished and overfishing was occurring (SEDAR 2011), and 

the Gulf of Mexico blacktip stock, Atlantic sharpnose, and bonnethead sharks were not 

overfished or experiencing overfishing (SEDAR 2012; 2013). However, it is worthwhile to 

note that although the Atlantic blacktip stock status is unknown, blacktip sharks has been 

one of the two main targets of commercial exploitation along the U.S. east coast (along with 
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sandbar sharks), and has likely undergone more extensive exploitation than in the Gulf of 

Mexico (SEDAR 2012). Furthermore, the bonnethead shark comprises two genetically 

distinct stocks in the Atlantic and the Gulf of Mexico, but was most recently assessed as a 

single stock. The resulting stock status will likely change when assessed as two separate 

stocks, especially considering the several years of overexploitation noted in the last 

assessment (SEDAR 2013).  

Study objectives 

 Given the complex life history strategy of sharks (i.e. long lifespan, migratory nature, 

ontogenetic changes in habitat use and species interactions), comprehensive analyses of 

population-wide analyses are particularly challenging. Thus far, studies have relied on 

independent and fragmented information. For example, because sharks cross several 

political borders (i.e. state waters), several directed (state-funded) fishery-independent 

surveys are spatially limited relative to shark distributions. Consequently, indices of relative 

abundance from each survey spanning the range of the species of interest are treated as 

independent measures of shark abundance within stock assessments (SEDAR 2013). Likely 

due to high levels of uncertainty and the timing of each survey relative to environmentally 

driven shark migrations (e.g. Grubbs 2010), indices of abundance from disparate surveys 

frequently result in conflicting information. The state-space, age-structured production 

model used in shark stock assessments cannot reconcile antagonistic information, such that 

different combinations of like indices are alternatively tested within the model framework 

as sensitivity runs. Consequently, the 2013 shark stock assessment recommended 

additional research on the integration of local abundance indices into a global index (SEDAR 

2013). Furthermore, the Atlantic States Marine Fisheries Commission recommended 

additional research should be conducted on identifying indices that contribute the most 

information to stock-wide trends (ASMFC 2013). Hence, in Chapter 1, I used a multivariate, 
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dimension-reduction technique, dynamic factor analysis (DFA), to reconcile conflicting 

trends in abundance, which simultaneously represents a framework to assess which indices 

are contributing the most to the resulting trends.  

 The same life history characteristics make shark community dynamics difficult to 

investigate. Studies investigating interspecies relationships have thus far been constrained 

to easily accessible, localized areas (such as shark nursery areas; e.g., Bethea et al. 2004; 

White and Potter 2004; DeAngelis et al. 2008). However, sharks spend a large portion of 

their lifecycles away from such environments. Consequently, in Chapter 2, I sought to 

quantitatively examine shark intra- and interspecies interactions via multivariate, first-

order autoregressive, state-space (MARSS-1) models. Localized results based on indices of 

abundance derived from a single fishery-independent survey were compared to broad-scale 

results based on the common trends of abundance calculated in Chapter 1. By using 

quantitative tools, we can analyze shark population dynamics at a broad-scale, which 

cannot be done directly using conventional methods.  

  



 

15 
 

References 

Atlantic States Marine Fisheries Commission. 2008. Interstate Fishery Management Plan for 
Atlantic Coastal Sharks. Fishery Management Report No. 46. Report of the Atlantic 
States Marine Fisheries Commission to the U.S. Department of Commerce. National 
Oceanic and Atmospheric Administration. 172 pp. 

Atlantic States Marine Fisheries Commission. 2012. Species profile: Atlantic coastal sharks. 
States plan studies to implement shark conservation act measures. Excerpted from 
ASMFC Fisheries Focus. 21(6): 4 pp. 

Atlantic States Marine Fisheries Commission. 2013. Research Priorities and 
Recommendations to Support Interjurisdictional Fisheries Management. Special Report 
# 89. ASMFC, Arlington, VA. 58 pp. 

Au DW. Smith SE. Show C. 2015. New abbreviated calculation for measuring intrinsic 
rebound potential in exploited fish populations—example for sharks. Canadian Journal 
of Fisheries and Aquatic Science. 72: 767-773. 

Baum JK. Blanchard W. 2010. Inferring shark population trends from generalized linear 
mixed models of pelagic longline catch and effort data. Fisheries Research. 102: 229-
239. 

Baum JK. Kehler D. Myers RA. 2005. Robust Estimates of decline for pelagic shark 
populations in the northwest Atlantic and Gulf of Mexico. Fisheries: 30 (10): 27-29. 

Baum JK. Myers RA. 2004. Shifting baselines and the decline of pelagic sharks in the Gulf of 
Mexico. Ecology Letters. 7: 135-145. 

Baum JK. Myers RA. Kehler DG. Work B. Harley SJ. Doherty PA. 2003. Collapse and 
conservation of shark populations in the northwest Atlantic. Science 299: 389-392. 

Baum JK. Worm B. 2009. Cascading top-down effects of changing oceanic predator 
abundances. Journal of Animal Ecology. 78: 699-714. 

Berkeley SA. Campos WL. 1988. Relative abundance and fishery potential of pelagic sharks 
along Florida’s east coast. Marine Fisheries Review. 50(1): 9-16. 

Bethea DM. Buckel JA. Carlson JK. 2004. Foraging ecology of the early life stages of four 
sympatric shark species. Marine Ecology Progress Series. 268: 245-264. 

Britten GL. Dowd M. Minto C. Ferretti F. Boero F. Lotze HK. 2014. Predator decline leads to 
decreased stability in a coastal fish community. Ecology Letters. 17: 1518-1525. 

Burgess GH. Beerkircher LR. Cailliet GM. Carlson JK. Cortés E. Goldman KJ. Grubbs RD. 
Musick JA. Musyl MK. Simpfendorfer CA. 2005a. Is the collapse of shark populations in 
the Northwest Atlantic Ocean and Gulf of Mexico real? Fisheries 30(10): 19-26. 

Burgess GH. Beercircher LR. Cailliet GM. Carlson JK. Cortés E. Goldman KJ. Grubbs RD. 
Musick JA. Musyl MK. Simpfendorfer CA. 2005b. Reply to “Robust estimates of decline 



 

16 
 

for pelagic shark populations in the Northwest Atlantic and Gulf of Mexico.” Fisheries. 
30: 30-31. 

Burkholder DA. Heithaus MR. Forqurean JW. Wirsing A. Dill LM. 2013. Patterns of top-down 
control in a seagrass system: could a roving apex predator induce a behaviour-mediated 
trophic cascade? Journal of Animal Ecology. 82: 1192-1202. 

Carlson JK. Hale LF. Morgan A. Burgess G. 2012. Relative abundance and size of coastal 
sharks derived from commercial shark longline catch and effort data. Journal of Fish 
Biology. 80: 1749-1764. 

Castro JI. 2009. Observations on the reproductive cycles of some viviparous North American 
sharks. International Journal of Ichthyology. 15: 205-222. 

Castro JI. 2011. The sharks of North America. Oxford University Press. New York, New York. 

Conrath CL. Musick JA. 2012. Reproductive biology of elasmobranchs. In: Carrier JC. Musick 
JA. Heithaus MR. (eds.) Sharks and Their Relatives. 2nd edn. CRC Press. Boca Raton, FL. 
Pp. 291-311. 

Cortés E. Brooks E. Apostolaki P. Brown CA. 2006. Stock assessment of dusky shark in the 
U.S. Atlantic and Gulf of Mexico. Sustainable Fisheries Division Contribution SFD-2006-
014, Panama City Laboratory Contribution 06-05. 

DeAngelis BM. McCandless CT. Kohler NE. Recksiek CW. Skomal GB. 2008. First 
characterization of shark nursery habitat in the United States Virgin Islands: evidence of 
habitat partitioning by two shark species. Marine Ecology Progress Series. 358: 257-
271.  

Dulvy NK. Fowler SL. Musick JA. Cavanagh RD. Kyne PM. Harrison LR. Carlson JK. Davidson 
LNK. Fordham SV. Francis MP. Pollock CM. Simpfendorfer CA. Burgess GH. Carpenter KE. 
Compagno LJV. Ebert DA. Gibson C. Heupel MR. Livingstone SR. Sanciangco JC. Stevens 
JD. Valenti S. White WT. 2014. Extinction risk and conservation of the world’s sharks 
and rays. eLife 3: e00590. doi: 10.7554/eLife.00590. 

Ferretti F. Worm B. Britten GL. Heithaus MR. Lotze HK. 2010. Patterns and ecosystem 
consequences of shark declines in the ocean. Ecology Letters. 13: 1055-1071. 

Grogan ED. Lund R. Greenfest-Allen E. 2012. The origin and relationships of early 
Chondrichthyans. In: Carrier JC. Musick JA. Heithaus MR. (eds.) Sharks and Their 
Relatives. 2nd edn. CRC Press. Boca Raton, FL. Pp. 3-29. 

Grubbs RD. 2010. Ontogenetic shifts in movements and habitat use. In: Carrier JC. Musick JA. 
Heithaus MR. (eds.) Sharks and Their Relatives II. Biodiversity, adaptive physiology, and 
conservation. CRC Press. Boca Raton, FL. Pp. 319-350. 

Grubbs RD. Carlson JK. Romine JG. Curtis TH. McElroy WD. McCandless CT. Cotton CF. 
Musick JA. 2016. Critical assessment and ramifications of a purported marine trophic 
cascade. Scientific Reports. 6. DOI: 10.1038/srep20970. 



 

17 
 

Gruber SH. de Marignac JRC. Hoenig JM. 2001. Survival of juvenile lemon sharks at Bimini, 
Bahamas, estimated by mark-depletion experiments. Transactions of the American 
Fisheries Society. 130(3): 376-384. 

Ha DS. 2005. Ecology and conservation of Virginia shark species. Analysis of thirty years of 
Virginia long-line shark census data, 1974-2004. Dissertation presented to the Virginia 
Institute of Marine Science, The College of William and Mary, Virginia. 198 pp. 

Heithaus MR. Frid A. Vaudo JJ. Worm B. Wirsing AJ. 2010. Unraveling the ecological 
importance of elasmobranchs. In: Carrier JC. Musick JA. Heithaus MR. (eds.) Sharks and 
Their Relatives II. Biodiversity, adaptive physiology, and conservation. CRC Press. Boca 
Raton, FL. Pp. 611-637. 

Heithaus MR. Frid A. Wirsing AJ. Worm B. 2008. Predicting ecological consequences of 
marine top predator declines. Trends in Ecology and Evolution. 23(4): 202-210. 

Helfman GS. Collette BB. Facey DE. Bowen BW. 2009. The Diversity of Fishes Biology, 
Evolution, and Ecology. 2nd ed. Wiley-Blackwell Publishing, Oxford, UK. 

Heupel MR. Heuter RE. 2002. Importance of prey density in relation to the movement 
patterns of juvenile blacktip sharks (Carcharhinus limbatus) within a coastal nursery 
area. Marine and Freshwater Research. 53: 543–550. 

Heupel MR. Simpfendorfer CA. 2002. Estimation of mortality of juvenile blacktip sharks, 
Carcharhinus limbatus, within a nursery area using telemetry data. Canadian Journal of 
Fishery and Aquatic Science. 59: 624–632. 

Kohler NE. Casey JG. Turner PA. 1998. NMFS cooperative shark tagging program, 1962-93: 
an atlas of shark tag and recapture data. Marine Fisheries Review 60(2): 1-87. 

McCandless CT. Conn P. Cooper P. Cortés E. Laporte SW. Nammack M. 2014. Status review 
report: northwest Atlantic dusky shark (Carcharhinus obscurus). Report to National 
Marine Fisheries Service, Office of Protected Resources. 72 pp.  

Musick JA. Branstetter S. Colvocoresses JA. 1993. Trends in shark abundance from 1974-
1991 for the Chesapeake Bight region of the U.S. mid-Atlantic coast. In NOAA Technical 
Report NMFS 115. Fishery Bulletin. Conservation Biology of Elasmobranchs, edited by S. 
Branstetter. Pp 1-18. United States Department of Commerce, Miami.  

Myers RA. Baum JK. Shepherd TD. Powers SP. Peterson CH. 2007. Cascading effects of the 
loss of apex predatory sharks from a coastal ocean. Science. 315: 1846-1850.  

Myers RA. Worm B. 2003. Rapid worldwide depletion of predatory fish communities. 
Nature. 423: 280-283. 

National Marine Fisheries Service. 1993. Fishery Management Plan for Sharks of the 
Atlantic Ocean. National Oceanic and Atmospheric Administration, National Marine 
Fisheries Service, Office of Sustainable Fisheries, Highly Migratory Species Management 
Division, Silver Spring, MD. Public Document.  



 

18 
 

National Marine Fisheries Service. 1999. Final Fishery Management Plan For Atlantic Tuna, 
Swordfish, and Sharks. National Oceanic and Atmospheric Administration, National 
Marine Fisheries Service, Office of Sustainable Fisheries, Highly Migratory Species 
Management Division, Silver Spring, MD. Public Document. 

National Marine Fisheries Service. 2003. Final Amendment 1 to the Fishery Management 
Plan for Atlantic tunas, swordfish and sharks. National Oceanic and Atmospheric 
Administration, National Marine Fisheries Service, Office of Sustainable Fisheries, 
Highly Migratory Species Management Division, Silver Spring, MD. Public Document. 

National Marine Fisheries Service. 2006. Final Consolidated Atlantic Highly Migratory 
Species Fishery Management Plan. National Oceanic and Atmospheric Administration, 
National Marine Fisheries Service, Office of Sustainable Fisheries, Highly Migratory 
Species Management Division, Silver Spring, MD. Public Document. pp. 1629. 

National Marine Fisheries Service. 2007. Final Amendment 2 to the Consolidated Atlantic 
Highly Migratory Species Fishery Management Plan. National Oceanic and Atmospheric 
Administration, National Marine Fisheries Service, Office of Sustainable Fisheries, 
Highly Migratory Species Management Division, Silver Spring, MD. Public Document. 
472 pp. 

National Marine Fisheries Service. 2009. Final Amendment 1 to the 2006 Consolidated 
Atlantic Highly Migratory Species Fishery Management Plan, Essential Fish Habitat. 
National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 
Office of Sustainable Fisheries, Highly Migratory Species Management Division, Silver 
Spring, MD. Public Document. pp. 395. 

National Marine Fisheries Service. 2013. Final Amendment 5a to the 2006 Consolidated 
Atlantic Highly Migratory Species Fishery Management Plan. National Oceanic and 
Atmospheric Administration, National Marine Fisheries Service, Office of Sustainable 
Fisheries, Highly Migratory Species Management Division, Silver Spring, MD. Public 
Document. 410 pp. 

National Marine Fisheries Service. 2015. Final Environmental Assessment, Regulatory 
Impact Review, and Final Regulatory Flexibility Analysis for Amendment 6 to the 2006 
Consolidated Atlantic Highly Migratory Species Fishery Management Plan. National 
Oceanic and Atmospheric Administration, National Marine Fisheries Service, Office of 
Sustainable Fisheries, Highly Migratory Species Management Division, Silver Spring, 
MD. Public Document. 229 pp. 

Schwartz FJ. McCandless CT. Hoey JJ. 2010. Standardized catch rates for blacknose, dusky 
and sandbar sharks caught during a UNC longline survey conducted between 1972 and 
2009 in Onslow Bay, NC. SEDAR 21 Data Workshop Document. SEDAR 21-DW-33. Pp. 
26.  

Southeast Data, Assessment, and Review. 2006. SEDAR 11 Large coastal shark complex, 
blacktip and sandbar shark. SEDAR, North Charleston SC. Available online at: 
http://sedarweb.org/sedar-11 



 

19 
 

Southeast Data, Assessment, and Review. 2007. SEDAR 13 Small coastal shark complex, 
Atlantic sharpnose, blacknose, bonnethead, and finetooth shark. SEDAR, North 
Charleston SC. Available online at: http://sedarweb.org/sedar-13 

Southeast Data, Assessment, and Review. 2011. SEDAR 21 HMS Sandbar shark, dusky shark, 
and blacknose shark. SEDAR, North Charleston SC. Available online at: 
http://sedarweb.org/sedar-21 

Southeast Data, Assessment, and Review. 2012. SEDAR 29 HMS Gulf of Mexico blacktip 
shark. SEDAR, North Charleston SC. Available online at: http://sedarweb.org/sedar-29 

Southeast Data, Assessment, and Review. 2013. SEDAR 34 HMS Atlantic sharpnose shark 
and bonnethead shark. SEDAR, North Charleston SC. Available online at: 
http://sedarweb.org/sedar-34 

Wagner MH. 1966. Shark Fishing Gear: A historical review. Circular 283. U.S. Department of 
the Interior. Fish and Wildlife Service. Washington, DC.  

White WT. Potter IC. 2004. Habitat partitioning among four elasmobranch species in 
nearshore, shallow waters of a subtropical embayment in Western Australia. Marine 
Biology. 145: 1023-1032. 

 

  



 

20 
 

Chapter 1 

Reconciling conflicting indices to estimate relative coastal shark abundance  
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Abstract  

Relative abundance of many shark species in the Atlantic is assessed by compiling 

data from several independently conducted, but somewhat spatially limited surveys.  

Although these localized surveys sample the same populations, resulting trends in annual 

indices often conflict with one another, thereby hindering interpretation of abundance 

patterns at broad spatial scales. We used generalized linear models (GLMs) to generate 

indices of abundance for eight Atlantic coastal shark species from six fishery-independent 

surveys along the U.S. east coast and Gulf of Mexico from 1975 to 2014. These indices were 

further analyzed using dynamic factor analysis (DFA) to produce simplified, broad-scale 

common trends in relative abundance over the entire sampled distribution. Covariates 

included in the DFA were the North Atlantic Oscillation index, the Atlantic Multidecadal 

Oscillation index, annually averaged sea surface temperature, and species landings. 

However, none were statistically significant for seven out of the eight coastal shark species 

examined. Estimated common trends of relative abundance for all large coastal shark 

species showed similar decreasing patterns into the early 1990s, periods of sustained low 

index values thereafter, and recent indications of recovery. Small coastal shark species 

exhibited more regional variability in their estimated common trends, such that two 

common trends were required to adequately describe patterns in relative abundance or the 

single common trend identified was only representative of part of the species’ distribution. 

Overall, all species concluded with an increasing trend, suggestive of initial recovery from 

past exploitation.  
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Introduction  

While it is generally agreed upon within the scientific community that shark stocks 

rapidly declined in abundance along the U.S. east coast beginning in the mid-1970s through 

to the early 1990s, the extent of that decline has been contentiously debated in the scientific 

literature with varyingly pessimistic outlooks (e.g. Musick et al. 1993; Musick et al. 2000; 

Cortés 2002; Baum et al. 2003; Myers and Worm 2003; Baum and Myers 2004; Baum et al. 

2005; Burgess et al. 2005; Ha 2006; Baum and Blanchard 2010; Dulvy et al. 2014). 

Investigation into the declining trends of global shark landings revealed that decreasing 

catch was reflective of reduced shark abundance as opposed to the result of controls 

implemented through management (Davidson et al. 2015). These declines may hold 

economic and ecosystem-wide implications as effects of altered apex predator abundance 

propagate down the food web via trophic cascades, with sharks likely  facilitating natural 

selection of their prey (Stevens et al. 2000; Scheffer et al. 2005; Baum and Worm 2009; 

Heupel et al. 2014). 

Shark exploitation began in the mid-1970s coincident with declining stock 

abundances of other commercially important species, and since sharks were deemed an 

underutilized natural resource at that time, fishers were encouraged to focus on sharks for 

commercial harvest (Musick et al. 1993; McCandless et al. 2014). Simultaneously, directed 

recreational shark fisheries rapidly developed in response to public excitement stemming 

from the release of the movie “Jaws” in 1975 (Musick et al. 1993; Cortés et al. 2006). Yet, 

many sharks are inherently susceptible to fishing pressure due to their K-selected life 

history strategy (Musick et al. 2000; Stevens et al. 2000; Au et al. 2015). Large-bodied, 

coastal shark species were likely most affected by the development of targeted fisheries due 

to their high meat content, large fin sizes, and close proximity to land (Dulvy et al. 2014). 

Contrary to larger species, small coastal sharks in the northwest Atlantic, which generally 
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are not considered apex predators, have experienced less dramatic declines in abundance 

(Dulvy et al. 2014). These smaller species generally have higher intrinsic population growth 

rates, and consequently are much less susceptible to fishing pressure (Au et al. 2015).  

As a result of declines in large coastal shark populations, a shark Fishery 

Management Plan (FMP) was established by the National Marine Fishery Service (NMFS) in 

1993, which initiated the implementation of several commercial and recreational 

regulations (SEDAR 2011). Prior to the enactment of management measures, shark 

population dynamics were not the focus of extensive scientific investigation. The FMP noted 

a lack of species-specific data (NMFS 1993), which stimulated numerous life history studies 

of northwest Atlantic shark populations and several state and federal agencies began 

collecting relative abundance information either through directed surveys or as bycatch of 

existing surveys. However, the expansive spatial distributions of Atlantic coastal sharks due 

to their sex- and size-specific migratory movements makes developing stock-wide 

characterizations of relative abundance challenging (Castro 2011; Kohler et al. 1998; 

Simpfendorfer and Heupel 2012). For example, sandbar sharks (Carcharhinus plumbeus, 

Carcharhinidae) mate within the coastal waters of Florida during June and July (Portnoy et 

al. 2007; Baremore and Hale 2012), and a year later, gravid females migrate northward 

along the Atlantic coast to pup in bays and estuaries during late spring and early summer, 

after which they migrate back offshore (Grubbs et al. 2005; McCandless et al. 2005, 

Baremore and Hale 2012). Neonates remain in these nurseries throughout the summer 

(McCandless et al. 2005; Conrath and Musick 2010), and overwinter off the coast of North 

Carolina (Grubbs et al. 2005; McCandless et al. 2005; Conrath and Musick 2008). These 

juveniles return to their natal nursery for the next five to 16 years (Merson and Pratt 2001; 

Grubbs et al. 2005; McCandless et al. 2005), before migrating offshore and into the Gulf of 

Mexico (Casey et al. 1985; Conrath and Musick 2008). Adult male sandbar sharks reside 
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primarily offshore and only move inshore to mate (Casey et al. 1985; Portnoy et al. 2007; 

Conrath and Musick 2008).  

At present, inferences about shark abundance in the Atlantic are largely based on 

catch-per-unit-effort (CPUE) data obtained from several spatially limited surveys. When 

multiple independent surveys each sample a small portion of a stock’s migratory range, it is 

not uncommon for the resulting trends in CPUE to be in conflict, which creates uncertainty 

about true population trends (SEDAR 2013). Thus, developing a representative 

characterization of stock-wide dynamics and patterns in relative abundance for sharks in 

the Atlantic involves reconciling discrete, and often contradictory, fragments of information.  

The objectives of the study were two-fold: i) develop simplified broad-scale trends of 

relative abundance for eight Atlantic shark species by integrating data from multiple spatially 

limited, fishery-independent survey programs, and ii) investigate the effects of hypothesized 

drivers (climatic, environmental, anthropogenic) on resultant stock-wide temporal patterns of 

relative abundance. We acquired raw data from six fishery-independent surveys for each species 

of interest and used those data to generate indices of relative abundance. Indices were then 

analyzed with a multivariate, time series, dimension reduction model (dynamic factor analysis; 

DFA) to extract the common underlying trends in relative abundance and determine which 

covariates were associated with temporal patterns in the species-specific relative abundances.  

Methods 

Data sources 

Catch and effort data from six fishery independent shark surveys (Virginia Institute 

of Marine Science longline, VIMS LL; SouthEast Area Monitoring and Assessment Program 

trawl, SEAMAP Trawl; South Carolina red drum longline, SC LL; Georgia red drum longline, 

GA LL; Southeast Fisheries Science Center longline, SEFSC LL; Gulf of Mexico Shark Pupping 
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and Nursery gillnet, GULFSPAN GN) were the basis for this study (Table 1; Figure 1). A 

minimum of three independent survey indices of abundance were required for a given 

species to be considered for analysis. Data from four large coastal sharks (LCS; sandbar; 

blacktip, Carcharhinus limbatus, Carcharhinidae; spinner, C. brevipinna, Carcharhinidae; 

tiger, Galeocerdo cuvier, Carcharhinidae), and four small coastal sharks (SCS; Atlantic 

sharpnose, Rhizoprionodon terraenovae, Carcharhinidae; blacknose, C. acronotus, 

Carcharhinidae; bonnethead, Sphyrna tiburo, Sphyrnidae; finetooth, C. isodon, 

Carcharhinidae) were analyzed (Tables 2 & 3).   

Indices of abundance 

Generalized linear models (GLMs; McCullaugh and Nelder 1989) were used to 

standardize species-specific CPUE data from each survey program and provide estimated 

annual indices of relative abundance. Preliminary explorations of each survey dataset 

revealed high frequencies of zero observations, which were expected given the low overall 

abundance of the focal species. Consequently, three classes of GLMs were used to generate 

species-specific relative abundance indices from each survey: (1) delta-lognormal models in 

which the survey observations were defined as number of sharks captured per hook-hours 

(Lo et al. 1992; Maunder and Punt, 2004; Cortés et al. 2006), (2) hurdle (or zero-altered) 

models where survey observations were defined as discrete counts and effort was treated 

as an offset variable (Gurmu 1998; Cortés et al. 2006; Zuur et al. 2012), and (3) zero-

inflated models where survey observations were again counts and effort was an offset 

(Minami et al. 2007; Zuur et al. 2012; Brodziak and Walsh 2013).  

Delta-lognormal models contain two components: the binomial submodel fitted to 

presence/absence data (presence defined as at least one target species captured) and 

designed to estimate the probability of encountering the target species; and the lognormal 
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submodel fitted to the log transformed nonzero observations and designed to estimate the 

mean CPUE.  The general form of a delta-lognormal GLM is:  

𝑙𝑜𝑔𝑖𝑡(𝝅𝑩) = 𝑿𝑩𝜷𝑩 + 𝜺𝑩 

𝝁𝑪𝑷𝑼𝑬 = 𝑿𝑪𝑷𝑼𝑬𝜷𝑪𝑷𝑼𝑬 + 𝜺𝑪𝑷𝑼𝑬                                                                                                  (1) 

where πB represents the probability that each observation (i.e. sampling event) is non-zero, 

μCPUE is the log-transformed CPUE, and in both submodels X is the design matrix, β is the  

vector of estimated parameters, and ε is the associated error. The resulting predictions over 

years from both submodels are multiplied to generate a final annual index of relative 

abundance.   

Hurdle models are essentially delta models in which the positive catch response 

variable assumes a zero-truncated discrete distribution. Evaluation of preliminary model 

fits and diagnostics were conducted to select a zero-truncated negative binomial or zero-

truncated Poisson distribution.  The general form of a hurdle GLM is:  

𝑙𝑜𝑔𝑖𝑡(𝝅𝑩) = 𝑿𝑩𝜷𝑩 + 𝜺𝑩 

log(𝝁𝒄𝒂𝒕𝒄𝒉) = 𝑿𝒄𝒂𝒕𝒄𝒉𝜷𝒄𝒂𝒕𝒄𝒉 + log(𝒆𝒇𝒇𝒐𝒓𝒕) + 𝜺𝒄𝒂𝒕𝒄𝒉                                                           (2) 

where all  matrices and vectors are as defined in eq. (1) and log(effort) is an offset to adjust 

for differing gear deployment duration.  

Zero-inflated models are a mixture of two distributions, a degenerate component 

that is zero with certainty and a second component that includes zeros and positive values 

(Maunder and Punt 2004). In effect, the data are divided into two groups, where the first 

group contains only zeros (termed false zeros) and the second group contains the count 

data, which may include zeros (true zeros) along with positive counts (Zuur et al. 2009, 

2012). Again, preliminary model fits and diagnostics were conducted to select a zero-

truncated negative binomial or zero-truncated Poisson distribution. Zero-inflated models 

take the general form: 
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 𝑙𝑜𝑔𝑖𝑡(𝝅𝒛𝒆𝒓𝒐) = 𝑿𝒛𝒆𝒓𝒐𝜷𝒛𝒆𝒓𝒐 + 𝜺𝒛𝒆𝒓𝒐 

log(𝝁𝒕𝒓𝒖𝒆) = 𝑿𝒕𝒓𝒖𝒆𝜷𝒕𝒓𝒖𝒆 + log(𝒆𝒇𝒇𝒐𝒓𝒕) + 𝜺𝒕𝒓𝒖𝒆                                                                  (3) 

where the binomial component only includes sampling events  with zero catch, πzero 

represents the probability that an observed zero is a  false zero, and count data including 

true zeros are modeled with the second component.  

Predicted indices of relative abundance were generated using estimated marginal 

means (Searle et al. 1980), and for the delta-lognormal models, back transformed bias 

correction followed Lo et al. (1992). Uncertainty estimates for the annual indices were 

generated from 1000 nonparametric bootstrapped samples (Efron and Tibshirani 1993). 

Bootstrapped data sets were resampled by year with replacement. All analyses of survey 

data were performed with the software package R (version 3.1.1, R Core Development Team 

2014) and the ‘pscl’ package (Jackman 2015) was used to fit hurdle and zero-inflated 

models.  

Akaike’s Information Criterion (AIC, Akaike 1973, Burnham and Anderson 2002) 

was used to discriminate among model parameterizations reflecting different combinations 

of covariates. Tested covariates varied by survey, while year was included in all models to 

ensure estimation of annual abundance indices (Table 4). Year, month/season, and 

station/location/area were treated as categorical variables, and levels of those categorical 

variables where the species of interest were not present during at least two sampling events 

were excluded from analyses. Latitude, longitude, and depth were treated as continuous 

variables. Scatter plot matrices (SPloMs) were used to assess correlation and collinearity of 

covariates and those that were correlated were not mutually included in any model. 

Graphical residual analysis was used to assess model fit. Resulting indices of abundance 

were standardized, or Z-scored, prior to implementation into the dynamic factor analysis 

model.  
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Dynamic factor analysis 

Dynamic factor analysis (DFA) is a multivariate dimension reduction technique 

designed for short, non-stationary time series data. The approach involves fitting a 

specialized multivariate autoregressive state-space model to identify a set of underlying 

trends that explain temporal variation in a collection of time-series (Zuur et al. 2003a; b; 

Holmes et al. 2014). The general form of a DFA model can be written as: 

𝒚𝑡 =  𝜞𝜶𝑡 + 𝑫𝒙𝑡 +  𝜺𝑡, where 𝜺𝒕~ 𝑀𝑉𝑁(0, 𝑯) 

𝜶𝑡 =  𝜶𝑡−1 +  𝜼𝑡, where 𝜼𝒕~𝑀𝑉𝑁(0, 𝑸)                                                                                 (4) 

where yt is a vector (n1) of abundance indices at time t, αt is the vector (m1) of common 

trends (m<n) that are modeled as stochastic random walks,  is the matrix (nm) of  

estimated factor loadings on the common trends, xt is the vector (k1) of covariates, D holds 

the corresponding coefficients (nk), and H and Q denote the variance-covariance matrices 

associated with the observation error vector t (n1) and process error vector t (m1), 

respectively (Zuur et al. 2003a; b; Holmes et al. 2014). The process component of DFA fits 

autocorrelated common trends to accommodate the time-series nature of the indices and 

resulting trends (Stachura et al. 2014). Factor loadings (elements of the  matrix) indicate 

the strength of the influence of each survey index on the resulting common trend. Values 

higher in magnitude (≳0.2; Zuur et al. 2003b) denote a stronger effect of the given survey 

on the corresponding common trend. Since the indices were Z-scored, the resulting factor 

loadings, common trends, and fitted values were unitless (Zuur et al. 2003b).  

To ensure that the model was identifiable, Q was set to the identity matrix (I) and 

the matrix H, which specifies the variance-covariance structure among the n time-series 

was allowed to take on four forms: diagonal with equal variance and zero covariance, 

diagonal with unequal variance and zero covariance, nondiagonal with equal variance and 

equal covariance, and unconstrained with unique variances and covariances. Resulting 
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common trends were varimax rotated to maximize the difference between factor loadings 

(Holmes et al. 2014). The underlying assumptions of a DFA model are equivalent to those of 

a linear regression, which are normality, independence, and homogeneity of residuals. As in 

the case of regression models, DFA is fairly robust to violations of normality, residuals can 

be homogenized via data transformations, but the assumption of independence is the most 

important (Zuur et al. 2003b). Model implementation occurred via the state-space 

multivariate autoregressive modeling package ‘MARSS’ (Holmes et al. 2013) in R (version 

3.1.1).  

Models were fitted in two-steps. First, all combinations of one, two, or three 

common trends and the four covariance matrix structures were explored without 

covariates and the most supported model was selected via corrected Akaike’s Information 

Criterion (AICc) for low sample sizes (Holmes et al. 2014). An additional quantitative 

measure of model fit, which is calculated by the sum of the squared residuals of the fitted 

trend divided by the sum of the squared observations for each survey, was computed. 

Lower quantities (defined as ≲0.6) were interpreted as indicative of  better model fit, while 

higher values indicated that all or several years were poorly estimated by the resulting 

fitted trend (Zuur et al. 2003b). For comparative purposes, these values were averaged 

across all surveys within a given species. Second, the most supported model was then used 

to investigate the effects of several covariates. 

Four covariates were examined: the North Atlantic Oscillation (NAO) index, the 

Atlantic Multidecadal Oscillation (AMO) index, annually averaged sea surface temperature 

(SST) between latitudes 24°N and 44°N (data provided by NOAA/OAR/ESRL PSD, Boulder, 

Colorado, USA, http://www.esrl.noaa.gov/psd/data/climateindices/list/), and species 

landings (pers. comm., E. Cortés, NMFS, Panama City, FL). The NAO, which is a measure of 

pressure difference over the North Atlantic Ocean, and AMO, which encompasses basin-
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wide sea surface temperature, circulation patterns, and sea level pressure, were selected as 

covariates because they directly impact climate patterns and have been shown to affect fish 

survival and ecosystem organization in the southeast U.S. Atlantic coast and Gulf of Mexico 

(Stenseth et al. 2002 and references therein; Nye et al. 2014; Karnauskas et al. 2015). 

Annually averaged SST was included because several studies have showed that shark 

movement is influenced by temperature patterns (e.g., Merson and Pratt 2001; McCandless 

et al. 2005; Castro 2011). Since AMO and SST were highly correlated, they were not 

mutually included in any DFA model. Lastly, species-specific landings were included to 

examine the effect of top-down pressure on species relative abundance. Because DFA 

requires complete covariate time-series, missing years in landings data were estimated by 

three-year moving averages, following procedures routinely applied in shark stock 

assessments (pers. comm., E. Cortés, NMFS, Panama City, FL). For two species (blacktip and 

tiger sharks), landings time-series did not encompass the temporal span of the index data, 

so hindcasting was based on the average of the first five years of landings data.  

Results 

Indices of abundance 

In two species, there were not a sufficient number of observations in each dataset to 

generate hurdle and/or zero-inflated indices. Thus, tiger and spinner shark analyses were 

restricted to delta-lognormally generated indices of abundance. For the remaining species, 

interpretation of indices of abundance generally resulted in similar conclusions, regardless 

of GLM type (ex: blacktip shark Figure 2; Appendices 2-9). In particular, the hurdle and 

zero-inflated indices frequently showed overlapping trends. Nevertheless, superimposed 

indices of abundance for each species produce obvious data conflict (Figure 3).  
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Dynamic factor analysis 

With the exception of one species (finetooth shark), a diagonal covariance structure 

was empirically supported suggesting that no covariance exists between survey indices 

(Table 5). In three of the six species in which delta-lognormal, hurdle, and zero-inflated 

GLMs were used to generate indices of abundance and subsequent DFA common trends, the 

most supported DFA common trends were generated by the delta-lognormal indices of 

abundance (Table 6). The resulting DFA common trends were generally similar regardless 

of index standardization method (ex: blacktip shark, Figure 4), with notable exceptions 

(Appendices 10-17). For the purposes of the current study, we will solely examine delta-

lognormally generated results henceforth.  

The DFA results for the large coastal sharks showed consistent trends in relative 

abundance across species (Figure 5). For the sandbar shark, two common trends best 

explained the collection of abundance indices. The primary common trend indicated that 

relative abundance peaked in the early 1980s, decreased until the early 1990s, remained 

low for several years, and exhibited a modest recovery in the late 2000s. This first common 

trend was well supported by the VIMS LL, SEFSC LL, and GA LL, with a negative loading by 

the SC LL. The secondary trend showed a similar pattern to the first and was primarily 

driven by the SEAMAP Trawl survey. As such, the secondary trend was largely uninformed 

until the year 1989. The gear specifications of the SEAMAP Trawl likely resulted in effective 

sampling of smaller size classes, such that the secondary trend was representative of the 

abundance of neonate and small juvenile sandbar sharks (Appendix 18). The presence of 

separate adult and small juvenile trends explains the mismatch between the peaks in each 

trend, one representing a peak in juvenile abundance and the other representing the peak of 

the same individuals after they had grown into large juveniles and adults. The blacktip 

shark showed a similar trend to sandbar shark, although there was a shorter delay in the 
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initial recovery. The trend was strongly and positively driven by all surveys with the 

exception of the SEFSC LL, which suggests that the SEFSC LL index of abundance is 

following a trend that is opposite the estimated common trend during its operating 

timeframe.  

The tiger shark trend also showed a decrease in abundance into the early 1990s, 

followed by a period of low relative abundance. However, in the early 2000s, the relative 

abundance of tiger shark increased much more rapidly than the other large coastal species. 

The tiger shark was the only species whose optimal DFA model incorporated any climatic 

indices as a covariate (NAO). The NAO index had a significantly negative effect on the SEFSC 

LL index and a significantly positive effect on the SC LL. Significant effects of tiger shark 

landings, also included in the optimal model, were a positive effect on the SEFSC LL and a 

negative effect on the SC LL tiger shark indices. Factor loadings indicated that the VIMS LL 

and SEFSC LL both significantly influenced the common trend, while the SC LL significantly 

and negatively influenced the common trend.  

The spinner shark time series was much shorter, and raw indices of abundance 

showed little dichotomy in relative abundance across years, signified by low factor loadings. 

Nevertheless, the resulting trend was significantly driven by the SEAMAP Trawl and the 

landings covariate was included in the optimal spinner shark DFA model. The SEFSC LL 

index was significantly negatively affected by landings, while the SEAMAP Trawl index 

significantly increased with increasing landings.  

The small coastal complex showed more diverse trends in relative abundance 

(Table 5; Figure 6), as both the Atlantic sharpnose shark and the blacknose shark exhibited 

two common trends. The first Atlantic sharpnose trend showed relative abundances that 

were relatively stable until the mid-1990s, where they showed a slight decline followed by a 

large increase starting in the mid-2000s. The first trend was primarily driven by the VIMS 
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LL and the GULFSPAN GN. The secondary trend was largely uninformed prior to the late 

1980s, showed a large increase in abundance beginning in the late 1990s, and a moderate 

decline to the present. This second trend, which showed a similar, preceding pattern as the 

first trend, was significantly driven by the SEAMAP Trawl. The short longevity of the SC LL 

and the GA LL (2007 through 2013 or 2014) explain why both surveys positively drove the 

first trend and negatively drove the second trend, during which time the common trends 

showed relatively opposing tendencies. Additionally, none of the factor loadings relating the 

SC and GA LL indices on the two common trends were significantly different from zero, 

suggesting no strong relationship. Both blacknose shark common trends showed low 

abundances throughout 1990s and increasing abundances to present. The first common 

trend was primarily supported by the SEAMAP Trawl and negatively by the GULFSPAN GN, 

while the second trend was driven by the SEFSC LL. A similar situation seen in the Atlantic 

sharpnose shark results was observed regarding the relationship between the SC and GA LL 

indices and both common trends for the blacknose shark.  

Fewer and potentially less informative indices of abundance were available for the 

bonnethead and finetooth sharks, which likely lead to the selection of a single common 

trend. Particularly, the bonnethead common trend, which showed an apparent increase in 

abundance, was solely influenced by the SEAMAP Trawl survey. Lastly, the finetooth shark 

abundance was uncertain prior to the early 2000s, after which it quickly increased and 

dipped slightly into the early 2010s. The finetooth common trend was strongly driven by 

both the SEAMAP Trawl and the SC LL surveys. Finetooth landings negatively influenced the 

SEAMAP Trawl index and positively influenced the SC LL index. 

Discussion 

Index standardization method 
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Indices of abundance provided acceptable fits as determined by graphical residual 

analysis, dispersion analysis, and estimated parameter values and standard errors. It was 

apparent that the resulting indices and DFA common trends were very similar regardless of 

the three GLM structures used to generate the indices of abundance, such that the 

overarching conclusions drawn from each common trend were essentially identical. 

Moreover, the fitted trends resulting from the delta-lognormally generated indices of 

abundance provided the optimal DFA fit, similar to findings reported in Carlson et al. 

(2012). While the majority of the optimal DFA fits included a diagonal covariance (H) matrix 

structure, altered H structures generally did not greatly affect the resulting common trends.  

Climatic covariates 

None of the climatic indices tested in the DFA model were included in an optimal 

model, with the exception of the tiger shark. While this could be due to the information 

theoretic selection method used to elect the optimal model (by including a single covariate, 

the DFA model was required to estimate an extra parameter for each index included in the 

response vector), it could also be due to the adaptability and versatility of the species under 

consideration. Although several studies have linked small- and meso-scale shark 

distributions to climatic indices (Carlson 1999; Cotton et al. 2005; Brodziak and Walsh 

2013; Hoffmayer et al. 2014; Mitchell et al. 2014; Báez 2015), studies have rarely examined 

whether broad-scale population abundance is affected by multidecadal oscillations. 

Although Perry et al. (2005) noted that slower growing species (like sharks) are more 

susceptible to changes in climate, it appears that when immediate environmental conditions 

are unfavorable for the species examined, they may stray to more suitable conditions. For 

instance, although blacknose sharks rarely migrate northward into Virginia waters and 

instead can be found off the coast of North Carolina during summer (Castro 2011), due to 

extremely warm water temperatures in the southeastern U.S. coast in the summer of 2015, 



 

35 
 

the VIMS LL captured 16 blacknose sharks compared to only eight specimens previously 

recorded between 1973 and 2014 (unpublished data). Similar accounts of shark range 

expansion due to unfavorable environmental conditions have been documented (Wiley and 

Simpfendorfer 2007). Last et al. (2011) investigated the change in species composition 

along the coast of Tasmania, Australia, an area subjected to extreme temperature increases 

over the past 60 years, and found that five out of 10 elasmobranch species examined 

exhibited distributional changes. The overall abundance of the population does not seem to 

be affected by climatic indices, as similarly noted by Bigelow et al. (1999). Since the 

estimated DFA trends are predicting underlying relative abundance on an extremely broad 

geographic scale, it appears that local distributional changes driven by environmental 

forcings do not affect overall estimates of abundance generated by the DFA model. 

On the other hand, the significant effect of NAO on the tiger shark would indicate 

that the tiger shark population is affected by climatic forcings. While the VIMS LL-generated 

index of abundance was not affected, both SEFSC LL and SC LL indices were influenced by 

the added covariates. Because the tiger shark range is so large and vast migrations are 

common (Kohler et al. 1998; Castro 2011), the data in this study likely still reflect local 

relative abundance even though they encompass the entire southeastern coastal Atlantic. 

Since representative data from the full tiger shark range do not exist, changes in 

distribution could be confounded with changes in relative abundance predicted with DFA.  

Anthropogenic covariates 

While it is expected that any substantial top-down forcing would affect shark 

population abundance, the estimated harvest effects differed by survey or location.  Species 

landings had both positive and negative effects on survey-specific indices of relative 

abundance. For example, increased spinner shark landings had a significantly negative 

effect on the SEFSC LL index and a positive effect on the SEAMAP Trawl index. While 
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management measures restrict sizes available for retention, it would be expected that 

increased fishing would negatively affect large adults, like those captured in the SEFSC LL. 

On the other hand, fishing pressure may alleviate intra-species competition, and increase 

the abundance of smaller juveniles, which are more likely to be captured in the SEAMAP 

Trawl. Another potential explanation is that landings are predominantly occurring within 

the Gulf of Mexico, thereby negatively affecting SEFSC LL catches, but not catches along the 

east coast.  

Within the context of the finetooth shark, a member of the small coastal complex 

which may not reach sizes large enough to escape trawl nets, increased landings result in 

lower abundances in the SEAMAP Trawl index. Conversely, finetooth shark abundance 

increased in the SC LL in response to increased landings. It is possible that there is less 

directed fishing on finetooth sharks off the coast of South Carolina, which represents a 

northern range boundary and is only seasonally inhabited by the species (Castro 2011).  

Tiger shark landings negatively impacted the SC LL index and led to increases in the 

SEFSC LL. The distribution of directed tiger shark fishing likely shifted from the Gulf of 

Mexico and offshore Atlantic coast to the nearshore waters off South Carolina over the 

course of the 40-year span of the current study, explaining the effects of landings on tiger 

shark indices of abundance. Alternatively, the distribution of tiger sharks may have shifted 

over the course of the study, compounding the effect of landings. Overall, the significance of 

landings on shark relative abundance indicates that these species are susceptible to top-

down regulation due to fishing. 

 

Large coastal abundance  

The large coastal shark species all followed similar trends in relative abundance,  

with high levels at the beginning of the time series, followed by a decline until the early 
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1990s, and signs of recovery in the mid-2000s. The shark FMP was enacted in 1993 during 

the period of low overall shark abundance. Given the low intrinsic population growth rates 

of many shark species, it is reasonable to assume that efficacy of management regulations 

would not immediately translate into stock recovery. The results of this study support that 

reasoning since relative abundance trends of all large coastal species remained depressed 

following implementation of the FMP. The duration of low relative abundance varied by 

species however, and relative abundances of those with younger ages at maturity showed 

indications of recovery more quickly than those with older age at first reproduction (i.e. 

Table 2).   

The sandbar shark period of extended low abundance may have also been assisted 

by state-wide fisheries targeting young and late juvenile animals, because state and federal 

management was not formally linked until 2009 (Grubbs 2010). The primary relative 

abundance trend for adult sandbar shark showed a rapid initial recovery that has since 

declined slightly. The recent dip in the sandbar shark trend is likely related to uncertainty in 

the estimated trend.  

The recent increase in the blacktip shark trend was gradual and showed a great deal 

of variability, which could be attributed to various management measures, such as the 

mandatory implementation of bycatch reduction devices (BRDs) within the shrimp trawl 

fishery (SEDAR 2011; 2013; mandated in 1997 in the southeast Atlantic coast, 1998 in the 

western Gulf of Mexico, and 2004 in the eastern Gulf of Mexico; Scott-Denton et al. 2012). 

Despite surveys sampling two genetically distinct stocks of blacktip sharks, a single 

common trend was selected to encompass the trend in both the western Atlantic and the 

Gulf of Mexico, potentially indicating that sufficient data were not available within either or 

both stocks, or that both stocks followed a similar trend in abundance.  
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The tiger shark recovery was extremely large in magnitude, likely reflective of the 

high fecundity of these sharks, in which females produce an average of 41 pups every two 

years (Castro 2011). While the spinner shark common trend was shorter due to the limited 

length of each time series included, it does appear that this modest increase in relative 

abundance follows the trends of the other large coastal species, despite larger uncertainty 

in the resulting estimated trend.  

Small coastal abundance 

While the large coastal species typically undergo  extensive migrations between the 

Atlantic Ocean and the Gulf of Mexico, it is likely that gene flow around the Florida 

peninsula is restricted in small coastal species due to more localized movements  (Kohler et 

al. 1998). Both the Gulf of Mexico populations of blacknose and bonnethead sharks are 

considered separate stocks due to differences in life history parameters and genetics 

(Carlson et al. 1999; Driggers et al. 2004; SEDAR 2011; 2013). Furthermore, bonnethead 

sharks have been shown to exhibit variation in life history parameters on a much smaller 

spatial scale along the Atlantic coast (Frazier et al. 2013) and within the Gulf of Mexico 

(Lombardi-Carlson et al. 2003). While less studied, differences have been reported in the 

life history characteristics of the finetooth shark between Atlantic coast specimens and 

congeners from the Gulf of Mexico (Carlson et al. 2003; Drymon et al. 2006). Ultimately, 

while life history parameters have not been shown to vary based on location, it has been 

suggested that migrations between the Atlantic Ocean and Gulf of Mexico of Atlantic 

sharpnose sharks are rare (Kohler et al. 1998).  

Consequently, it is not surprising to note that there appears to be more local 

variability in small coastal shark abundance as demonstrated by the increased number of 

common trends estimated for the Atlantic sharpnose and the blacknose sharks. Regional 

increases in the Atlantic sharpnose, blacknose, and finetooth common trends also 
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correspond with regional management implementation such as the BRDs (Scott-Denton et 

al. 2012). Additional survey data within the Gulf of Mexico will greatly aid interpretations of 

coast-wide patterns of relative abundance in blacknose and finetooth species, as estimated 

common trends for these species are only representative of Atlantic coast dynamics.  

Conclusion 

Resulting broad-scale trends in relative abundance were successfully generated in 

the species examined, as indicated by model diagnostics and the alignment between the 

common trends, species’ life history parameters, and historical management measures. 

Compared with other statistical dimension reduction approaches, DFA is advantageous for 

time series data due to its built-in autocorrelation and ability to accommodate missing 

years and shortened time series. We also consider the potential purposes that DFA can 

fulfill in the future. Azevedo et al. (2008) used common trends derived from DFA on Iberian 

anglerfish (Lophius piscatorius, Lophiidae; L. budegassa, Lophiidae) in place of conflicting 

indices of abundance as inputs into a biomass dynamic stock assessment model and 

reported less biased and more realistic results. It was also proposed that the complexity of 

the assessment model could be expanded to an age-structured production model. In the 

future, it would be worthwhile to see if these concise trends could be applied in Atlantic 

coastal shark assessments, eliminating the problematic practice of including conflicting 

indices into a single model (Hoyle et al. 2014).  

Ultimately, the shark populations examined appear to be increasing in abundance. 

Following the drastic decrease in abundance that several (namely, large coastal) species 

underwent in the 1980s and 1990s (Musick et al. 1993), it is clear that after a one to two 

decade-long lag, Atlantic coastal sharks are positively responding to the series of 

management measures implemented starting in 1993. While these trends do not allow for 
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estimation of the magnitude of shark declines, the common trends produced in this study 

demonstrate a recovery of Atlantic coastal shark abundances.  
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 Table 1. Summary of surveys included in the analysis: Virginia Institute of Marine Science longline (VIMS LL), South Carolina red drum longline 
(SC LL), Georgia red drum longline (GA LL), SouthEast Area Monitoring and Assessment Program Trawl (SEAMPA Trawl), SouthEast Fishery 
Science Center longline (SEFSC LL), Gulf of Mexico Shark Pupping and Nursery gillnet (GULFSPAN GN). 

Survey Sampling 
Gear 

Sampling 
Years 

Sampling 
Frequency 

Sampling Area Sampling Design Target Species Citation 

VIMS LL Bottom 
longline 

1975-2014 Once per month 
during the months 
June - September 

Coastal Virginia Fixed stations; approximately 4 hour soak 
time; 100 hooks per set; Atlantic menhaden 
used as bait 

Large adult and 
juvenile coastal 
sharks 

 

SC LL  Bottom 
longline 

2007-2014 August - December Coastal South 
Carolina 

Stratified random sampling; 30 min soak 
time; 40 hooks per set; Atlantic mackerel or 
striped mullet used as bait 

Adult red drum http://www.seamap.org/do
cuments/Red%20Drum%20
Longline%20Survey%20-
%20South%20Carolina.pdf 

GA LL Bottom 
longline 

2007-2013 April – December Coastal south 
Georgia and 
north Florida 

Stratified random sampling (April - August); 
sample artificial reefs (fall); 30 min soak 
time; 60 hooks per set; Pacific squid used as 
bait 

Adult red drum http://www.seamap.org/do
cuments/Red%20Drum%20
Longline%20Survey%20-
%20Georgia.pdf 

SEAMAP 
Trawl 

Bottom 
trawl 

1989-2014 One multi-leg cruise 
in the spring, 
summer, and fall 

South Atlantic 
Bight; Cape 
Hatteras, NC 
and Cape 
Canaveral, FL 

Stratified random sampling Resident and 
transient fishes, 
crustaceans, 
sea turtles, and 
cephalopods 

http://www.seamap.org/do
cuments/CoastalSurveyinfo.
pdf 

SEFSC LL Bottom 
longline 

2001-2014 Late July - 
September  

Gulf of Mexico; 
Atlantic below 
37° N latitude 
(alternate 
years)  

Stratified random sampling Adult shark/ 
snapper/ 
grouper 

Ingram et al. 2005;  
WB. Driggers, III, personal 
communication 

GULFSPAN 
GN 

6 panel 
multi-
mesh 
gillnet  

1996-2014 Monthly sampling 
from April - 
October; 
occasionally March, 
May, and November 

Northwest, Gulf 
of Mexico coast 
of Florida;  

Stratified random sampling; nets checked or 
pulled every 1 - 2 hr; From 1994 through 
2005, stretched mesh sizes ranged from 8.9 
cm to 14.0 cm, increasing by 1.3-cm (0.5-in) 
intervals, with an additional panel of 20.3 
cm. In 2006, the 20.3-cm panel was removed 
and a 7.6-cm panel was added ad hoc.  

Juvenile coastal 
sharks 

Carlson et al. 2013;  
JK. Carlson, personal 
communication 
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Table 2. Life history characteristics of the six species included in the study, including age at median maturity (A50%), longevity (AMAX), length of the 
reproductive cycle, fecundity per reproductive event, and von Bertalanffy asymptotic maximum length (L∞) and growth rate coefficient (K).   

  von Bertalanffy 

Species A50% AMAX Repro. 
Cycle 

Fecundity L∞ K 

LARGE COASTAL SHARKS 

Sandbar 14 yrs1 27 yrs2 2.5 yrs1 8 pups1 165 cm PCL3 0.086 / yr3 

Blacktip: Atl.  7 yrs4 22 yrs4 2 yrs5 4 pups5 159 cm FL4 0.16 / yr4 

Blacktip: GOM 6 yrs4 17 yrs4 2 yrs5 4 pups5 142 cm FL4 0.24 / yr4 

Spinner 7-8 yrs6 20 yrs6 2 yrs7* 6-8 pups8 226 cm FL9 0.08 / yr9 

Tiger 10 yrs10 29 yrs10 2 yrs8 41 pups8 347 cm FL10 0.12 / yr10 

SMALL COASTAL SHARKS  

Finetooth 6.3 yrs11† 18.2 yrs11† 2 yrs12 4 pups10 131.3 cm FL11† 0.19 / yr11† 

Blacknose: Atl. 4.5 yrs13 17-19yrs13,16 2 yrs13 5 pups8 113.6 cm FL14 0.18 / yr14 

Blacknose: GOM NA  16 yrs15 1 yr16 3 pups16 113.7–124.1 
cm FL15 

0.24–0.35 / yr15 

Bonnethead: Atl. 6.7 yrs17 19 yrs17 1 yr18 9 pups18 103.6 cm FL17 0.18 / yr17 

Bonnethead: GOM 3-4 yrs19 12 yrs20 1 yr19 10 pups21 122.6 cm TL20 0.25 / yr20 

Atlantic Sharpnose 3 yrs22 23 yrs23 1 yr22 4-5 pups22 94 cm TL24 0.73 / yr24  

1 Baremore and Hale 2012; 2 SEDAR 2011; 3 Sminkey and Musick 1995; 4 Carlson et al. 2006; 5 Castro 1996; 6 
Branstetter 1987; 7 Joung et al. 2005; 8 Castro 2011; 9 Carlson and Baremore 2005; 10 Kneebone et al. 2008; 11 
Drymon et al. 2006; 12 Castro 1993; 13 Driggers et al. 2004b; 14 Driggers et al. 2004a; 15 Carlson et al. 1999; 16 
Sulikowski et al. 2007; 17 Frazier et al. 2014; 18 Frazier et al. 2013; 19 Manire et al. 1995; 20 Carlson and 
Parsons 1997; 21 Lombardi-Carlson et al. 2003; 22 Castro 2009; 23 Frazier et al. 2015; 24 Carlson and Baremore 
2003 
* Note that samples for this study were taken in waters off of Taiwan; study that estimated the reproductive 
cycle of spinner sharks within American waters.  
† Finetooth life history parameters estimated from fish within the Gulf of Mexico indicate slightly smaller, 
faster maturing fish (Carlson et al. 2003). 
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Table 3. The below list denotes which indices of abundance were generated for each species from 
each survey: Virginia Institute of Marine Science longline (VIMS LL), South Carolina red drum 
longline (SC LL), Georgia red drum longline (GA LL), SouthEast Area Monitoring and Assessment 
Program Trawl (SEAMPA Trawl), SouthEast Fishery Science Center longline (SEFSC LL), Gulf of 
Mexico Shark Pupping and Nursery gillnet (GULFSPAN GN). 

 VIMS LL SEAMAP 
Trawl 

SC LL GA LL SEFSC LL GULFSPAN 
GN 

Sandbar       
Blacktip       
Spinner       
Tiger       
Finetooth       
Blacknose       
Bonnethead       
Atlantic 
sharpnose 

      

 
 
 
 
 
  



 

51 
 

Table 4. Potential covariates included in generalized linear models (GLMs) to estimate indices of 
abundance for each survey: Virginia Institute of Marine Science longline (VIMS LL), South Carolina 
red drum longline (SC LL), Georgia red drum longline (GA LL), SouthEast Area Monitoring and 
Assessment Program Trawl (SEAMPA Trawl), SouthEast Fishery Science Center longline (SEFSC LL), 
Gulf of Mexico Shark Pupping and Nursery gillnet (GULFSPAN GN). 

Survey Potential Covariates 

VIMS LL Month, Station 

SEAMAP Trawl Month, Region, Latitude/Longitude 

SC LL Month, Location 

GA LL Month/Season, Region, Surface Salinity, Ending Latitude, Ending Longitude  

SEFSC LL Station, Starting Latitude, Starting Longitude, Starting Depth 

GULFSPAN GN Month, Area, Depth 
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Table 5. The optimal dynamic factor analysis (DFA) models calculated from delta-lognormal indices 
of abundance for each species. The number of trends selected is denoted m. Covariance matrix 
structure refers to the H covariance matrix which specifies observation error. Mean fit is a relative 
measure of model fit calculated by summing the squared residuals of the fitted DFA common trends 
and dividing by the sum of the squared observations (delta-lognormal indices) for each survey, and 
averaging the values for each species. Larger values (≳0.6) indicate poor fit (Zuur et al. 2003b). 

 

m 
(# trends) 

covariance matrix 
structure covariates 

# surveys 
utilized mean fit 

Sandbar shark 2 diagonal and equal none 5 0.1905 

Blacktip shark 1 diagonal and equal none 6 0.4295 

Spinner shark 1 diagonal and equal landings 5 0.6792 

Tiger shark 1 diagonal and equal 
NAO + 
landings 3 0.1292 

      Atlantic 
sharpnose shark 2 

diagonal and 
unequal none 6 0.5051 

Blacknose shark 2 
diagonal and 
unequal none 5 0.3683 

Bonnethead 
shark 1 diagonal and equal none 4 0.8127 

Finetooth shark 1 equalvarcov landings 3 0.5899 
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Table 6. Relative model fit of the dynamic factor analysis (DFA) common trends for each catch-per-
unit-effort (CPUE) standardization method (delta-lognormal generalized linear model, GLM; hurdle 
Poisson or negative binomial GLM; zero-inflated Poisson or negative binomial GLM) for each species. 
Measures of relative model fit were calculated by summing the squared residuals of the fitted DFA 
common trends and dividing by the sum of the squared observations (delta-lognormal indices) for 
each survey, and averaging the values for each species. Larger values (≳0.6) indicate poor fit (Zuur et 
al. 2003b). The value in bold indicates the standardization GLM that produced the best fitting DFA 
common trend for each species. 

Species 
Average Delta-
lognormal Fit 

Average  
Hurdle Fit 

Average  
Zero-inflated Fit 

Sandbar 0.19 0.57 0.65 

Blacktip 0.43 0.51 0.68 

Spinner 0.68 --- --- 

Tiger 0.13 --- --- 
Atlantic 
sharpnose 0.45 0.55 0.56 

Blacknose 0.37 0.81 0.25 

Bonnethead 0.813 0.73 0.815 

Finetooth 0.59 0.29 --- 
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Figure 1. Map of representative stations/sites sampled (for the 2012 sampling year) within each 
survey: Virginia Institute of Marine Science longline (VIMS LL), South Carolina red drum longline (SC 
LL), Georgia red drum longline (GA LL), SouthEast Area Monitoring and Assessment Program Trawl 
(SEAMPA Trawl), SouthEast Fishery Science Center longline (SEFSC LL), Gulf of Mexico Shark 
Pupping and Nursery gillnet (GULFSPAN GN).  Map generated using the rworldmap package in R 
(South 2011). 



 

55 
 

  

  

Figure 2. Standardized indices of abundance for the blacktip shark using each of the 3 catch-per-unit-

effort (CPUE) standardization methods (delta-lognormal generalized linear model, GLM; hurdle 

Poisson or negative binomial GLM; zero-inflated Poisson or negative binomial GLM) for each survey: 

Virginia Institute of Marine Science longline (VIMS LL), SouthEast Area Monitoring and Assessment 

Program Trawl (SEAMPA Trawl), SouthEast Fishery Science Center longline (SEFSC LL), Gulf of 

Mexico Shark Pupping and Nursery gillnet (GULFSPAN GN), South Carolina red drum longline (SC 

LL), Georgia red drum longline (GA LL).   
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Figure 3. Standardized indices of abundance for each species generated by delta-lognormal 
generalized linear models (GLMs), representative of data conflict. Survey abbreviations are as 
follows: Virginia Institute of Marine Science longline (VIMS LL), SouthEast Area Monitoring and 
Assessment Program Trawl (SEAMPA Trawl), SouthEast Fishery Science Center longline (SEFSC LL), 
Gulf of Mexico Shark Pupping and Nursery gillnet (GULFSPAN GN), South Carolina red drum longline 
(SC LL), Georgia red drum longline (GA LL).   
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 Figure 4. Resulting common trends produced from dynamic factor analysis (DFA) for the blacktip 
shark. Common trends (solid lines) and 95% confidence intervals (shaded regions) are presented 
from DFA results from each catch-per-unit-effort (CPUE) standardization method (delta-lognormal 
generalized linear model, GLM; hurdle Poisson or negative binomial GLM; zero-inflated Poisson or 
negative binomial GLM). 
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 Figure 5. Common trends produced from dynamic factor analysis (DFA) using delta-lognormally 
derived indices of relative abundance for the large coastal shark (LCS) complex. Trends (solid lines) 
and 95% confidence intervals (shaded regions) are displayed on the left column, and factor loadings 
are displayed on the right column. Factor loadings greater than 0.2 represent corresponding indices 
that had a strong influence on the resulting common trend, and negative factor loadings indicate that 
the corresponding survey follows an opposite trend than the DFA common trend. 
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 Figure 6. Common trends produced from dynamic factor analysis (DFA) using delta-lognormally 
derived indices of relative abundance for the small coastal shark (SCS) complex. Trends (solid lines) 
and 95% confidence intervals (shaded regions) are displayed on the left column, and factor loadings 
are displayed on the right column. Factor loadings greater than 0.2 represent corresponding indices 
that had a strong influence on the resulting common trend, and negative factor loadings indicate that 
the corresponding survey follows an opposite trend than the DFA common trend. 
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Chapter 2 

Species interactions and density dependence of coastal shark communities
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Abstract  

Studies aiming to assess intra- and interspecies community relationships are 
typically limited to accessible, nearshore areas of restricted temporal and spatial scale, 
within which only segments of the populations of interest are available. Using multivariate, 
first-order autoregressive, state-space (MARSS-1) models, we estimated measures of 
interspecies interactions and density dependence of eight Atlantic coastal shark species, 
four Large Coastal Sharks (LCS) and four Small Coastal Sharks (SCS), using data from four 
relatively localized, fishery-independent surveys along the southeast U.S. coast and within 
the Gulf of Mexico. We then compared these small-scale results to those generated using 
broad-scale trends in relative abundance extracted as common trends derived from 
dynamic factor analysis (DFA) applied to indices estimated from six fishery-independent 
surveys. The MARSS-1 framework was also used to estimate relative community stability. 
Localized (survey-specific) MARSS-1 analyses identified density dependent compensation 
in five species and eight interspecies interactions, while results of broad-scale (DFA 
common trend) MARSS-1 analyses demonstrated density dependence in seven species and 
seven interspecies interactions. Furthermore, our results support the manifestation of 
density dependent compensation of neonate and juvenile shark life stages within nursery 
areas. Results of stability analyses were intuitive, supporting the interactions estimated 
within the MARSS-1 model. Overall, interactions within localized areas were different from 
those identified using the broad-scale DFA trends, indicating that small scale interactions 
cannot be extrapolated to population growth rates of the entire stock.   
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Introduction 

Sharks are typically considered apex predators that have the capacity to regulate 

ecosystems via top-down processes (Stevens et al. 2000, Scheffer et al. 2005, Baum & Worm 

2009, Heupel et al. 2014). Despite limited research on the dynamic stability of shark 

communities, it has been shown that sharks and other top predators fulfill the crucial role of 

facilitating stability of the food web (Britten et al. 2014). As top predators, sharks utilize K-

selected life history strategies typified by late age at maturity, long reproductive cycle, low 

fecundity, and extended longevity (Cortés 1998, Musick et al. 2000, Stevens et al. 2000). 

Shark life cycles are typically multifaceted, undergoing ontogenetic changes in habitat use 

(Heupel & Heuter 2002, McElroy et al. 2006, Grubbs 2010, Castro 2011), diet (Lowe et al. 

1996, Bethea et al. 2004, McElroy et al. 2006, Ellis & Musick 2007, Grubbs 2010), migration 

patterns (Grubbs et al. 2005, McCandless et al. 2005, Parsons & Hoffmayer 2005, Conrath & 

Musick 2008, Grubbs 2010, Castro 2011), and consequently, intra- and interspecies 

interactions (Papastamatiou et al. 2006, Grubbs 2010). As a result, sharks occupy wide 

spatial ranges and several discrete niches over the course of ontogeny, making complete 

characterizations of population dynamics difficult to define. Similarly, many species school 

by age, size, and sexual maturity, as exemplified by differential habitat use between 

neonates, juveniles, and adults as well as between males and females (Heupel & Heuter 

2002, Parsons & Hoffmayer 2005, DeAngelis et al. 2008, Drymon et al. 2010, Castro 2011). 

Inevitably, sharks’ predatory and competitive interactions must also change over their 

lifecycle (Grubbs 2010). 

Nursery grounds are critically important to the early life stages of several shark 

species, where typically shallow, nearshore areas offer protection from significant 

predation risk (Heupel & Heuter 2002, Heupel et al. 2007).  Generally, neonate and juvenile 

species with relatively small birth sizes and slow initial growth rates utilize nurseries for 
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several years after birth (Heupel et al. 2007, Grubbs 2010). Nursery areas were originally 

thought to provide abundant, energy rich food resources, but current research suggests the 

predominant motivation for nursery utilization by sharks may be predator avoidance 

(Heupel & Heuter 2002, Heupel et al. 2007). It is common for several sympatric shark 

species to share nursery areas (Bethea et al. 2004, Parsons & Hoffmayer 2007, Ulrich et al. 

2007, DeAngelis et al. 2008, Kinney et al. 2010), which increases the potential for 

interspecies competition (Heupel et al. 2007). 

Understanding community interactions is necessary to adequately manage species, 

particularly at the ecosystem level (Morin 2011). However, there is still much to be 

understood concerning intra- and interspecies interactions among elasmobranchs 

(Papastamatiou et al. 2006). Interactions among sharks via predator-prey relationships 

have been observed from diet studies of tiger sharks (Galeocerdo cuvier; Lowe et al. 1996, 

Simpfendorfer et al. 2001), sandbar sharks (Carcharhinus plumbeus; McElroy et al. 2006, 

Ellis & Musick 2007, McElroy 2009), and several juvenile coastal species within nursery 

areas (Hoffmayer & Parsons 2003, Bethea et al. 2004). However, diet analyses often group 

prey species into broad taxonomic categories (i.e. ‘elasmobranch’; Lowe et al. 1996, 

Simpfendorfer et al. 2001), such that inferring specific predator-prey interactions is 

challenging (Grubbs et al. 2016). Furthermore, diet composition does not directly reflect the 

importance of the interaction between the predator and prey species (Heithaus et al. 2010).   

 Resource partitioning studies that evaluate the extent of local interspecies 

competition have been conducted within several coastal shark nursery areas (Bethea et al. 

2004, DeAngelis et al. 2008, Kinney et al. 2011, Ward-Paige et al. 2014), shallow seagrass 

beds in Australia (White & Potter 2004, Heithaus et al. 2013), and other easily accessible, 

nearshore environments (Platell et al. 1998, Papastamatiou et al. 2006). These studies have 

proposed that resource partitioning is occurring within shark communities, reducing direct 
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competition between species and promoting coexistence (Platell et al. 1998). Alternatively, 

species may be out-competed for their ideal habitat, such that they sacrifice conditions 

promoting optimal population growth in exchange for escaping competitive exclusion 

(Morin 2012). Additionally, predator avoidance has been shown to dictate neonate and 

juvenile shark behavior within nursery areas (Heupel & Heuter 2002, Heithaus et al. 2007, 

DeAngelis et al. 2008), indicating that antipredator behaviors (risk effects) play an 

important, but unmeasurable, role in juvenile and small prey species’ population growth 

rates (Heithaus et al. 2008, 2010). Studies of species interactions traditionally have been 

limited to easily accessible, shallow-water habitats in which shark congregations are known 

to occur (White & Potter 2004, DeAngelis et al. 2008), such that interactions occurring on a 

broader scale or outside the local range of these studies remain unexplored.  

 While rarely proven, several studies have proposed density dependent regulation of 

shark populations, where the growth of a population is a function of the density of the 

population (Gedamke et al. 2007, 2009, Cortés et al. 2012). Several mechanisms for density 

dependence have been  offered, including increased survival of neonate and early juvenile 

individuals (Hoenig & Gruber 1990, Gruber et al. 2001, Gedamke et al. 2007, Kinney & 

Simpfendorfer 2009), increased growth rates and earlier age at maturity (Sminkey & 

Musick 1995, Carlson & Baremore 2003, Cassoff et al. 2007, Taylor & Gallucci 2009), smaller 

size at maturity (Carlson & Baremore 2003, Sosebee 2005, Taylor & Gallucci 2009, Coutré et 

al. 2013), and changes in fecundity (Taylor and Gallucci 2009). Currently, the most 

commonly accepted compensatory response mechanism of density dependence remains 

altered neonate and juvenile survival (Cortés et al. 2012). However, since proposed density 

dependence may be confounded by other factors, such as selective fishing pressure 

(Márquez-Farias & Castillo-Geniz 1998, Stevens et al. 2000, Carlson & Baremore 2003, 

Sosebee 2005), it has rarely been definitively demonstrated in elasmobranchs. 
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Nevertheless, density dependence has been assumed in various elasmobranch population 

(Au & Smith 1996, Gedamke et al. 2009, De Oliveira et al. 2013) and stock assessment 

models (SEDAR 2013).  

The large ranges and migratory patterns of many shark species make any 

generalized, broad-scale analyses challenging. Thus, studies concerning shark interactions 

have been limited to localized, small-scale analyses. In the current study, we sought to 

quantitatively examine species interactions (including density dependence) within and 

between Large and Small Coastal Shark species complexes along the U.S. east coast. 

Secondarily, as afforded by the models employed, we examined relative community stability 

of each species complex.  

Methods 

Data sources 

 Catch data from six fishery-independent surveys along the U.S. east coast and the 

Gulf of Mexico (Virginia Institute of Marine Science longline, VIMS LL; Southeast Area 

Monitoring and Assessment Program trawl, SEAMAP Trawl; South Carolina Red Drum 

longline, SC LL; Georgia Red Drum longline, GA LL; Southeast Fishery Science Center 

longline, SEFSC LL; Gulf of Mexico Shark Pupping and Nursery gillnet, GULFSPAN GN; Figure 

1) were examined to estimate trends in relative abundance, species interactions, and 

community stability of U.S. east coast shark complexes (Table 1).  

Trends in relative abundance 

Catch-per-unit-effort data from each survey were used to estimate annual indices of 

relative abundance using delta-lognormal generalized linear models (GLMs; McCullagh & 

Nelder 1989, Lo et al. 1992) for each species (see Chapter 1). At least three surveys could be 

used to generate indices of abundance for eight Atlantic coastal shark species, including 
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four Large Coastal Shark (LCS) species (sandbar, blacktip Carcharhinus limbatus, spinner C. 

brevipinna, tiger) and four Small Coastal Shark (SCS) species (Atlantic sharpnose 

Rhizoprionodon terraenovae, blacknose C. acronotus, bonnethead Sphyrna tiburo, finetooth 

C. isodon; Table 2). 

Indices of abundance for each species were input into dynamic factor analysis (DFA) 

models with environmental (North Atlantic Oscillation index) and anthropogenic (species 

landings) covariates to estimate underlying trends of abundance across the sampled 

distribution (see Chapter 1 for complete details). Resulting common trends were rescaled 

between the minimum and maximum values of the delta-lognormally generated indices of 

abundance to retain a measure of relative scale necessary for log-transformation.  

Multivariate, first-order autoregressive, state-space models (MARSS-1) 

Trends of species abundance were implemented into multivariate, first-order 

autoregressive, state-space models (MARSS-1), derived from the Gompertz population 

growth equation (Ives et al. 2003). The MARSS-1 models are of the form:  

𝑥𝑡 = 𝐵𝑥𝑡−1 + 𝑤𝑡, where 𝑤𝑡 ~ 𝑀𝑉𝑁(0, 𝑄) 

𝑦𝑡 = 𝐼𝑥𝑡 + 𝑣𝑡, where 𝑣𝑡 ~ 𝑀𝑉𝑁(0, 𝑅)                                                                                     (1) 

where x is the n1 vector of log-transformed measured species relative abundance at time t 

for n total species/populations, B is the nn species interaction matrix where the elements 

bji represent the effect of species i on the population growth rate of species j, y is the n1 

vector of true log-transformed species relative abundance, I is the identity matrix, and w 

and v represent the multivariate normally distributed process and observation errors at 

time t with associated covariance matrices Q and R (Holmes et al. 2014).  

While the complexity of this model lies within the process component, which 

identifies the autoregressive community interactions within the system, the observation 

component serves to account for sources of observation or human-induced error. The focus 
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of this study is estimation of the B matrix, because elements of the matrix contain 

information on density dependent compensation and how species interactions impact the 

overall population growth rates of other members included in the complex. Specifically, 

diagonal elements are a measure of density dependence such that values near one are 

indicative of density dependent compensation (i.e. abundance of species i at time t is 

measured as a function of element bii multiplied by species abundance at time t-1). Off 

diagonal elements, bij, measure the influence of species j on the population growth rate of 

species i. Values that were statistically different from zero were interpreted as suggestive of 

density dependent regulation, or significant interspecies interactions. 

This model structure also allows for the calculation of relative community stability 

via properties of the B matrix when the system is in equilibrium. Five equations were used 

to assess four measures of community stability: i) resilience is a measure of the time 

required for the mean of the stationary distribution to return to equilibrium following a 

perturbation, ii) return rate measures the length of time required for the variance of the 

community to return to equilibrium conditions following a perturbation (Ives et al. 2003, 

Hampton et al. 2013), iii) variance of the stationary distribution measures the extent to 

which environmental fluctuations are amplified by environmental perturbations (Ives et al. 

2003, Grossman & Sabo 2010) or the ‘volume’ of the stationary distribution (Holmes et al. 

2014), and iv) reactivity (and worst-case reactivity) measures the magnitude of the response 

of the community to a perturbation (Ives et al. 2003, Britten et al. 2014; Table 2). Worst-

case reactivity was also calculated to alleviate uncertainty associated with the calculation of 

reactivity (via the Q matrix; Ives et al. 2003).  

MARSS-1 model fitting 

Models were fitted in several steps. To ensure model convergence, known yearly 

variances from the DFA common trends were averaged to produce a single estimate of 
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index variability for each species, which was specified along the diagonal of the observation 

error covariance matrix, R. Hence, we assumed that no covariance between species indices 

existed within the observation error (i.e., non-diagonal elements were set to zero). The 

process error covariance matrix, Q, which measures the degree to which each species is 

affected by environmental or other external perturbations, was estimated from three 

different structures: i) a diagonal and equal structure in which all variances are assumed to 

be equal and covariance is set to zero, ii) a diagonal and unequal structure in which each 

variance is assumed to be unique and covariance is set to zero, and iii) an unconstrained 

matrix in which all variances and covariances are independently estimated.  

Convergence problems arose when trying to estimate every element of the B matrix. 

Hence, relevant species interactions were chosen a priori based on biological and ecological 

inferences derived from previous research (Bethea et al. 2004, Papastamatiou et al. 2006, 

Parsons & Hoffmayer 2007, Ulrich et al. 2007, Drymon et al. 2010, Castro 2011). The 

interactions were necessarily one sided (i.e., we estimated the effect of species X on species 

Y, and not the effect of species Y on species X), enabling the MARSS-1 models to converge. 

Thus, exploratory analyses were conducted by fitting ‘base’ B matrices to determine the 

directionality of the interactions to be included in the final B matrix. The successful 

interactions from the previous step were combined into a single B matrix, and between 16 

and 32 unique combinations of the chosen interactions were fitted for each model run. 

Optimal models were selected by AICc (Hampton et al. 2013, Holmes et al. 2014). All models 

within two AICc units from the optimal model were analyzed, and models that resulted in 

the lowest uncertainty in parameter estimates were chosen for final analysis. Ninety-five 

and 90% confidence intervals (CIs) were used to assess significance of the elements of the 

final B matrix. All models were fitted using the ‘MARSS’ package (Holmes et al. 2013) in R 

(version 3.1.1).  
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 The MARSS-1 models were fitted on two spatial scales: i) local (geographically 

limited) species interactions were investigated by fitting models to delta-lognormally 

generated indices of abundance from each survey with sufficient longevity (VIMS LL, 

GULFSPAN GN, SEAMAP Trawl, SEFSC LL), and ii) broad scale interactions were identified 

by fitting models to DFA common trends, which are representative of large scale trends in 

relative abundance for each species. Within the broad scale analyses, before fitting a model 

to all species combined, MARSS-1 models were fitted to both the LCS and SCS complex 

independently. The resulting elements of each B matrix were manually specified within the 

final B matrix when all shark species were included. This effectively allowed us to model 

interactions between species complexes which would not have been otherwise possible 

because of the number of parameters to be estimated. When all species were included in the 

MARSS-1 model, the process error covariance matrix assumed equal variances for all LCS 

species and a separate measure of equal variances for all SCS species.  

Results 

Localized MARSS-1 modeling 

A diagonal and equal process error covariance matrix structure was used in each 

survey-specific MARSS-1 model. A diagonal covariance matrix Q assumes that the 

environmental factors driving variation in one species relative abundance is uncorrelated to 

environmental factors driving all other species relative abundances (Holmes et al. 2014). 

Survey-based MARSS-1 modeling results suggested two significant interactions within 

coastal Virginia waters (Table 4). The sandbar shark showed density dependence within the 

VIMS LL sampling area (Figure 1), and the presence of tiger sharks had a significantly 

positive effect on the Atlantic sharpnose shark. Within the SEFSC LL sampling area (offshore 

Gulf of Mexico and southeast Atlantic coast), the sandbar shark showed local density 
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dependence (Table 5). A positive effect of spinner sharks on the population growth rate of 

blacktip sharks was detected, while the sandbar shark had a negative effect on the spinner 

shark and the blacktip shark had a negative effect on the sandbar shark. The B matrix 

derived from the SEAMAP Trawl MARSS-1 model suggests that blacktip, spinner, blacknose, 

and finetooth sharks within the coastal southeast Atlantic experience density dependence 

(Table 6). Three additional positive effects were identified: the blacktip shark had a positive 

effect on sandbar and spinner shark populations, and Atlantic sharpnose sharks had a 

positive effect on blacknose shark populations. Results of the GULFSPAN MARSS-1 B matrix 

showed that the Atlantic sharpnose shark population exhibited density dependence in the 

northeastern Gulf of Mexico (Table 7). Additionally, the presence of Atlantic sharpnose 

sharks had a negative effect on the population growth rate of the blacknose shark along the 

northern Gulf coast of Florida (Figure 1).  

Dynamic factor analysis 

For complete DFA results, refer to chapter 1. Common trends produced by DFA 

consisted of a single trend estimated for the blacktip, spinner, tiger, bonnethead, and 

finetooth sharks, and two common trends for the sandbar, Atlantic sharpnose, and 

blacknose sharks (Figures 2 & 3). Based on factor loadings, which relate the strength of the 

influence of each survey on the resulting common trends, the secondary sandbar trend was 

dominated by neonate and small juvenile individuals, so this trend was excluded from 

MARSS-1 analyses. The primary sandbar shark trend was representative of the Atlantic 

coast and Gulf of Mexico, similar to the blacktip and tiger sharks, and was therefore 

retained. The two common trends for the Atlantic sharpnose and blacknose sharks were 

each representative of the Atlantic or the Gulf of Mexico. However, the primary Atlantic 

sharpnose shark trend was strongly driven by both the Gulf of Mexico and the coast of 

Virginia. Additionally, the Gulf of Mexico GULFSPAN GN survey showed an opposite trend 
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for Atlantic blacknose shark, demonstrated by a negative factor loading. Spinner, 

bonnethead, and finetooth shark common trends were only strongly influenced by the 

SEAMAP Trawl and the SC LL, indicating that species interactions can only be interpreted 

within the southeast Atlantic coast.  

Broad-scale MARSS-1 modeling 

In the LCS and SCS MARSS-1 analyses using DFA common trends, a diagonal and 

equal process error covariance matrix was selected in the optimal model, likely due to the 

reduced number of estimated parameters. Resulting optimal B matrices were compared 

using all three covariance structures, in addition to a compound symmetric structure to 

assess the effect of assuming independence between species. Relative values of the resulting 

B matrix elements resulted in identical model interpretation.  

The resulting B matrix from the LCS MARSS-1 model suggested the existence of 

density dependent regulation in the sandbar, spinner, and tiger sharks, but not in the 

blacktip shark (Table 8). The presence of tiger sharks had a positive effect on the population 

growth rates of sandbar and spinner sharks. Moreover, spinner sharks had a positive effect 

on blacktip shark population growth rate.  

Within the Atlantic SCS complex, bonnethead and finetooth sharks showed density 

dependence (Table 8). Measures of density dependence were not statistically different from 

zero for Atlantic sharpnose and blacknose sharks (95% CI: -0.85 – 1.36 and -0.50 – 1.28, 

respectively), such that no conclusion could be drawn. Within the Gulf of Mexico, density 

dependence was observed in the Atlantic sharpnose and blacknose sharks, and the 

blacknose shark had a negative influence on the population growth rate of the Atlantic 

sharpnose shark. The Atlantic sharpnose Gulf of Mexico trend (which also contains positive 

loadings from coastal Virginia) MARSS-1 results support the occurrence of density 

dependence within the Gulf of Mexico.  
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When LCS and SCS were modeled together, large species generally had a negative 

influence on small species (Table 8). For example, sandbar sharks had a negative effect on 

the population growth rate of the bonnethead shark in the Atlantic. In the Gulf of Mexico, 

tiger sharks had a negative influence on blacknose shark populations, while blacktip sharks 

had a positive effect on blacknose sharks. These significant species interactions were not 

detected among Atlantic populations.  

Stability analysis 

 Results from the stability analysis of the B matrix suggested that the SCS complex 

was more resilient and had a faster return rate than the LCS complex and the aggregation of 

all shark species (Table 9), reaching the mean and variance of the stationary distribution 

more quickly than the other communities following a perturbation. The LCS community had 

a smaller variance of the stationary distribution, indicating that environmental fluctuations 

were not amplified by species interactions and the stationary distribution experienced a 

smaller inherent variability. The aggregated shark complex experienced the lowest 

reactivity, with perturbations resulting in a smaller displacement from equilibrium 

conditions than in the LCS or SCS coastal complexes.  

Discussion 

Density dependence 

Within the localized, survey-specific MARSS-1 modeling framework, density 

dependence was noted in five species: sandbar (VIMS LL, SEFSC LL), Atlantic sharpnose 

(GULFSPAN GN), blacktip (SEAMAP Trawl), blacknose (SEAMAP Trawl), and finetooth 

(SEAMAP Trawl) sharks. Sandbar sharks showed density dependence within Virginia 

coastal waters, likely due to the role of the Chesapeake Bay as an important primary 

nursery area for this species (Grubbs et al. 2005). Density dependence is thought to 
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primarily manifest via survival of neonate and young juvenile sharks (Cortés et al. 2012). 

Hence, sandbar shark density dependence in this region may therefore be linked to 

compensatory survival rates of early life stages within nursery habitats. Larger, adult 

sandbar sharks may compete for resources as well, or density dependent compensation 

found within the Gulf of Mexico noted by the SEFSC LL may also represent younger 

individuals.  

The SEAMAP trawling occurs over a known nursery area off the coast of South 

Carolina (Ulrich et al. 2007), where density dependence was found within blacktip, spinner, 

and finetooth sharks. As all three of these species are known to inhabit nursery areas along 

the southeast Atlantic coast (Castro 1993a; Ulrich et al. 2007), immature sharks are likely 

driving density dependence. Similarly, the GULFSPAN GN survey samples a northwestern 

Florida shark nursery area (Bethea et al. 2004). Within shallow coastal areas, juvenile and 

adult Atlantic sharpnose sharks are ubiquitous (Parsons & Hoffmayer 2007, Ulrich et al. 

2007, Drymon et al. 2010). Although it has been hypothesized that Atlantic sharpnose 

sharks do not occupy discrete nursery areas due to fast juvenile growth rates (Heupel et al. 

2007), they exhibited density dependence within the northeastern Gulf of Mexico. Since 

over half of the Atlantic sharpnose sharks captured within the GULFSPAN GN were 

immature (59.7%; unpublished data), it is likely that neonate and juvenile individuals are 

driving the pattern of density dependence within this species, as suggested by Cortés et al. 

(2012).  

The results of the broad scale study quantitatively supported the existence of 

density dependence in seven out of 10 coastal shark populations. Density dependence in 

elasmobranch populations has been postulated or assumed in the past (e.g., Sminkey & 

Musick 1995, Carlson & Baremore 2003, Gedamke et al. 2007, 2009, Coutré et al. 2013), and 

this study lends quantitative support to the notion that at least some species experience 
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density dependence. While it is likely that the remaining three populations exhibit density 

dependence and the underlying data did not permit  precise estimation of these parameters, 

it is also possible that blacktip sharks, and Atlantic populations of Atlantic sharpnose and 

blacknose sharks do not exhibit broad-scale density dependence. No evidence suggests that 

density dependence does not occur within elasmobranch species. However, such a life 

history strategy would have substantial implications as population sizes decline, thus 

reducing the ability of depleted populations to recover.  

Interspecies interactions 

The significantly positive effect of the tiger shark on the Atlantic sharpnose shark 

inferred from the VIMS LL B matrix may be indicative of a competitive interaction. A 

predatory release mechanism, for example, in which the tiger shark preys on a species (e.g. 

sandbar shark, Papastamatiou et al. 2006, Castro 2011) that feeds on Atlantic sharpnose 

sharks, might have contributed to this interspecific interaction in the coastal mid-Atlantic 

region. Alternatively, if conditions are favorable for one species, they can be simultaneously 

favorable for sympatric species, such that positive correlations among species are formed. 

Such a correlation could occur between the Atlantic sharpnose shark and the tiger shark, 

driving this relationship despite their dissimilar life history characteristics (Castro 2011). 

Additional competitive interactions between LCS (sandbar on spinner, blacktip on 

sandbar) were identified across the broad geographical areas surveyed by the SEFSC LL. 

Juvenile sandbar and blacktip sharks consume teleosts, primarily clupeids and sciaenids 

(Stillwell & Kohler 1993, Hoffmayer and Parsons 2003, McElroy et al. 2006, Ellis & Musick 

2007, Barry et al. 2008, McElroy 2009). Although the diet of spinner sharks has not been 

extensively examined, evidence suggests the mutual consumption of clupeids (e.g., 

menhaden, Brevoortia spp.), by spinner sharks in the Gulf of Mexico and sandbar sharks in 

the Atlantic coast (Bethea et al. 2004, McElroy 2009). Thus, interspecific interactions in the 



 

75 
 

southeast Atlantic may be facilitated by competition for overlapping prey resources among 

sandbar, blacktip, and spinner sharks (Bethea et al. 2004). Spinner sharks have a 

significantly positive effect on the blacktip shark, comparable in magnitude to the positive 

interaction observed in the broad-scale MARSS-1 model. In the GULFSPAN GN nursery area, 

Atlantic sharpnose and blacknose sharks show a competitive interaction, which is plausible 

based on observed overlap in habitat use (Drymon et al. 2010) and dietary breadth (Castro 

2011).  

Positive relationships noted within the SEAMAP Trawl B matrix could be 

exaggerated by anthropogenic factors. Mandatory bycatch reduction device (BRD) 

implementation was established off the southeast U.S. Atlantic coast in 1997 (Scott-Denton 

et al. 2012), after which catches of blacktip, Atlantic sharpnose, and blacknose sharks 

increased within the SEAMAP Trawl. Consequently, management measures may have 

confounded any biological interactions that exist within the SEAMAP Trawl survey area, so 

interspecific interactions should be interpreted with care.  

Broad-scale analyses revealed seven additional statistically significant interactions 

that affect inter-specific population growth rates (Figure 4). Juvenile diet and habitat 

overlap was observed between blacktip and spinner sharks within a Gulf of Mexico nursery 

area (Bethea et al. 2004), while larger age classes (sub-adults and adults) have been known 

to co-school (D. Grubbs via Ha 2006). Data from the VIMS LL indicated that when present, 

blacktip and spinner sharks co-occurred in 35% of longline sets (unpublished data), which 

suggest co-schooling behavior in the Mid-Atlantic region, and this relationship has the 

potential to impact population growth rates of both species. In particular, our analyses 

demonstrated that the presence of spinner shark had a positive effect on the blacktip shark, 

indicating that co-schooling was beneficial for the blacktip shark. Simultaneously, the tiger 

shark, which is known to feed on blacktip sharks and other medium-sized elasmobranchs 
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(Castro 2011), had a positive effect on the population growth rate of the spinner shark. This 

relationship may result from tiger shark predation on density-dependent life stages (i.e. 

neonates) of spinner sharks, or from predation on blacktip sharks, thereby reducing 

competition for resources between blacktip and spinner sharks. Despite the model selection 

approach choosing a B matrix that did not estimate the effect of tiger on blacktip sharks, it is 

possible that tiger sharks were feeding on blacktip sharks in areas outside the range of 

spinner sharks, such that blacktip sharks benefited from schooling with a species that is 

potentially less vulnerable to predation by tiger sharks. Similar results have been observed 

using multivariate, first-order, autoregressive (MAR-1) modeling, in which secondary 

interactions were identified while primary interactions were repressed within the B matrix 

by Hampton et al. (2006). Additionally, effects of changing predator abundance may result 

in indirect effects on tertiary species, without displaying population level effects on 

mesoconsumers (Heithaus et al. 2010). While spinner sharks may be more challenging for 

tiger sharks to capture due to larger maximum sizes relative to blacktip sharks (Castro 

2011), improved knowledge of predator avoidance capabilities, migratory patterns, and 

seasonal co-occurrence of blacktip, spinner, and tiger sharks in the western North Atlantic 

is required before insightful conclusions can be drawn. Furthermore, blacktip and spinner 

sharks are easily confused due to similar morphologies (Castro 2011), and the potential for 

misidentification of these species suggests blacktip and spinner shark interactions should 

be interpreted with care.  

Tiger sharks also demonstrated strong interactions with sandbar sharks along the 

U.S. east coast and within the Gulf of Mexico, where increased population growth of sandbar 

sharks was observed with the presence of tiger sharks. Predatory interactions of tiger 

sharks on sandbar sharks have been previously reported off the Hawaiian Islands 

(Papastamatiou et al. 2006). A predatory release interaction is unlikely, due to the large 
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sizes and generally high trophic position of sandbar sharks. However, if tiger sharks preyed 

on juvenile and neonate sandbar sharks within their nursery grounds, this predatory 

interaction likely stimulated the population growth rate of density-dependent sandbar 

sharks. Our findings support that shark density dependent compensatory responses 

manifest in neonate and juvenile survival rates within nursery areas (Gruber et al. 2001). 

Additional mechanisms underlying the interactions between large and highly migratory 

tiger and sandbar shark populations are likely linked to trophic dynamics (e.g., resource 

partitioning resulting in a mutually beneficial relationship). These two species may also rely 

on similar environmental conditions such that a large abundance of tiger sharks is 

correlated to a similarly large abundance of sandbar sharks (apparent competition).  

A predatory interaction of tiger sharks on blacknose sharks within the Gulf of 

Mexico was identified in the present study. Tiger sharks have been known to feed on 

various small and medium-sized elasmobranchs (Lowe et al. 1996, Kohler et al. 1998, 

Simpfendorfer et al. 2001, Castro 2011). However, predator avoidance behaviors may also 

be playing an indirect role in the reduced population growth rate of blacknose sharks, in 

which the prey species will forego optimal environmental conditions to avoid direct 

predation (Heithaus et al. 2008, 2010). These anti-predatory behaviors, which are typically 

displayed by long-lived species, have the capacity to reduce effective carrying capacity of 

the environment for a species, and can act synergistically with direct predatory effects to 

magnify the negative effects of predators on prey species (Heithaus et al. 2010). 

Within the Gulf of Mexico, presence of blacknose sharks had a positive effect on 

Atlantic sharpnose sharks. The DFA common trend for the Atlantic sharpnose shark is 

primarily driven by the VIMS LL and the GULFSPAN GN surveys, while the blacknose 

common trend was largely driven by the SEFSC LL survey. While both blacknose DFA 

common trends followed a similar pattern, it is worthwhile to note that the GULFSPAN GN 
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negatively loaded onto the Atlantic trend. Thus, it is possible that the interaction between 

the two species was competitive, despite producing a positive value. This hypothesis can be 

further demonstrated by considering the competitive interaction between Atlantic 

sharpnose and blacknose sharks of similar magnitude found in the GULFSPAN GN B matrix. 

Atlantic sharpnose and blacknose sharks are known to feed on menhaden and other small 

teleosts (Bethea et al. 2006, Castro 2011), and Drymon et al. (2010) suggested that these 

species inhabit similar habitat ranges within the Gulf of Mexico. Niche overlap between 

these small coastal sharks might result in frequent interspecific competition for food 

resources.  

The presence of blacktip sharks was found to have a positive effect on blacknose 

sharks within the Gulf of Mexico. While the Gulf of Mexico blacknose shark common trend 

was primarily driven by the SEFSC LL (with smaller, negative loadings from the SEAMAP 

Trawl), the blacktip shark trend was positively influenced by the SEAMAP Trawl and 

negatively driven by the SEFSC LL. Hence, this positive interaction coefficient could be 

indicative of negative competitive interactions. Due to high uncertainty, this hypothesis 

could not be supported in corresponding SEFSC LL and SEAMAP Trawl B matrix 

interactions. Blacknose and blacktip sharks consume small teleost species, like clupeids 

(Hoffmayer and Parsons 2003, Barry et al. 2008, Castro 2011), and habitat overlap has been 

noted within the Atlantic coast (Ulrich et al. 2007), Florida Keys (Heithaus et al. 2007), and 

the Gulf of Mexico (Drymon et al. 2010). Notwithstanding, it is likely that when local 

environmental conditions are favorable for population growth rate of one species, 

sympatric species may exhibit similar responses. 

Lastly, MARSS-1 analyses identified a predatory interaction of sandbar on 

bonnethead sharks in the Atlantic Ocean. Sandbar sharks have been known to feed on 

bonnethead sharks and follow shrimp trawlers to exploit bycatch within the Atlantic Ocean 
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(Castro 2011) and the Gulf of Mexico (Carlson 1999). Bonnethead sharks are commonly 

captured as bycatch within the shrimp fishery (Scott-Denton et al. 2012, SEDAR 2013), 

providing a mechanism facilitating this interaction. Furthermore, these species’ 

distributions have been shown to overlap within the Florida Keys (Heithaus et al. 2007) and 

off the coast of South Carolina (Ulrich et al. 2007). Antipredator behaviors of bonnethead 

sharks may occur in response to sandbar sharks that further reduces intraspecific 

population growth rate (Heithaus et al. 2008, 2010).  

Finetooth sharks have widely been shown to compete (in habitat and diet) with 

spinner and blacktip sharks in the Gulf of Mexico (Hoffmayer & Parsons 2003, Bethea et al. 

2004, Parsons & Hoffmayer 2007, Drymon et al. 2010). Unfortunately, we did not have a 

representative trend of finetooth shark abundance from the Gulf of Mexico and as such were 

unable to assess this interaction. Similarly, interactions between bonnethead sharks and 

other species from the Gulf of Mexico could not be assessed. 

Community stability 

Despite likely violating the assumption of equilibrium conditions, the results of the 

stability analyses were intuitive, and lend further credibility to the accuracy of the B matrix 

from which these conclusions were derived. The small coastal sharks analyzed have faster 

growth rates relative to LCS, enabling the SCS complex to recover more quickly from 

environmental or anthropogenic disturbances (i.e. faster resiliency and return rate). The 

LCS species examined are migratory and likely avoid unfavorable environmental conditions 

(Chapter 1), such that these environmental variables likely have a limited effect on 

equilibrium conditions. This environmental insensitivity of the LCS complex was reflected 

in the smaller variance of the stationary distribution. Lastly, despite controversy, it has been 

shown that community stability increases with the number of species (McCann 2000). In 

the current study, when all sharks were included in the analyses, the reactivity (and worst-
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case reactivity) was the smallest, indicating that perturbations had a smaller overall effect 

on the broader community.  

MARSS-1 modeling 

Graphical analysis suggested that overall model fits were appropriate in the current 

study, and models appeared to produce realistic characterizations of local and broad-scale 

shark community interactions. Similarly, the MAR-1 model framework has been shown to 

match empirical estimation of community interactions within planktonic freshwater lake 

communities (Hampton et al. 2006, Hampton & Schindler 2006), and provide simple 

approximations to complex, nonlinear processes (Ives et al. 2003). Further, MAR-1 results 

have been shown to be robust to the foundation of a Gompertz versus Ricker population 

growth model (MacNally et al. 2010). Hence, several MAR-1 studies have been conducted on 

various freshwater and marine ecosystems (Hampton & Schindler 2006, Hampton et al. 

2008, Grossman & Sabo 2010, MacNally et al. 2010, Francis et al. 2012, Hampton et al. 2013, 

Britten et al. 2014).  

Nevertheless, implementation of these models in a state-space framework (MARSS-

1; i.e. including observation error) provides additional flexibility in data structure and 

accounts for both known sources of error (observation and process error). While Ives et al. 

(2003) found that exclusion of observation error does not tremendously alter the 

interpretation of model results, particularly when it comes to relative stability, Hampton et 

al. (2013) noted that the state-space framework may be more essential in marine 

communities due to the open nature of these systems compared to enclosed freshwater 

lakes. The expectation-maximization fitting algorithm employed in MARSS-1 analyses 

(Holmes et al. 2014) can accommodate missing data without prior linear interpolation or 

truncation. Consequently, in the current study, the entire 40-year time-series could be 

utilized for analyses, without truncating all common trends to the length of the shortest or 
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eliminating species from analysis. A downside to the state-space framework involves pre-

specifying the B matrix structure to ensure convergence. Incorporating preexisting 

biological knowledge to specify the elements of the B matrix to be estimated is vital, because 

a different configuration will result in different interpretations of results (Ives et al. 2003, 

Holmes et al. 2014). 

Conclusions 

While some community interactions derived from the broad-scale (DFA common 

trend) MARSS-1 analysis are supported in the survey-specific MARSS-1 analyses (i.e. 

positive effect of spinner on blacktip shark), the majority of identified interactions are 

distinct. This suggests that localized interactions that can be inferred from survey-specific 

MARSS-1 analyses cannot be generalized across a broader distribution or the entire life-

cycle of each stock. Thus, whole population community analyses that actually affect species 

population growth rates can only be obtained given inputs that encompass a broad area, 

providing merit to the procedure employed in the current analysis. Nevertheless, 

implementation of survey-specific analyses was useful for characterizing small-scale, 

localized interactions, and for assisting interpretation of broad-scale B matrix analyses.  

The DFA common trends are representative of trends of relative abundance across 

the southeast Atlantic coast and the Gulf of Mexico, including various size classes sampled 

by several gear types. This is beneficial when considering how the whole population of a 

species will affect the entire stock of another species. For example, if species B affects 

species A only in their shared nursery areas and species C feeds on species A in adulthood, 

analysis of only one life stage of species A would result in incomplete characterizations of 

interactions potentially impacting the population growth rate of species A. Secondarily, 

Ulrich et al. (2007) suggested that multiple gear types be used to adequately assess shark 

assemblages. Bonnethead sharks, for example, primarily feed on crabs, such that static gear 
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baited with fish is unlikely to effectively sample these individuals (Ulrich et al. 2007). 

Consequently, by incorporating several sampling techniques and aggregating life history 

stages, we have been able to describe the broadest and most comprehensive estimates of 

whole-scale community dynamics possible.  

These broad interactions have resulted in insights on a southeast U.S. coastal shark 

complex that could not be directly observed. Interactions identified in the current study 

corroborate known relationships, while adding to our knowledge of interspecific shark 

interactions. With continued environmental changes and anthropogenic impacts, these 

interactions may change over time, necessitating further analyses. Likewise, the results of 

the current study provided analytically derived hypotheses about shark intra- and 

interspecies interactions that would greatly benefit from continued field and experimental 

research to uncover the true mechanisms instigating these responses. As anthropogenic 

forces continue to alter natural communities, understanding community dynamics and 

interrelationships can help us predict how these communities will change and how to 

manage them accordingly (Morin 2011).  
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Table 1. Summary of surveys included in the analysis: Virginia Institute of Marine Science longline (VIMS LL), South Carolina red drum longline 
(SC LL), Georgia red drum longline (GA LL), SouthEast Area Monitoring and Assessment Program Trawl (SEAMPA Trawl), SouthEast Fishery 
Science Center longline (SEFSC LL), Gulf of Mexico Shark Pupping and Nursery gillnet (GULFSPAN GN). 

Survey Sampling 
Gear 

Sampling 
Years 

Sampling 
Frequency 

Sampling Area Sampling Design Target Species Citation 

VIMS LL Bottom 
longline 

1975-2014 Once per month 
during the months 
June - September 

Coastal Virginia Fixed stations; approximately 4 hour soak 
time; 100 hooks per set; Atlantic menhaden 
used as bait 

Large adult and 
juvenile coastal 
sharks 

 

SC LL  Bottom 
longline 

2007-2014 August - December Coastal South 
Carolina 

Stratified random sampling; 30 min soak 
time; 40 hooks per set; Atlantic mackerel or 
striped mullet used as bait 

Adult red drum http://www.seamap.org/do
cuments/Red%20Drum%20
Longline%20Survey%20-
%20South%20Carolina.pdf 

GA LL Bottom 
longline 

2007-2013 April – December Coastal south 
Georgia and 
north Florida 

Stratified random sampling (April - August); 
sample artificial reefs (fall); 30 min soak 
time; 60 hooks per set; Pacific squid used as 
bait 

Adult red drum http://www.seamap.org/do
cuments/Red%20Drum%20
Longline%20Survey%20-
%20Georgia.pdf 

SEAMAP 
Trawl 

Bottom 
trawl 

1989-2014 One multi-leg cruise 
in the spring, 
summer, and fall 

South Atlantic 
Bight; Cape 
Hatteras, NC 
and Cape 
Canaveral, FL 

Stratified random sampling Resident and 
transient fishes, 
crustaceans, 
sea turtles, and 
cephalopods 

http://www.seamap.org/do
cuments/CoastalSurveyinfo.
pdf 

SEFSC LL Bottom 
longline 

2001-2014 Late July - 
September  

Gulf of Mexico; 
Atlantic below 
37° N latitude 
(alternate 
years)  

Stratified random sampling Adult shark/ 
snapper/ 
grouper 

Ingram et al. 2005;  
WB. Driggers, III, personal 
communication 

GULFSPAN 
GN 

6 panel 
multi-
mesh 
gillnet  

1996-2014 Monthly sampling 
from April - 
October; 
occasionally March, 
May, and November 

Northwest, Gulf 
of Mexico coast 
of Florida;  

Stratified random sampling; nets checked or 
pulled every 1 - 2 hr; From 1994 through 
2005, stretched mesh sizes ranged from 8.9 
cm to 14.0 cm, increasing by 1.3-cm (0.5-in) 
intervals, with an additional panel of 20.3 
cm. In 2006, the 20.3-cm panel was removed 
and a 7.6-cm panel was added ad hoc.  

Juvenile coastal 
sharks 

Carlson et al. 2013;  
JK. Carlson, personal 
communication 
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Table 2. Life history characteristics of the six species included in the study, including age at median maturity (A50%), longevity (AMAX), length of the 
reproductive cycle, fecundity per reproductive event, and von Bertalanffy asymptotic maximum length (L∞) and growth rate coefficient (K).   

  von Bertalanffy 

Species A50% AMAX Repro. 
Cycle 

Fecundity L∞ K 

LARGE COASTAL SHARKS 

Sandbar 14 yrs1 27 yrs2 2.5 yrs1 8 pups1 165 cm PCL3 0.086 / yr3 

Blacktip: Atl.  7 yrs4 22 yrs4 2 yrs5 4 pups5 159 cm FL4 0.16 / yr4 

Blacktip: GOM 6 yrs4 17 yrs4 2 yrs5 4 pups5 142 cm FL4 0.24 / yr4 

Spinner 7-8 yrs6 20 yrs6 2 yrs7* 6-8 pups8 226 cm FL9 0.08 / yr9 

Tiger 10 yrs10 29 yrs10 2 yrs8 41 pups8 347 cm FL10 0.12 / yr10 

SMALL COASTAL SHARKS  

Finetooth 6.3 yrs11† 18.2 yrs11† 2 yrs12 4 pups10 131.3 cm FL11† 0.19 / yr11† 

Blacknose: Atl. 4.5 yrs13 17-19yrs13,16 2 yrs13 5 pups8 113.6 cm FL14 0.18 / yr14 

Blacknose: GOM NA  16 yrs15 1 yr16 3 pups16 113.7–124.1 cm FL15 0.24–0.35 / yr15 

Bonnethead: Atl. 6.7 yrs17 19 yrs17 1 yr18 9 pups18 103.6 cm FL17 0.18 / yr17 

Bonnethead: GOM 3-4 yrs19 12 yrs20 1 yr19 10 pups21 122.6 cm TL20 0.25 / yr20 

Atlantic Sharpnose 3 yrs22 23 yrs23 1 yr22 4-5 pups22 94 cm TL24 0.73 / yr24  

1 Baremore & Hale 2012; 2 SEDAR 2011; 3 Sminkey & Musick 1995; 4 Carlson et al. 2006; 5 Castro 1996; 6 Branstetter 
1987; 7 Joung et al. 2005; 8 Castro 2011; 9 Carlson & Baremore 2005; 10 Kneebone et al. 2008; 11 Drymon et al. 2006; 12 
Castro 1993b; 13 Driggers et al. 2004b; 14 Driggers et al. 2004a; 15 Carlson et al. 1999; 16 Sulikowski et al. 2007; 17 
Frazier et al. 2014; 18 Frazier et al. 2013; 19 Manire et al. 1995; 20 Carlson & Parsons 1997; 21 Lombardi-Carlson et al. 
2003; 22 Castro 2009; 23 Frazier et al. 2015; 24 Carlson & Baremore 2003 
* Note that samples for this study were taken in waters off of Taiwan; study that estimated the reproductive cycle of 
spinner sharks within American waters.  
† Finetooth life history parameters estimated from fish within the Gulf of Mexico indicate slightly smaller, faster 
maturing fish (Carlson et al. 2003). 
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Table 3. Equations used to calculate stability measures. B is community dynamics matrix; p is number 
of species included; Q is the covariance matrix that specifies the process error; 𝑉∞ is the covariance 
matrix for the stationary distribution. 

Stability Measure Calculation 

Variance of stationary distribution det(𝐵)2/𝑝 
Resilience max 𝑒𝑖𝑔(𝐵) 

Return rate max 𝑒𝑖𝑔(𝐵 ⊗ 𝐵) 

Reactivity 
−

𝑡𝑟(𝑄)

𝑡𝑟(𝑉∞)
 

Worst case reactivity max 𝑒𝑖𝑔(𝐵′𝐵) − 1 
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Table 4. Species interaction (B) matrix results from multivariate, first-order autoregressive, state-
space (MARSS-1) models conducted on the Virginia Institute of Marine Science longline (VIMS LL) 
survey. Species abbreviations are as follows: sandbar (SB), blacktip (BT), spinner (SPN), tiger (TIG), 
Atlantic sharpnose (SN) sharks. Values in bold have 95% confidence intervals that exclude zero. 

VIMS LL SB BT SPN TIG SN 

SB 0.7820 0 0 0.1061 0 

BT 0 0 -0.0682 0 0 

SPN 0 0 0 0 0 

TIG 0 0 0 0 0 

SN 0.0153 0 0 0.2225 0 
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Table 5. Species interaction (B) matrix results from multivariate, first-order autoregressive, state-
space (MARSS-1) models conducted on the SouthEast Fishery Science Center longline (SEFSC LL) 
survey. Species abbreviations are as follows: sandbar (SB), blacktip (BT), spinner (SPN), tiger (TIG), 
Atlantic sharpnose (SN), blacknose (BN) sharks. Values in bold have 95% confidence intervals that 
exclude zero, and italicized values have 90% confidence intervals that exclude zero. 

SEFSC LL SB BT SPN TIG SN BN 

SB 0.7158 -0.4771 0 0 0 0 

BT 0 0 0.5665 0 0 0.0507 

SPN -0.4054 0 0 0 0 0 

TIG 0 0 0 0 0 0 

SN 0 0 0 0 0 0 

BN 0 0 0 0 0 0 
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Table 6. Species interaction (B) matrix results from multivariate, first-order autoregressive, state-
space (MARSS-1) models conducted on the SouthEast Area Monitoring and Assessment Program 
trawl (SEAMAP Trawl) survey. Species abbreviations are as follows: sandbar (SB), blacktip (BT), 
spinner (SPN), Atlantic sharpnose (SN), blacknose (BN), bonnethead (BH), finetooth (FT) sharks. 
Values in bold have 95% confidence intervals that exclude zero. 

SEAMAP 
Trawl SB BT SPN SN BN BH FT 

SB -0.06190 0.8733 0 0 0 0 0 
BT 0 0.8584 0 0 0 0 0 

SPN 0 0.2346 0 0 0 0 0 
SN 0 0 0 0 0 0 0 
BN 0 0.1882 0 0.4886 0.4614 0 0 
BH 0.06410 0 0 0.2825 0 0 0 
FT 0 0 0 0 0 0 0.8344 
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Table 7. Species interaction (B) matrix results from multivariate, first-order autoregressive, state-
space (MARSS-1) models conducted on the Gulf of Mexico Shark Pupping and Nursery gillnet 
(GULFSPAN GN) survey. Species abbreviations are as follows: blacktip (BT), spinner (SPN), Atlantic 
sharpnose (SN), blacknose (BN), bonnethead (BH), finetooth (FT) sharks. Values in bold have 95% 
confidence intervals that exclude zero. 

GULFSPAN GN BT SPN SN BN BH FT 

BT 0 0.0780 0 0 0 0 

SPN 0 0 0 0 0 0 

SN 0 0 0.8081 0 0 0 

BN 0 0 -0.2117 0 0 0 

BH 0 0 0 0 0 0 

FT -0.8267 0.0408 0 0 0 0 
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Table 8. Species interaction (B) matrix results from multivariate, first-order autoregressive, state-space (MARSS-1) models conducted on the dynamic 
factor analysis (DFA) common trends for all species. Species abbreviations are as follows: sandbar (SB), blacktip (BT), spinner (SPN), tiger (TIG), 
Atlantic coast Atlantic sharpnose population (Atl. SN), Gulf of Mexico Atlantic sharpnose population (GOM SN), Atlantic blacknose population (Atl. BN), 
Gulf of Mexico blacknose population (GOM BN), Atlantic bonnethead population (Atl. BH), Atlantic finetooth population (Atl. FT). Values in bold have 
95% confidence intervals that exclude zero, and italicized values have 90% confidence intervals that exclude zero. 

DFA 
Common 
Trends SB BT SPN TIG 

GOM 
SN Atl. SN Atl. BN 

GOM 
BN Atl. BH Atl. FT 

SB 0.6912 0 0 0.1925 0 0 0 0 0 0 

BT 0 -0.1122 0.5578 0 0 0 0 0 0 0 

SPN -0.3444 0 0.6958 0.5378 0 0 0 0 0 0 

TIG 0 0 0 0.9429 0 0 0 0 0 0 

GOM SN 0 0 0 0 0.7306 0 0 0.2852 0 0 

Atl. SN 0 0 0 0 0 0.2547 0 0 0.6596 -0.1732 

Atl. BN 0 0.0261 0 0.1115 0 0 0.3914 0 0 0 

GOM BN 0 0.8311 0 -0.3835 0 0 0 0.9417 0 0 

Atl. BH -0.1313 0 0 0 0 0 0 0 0.9212 0 

Atl. FT 0 0 0 0 0 0 0 0 0 0.8277 
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Table 9. Results of broad-scale stability analysis for ALL species (Large and Small Coastal species combined), Small Coastal Sharks (SCS), and Large 
Coastal Sharks (LCS), including interpretation of results is as defined in Ives et al. (2003). Values in bold indicate the species group that exhibits the 
most stability for each stability measure. 

Stability measure Calculation ALL SCS LCS Interpretation 

resilience max(B) 0.9429 0.9417 0.9429 smaller means more stable 
variance of 
stationary 
distribution 

det(B)
2
p 0.3055 0.3739 0.2255 

smaller means more stable 

return rate max(B⊗B) 0.8890 0.8868 0.8890 smaller means more stable 

worst case reactivity max(B’B)-1 0.6710 0.3296 0.4682 larger means more stable 

reactivity 
−

tr(Q)

tr(V∞)
 -0.0520 -0.1645 -0.1261 

larger means more stable 
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Figure 1. Map of representative stations/sites sampled (for the 2012 sampling year) within each 
survey: Virginia Institute of Marine Science longline (VIMS LL), South Carolina red drum longline (SC 
LL), Georgia red drum longline (GA LL), SouthEast Area Monitoring and Assessment Program Trawl 
(SEAMPA Trawl), SouthEast Fishery Science Center longline (SEFSC LL), Gulf of Mexico Shark 
Pupping and Nursery gillnet (GULFSPAN GN).  Map generated using the rworldmap package in R 
(South 2011). 
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 Figure 2. Common trends produced from dynamic factor analysis (DFA) using delta-lognormally 
derived indices of relative abundance for the large coastal shark (LCS) complex. Trends (solid lines) 
and 95% confidence intervals (shaded regions) are displayed on the left column, and factor loadings 
are displayed on the right column. Factor loadings greater than 0.2 represent corresponding indices 
that had a strong influence on the resulting common trend, and negative factor loadings indicate that 
the corresponding survey follows an opposite trend than the DFA common trend. 
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 Figure 3. Common trends produced from dynamic factor analysis (DFA) using delta-lognormally 
derived indices of relative abundance for the small coastal shark (SCS) complex. Trends (solid lines) 
and 95% confidence intervals (shaded regions) are displayed on the left column, and factor loadings 
are displayed on the right column. Factor loadings greater than 0.2 represent corresponding indices 
that had a strong influence on the resulting common trend, and negative factor loadings indicate that 
the corresponding survey follows an opposite trend than the DFA common trend. 
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Figure 4. Flow diagrams of a) hypothesized interactions estimated by the broad-scale multivariate, 
first-order, autoregressive, state-space (MARSS-1) modeling, and b) broad-scale interactions with 
three additional localized interactions. Not all species-specific MARSS-1 interactions were included 
because of anthropogenic factors that likely influenced results from the SouthEast Area Monitoring 
and Assessment Program trawl (SEAMAP Trawl) survey results. Species in bold were found to 
experience broad-scale density dependence. Red arrows suggest negative interactions (competitive 
or predatory) in the direction of the arrow (i.e. arrows are pointing to the receiving species). Green 
arrows suggest beneficial interactions (commensal or mutual) in the direction of the arrow. Solid 
lines indicate direct interactions, while dashed arrows indicate indirect interactions. Lighter colored 
arrows represent localized interactions that cannot be generalized to the entire populations. 
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Appendix 

Appendix 1. Results of index of abundance fitting for each GLM type: delta-lognormal, hurdle, and 
zero inflated. Shortened covariates include latitude (lat), longitude (long), and salinity (sal). Survey 
abbreviations are as follows: Virginia Institute of Marine Science longline (VIMS LL), SouthEast Area 
Monitoring and Assessment Program trawl (SEAMAP Trawl), Southeast Fishery Science Center 
longline (SEFSC LL), Gulf of Mexico Shark Pupping and Nursery gillnet (GULFSPAN GN), South 
Carolina Red Drum longline (SC LL), and Georgia Red Drum longline (GA LL). 

Species Survey GLM Type Covariates 

Sandbar VIMS Delta-lognormal: lognormal 
component 

year, month, station 

Delta-lognormal: binomial 
component 

year, month, station 

Hurdle: negative binomial 
component 

year, month, station 

Hurdle: binomial component year, month, station 

Zero-inflated: negative binomial 
component 

year, month 

Zero-inflated: binomial component year, station 

SEAMAP Delta-lognormal: lognormal 
component 

year, month 

Delta-lognormal: binomial 
component 

year, month, region 

Hurdle: negative binomial 
component 

year, month, region 

Hurdle: binomial component year, month, region 

Zero-inflated: negative binomial 
component 

year, month, lat 

Zero-inflated: binomial component year, region 

SEFSC Delta-lognormal: lognormal 
component 

year, lat, long, depth 

Delta-lognormal: binomial 
component 

year, long, depth 

Hurdle: negative binomial 
component 

year, lat, long, depth 

Hurdle: binomial component year, long, depth 

Zero-inflated: Poisson component year, lat, long, depth 

Zero-inflated: binomial component year, long, depth 

GA Delta-lognormal: lognormal 
component 

year, sal 

Delta-lognormal: binomial 
component 

year, sal 

Hurdle: Poisson component year, sal 

Hurdle: binomial component year, sal, season 
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Zero-inflated: Poisson component year, sal 

Zero-inflated: binomial component year, season 

SC Delta-lognormal: lognormal 
component 

year, month, location 

Delta-lognormal: binomial 
component 

year, month, location 

Hurdle: Poisson component year, location 

Hurdle: binomial component year, month, location 

Zero-inflated: negative binomial 
component 

year, location 

Zero-inflated: binomial component year, month, location 

Blacktip VIMS Delta-lognormal: lognormal 
component 

year 

Delta-lognormal: binomial 
component 

year, month, station 

Hurdle: negative binomial 
component 

year 

Hurdle: binomial component year, month, station 

Zero-inflated: Poisson component year, month, station 

Zero-inflated: binomial component year 

SEAMAP Delta-lognormal: lognormal 
component 

year, month 

Delta-lognormal: binomial 
component 

year, month, region 

Hurdle: negative binomial 
component 

year 

Hurdle: binomial component year, month, region 

Zero-inflated: negative binomial 
component 

year 

Zero-inflated: binomial component year 

SEFSC Delta-lognormal: lognormal 
component 

year, lat, long, depth 

Delta-lognormal: binomial 
component 

year, lat, long, depth 

Hurdle: negative binomial 
component 

year, lat, long, depth 

Hurdle: binomial component year, lat, long, depth 

Zero-inflated: Poisson component year, lat, long, depth 

Zero-inflated: binomial component year, lat, long, depth 

GULFSPAN Delta-lognormal: lognormal 
component 

year, month, area 

Delta-lognormal: binomial 
component 

year, month, area 

Hurdle: negative binomial 
component 

year, month, area 

Hurdle: binomial component year, month, area 
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Zero-inflated: negative binomial 
component 

year, month, area 

Zero-inflated: binomial component year, month, area 

GA Delta-lognormal: lognormal 
component 

year 

Delta-lognormal: binomial 
component 

year 

Hurdle: Poisson component year 

Hurdle: binomial component year 

Zero-inflated: Poisson component year, season 

Zero-inflated: binomial component year, season 

SC Delta-lognormal: lognormal 
component 

year, month, location 

Delta-lognormal: binomial 
component 

year, month 

Hurdle: negative binomial 
component 

year 

Hurdle: binomial component year, month, location 

Zero-inflated: negative binomial 
component 

year, month 

Zero-inflated: binomial component year, month, location 

Spinner VIMS Delta-lognormal: lognormal 
component 

year, station 

Delta-lognormal: binomial 
component 

year, month, station 

Zero-inflated: negative binomial 
component 

year, month, station 

Zero-inflated: binomial component none 

SEAMAP Delta-lognormal: lognormal 
component 

year 

Delta-lognormal: binomial 
component 

year, month, region 

SEFSC Delta-lognormal: lognormal 
component 

year 

Delta-lognormal: binomial 
component 

year, lat, long, depth 

Hurdle: negative binomial 
component 

year, long 

Hurdle: binomial component year 

Zero-inflated: negative binomial 
component 

year, long 

Zero-inflated: binomial component year, lat, long, depth 

GULFSPAN Delta-lognormal: lognormal 
component 

year, month, area 

Delta-lognormal: binomial 
component 

year, month, area 

Hurdle: negative binomial year, month 
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component 

Hurdle: binomial component year, month, area 

Zero-inflated: negative binomial 
component 

year, month 

Zero-inflated: binomial component year, month, area 

SC Delta-lognormal: lognormal 
component 

year, month, location 

Delta-lognormal: binomial 
component 

year, month, location 

Hurdle: negative binomial 
component 

year, location 

Hurdle: binomial component year, month, location 

Zero-inflated: negative binomial 
component 

year, location 

Zero-inflated: binomial component year, month, location 

Tiger VIMS Delta-lognormal: lognormal 
component 

year 

Delta-lognormal: binomial 
component 

year, month, station 

Zero-inflated: Poisson component year, station 

Zero-inflated: binomial component year 

SEFSC Delta-lognormal: lognormal 
component 

year, lat, depth 

Delta-lognormal: binomial 
component 

year, lat, long, depth 

Zero-inflated: negative binomial 
component 

year, lat, long, depth 

Zero-inflated: binomial component year, depth 

SC Delta-lognormal: lognormal 
component 

year 

Delta-lognormal: binomial 
component 

year, month 

Atlantic 
sharpnose 

VIMS Delta-lognormal: lognormal 
component 

year,  month, station 

Delta-lognormal: binomial 
component 

year, month, station 

Hurdle: negative binomial 
component 

year, month, station 

Hurdle: binomial component year, month, station 

Zero-inflated: negative binomial 
component 

year, month 

Zero-inflated: binomial component year 

SEAMAP Delta-lognormal: lognormal 
component 

year, month, region, lat 

Delta-lognormal: binomial 
component 

year, month, region 

Hurdle: negative binomial year, month, long 
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component 

Hurdle: binomial component year, month, long 

Zero-inflated: negative binomial 
component 

year, month, region, lat 

Zero-inflated: binomial component year, month, region 

SEFSC Delta-lognormal: lognormal 
component 

year, lat, long, depth 

Delta-lognormal: binomial 
component 

year, lat, long, depth 

Hurdle: negative binomial 
component 

year, lat, long, depth 

Hurdle: binomial component year, long, depth 

Zero-inflated: negative binomial 
component 

year, lat, long, depth 

Zero-inflated: binomial component year, lat, long, depth 

GULFSPAN Delta-lognormal: lognormal 
component 

year, month, area 

Delta-lognormal: binomial 
component 

year, month, area 

Hurdle: negative binomial 
component 

year, month, area 

Hurdle: binomial component year, month, area 

Zero-inflated: negative binomial 
component 

year, month, area 

Zero-inflated: binomial component year, month, area 

GA Delta-lognormal: lognormal 
component 

year, month, region 

Delta-lognormal: binomial 
component 

year, month, sal 

Hurdle: negative binomial 
component 

year, month, region 

Hurdle: binomial component year, month, region 

Zero-inflated: negative binomial 
component 

year, month 

Zero-inflated: binomial component year, month, region 

SC Delta-lognormal: lognormal 
component 

year, month, location 

Delta-lognormal: binomial 
component 

year, month, location 

Hurdle: negative binomial 
component 

year, month, location 

Hurdle: binomial component year, month, location 

Zero-inflated: negative binomial 
component 

year, location 

Zero-inflated: binomial component year 

Blacknose SEAMAP Delta-lognormal: lognormal 
component 

year, region, lat 
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Delta-lognormal: binomial 
component 

year, month, region 

Hurdle: negative binomial 
component 

year, month, region, lat 

Hurdle: binomial component year, month, region 

Zero-inflated: negative binomial 
component 

year, month, region 

Zero-inflated: binomial component year, region 

SEFSC Delta-lognormal: lognormal 
component 

year, lat, long, depth 

Delta-lognormal: binomial 
component 

year, lat, long, depth 

Hurdle: negative binomial 
component 

year, lat, long, depth 

Hurdle: binomial component year, lat, long, depth 

Zero-inflated: negative binomial 
component 

year, lat, long, depth 

Zero-inflated: binomial component year, lat, long, depth 

GULFSPAN Delta-lognormal: lognormal 
component 

year, area 

Delta-lognormal: binomial 
component 

year, month 

Hurdle: negative binomial 
component 

year 

Hurdle: binomial component year, month 

Zero-inflated: negative binomial 
component 

year 

Zero-inflated: binomial component year, month 

GA Delta-lognormal: lognormal 
component 

year, season 

Delta-lognormal: binomial 
component 

year, month, sal 

Hurdle: negative binomial 
component 

year, season 

Hurdle: binomial component year, season 

Zero-inflated: negative binomial 
component 

year, season 

Zero-inflated: binomial component year, season 

SC Delta-lognormal: lognormal 
component 

year, month, location 

Delta-lognormal: binomial 
component 

year, month, location 

Hurdle: negative binomial 
component 

year, month, location 

Hurdle: binomial component year, month, location 

Zero-inflated: negative binomial 
component 

year, month 
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Zero-inflated: binomial component year, location 

Bonnethead SEAMAP Delta-lognormal: lognormal 
component 

year, region 

Delta-lognormal: binomial 
component 

year, month, region 

Hurdle: negative binomial 
component 

year, region 

Hurdle: binomial component year, region 

Zero-inflated: negative binomial 
component 

year, month, region 

Zero-inflated: binomial component year, month, region 

GULFSPAN Delta-lognormal: lognormal 
component 

year 

Delta-lognormal: binomial 
component 

year, month, area 

Hurdle: negative binomial 
component 

year 

Hurdle: binomial component year, month, area 

Zero-inflated: negative binomial 
component 

year 

Zero-inflated: binomial component year, area 

GA Delta-lognormal: lognormal 
component 

year, month 

Delta-lognormal: binomial 
component 

year, month 

Hurdle: negative binomial 
component 

year, month 

Hurdle: binomial component year, month 

Zero-inflated: negative binomial 
component 

year, month 

Zero-inflated: binomial component year 

SC Delta-lognormal: lognormal 
component 

year, month, location 

Delta-lognormal: binomial 
component 

year, month, location 

Hurdle: negative binomial 
component 

year 

Hurdle: binomial component year, month, location 

Zero-inflated: negative binomial 
component 

year 

Zero-inflated: binomial component year 

Finetooth SEAMAP Delta-lognormal: lognormal 
component 

year, region 

Delta-lognormal: binomial 
component 

year, month, region 

Hurdle: negative binomial 
component 

year, region 
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Hurdle: binomial component year, month, region 

Zero-inflated: negative binomial 
component 

year, region 

Zero-inflated: binomial component year 

GULFSPAN Delta-lognormal: lognormal 
component 

year, area 

Delta-lognormal: binomial 
component 

year, area 

Hurdle: negative binomial 
component 

year, month, area 

Hurdle: binomial component year, area 

Zero-inflated: negative binomial 
component 

year, month 

Zero-inflated: binomial component year, month, area 

SC Delta-lognormal: lognormal 
component 

year, month, location 

Delta-lognormal: binomial 
component 

year, month, location 

Hurdle: negative binomial 
component 

year, location 

Hurdle: binomial component year, month, location 

Zero-inflated: negative binomial 
component 

year, month, location 

Zero-inflated: binomial component year, location 
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Appendix 2. Survey-based indices of abundance for the sandbar shark calculated by three catch-per-
unit-effort (CPUE) standardization methods: 1) delta-lognormal generalized linear models (GLMs), 2) 
hurdle (or zero-altered) GLMs, and 3) zero-inflated GLMs. Survey abbreviations are as follows: 
Virginia Institute of Marine Science longline (VIMS LL), SouthEast Area Monitoring and Assessment 
Program trawl (SEAMAP Trawl), Southeast Fishery Science Center longline (SEFSC LL), Gulf of 
Mexico Shark Pupping and Nursery gillnet (GULFSPAN GN), South Carolina Red Drum longline (SC 
LL), and Georgia Red Drum longline (GA LL). 
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Appendix 3. Survey-based indices of abundance for the blacktip shark calculated by three catch-per-
unit-effort (CPUE) standardization methods: 1) delta-lognormal generalized linear models (GLMs), 2) 
hurdle (or zero-altered) GLMs, and 3) zero-inflated GLMs. Survey abbreviations are as follows: 
Virginia Institute of Marine Science longline (VIMS LL), SouthEast Area Monitoring and Assessment 
Program trawl (SEAMAP Trawl), Southeast Fishery Science Center longline (SEFSC LL), Gulf of 
Mexico Shark Pupping and Nursery gillnet (GULFSPAN GN), South Carolina Red Drum longline (SC 
LL), and Georgia Red Drum longline (GA LL). 
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Appendix 4. Survey-based indices of abundance for the tiger shark calculated by one catch-per-unit-
effort (CPUE) standardization methods, the delta-lognormal generalized linear models (GLMs). 
Survey abbreviations are as follows: Virginia Institute of Marine Science longline (VIMS LL), 
Southeast Fishery Science Center longline (SEFSC LL), South Carolina Red Drum longline (SC LL). 
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Appendix 5. Survey-based indices of abundance for the spinner shark calculated by one catch-per-
unit-effort (CPUE) standardization methods, the delta-lognormal generalized linear models (GLMs). 
Survey abbreviations are as follows: Virginia Institute of Marine Science longline (VIMS LL), 
SouthEast Area Monitoring and Assessment Program trawl (SEAMAP Trawl), Southeast Fishery 
Science Center longline (SEFSC LL), Gulf of Mexico Shark Pupping and Nursery gillnet (GULFSPAN 
GN), South Carolina Red Drum longline (SC LL). 
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Appendix 6. Survey-based indices of abundance for the Atlantic sharpnose shark calculated by three 
catch-per-unit-effort (CPUE) standardization methods: 1) delta-lognormal generalized linear models 
(GLMs), 2) hurdle (or zero-altered) GLMs, and 3) zero-inflated GLMs. Survey abbreviations are as 
follows: Virginia Institute of Marine Science longline (VIMS LL), SouthEast Area Monitoring and 
Assessment Program trawl (SEAMAP Trawl), Southeast Fishery Science Center longline (SEFSC LL), 
Gulf of Mexico Shark Pupping and Nursery gillnet (GULFSPAN GN), South Carolina Red Drum longline 
(SC LL), and Georgia Red Drum longline (GA LL). 
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Appendix 7. Survey-based indices of abundance for the blacknose shark calculated by three catch-
per-unit-effort (CPUE) standardization methods: 1) delta-lognormal generalized linear models 
(GLMs), 2) hurdle (or zero-altered) GLMs, and 3) zero-inflated GLMs. Survey abbreviations are as 
follows: SouthEast Area Monitoring and Assessment Program trawl (SEAMAP Trawl), Gulf of Mexico 
Shark Pupping and Nursery gillnet (GULFSPAN GN), South Carolina Red Drum longline (SC LL), and 
Georgia Red Drum longline (GA LL). 
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Appendix 8. Survey-based indices of abundance for the bonnethead shark calculated by three catch-
per-unit-effort (CPUE) standardization methods: 1) delta-lognormal generalized linear models 
(GLMs), 2) hurdle (or zero-altered) GLMs, and 3) zero-inflated GLMs. Survey abbreviations are as 
follows: SouthEast Area Monitoring and Assessment Program trawl (SEAMAP Trawl), Gulf of Mexico 
Shark Pupping and Nursery gillnet (GULFSPAN GN), South Carolina Red Drum longline (SC LL), and 
Georgia Red Drum longline (GA LL). 
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Appendix 9. Survey-based indices of abundance for the finetooth shark calculated by three catch-per-
unit-effort (CPUE) standardization methods: 1) delta-lognormal generalized linear models (GLMs), 2) 
hurdle (or zero-altered) GLMs, and 3) zero-inflated GLMs. Survey abbreviations are as follows: 
SouthEast Area Monitoring and Assessment Program trawl (SEAMAP Trawl), Gulf of Mexico Shark 
Pupping and Nursery gillnet (GULFSPAN GN), South Carolina Red Drum longline (SC LL). 
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Appendix 10. Dynamic factor analysis common trends in abundance with shaded 95% confidence 
intervals (CIs) estimated for the sandbar shark from three index standardization methods: 1) delta-
lognormal generalized linear models (GLMs; black), 2) hurdle GLMs (red), and 3) zero-inflated GLMs 
(blue).  
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Appendix 11. Dynamic factor analysis common trends in abundance with shaded 95% confidence 
intervals (CIs) estimated for the blacktip shark from three index standardization methods: 1) delta-
lognormal generalized linear models (GLMs; black), 2) hurdle GLMs (red), and 3) zero-inflated GLMs 
(blue). 
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Appendix 12. Dynamic factor analysis common trends in abundance with shaded 95% confidence 
intervals (CIs) estimated for the tiger shark from the delta-lognormal generalized linear model (GLM) 
index standardization method. 
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Appendix 13. Dynamic factor analysis common trends in abundance with shaded 95% confidence 
intervals (CIs) estimated for the spinner shark from the delta-lognormal generalized linear model 
(GLM) index standardization method. 
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Appendix 14. Dynamic factor analysis common trends in abundance with shaded 95% confidence 
intervals (CIs) estimated for the Atlantic sharpnose shark from three index standardization methods: 
1) delta-lognormal generalized linear models (GLMs; black), 2) hurdle GLMs (red), and 3) zero-
inflated GLMs (blue). 
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Appendix 15. Dynamic factor analysis common trends in abundance with shaded 95% confidence 
intervals (CIs) estimated for the blacknose shark from three index standardization methods: 1) delta-
lognormal generalized linear models (GLMs; black), 2) hurdle GLMs (red), and 3) zero-inflated GLMs 
(blue). 
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Appendix 16. Dynamic factor analysis common trends in abundance with shaded 95% confidence 
intervals (CIs) estimated for the bonnethead shark from three index standardization methods: 1) 
delta-lognormal generalized linear models (GLMs; black), 2) hurdle GLMs (red), and 3) zero-inflated 
GLMs (blue). 
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Appendix 17. Dynamic factor analysis common trends in abundance with shaded 95% confidence 
intervals (CIs) estimated for the finetooth shark from two index standardization methods: 1) delta-
lognormal generalized linear models (GLMs; black) and 2) hurdle GLMs (red). 
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Appendix 18. Length-frequency distributions of sandbar sharks captured in the Virginia Institute of 
Marine Science longline (VIMS LL), SouthEast Area Monitoring and Assessment Program trawl 
(SEAMAP Trawl), Southeast Fishery Science Center longline (SEFSC LL), Gulf of Mexico Shark 
Pupping and Nursery gillnet (GULFSPAN GN), South Carolina Red Drum longline (SC LL), and Georgia 
Red Drum longline (GA LL). The blue vertical line represents the average length captured within the 
given survey while the red dashed line represents the average length at median female maturity. 
Note the changing scale of the y-axis.  
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