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Minimizing fishing-induced mortality on bycatch and endangered, threatened or protected species is a necessity for fisheries managers. Estimating in-
dividual vessel bycatch rates by dividing the amount of bycatch by effort (nominal rate) can be biased, as it does not consider effort heterogeneity
within the fleet and ignores prior knowledge of fleet bycatch rates. We develop an empirical Bayesian approach for estimating individual vessel and
fleet bycatch rates that: (i) considers effort heterogeneity among vessels and; (ii) pools data from similar vessels for more accurate estimation. The
proposed standardized bycatch rate of a vessel is, therefore, the weighted average of the pool rate and nominal rate of the vessel; where the weights
are functions of the vessel’s fishing effort and a constant estimated from the model. We apply this inference method to the estimation of seabird by-
catch rates in the component of the Australian Eastern Tuna and Billfish Fishery targeting yellowfin tuna. We illustrate the capability of the method
for providing fishery managers with insights on fleet-wide bycatch mitigation performance and the identification of outperforming and underper-
forming vessels. This method can also be used by fishery managers to develop fleet-wide performance measures or quantitative evaluation standards.
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Introduction
Global fisheries bycatch in wild-capture fisheries is an issue of

growing concern (Diamond, 2004; Gilman et al., 2008). Species

that have little or no economic value to fishers (e.g. due to

their small size); prohibited species (e.g. those managed in

other fisheries); regulatory discards (e.g. species below or above the

size limit); or endangered, threatened or protected (ETP) species

(e.g. marine turtles, seabirds) are all examples of bycatch species

(Diamond, 2004). For this article, we refer hereafter to bycatch spe-

cies as those species that are caught and subsequently discarded at

sea, or in the case of ETP species, interacted with at sea.

While the 1982 United Nations Convention of the Law of the

Sea under Article 61 requires signatories to determine the biologi-

cal and ecological impacts of fishing on non-target (bycatch) spe-

cies, this can be difficult for most commercial fisheries that lack

fishery-dependent data. As reported by Tuck (2011), bycatch data

are often limited due to inadequate and incomplete information

on vessel characteristics, fishing effort, and species composition.

Many species are under- or over-reported, non-reported, or mis-

reported in fishery logbooks (Walsh et al., 2002; Walsh et al.,

2005; Sampson, 2011; Mangi et al., 2016; Macbeth et al., 2018).

For example, in an examination of catch rates for blue shark

VC International Council for the Exploration of the Sea 2020. All rights reserved.
For permissions, please email: journals.permissions@oup.com

ICES Journal of Marine Science (2020), 77(3), 921–929. doi:10.1093/icesjms/fsaa020

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/77/3/921/5762486 by guest on 17 M
ay 2021

http://orcid.org/0000-0002-4203-671X
http://orcid.org/0000-0002-5530-0073
mailto:mahdi.parsa@awe.gov.au


(Prionace glauca), Walsh et al. (2002) found that underreported

catches in fishery logbooks were due to fishers being too busy to

report incidental catches. In a similar study examining the catch

rates for blue marlin (Makaira nigricans), Walsh et al. (2005) ob-

served that fishers tended to over-report catches due to misidenti-

fying striped marlin (Tetrapturus audax) and shortbill spearfish

(Tetrapturus angustirostris) as blue marlin. The inadequacies of

fishery logbook data have often led decision-makers to use at-sea

observer data as an alternative to quantify bycatch taken by

commercial fisheries. However, at-sea observer data have its own

suite of biases (Benoı̂t and Allard, 2009; Faunce and Barbeaux,

2011; Wakefield et al., 2018) and any extrapolations of at-sea

observer data at low levels of coverage are likely to produce

imprecise and inaccurate results when capture of a species is a

rare occurrence (Wakefield et al., 2018).

Despite the issues associated with logbook data, it often

remains the principal source of information on fishery catch and

effort due to many management authorities requiring vessels to

fill out their logbook as a condition of their licence or permit

(Sampson, 2011). Access to fishery logbook data allows the

nominal discard rate for bycatch species to be calculated at an in-

dividual vessel or fleet level. This is often done by dividing the

amount of bycatch by the total effort for a given vessel. This is

termed the “nominal” estimate. This vessel-level estimation could

be unbiased if there are sufficient observations (i.e. adequate

sample size), and fishers have not changed their fishing practices

over the time period assessed. However, this is often not the case,

as different vessels enter and exit the fishery through time and

change their fishing practices, influencing catchability (Tuck,

2011). Furthermore, consider two longline vessels with the same

standard seabird bycatch rate of zero (0.0 bycatch per 1000

hooks), where vessel 1 expended a significantly greater amount of

effort compared with vessel 2. Calculation of the nominal esti-

mate would suggest that both vessels are performing identically;

however, from the perspective of a fishery manager, vessel 1 is

outperforming vessel 2 since there has been no bycatch recorded

with a substantially greater exposure to risk (i.e. effort).

Moreover, a fishery manager is more confident in the bycatch

rate of vessel 1, simply due to the greater level of effort expended

compared with vessel 2, whose zero-bycatch rate could simply be

due to chance through limited exposure. The nominal estimate

also only uses each vessel’s information for estimating the rate

and ignores other available information (e.g. effort data)

from “similar” vessels in each fleet or fishery. Given these limita-

tions, we propose a “standardized” estimate using an empirical

Bayesian approach that considers effort heterogeneity among the

fleet and pools data from “similar” vessels for rate estimation.

Similar vessels are defined as those that share comparable fishing

behaviour patterns [e.g. “fishing styles” after Boonstra and

Hentati-Sundberg (2016) or “fishing tactics” after Pelletier and

Ferraris (2000)] and can be pre-determined using variable quanti-

tative or semi-quantitative methods based on the data from the

commercial fishery or expert judgement, respectively.

Vessel-, fleet- and fishery-level estimations of bycatch rates

are sources of information that assist fisheries managers with

monitoring the performance of bycatch mitigation measures.

Vessel-level estimation may provide insight (through a targeted

investigation) on why a vessel is underperforming (higher bycatch

rate) or outperforming (lower bycatch rate) the fleet average (e.g.

due to fishing in an area with the high abundance of protected

species or appropriately deploying mitigation devices,

respectively). Comparing the vessel-level estimated bycatch rates

to the fleet-level estimate ensures that individual vessels are ac-

countable for their actions and allows managers to set quantifi-

able bycatch thresholds for the fishery. Quantifiable measures,

standards or reference points that guide expected levels of perfor-

mance can create incentives for industry to reduce their bycatch

rates through, for example altering fishing behaviour or adopting

alternative bycatch mitigation technology (Diamond, 2004;

Grafton et al., 2007; Kirby and Ward, 2014; Lent and Squires,

2017). When these performance standards create market-based

incentives or disincentives (carrots and sticks) for industry, they

have the potential to further improve fleet bycatch performance

and reduce regulatory costs (Gjertsen et al., 2010; Pascoe et al.,

2010). For example, in Australia, there is a Threat Abatement

Plan (TAP) for seabirds, which sets a maximum permissible by-

catch rate of 0.01 or 0.05 birds per 1000 hooks in various

Australian Commonwealth fisheries (Commonwealth of Australia,

2018). Attached to this performance measure are criteria developed

to guide the management response when the bycatch rate is

exceeded, which may target individual vessels or the fleet and may

have immediate economic costs (Commonwealth of Australia, 2018).

In this article, we outline an inference method for calculating a

model-estimated (standardized) bycatch rate for each vessel,

which is the weighted average of the pool (fleet) rate and the

nominal estimation rate of the individual vessel. Using an empiri-

cal Bayesian approach for the analysis of rare-event data is not

new (Myers et al., 2002; Quigley et al., 2011) and has been

shown to produce less biased and more consistent estimates of

the probabilities of rare events compared with conventional sta-

tistical methods (Khakzad et al., 2014). We apply this method to

a case study of seabird bycatch rates in the yellowfin tuna compo-

nent of the Australian Eastern Tuna and Billfish Fishery (ETBF).

We use the Australian ETBF as an example because we are confi-

dent that the fishery logbook data are the accurate representation

of catch composition and bycatch of protected species in the

years subsequent to the introduction of electronic monitoring

technologies (Emery et al., 2019a). The results of the analysis are

discussed in the context of (i) developing quantitative perfor-

mance standards for bycatch species; (ii) reducing the transaction

costs of management decision-making through a risk-based

approach; and (iii) making fishers individually accountabile for

their bycatch rates.

Methodology
Poisson–gamma model to estimate bycatch rates
In our model, we assume that the amount of bycatch is approxi-

mately proportional to the total units of effort. This assumption

is valid and is supported by the existing literature (Hatch,

2018) and the results of our study (see below). To estimate the

standardized (seabird bycatch) rate of individual vessels, we de-

velop a Poisson–gamma (Carlin and Louis, 2009) model consid-

ering two sources of uncertainties: (i) the uncertainties that arise

from the lack of knowledge (e.g. the actual bycatch rate is not

known), termed epistemic uncertainty, and (ii) uncertainty asso-

ciated with natural variations in the sample (e.g. same amount of

effort leads to a different amount of bycatch), termed aleatory

uncertainties. Consequently, we use a gamma prior distribution

to capture epistemic uncertainties within the pool of data to

allow us to model the variation in true bycatch (actual seabird

bycatch) rates, which are currently unknown. That is, we
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assume that the true bycatch rate of vessel i is a random variable

with the gamma distribution of shape parameter a and scale

parameter b. We denote it by ki � gammaða;bÞ, and the

gamma probability density function can be expressed as the fol-

lowing equation. The mean of a gamma distribution is a
b, and

here, we refer it as the pool rate.

p kið Þ ¼
baki

a�1e�bki

C að Þ ; a > 0;b > 0; ki > 0: (1)

We later update the prior for each vessel to estimate the stan-

dardized bycatch rate. The updating process can be done

quickly as the posterior of the gamma distribution remains

in the gamma family, and we only need to update the shape

and scale parameters. If we assume that n0 bycatch species were

observed for E0 units of effort, Bayes’ theorem implies that

the posterior distribution is of the form of the following

equation:

p kn0; E0ð Þ ¼ bþ E0ð Þakaþn0�1e� bþE0ð Þk

C aþ n0ð Þ
; a; b; k; E0 > 0; n0 ¼ 0; 1; 2; 3; . . . :

(2)

Assuming that the true bycatch rate Ki ¼ ki for vessel i is

constant for given Ei units of effort, we can then model the alea-

tory uncertainty in the bycatch rate through a Poisson probability

distribution expressed in the following equation:

P Ni ¼ niKi ¼ kið Þ ¼ kiEð Þni e�ki Ei

n!
; Ei > 0; ki > 0; ni ¼ 0; 1; 2; . . . : (3)

Since we do not know the true bycatch rate Ki for vessel i,

we average the Poisson distributions, weighted against the prior

distribution in the following equation:

P Ni ¼ nið Þ ¼
ð1

0

kiEið Þni e�kiEi

ni!

baki
a�1e�bki

C að Þ dk; a > 0; b > 0; ni ¼ 0; 1; 2; . . . :

(4)

Greenwood and Yule (1920) proved that the distribution of Ni

is Negative Binomial as shown in the following equation:

P Ni ¼ nið Þ ¼ C ni þ að Þ
C að Þni!

b
bþ Ei

� �a
Ei

bþ Ei

� �ni

; a > 0; b > 0; ni ¼ 0; 1; 2; . . . :

(5)

To estimate the parameters of the prior distribution, a;b, we

use a genetic algorithm optimization method (implemented in

MATLAB Global Optimization Toolbox) to maximize the natural

logarithm of the marginal likelihood (LML) functions assuming

that (pooled) data are generated from the Negative Binomial

distribution of (5). Our choice of algorithm was informed by

as follows: (i) there being no closed-form solution for finding

maximum values of LML functions and (ii) the LML functions

being highly nonlinear and nonconvex.

Several methods have been proposed to construct a joint

confidence region to address the uncertainty associated with the

estimated prior parameters, such as the bootstrap method (Carlin

and Gelfand, 1991), and using likelihood theory by assuming

the negative of two times the natural logarithm of the relative

marginal likelihood function has a chi-square distribution with

two degrees of freedom (Basu and Rigdon, 1986). In this study,

we used the second approach to construct a joint confidence in-

terval for the maximum likelihood estimates and consequently

the posterior mean (standardized) bycatch rate of each vessel.

We let â and b̂ are the estimated values of prior parameters

and let vessel i interacts with ni bycatch species when Ei units of

effort have been deployed. We estimate the standardized bycatch

rate of vessel i, which is the posterior mean of ki as follows:

E kijNi ¼ nið Þ ¼
ð1

0

kip ki jNi ¼ ni ; â; b̂
� �

dki ¼
â þ ni

b̂ þ Ei

¼ â

b̂
1� zð Þ þ ni

Ei

z; (6)

where z ¼ Ei

b̂þEi
:

The standardized bycatch rate can be interpreted as a weighted

average of the pool (i.e. fleet) mean bycatch rate (â=b̂Þ and the

nominal bycatch rate of the vessel (ni=Ei) where the weight is

the function of a vessel’s fishing effort and a scale parameter of

the posterior gamma distribution. Equation (6) also implies that

when we have more experience (i.e. fishing effort) with a vessel

(higher E), more weight will be allocated to the nominal rate,

while for a vessel with less experience, more weight will be allo-

cated to the pool rate.

Application of the Poisson–gamma model to the
Australian yellowfin tuna sub-fishery
We apply this method to vessels in the yellowfin tuna sub-fishery

of the Australian ETBF to illustrate how the method can provide

fishery managers with insights on fleet-wide bycatch mitigation

performance and identify non-performing vessels for targeted in-

tervention. The ETBF is a pelagic longline fishery that operates

within the Australian Exclusive Economic Zone and adjacent

high sea waters targeting yellowfin tuna (Thunnus albacares), bigeye

tuna (Thunnus obesus), albacore tuna (Thunnus alulunga), broadbill

swordfish (Xiphias gladius), and striped marlin (T. audax). The

ETBF operates from Cape York, east and south to the Victorian–

South Australian border, including waters around Tasmania and

the high seas of the Pacific Ocean (Figure 1a). In 2018, there were a

total of 40 longline vessels active in the ETBF (Patterson et al.,

2018). In the ETBF, vessels that have fished >30 days in the previ-

ous or current fishing season must have operational electronic

monitoring technology installed.

The yellowfin tuna sub-fishery of the Australian ETBF was

differentiated from other sub-fisheries using a non-hierarchical

clustering method, partitioning around medoids as similarly

employed by Duarte et al. (2009) that identified structures within

the data to quantitatively categorize individual fishing events to a

particular métier (for more information on métier analysis, see

Pelletier and Ferraris, 2000; Holley and Marchal, 2004). While the

primary target species of the yellowfin tuna sub-fishery is yellow-

fin tuna, there is also a high proportion of oilfish (Ruvettus pretio-

sus) and striped marlin caught as by-products. The yellowfin tuna

sub-fishery is a year-round fishery with most sets occurring be-

tween 7 and 9 a.m. off the New South Wales and Victorian State

coastlines (Figure 1b). Typical gear characteristics include shallow

setting with limited light stick use. In undertaking this analysis,

we limit our study to the years 2016–2018 when electronic moni-

toring technologies were installed on all full-time ETBF vessels.

Bayes estimation of bycatch rate 923
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This decision was based on recently published studies indicating

that fishers have improved their logbook reporting of bycatch

and protected species in these years, and there is high congruence

between logbook and electronic monitoring analyst-reported sea-

bird bycatch rates (Larcombe et al., 2016; Emery et al., 2019a, b).

In 2016–2018, there were a total of 23, 29 and 26 longline vessels

active, respectively, in this sub-fishery.

Results
Fishing effort in the yellowfin tuna sub-fishery
There was high heterogeneity in the effort data for the 34 ETBF

vessels operating in the yellowfin tuna sub-fishery during

2016–2018, with vessel_id 15 setting 216 000 hooks and vessel_id 6

and 21 just 1000 hooks, for example (Figure 2a). Furthermore,

the amount of seabird bycatch varied among vessels with similar

effort levels (Figure 2b). For example, vessel_id 16 and vessel_id

28 expended a similar amount of effort (160–180 000 hooks) in

the yellowfin tuna sub-fishery between 2016 and 2018, but the

number of recorded seabirds was different (six and one, respec-

tively) (Figure 2b). Nevertheless, there was a positive linear corre-

lation (Pearson’s r¼ 0.59, p¼ 0.00028) between the number of

seabirds and the effort for each vessel. This result supports the

assumption of proportionality between the amount of seabird

bycatch and the amount of effort in the yellowfin tuna sub-

fishery of the ETBF.

Assessing seabird bycatch rates in the yellowfin tuna
sub-fishery
The mean seabird bycatch rate was 0.019 for the yellowfin tuna

sub-fishery (i.e. average pool rate) based on (5), which was used

in association with the nominal bycatch rate of the vessel in (6) to

generate the standardized bycatch rate for each vessel. The stan-

dardized bycatch rate of a vessel with low levels of fishing effort

was closer to the average pool rate, while the standardized bycatch

rate of a vessel with high levels of fishing effort was closer to their

nominal bycatch rate (Figure 3).

The fit of the estimated predictive distribution model to the

empirical data was robust (Figure 4). There was a good fit to the

data in both the centre and right-hand tails of the distribution,

while there was a slight overestimation and underestimation of

the zero and one occurrences, respectively, on the left-hand tail of

the distribution (Figure 4). The good fit to the upper right-hand

tail of the distribution is very important since this has greater

consequences for seabird populations if the true bycatch rate of a

vessel is relatively high.

It is evident that between 2016 and 2018 the average pool rate

(red line in Figure 5) in the yellowfin tuna sub-fishery was below

the maximum permissible bycatch rate of 0.05 seabird per 1000

hooks (blue line) recommended in the Australian Seabird TAP

(Commonwealth of Australia, 2018) (Figure 5). However, there

was a large variation among the 34 individual vessels, with some

vessels having high standardized bycatch rates above the TAP

Figure 1. Area and relative fishing intensity in the (a) eastern tuna and billfish fishery and (b) yellowfin tuna component of the eastern tuna
and billfish fishery in 2016–2018 calendar years.
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(e.g. vessel_id 20, 22, and 32) and others having lower standard-

ized bycatch rates (e.g. vessel_id 2, 5 and 8). The level of uncer-

tainty in the estimated bycatch rates also varied substantially at

the individual vessel level (Figure 5).

Discussion
Attaining robust estimates of bycatch rates in fisheries is a signifi-

cant challenge due to their low (often rare in the case of ETP spe-

cies) frequency of occurrence, leading to uncertainty in rate

estimation, which can be a significant barrier to the development

of effective mitigation strategies (Komoroske and Lewison,

2015; Martin et al., 2015; Suuronen and Gilman, 2019). Despite

these challenges, fisheries managers are often required to make

inferences about bycatch rates to inform their decision-making.

This can lead to biased, imprecise estimates when using nominal

estimation (dividing the total amount of bycatch by total effort)

to determine the rate (Martin et al., 2015). By considering effort

heterogeneity among vessels and pooling the data from

Figure 2. Total fishing effort (a) and amount of seabird bycatch (b) for a total of 34 vessels operating in the yellowfin tuna sub-fishery for the
years 2016–2018.

Figure 3. Standardized seabird bycatch rates for all 34 vessels in the yellowfin tuna sub-fishery for the years 2016–2018 plotted against their
nominal bycatch rate. The size of each point represents the total effort of each vessel in ‘000s hooks. The red line is the identity line (1:1), and
the blue line is the mean estimated bycatch rate for the fleet (i.e. average pool rate).
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homogenous vessels (vessels that share comparable fishing behav-

ioural patterns), our model-estimated (standardized) bycatch rate

overcomes some of the shortcomings of nominal estimation

(Bishop et al., 2008). It also requires minimal data: only the total

effort and amount of bycatch for each homogenous vessel within

the timeframe of interest. This makes it more accessible to use in

data-limited fisheries and easier for decision-makers to update

and review regularly. Furthermore, by using Bayesian methods,

which are well suited to the analysis of rare-event bycatch data, we

can more fully integrate uncertainty, produce less volatile bycatch

rate estimates, and enable evaluation of these estimates relative to

existing performance measures (Gardner et al., 2008; Martin et al.,

2015). We should emphasize that while other factors contribute to

the bycatch rate, such as climate, location, food availability, and

seasonality (Martin et al., 2015; Cortés et al., 2017), they were not

considered in our model to ensure simplicity but could be incorpo-

rated as covariates in future modifications of this approach.

Moreover, while we used a machine-learning clustering method to

pre-determine homogenous vessels within the yellowfin tuna sub-

fishery of the ETBF, expert opinion can likewise be used to identify

vessels that share comparable fishing behavioural patterns.

There are several important applications that will benefit from

the empirical inference method we have developed. For instance,

there is a need to evaluate the performance of individual fishing

vessels and fleets against quantifiable targets such as bycatch per-

formance measures or reference points, to inform management

decision-making (Grafton et al., 2007; Gjertsen et al., 2010; Kirby

and Ward, 2014). Our standardized bycatch rate can be used as a

key indicator to measure the performance of an individual vessel/

fleet relative to quantifiable targets (while also accounting for

uncertainty) to identify outperforming and underperforming ves-

sels for further investigation or corrective action. In our case

study, it has allowed fishery managers to compare seabird bycatch

rates of individual vessels and the fleet relative to the Australian

TAP maximum permissible bycatch rate of 0.05 birds per 1000

hooks and quantitatively measure how individual vessels are per-

forming relative to the fleet average. This can also be updated reg-

ularly to ensure responsiveness to changes in the status of bycatch

species or reference points.

Our inference method also allows a hierarchy of the homoge-

nous fleet to be developed in a risk management context to

Figure 4. Hanging rootogram of the Poisson–gamma model fitted
to seabird bycatch data for all 34 vessels in the yellowfin tuna sub-
fishery for the years 2016–2018. The red line shows the expected
amount of seabird bycatch estimated by the model, while the
observed amount of seabird bycatch is shown as bars hanging from
the red lines. The x-axis shows bins representing the nominal
amount of seabird bycatch, while the y-axis shows the square root of
the expected or observed amount of seabird bycatch. When the bar
does not touch the x-axis (e.g. zero occurrences), it means that the
amount of bycatch predicted by the model is higher than in the
empirical data, while when the bar does touch the y-axis (e.g. one
occurrence), it means that the amount of bycatch predicted by the
model is lower than in the empirical data.

Figure 5. Standardized seabird bycatch rates for the 34 vessels in the yellowfin tuna sub-fishery for the years 2016–2018. The blue line
represents the TAP recommended reference point (0.05 seabirds per 1000 hooks), and the red line represents the average pool rate. The grey
shaded area represents the confidence interval for the estimated average pool rate.
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prioritize resourcing and inform management decision-making.

Decision rules can then be formulated based on each level of the

hierarchy if considered prudent. We define three hierarchical lev-

els based on the standardized bycatch rates (i.e. risk to seabirds),

uncertainty and pre-existing management objectives (e.g. TAP:

0.05 seabirds per 1000 hooks). The “low-risk element” (i.e. those

vessels with standardized bycatch rates and confidence intervals

below the pre-existing limit reference point) would be considered

best practice in the fishery and outperforming vessels, from which

further information could be sought to determine their success in

deploying mitigation measures and reducing bycatch. The “high-

risk element” (i.e. those vessels with standardized bycatch rates

and confidence intervals above the pre-existing limit reference

point) would be considered poor-performing and prioritized for

the investigation to determine what corrective action or mitiga-

tion measures are required to improve performance. The

“uncertain risk element” (i.e. those vessels standardized bycatch

rates above or below the pre-existing limit reference point but

with confidence intervals that encompass the pre-existing limit

reference point) is prioritized for further analysis to identify if

their fishing operations share practices that reflect vessels in the

“high-risk element”. If similar practices are identified, corrective

actions can be implemented. If the analysis remains inconclusive,

these vessels may be prioritized for more intensive monitoring to

rapidly acquire informative data before any decision could be

made about their performance.

In the absence of a pre-defined bycatch performance measure,

the standardized bycatch rate of the fleet could contribute to the

formation of an appropriate performance measure (e.g. limit ref-

erence point) for an individual bycatch species. Conventionally, a

limit reference point is defined as the level at which the risk of re-

cruitment impairment is regarded as unacceptably high, or the

minimum acceptable level of bycatch at which the measures being

adopted are likely to be having the desired conservation effect

(Tuck, 2011; Moore et al., 2013; DAWR, 2018). When set as a

performance measure (e.g. the Australian TAP for seabirds), it

provides guidance on expected levels of performance for industry

and provides the means for decision-makers to evaluate and im-

prove bycatch mitigation (Grafton et al., 2007). It also represents

a uniform control limit for vessels that will drive adaptation and

facilitate the robust assessment of mitigation technologies

(Komoroske and Lewison, 2015). In the absence of information

to determine population abundance using conventional assess-

ments, this type of analysis can allow different stakeholders or in-

terest groups to discuss appropriate limit reference points, which

could be readily adjusted upon application or if new information

on population abundance becomes available. Moreover, it can be

applied in the context of “continuous improvement” until a limit

reference point is defined with the objective of continually lower-

ing the standardized bycatch rate of the fleet.

The ability to use a standardized bycatch rate to measure an-

nually the individual and fleet performance against the limit ref-

erence point can create incentives for industry to be more

individually accountable of their bycatch. This can be achieved by

decision-makers introducing penalties (and/or rewards) for ves-

sels that exceed (or maintain their bycatch below) the limit refer-

ence point (Diamond, 2004; Pascoe et al., 2010). These market-

based incentives could be in the form of restricting access to cer-

tain fishing areas, temporary loss of right of access and/or fines,

creating a cost for sub-standard performance that would induce

fishers to make choices that reduce bycatch (Diamond, 2004;

Pascoe et al., 2010). This is not too dissimilar from the system of

dolphin mortality limits established to manage dolphin bycatch

in the purse-seine tuna fisheries of the eastern Pacific Ocean

managed under the Agreement on the International Dolphin

Conservation Programme (Anon, 1999; Gjertsen et al., 2010).

Under this programme, a total annual limit of 5000 dolphins is

set for the fishery in the Agreement Area and an equal share of

this limit assigned to each applicable vessel (Anon, 1999). If at

any time a vessel exceeds their dolphin mortality limit, they must

cease fishing for tuna in association with dolphins, creating an in-

centive for improved bycatch mitigation. There is also a similar

programme for the management of New Zealand sea lion

(Phocarctos hookeri) mortalities in the New Zealand squid fishery,

with a fishing-related mortality limit derived from a Bayesian

model (Breen et al., 2003) set annually (Chilvers, 2008). Once the

limit is reached within a season, the fishery is then closed, creat-

ing an incentive for fishers to reduce their bycatch (Robertson

and Chilvers, 2011).

While our standardized bycatch rate cannot be used to mea-

sure current population status (initial or current abundance), it

can be used to monitor the performance of individual vessels and

the fleet relative to the performance measure for an individual

species. Of course, this assumes that decision-makers have access

to data at a species taxonomic level that can be trusted. Fisher-

reported logbook data have often been found to be inaccurate

and inconsistent with at-sea observer data from the same trip,

due to fishers either misreporting, under-reporting, over report-

ing, or non-reporting their bycatch (Sampson, 2011; Mangi et al.,

2016; Macbeth et al., 2018). While in this case study we used log-

book data that have been verified (using an electronic monitoring

programme) (Emery et al., 2019a, b), our model is not con-

strained to fisheries with verifiable logbook data. It can easily be

applied to fisheries with unverified logbook data or extrapolated

at-sea observer data (assuming coverage is sufficient) but noting

the issues and caveats with precision remain the same as if an al-

ternative model was run using that data (Wakefield et al., 2018).

We developed a model to estimate standardized individual

vessel and fleet bycatch rates that can be widely applied, is

simple and accessible for fisheries with limited data, can deal with

uncertainty in rate estimation, and can be easily interpreted in a

risk context. Risk-based approaches or frameworks are useful for

decision-makers to prioritize scarce resources (both in terms of

further investigation or corrective action). Our model can also

be readily updated to determine whether a vessel’s bycatch

rate changes over time or following intervention and has the

potential to include additional information such as location and

seasonality as covariates. Lastly, this approach could be tailored

to each bycatch issue or situation and combined with additional

risk-based models, such as fisheries compliance risk assessments

(e.g. AFMA, 2017), to provide a more comprehensive risk frame-

work for the fishery.
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R., Sanchirico, J. et al. 2010. Use of incentive-based management
systems to limit bycatch and discarding. International Review of
Environmental and Resource Economics, 4: 123–161.

Patterson, H., Larcombe, J., Nicol, S., and Curtotti, R. 2018. Fishery
Status Reports 2018. Australian Bureau of Agricultural and
Resource Economics and Sciences, Canberra.

Pelletier, D., and Ferraris, J. 2000. A multivariate approach for defin-
ing fishing tactics from commercial catch and effort data.
Canadian Journal of Fisheries and Aquatic Sciences, 57: 51–65.

928 M. Parsa et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/77/3/921/5762486 by guest on 17 M
ay 2021

https://www.legislation.gov.au/Details/F2018L01562
https://www.legislation.gov.au/Details/F2018L01562
https://www.wcpfc.int/node/27541
https://www.wcpfc.int/node/27541


Quigley, J., Hardman, G., Bedford, T., and Walls, L. 2011. Merging
expert and empirical data for rare event frequency estimation:
pool homogenisation for empirical Bayes models. Reliability
Engineering & System Safety, 96: 687–695.

Robertson, B. C., and Chilvers, B. L. 2011. The population decline of
the New Zealand sea lion Phocarctos hookeri: a review of possible
causes. Mammal Review, 41: 253–275.

Sampson, D. B. 2011. The accuracy of self-reported fisheries data:
Oregon trawl logbook fishing locations and retained catches.
Fisheries Research, 112: 59–76.

Suuronen, P., and Gilman, E. 2019. Monitoring and managing fisher-
ies discards: new technologies and approaches. Marine Policy,
103554.

Tuck, G. N. 2011. Are bycatch rates sufficient as the principal fishery
performance measure and method of assessment for seabirds?

Aquatic Conservation: Marine and Freshwater Ecosystems, 21:
412–422.

Wakefield, C. B., Hesp, S. A., Blight, S., Molony, B. W., Newman, S.
J., and Hall, N. G. 2018. Uncertainty associated with total bycatch
estimates for rarely-encountered species varies substantially with
observer coverage levels: informing minimum requirements for
statutory logbook validation. Marine Policy, 95: 273–282.

Walsh, W. A., Ito, R. Y., Kawamoto, K. E., and McCracken, M. 2005.
Analysis of logbook accuracy for blue marlin (Makaira nigricans)
in the Hawaii-based longline fishery with a generalized additive
model and commercial sales data. Fisheries Research, 75:
175–192.

Walsh, W. A., Kleiber, P., and McCracken, M. 2002. Comparison of
logbook reports of incidental blue shark catch rates by
Hawaii-based longline vessels to fishery observer data by applica-
tion of a generalized additive model. Fisheries Research, 58: 79–94.

Handling editor: Stephen Votier

Bayes estimation of bycatch rate 929

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/77/3/921/5762486 by guest on 17 M
ay 2021


