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Abstract

The general decline of seabird populations worldwide raises large concerns. Although multi-

ple factors are interacting to cause the observed trends, increased mortality from incidental

bycatch in fisheries has proven to be important for many species. However, the bulk of pub-

lished knowledge is derived from longline fisheries, whereas bycatch in gillnet fisheries is

less studied and even overlooked in some areas. We present seabird bycatch data from a

10-year time-series of fishery data from the large fleet of small-vessels fishing with gillnets

along the Norwegian coast—a large area and fishery with no prior estimates of seabird

bycatch. In general, we document high rates of incidental bycatch (averaging 0.0023 sea-

birds/net, or approximately 0.08 seabirds/fishing trip). This results in an estimated annual

bycatch between 1580 and 11500 (95% CI) birds in this fishery. There was a surprisingly

high percentage (43%) of surface-feeding seabirds in the bycatch, with northern fulmar

being the most common species. Among the diving seabirds caught, common guillemot

was most numerous. Our findings suggest that coastal gillnet fisheries represent a more

general threat to a wider range of seabird populations, as opposed to longline fisheries

where surface-feeding seabird species seem to dominate the bycatch. The bycatch esti-

mates for the Norwegian gillnet-fishery varied in time, between areas, and with fishing depth

and distance from the coast, but we found no clear trends in relation to the type of gillnets

used. The results enabled us to identify important spatio-temporal trends in the seabird

bycatch, which can allow for the development and implementation of more specific mitiga-

tion measures. While specific time closures might be an efficient option to reduce bycatch

for diving seabirds, measures such as gear modification and reduction in release of waste-

water during fishing operation are probably a more effective mitigation approach for reduc-

ing bycatch of surface-feeding seabirds.

PLOS ONE | https://doi.org/10.1371/journal.pone.0212786 March 13, 2019 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Bærum KM, Anker-Nilssen T,

Christensen-Dalsgaard S, Fangel K, Williams T,

Vølstad JH (2019) Spatial and temporal variations

in seabird bycatch: Incidental bycatch in the

Norwegian coastal gillnet-fishery. PLoS ONE 14(3):

e0212786. https://doi.org/10.1371/journal.

pone.0212786

Editor: Heather M. Patterson, Department of

Agriculture and Water Resources, AUSTRALIA

Received: September 18, 2018

Accepted: February 8, 2019

Published: March 13, 2019

Copyright: © 2019 Bærum et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Datafile used for the

analysis is available at https://osf.io/6n5p7/?view_

only=12be301fde40496ebac750cac052fa88.

Funding: Funding was provided by the Norwegian

Environment Agency. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0003-1197-9608
https://doi.org/10.1371/journal.pone.0212786
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212786&domain=pdf&date_stamp=2019-03-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212786&domain=pdf&date_stamp=2019-03-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212786&domain=pdf&date_stamp=2019-03-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212786&domain=pdf&date_stamp=2019-03-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212786&domain=pdf&date_stamp=2019-03-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212786&domain=pdf&date_stamp=2019-03-13
https://doi.org/10.1371/journal.pone.0212786
https://doi.org/10.1371/journal.pone.0212786
http://creativecommons.org/licenses/by/4.0/
https://osf.io/6n5p7/?view_only=12be301fde40496ebac750cac052fa88
https://osf.io/6n5p7/?view_only=12be301fde40496ebac750cac052fa88


Introduction

Incidental bycatch in gillnet fisheries has caused some of the highest recorded mortalities of

seabirds worldwide, and a recent review estimated that each year a minimum of 400,000 birds

die as a direct consequence of this type of fishery [1]. Increased mortality rates can potentially

have serious effects on the population dynamics of seabird species as their life history strategies

usually encompass long life spans and low annual reproductive output (e.g., [2]). This is espe-

cially concerning as the majority of seabird populations around the globe are in decline [3],

with the conservation status of many seabird species listed as highly threatened [4]. However,

the actual effect of the mortality from bycatch on seabird populations is usually unknown,

although circumstantial evidence of a large general effect exists [5]. The apparent lack of popu-

lation-level effects of gillnet bycatch reported in the literature may be a consequence of multi-

ple factors, but it seems that the gillnet fishery has largely been overlooked as a threat to

seabird populations [6]. Consequently, there is a large degree of uncertainty with respect to

how seabirds are killed as incidental bycatch in many such fisheries [6, 7], and the current

knowledge is based on short-term studies that are highly fragmented in space and time.

A great range of factors are likely driving the general decline of seabirds, including direct

and indirect effects of climate change [8], commercial fisheries [9], introduced mammals [10],

pollution and coastal development [4]. Many of these factors might also act in synergy to

intensify the negative effect on the populations [11], which complicates management efforts to

counteract the declines. Nevertheless, bycatch-induced mortality of seabirds is probably

among the most manageable problems in the short term. Thus, it is important to get a good

understanding of the extent and variation of incidental bycatch in the different fisheries. The

research on incidental bycatch of seabirds has primarily focused on longline fisheries (e.g.,

[12–14]). This is also the case for much of the research on effective mitigation measures to

reduce the bycatch of seabirds (e.g., [7, 15, 16]). There are, however, obvious gaps in our

knowledge of where, how and why bycatch of seabirds in gillnet fisheries occurs, what the pos-

sible mitigation measures of such bycatch are (but see [17–19]), and to what extent it affects

the seabird populations.

Analyses that aim to integrate multiple potential factors in a spatio-temporal perspective to

explore seabird bycatch require rather large datasets, which probably explains why such analy-

ses are scarce in the literature. Therefore, deriving more knowledge from long-term data series

and larger scales is essential to provide better estimates of the number of seabirds killed, spa-

tio-temporal trends in bycatch rates and population-level impacts. This is necessary to increase

our understanding of the susceptibility of species and, eventually, identify effective mitigation

measures.

In this study, we utilized a comprehensive time series dataset of complete catch records,

involving a total of 43 fishing vessels over a 10-year period, to investigate and estimate rates of

incidental bycatch of seabirds in the Norwegian coastal gillnet fishery. The sampled fishing

fleet represents a large-scale fishery that spans the entire Norwegian coast (58–71˚N) and is

fundamentally similar to other small-boat gillnet fisheries around the globe. These are fisheries

that in general are widespread and common. The main goal of the study was to contribute to

the global knowledge base on seabird bycatch by 1) presenting bycatch rates from areas and

fishing equipment with few prior observations; 2) exploring spatio-temporal patterns of the

bycatch, and the extent to which these patterns were associated with the type and use of fishing

equipment; and 3) assessing the value of the results in a wider, international context. To

achieve this, we also explored the variation in seabird bycatch in relation to foraging character-

istics of seabirds (i.e., diving and surface-feeding) to uncover possible differences between the

two groups. Such information is crucial to uncover which populations of seabirds are most
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likely to be affected by this type of fishery and identify potential ways forward to reduce the

bycatch.

Materials and methods

In this study, we utilized data from the Norwegian Reference Fleet, a group of Norwegian fish-

ing vessels contracted by the Institute of Marine Research (IMR) to provide detailed informa-

tion about their fishing activity and catches, including bycatch of marine mammals and

seabirds, through trained self-sampling on a regular basis (read more on www.imr.no/

temasider/referanseflaten/en). Each of these vessels reports complete, detailed information on

the composition of catches from fishing operations sampled systematically through time.

From each sampled fishing operation, the catch of all fish is recorded in numbers and weight

by species. Bycatch of seabirds and marine mammals are reported in numbers by species. In

this sampling program, vessels are stratified according to gear and ICES statistical area (see

description at http://www.ices.dk/marine-data/maps/Pages/ICES-statistical-rectangles.aspx).

As the reference fleet comprises a variety of vessels, and we wanted to explore trends represen-

tative for the coastal small-boat fisheries, we only used gillnet data from the coastal part of the

fleet. For the years used in the study (2006–2015), the coastal part of the fleet was limited to

include 9–15 m long vessels fishing along the coast of Norway, with one additional 21m long

vessel included in the fleet from 2009–2012. There were no specific permits or permissions

required for the sampling.

A trained research technician from the IMR is the prime contact and serves as mentor for

the fishers on each vessel in the reference fleet. The mentor is responsible for providing train-

ing and support, and for quality control and quality assurance of data and biological samples

delivered to the IMR. The training of fishers includes regular visits to every reference fleet ves-

sel at sea by IMR scientific staff, annual meetings between IMR and reference fleet participants,

subject-specific workshops and training in taxonomy. The data and samples sent monthly to

the IMR are first checked by the mentor and then independently by a technician, before the

data are entered into the IMR’s research database. The data are further checked using a test

program that identifies anomalies, and then scrutinized manually for possible errors, bias and

deviation from the protocol. The IMR has an agreement with the fishing authorities that the

data from the vessels in the reference fleet program will not be used directly for enforcement

of restrictions or sanctions. This is in order to mitigate against vessels changing their behav-

iour that could cause bias in the self-reported data that are applied to the fishing fleet in gen-

eral. Concerns about the potential bias in the data are further mitigated by the training given

by the mentor in order to improve the fishers’ understanding of why it is important to not

change their fishing behaviour and to follow the protocol for catch reporting. Moreover, the

regular occurrence of bycatches of seabirds and marine mammals in the catch reports from

the reference fleet demonstrates that self-reporting of seabird bycatches is possible for this

fishery.

To explore the extent and variability of seabird bycatch in gillnet fisheries along the Norwe-

gian coast, we applied two main approaches: 1) A stratified mean estimator and 2) a general-

ized mixed model (GLMM); both approaches described in more detail below. The Norwegian

Directorate of Fisheries registers catches from all fishing trips made in the entire Norwegian

coastal fishing fleet (i.e., all vessels that participate in commercial fishing). However, as only a

few parameters other than the number of trips (trip effort), area and catch are recorded, the

stratified mean estimator is intended as a rough estimator for predicting seabird bycatch for

the whole fleet to allow comparisons with that of other fisheries throughout the world. The

GLMM approach aimed to describe which parameters might affect seabird bycatch rates the
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most, detect spatio-temporal patterns and to provide better guidance on how to construct

effective mitigation measures. It was also set up to better account for the non-normal and pos-

sible zero-inflated distribution of seabird bycatch data.

Data

The analysis focused on bycatch data provided by the coastal reference fleet from the years

2006–2015 for fishing operations using gillnets designed to fish close to the sea bottom. How-

ever these nets are also set closer to the surface with the use of buoys. This totalled 15,894 net-

fishing trips, conducted by 43 different vessels (see spatial coverage for the fishing trips in

Fig 1). An average fishing trip in this dataset involved the setting of 36 (SD ± 26) nets. Unfortu-

nately, we did not obtain exact information on soak time. A total of 1191 seabirds were regis-

tered as incidental bycatch (see Table 1 for annual summaries). Due to missing data for some

variables of interest (e.g., exact UTM coordinates absent for some registrations), a subset of

13,980 trips with 1080 seabirds recorded as incidental bycatch were utilized in the analytical

modelling. The omitted data points did not represent any obvious patterns concerning the var-

iables of interest or bycatch counts.

For the same years (2006–2015), the Norwegian Directorate of Fisheries provided manda-

tory fish catch records from 790,652 net-fishing trips conducted by a total of 7720 vessels

along the Norwegian coast, for which the data extracted from the reference fleet (i.e. trips with

vessels of length 9–21 m) were considered representative (for details see Table 1). We used

Fig 1. Fishing trips used for bycatch estimation. Map of the Norwegian coastline with registered trips (open blue

circles) for the coastal reference fleet utilizing gillnets during 2006–2015. Numbers refer to statistical fishing area,

where 2, 3 and 4 are referred to as north-east, 0, 5 and 37 are referred to as north-west, 6 and 7 as middle and 28, 8, 9,

and 41 as south in the analysis.

https://doi.org/10.1371/journal.pone.0212786.g001
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these trips to expand seabird bycatch estimates calculated from the reference fleet data to the

fishery as a whole.

Seabird bycatch estimates: Stratified mean estimator

Bycatch rate was estimated as a stratified mean bycatch per trip (S1 Equations), based on data

from the coastal reference fleet. The estimated bycatch rate per trip was extrapolated to the

total number of trips by all representative vessels registered by the Norwegian Directorate of

Fisheries. To obtain a more comparable estimator to other estimators in the literature, we also

calculated seabird bycatch per unit effort (BPUE) as a stratified ratio estimator, specifically as

the mean ratio of bycatch in number of birds per net in the reference fleet. However, as the

official Norwegian fishery statistics has no overall information on the total number of nets set,

we could not use this estimator to project to the total numbers of seabirds caught as incidental

bycatch for the whole fleet.

Seabird bycatch estimates: GLMM

We explored the variation in seabird bycatch using a GLMM framework in the statistical soft-

ware R, version 3.4.3 [20]. As we anticipated bycatch to vary with the feeding behaviour of sea-

birds (i.e., diving or surface-feeding, see distinctions of species into feeding type in Table 2),

we fitted two sets of models using the bycatch numbers of the two specific feeding types as

responses. Specifically, we utilized the glmmADMB package [21, 22] to fit different candidate

models to describe possible trends in the bycatch for diving seabirds and surface-feeding sea-

birds. The response variable was numbers of seabirds caught per fishing trip, encompassing

relatively few trips with bycatch and many trips without bycatch (i.e., many zero-observations).

Data exploration prior to model fitting revealed three extreme bycatch events consisting of

trips with 52, 52 and 83 seabirds caught. All three incidents happened in the same area (north-

east), year (2008), and month (March/April) for a single species (the common guillemot Uria
aalge), and involved only one specific vessel on three consecutive trips. The nets on these trips

were set at depths between 16 and 20 m, and relatively close to shore. As these incidents were

limited to a small local area and seemed exceptional within the 10-year time-series in terms of

number of seabirds caught, we decided to exclude them from the GLMM analysis. The

Table 1. Total numbers of trips, vessels and seabird bycatch.

Year Number of trips Number of vessels Seabird bycatch

2006 1797 (91946) 20 (3618) 70

2007 1600 (92484) 16 (3568) 31

2008 1300 (91416) 17 (3744) 299

2009 1664 (76383) 18 (3378) 127

2010 1798 (83457) 20 (3118) 121

2011 1805 (79874) 20 (3167) 198

2012 1372 (76995) 21 (3121) 80

2013 1770 (68115) 19 (2808) 154

2014 1278 (68923) 15 (2629) 79

2015 1510 (61059) 19 (2526) 32

Total number of trips, vessels and incidental seabird bycatch recorded for each year by the coastal reference fleet.

Numbers in parentheses correspond to landings/trips for the complete coastal fishery fleet registered by the

Norwegian directorate of fisheries. The numbers only portray trips where gillnets/set nets were used as primary

fishing equipment (i.e., excluding floating nets).

https://doi.org/10.1371/journal.pone.0212786.t001
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rationale behind this decision was that it would be virtually impossible to get statistical reliable

predictions from these very rare and extreme events in the data.

For the models, we considered response distributions such as Poisson, negative binomial,

zero-inflated Poisson and zero-inflated negative binomial distributions. We considered the

negative binomial distribution and zero inflation to allow for overdispersion and an excess of

zeros due to patchiness in occurrence of seabirds and bycatch. To assess the most appropriate

distribution and model, we first tested and graphed the response, following Friendly and Myer

[23], to determine whether the negative binomial distribution was more appropriate than the

Poisson distribution. This procedure favoured a negative binomial GLMM for both surface-

feeding and diving seabirds. We then constructed 14 candidate models utilizing the variables

shown in Table 3 as possible fixed effects, and Vessel ID as a random intercept in all candidate

models. The models were similar for both diving and surface-feeding birds.

Data exploration prior to fitting the models indicated both temporal (variation between

months and years) and spatial variation (variations between areas) in the seabird bycatch; vari-

ables dealing with time and area were thus included in most candidate models. As we also

Table 2. Representation of seabirds in catch.

Type of feeding behaviour % of total Species/family % of total

Razorbill Alca torda 8.4

Common guillemot Uria aalge 29.3

Common eider Somateria mollissima 1.4

Diving 57.1 Cormorants Phalacrocorax spp. 4.3

Atlantic puffin Fratercula arctica 3.2

Black guillemot Cepphus grylle 1.4

Northern gannet Morus bassanus 9.0

Northern fulmar Fulmarus glacialis 32.7

Surface-feeding 42.9 Black-legged kittiwake Rissa tridactyla 6.1

Gulls Laridae spp. 4.1

Percentage of seabird species represented in the catch of the small-vessel costal reference fleet from 2006 to 2015. The

percentages are based on the full dataset, including three extreme bycatch events consisting of trips with 52, 52 and

83 seabirds caught. The birds were divided based on taxon (species/family) and foraging behaviour: diving (grey) and

surface-feeding (white). Total numbers of seabirds caught by the reference fleet in the period amounted to 1189

seabirds.

https://doi.org/10.1371/journal.pone.0212786.t002

Table 3. Variable descriptions.

Variable Description

Year (y) Year of specific fishing trip.

Month (m) Month of specific fishing trip.

Net mesh size (ns) Grouped into five categories: 1) 35–85 mm, 2) 86–135 mm, 3) 136–185 mm, 4) 186–235 mm, 5) unspecified.

Distance from coast (dc) Distance to nearest shoreline. Calculated based on GPS positions and map polygons.

Fishing depth (fd) Shallowest fishing depth for the specific fishing nets. Not necessarily related to depth of the sea-bottom.

Area (a) Statistical fishing area, divided in four main groups (northeast, northwest, middle and south, see Fig 1).

Number of nets set (nn) Number of nets set at the specific fishing trip.

Vessel ID Registration code, specific for each vessel in the fishing fleet.

Description of available candidate variables utilized for exploring variation in seabird bycatch in the Norwegian coastal gillnet fishery.

https://doi.org/10.1371/journal.pone.0212786.t003
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expected that the number of nets set would affect the number of seabirds caught, and that this

effect would vary with fishing depth (e.g., probably no effect at depths too deep for diving sea-

birds), we included an interaction between fishing depth and number of nets in most candi-

date models. Further, we explored effects of fishing equipment and distance to shore, where

the effect of fishing equipment (i.e., mesh size) was included only in the most supported mod-

els following a prior model selection on models 1–13 (see all candidate models in Table 4). We

considered both fishing depth and distance to shore in the same models, as they were not very

related (R2 = 0.03, F1,13975 = 435.2, p< 0.001). We included interacting effects that were bio-

logically feasible, but restricted this to two-way interactions for parsimony. Specifically, we

explored how the effect of distance to shore and fishing depth change in the spatio-temporal

environment. Preliminary analyses showed no obvious bycatch trends in relation to the abun-

dance of specific fish species in the catches. Therefore, we did not include information regard-

ing target species for the fisheries in the models. Further, we believe the variables explored

(Table 3) gave a more general description of a fishery, rather than a fishery defined by target

species.

The most supported models were selected based on Akaike information criterion (AIC) val-

ues [24], where the highest ranked model, assessed with the bbmle package [25], was chosen

for further analysis. We also assessed models with considerable support (i.e., within two ΔAIC

Table 4. Candidate models with AIC-values.

Model / Fixed effect structure df ΔAICDiving ΔAICSurface

Effects of number of nets and fishing depth

1. No fixed effect 3 118 53.4

2. ~ nn x fd 6 67.7 45.7

3. ~ nn + fd 67.8 44.5

Effects of temporal and spatial variables

4. ~ y + m + a 65.4 12.8

5. ~ y + m + a + nn x fd 23 17.8 54.3

6. ~ y + m + a + nn x fd + dc 24 17.9 11

7. y + m + a + dc + nn + fd 19.9 9

8. ~ y + m + a x dc + nn x fd 27 0 1.5

9. ~ y + m x dc + a + nn x fd 29 25.1 6.1

10. ~ y + m + a + nn x fd + fd x dc 25 19.7 12.2

11. ~ y + m + a x fd + nn x fd 26 14.5 14

12. ~ y + m + a x fd + nn x fd + dc 27 13.8 12.3

13. ~ y + m + a + nn + dc 22 57.5 8.3

14. ~ y + m + a x fd + dc 25 18.3 11.3

15. ~ y + m + a x dc + fd 25 3.9 0.7

16. ~ y + m + a x dc 21 41.5 0

17. ~ y + m + a + dc 67.2 9.3

Effects of type of fishing gear (response specific)

18. ~ y + m + a x dc + nn x fd +ns 31 3.7

19. ~ y + m + a x dc + ns 29 2.4

Candidate models for exploring variation in seabird bycatch in the Norwegian coastal net fishery, including degrees

of freedom, ΔAIC as calculated from bbmle package [25]. ΔAICDiving and ΔAICSurface are ΔAIC values from the model

selection for diving and surface-feeding seabirds, respectively. Variable description used in the fixed effect structure

can be seen in Table 3. All candidate models were fitted as negative binomial GLMM’s, with Vessel ID as a random

intercept.

https://doi.org/10.1371/journal.pone.0212786.t004
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of the most supported model) besides the highest ranked model when applicable. We then

compared the most supported model with its zero-inflated equal (i.e., the same model with

zero-inflated negative binomial distributions), and also a different parameterization of the neg-

ative binomial model (var(Yij) = ϕμ), using AIC values to assess the different models. We vali-

dated the final model by plotting the Pearson residuals against the fitted values and each

covariate. As part of the model validation, we also checked the Pearson residuals for temporal

and spatial independence using the gstat package version 1.1–3 [26], following Zuur et al. [27].

We found no clear signs of temporal or spatial correlations. For the most supported models, a

post hoc Markov chain Monte Carlo (MCMC) fit, using the glmmADMB package, was run to

further assess parameter variability and effective size (i.e., the number of samples corrected for

autocorrelation).

Results

At the fishing-trip level, bycatch of seabirds in our study system was relatively rare with only

2% of the trips reported to have any such bycatch, and approximately 85% of the bycatch

events involved less than five seabirds caught per trip. The remaining 15% of the events

involved up to 29 seabirds per trip, and up to 83 seabirds per trip when including the three

extreme events. In total, there was a somewhat surprisingly even distribution of diving (57%)

and surface-feeding seabirds (43%) in the net catches, with northern fulmar (Fulmarus glacia-
lis, hereafter fulmar) and common guillemot dominating the catches (Table 2).

Seabird bycatch estimates: Stratified mean estimator

Mean estimated seabird bycatch per trip was calculated to� 0.08 (SE = 0.03) seabirds across

all years using the complete dataset. Excluding the three extreme bycatch events in 2008

reduced the mean to� 0.06 (SE = 0.02). However, estimated bycatch per trip still varied con-

siderably between years, with no clear trend. When including the extreme bycatch events, the

estimated bycatch for the complete coastal Norwegian net-fishery fleet from 2006–2015

amounted to approximately 65,220 (SE = 24,702) seabirds. Excluding the three extreme events

reduced the estimate to 52,019 (SE = 14,918) individuals (cf. Fig 2 for all annual estimates).

The variation between estimated yearly bycatch for the whole coastal Norwegian net-fishery

fleet followed the variation between estimated bycatch rates closely, as fishing effort in the fish-

ery varied little between years.

As a more fine-scaled measure of bycatch for the reference fleet, the stratified ratio

estimator was calculated to� 0.0023 (SE� 0.001) seabirds per net using the whole dataset,

and� 0.0019 (SE� 0.0006) seabirds per net when excluding the three extreme bycatch events.

Seabird bycatch estimates: GLMM

The model selection procedure revealed a different fixed effect structure for diving and sur-

face-feeding seabirds, suggesting different drivers behind the bycatch events. For both feeding

types, the most supported models were negative binomial GLMMs.

For diving seabirds, one model got substantially more support (based on AIC) than the

alternative candidates. The fixed effect structure for this model included year, month, area, dis-

tance from coast, number of nets set and fishing depth as fixed effects, where the effect of dis-

tance to coast varied with area and the effect of number of nets set varied with fishing depth

(Table 4). The temporal trend revealed increased bycatch rates in winter, with highest pre-

dicted bycatch between November and January, while the bycatch rates were lowest in May

and June (Fig 3). The bycatch rate was higher in northeastern Norway compared to the other

areas, in particular close to shore (Fig 3) and at minimum fishing depth (Fig 4). All areas had
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elevated bycatch rates of diving seabirds at minimum fishing depth. The effect of distance to

shore was only apparent in northeastern Norway, where it was very similar to the effect of min-

imum fishing depth, indicating co-occurring events of high bycatch rates both close to shore

and with nets being set at a shallow fishing depth.

For surface-feeding seabirds, three models had considerable support (Table 4). The highest

ranked model included year, month, area and distance to coast as fixed effects, with the effect

of distance to coast varying with area. The second- and third-most supported models also

included an effect of fishing depth either as an additive effect (second-most supported model),

or as an interactive effect with number of nets set (third-most supported model). However, as

the apparent effect of fishing depth for surface-feeding seabirds seemed unreasonable, with ele-

vated bycatch at increasing fishing depth, we chose to focus on the predictions from the most

supported model only. The temporal bycatch trend was opposite to that of the diving seabirds,

showing a general peak in May and June, with declining bycatch rates towards and during the

winter months (Fig 5). Also, for surface-feeding seabirds, bycatch rates were generally higher

in northeastern Norway. The apparent effect of distance to shore varied from area to area,

from a small tendency of increasing bycatch rates with increased distance to the shore in the

south, central and northwest areas to seemingly no effect of distance in the northeastern area

(Fig 5). It is also interesting to note that our most supported model for surface-feeding seabirds

seemed to underestimate the bycatch rate in general and did not explain the variation in the

data as well as for the model for diving birds. Thus, although the model for surface-feeding sea-

birds still showed obvious trends in the bycatch, we probably lacked some unmeasured vari-

ables related to the variation in surface feeding seabirds, particularly with regards to describing

events where multiple seabirds were taken.

Fig 2. Point estimates of seabird bycatch. Point estimates (± SE) of yearly incidental bycatch of seabird from 2006 to 2015 in the Norwegian small-vessel gillnet

fishery. The estimates are based on catches from the reference fleet, excluding three extreme bycatch events in 2008, and scaled to all trips registered within the

representative fishery.

https://doi.org/10.1371/journal.pone.0212786.g002
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Fig 3. Predicted bycatch of diving seabirds: Fishing depth. Predicted bycatch of diving seabirds per fishing trip (± SE indicated in grey) against minimum fishing

depth, divided by area (type of lines) and months (panes). The predictions are averaged over all fishing trips, years and distances to coast. Further, the predictions

assume the use of 36 fishing nets per trip, which is approximately the mean number of nets used per trip.

https://doi.org/10.1371/journal.pone.0212786.g003

Fig 4. Predicted bycatch of diving seabirds: Distance to coast. Predicted bycatch of diving seabirds per fishing trip (± 95% CI indicated in grey) against distance to

coast, divided by area (colour of lines) and months (panes). The predictions are smoothed and averaged over all fishing trips, years, and for minimum fishing depth

from 5 m to 100 m. Further, the predictions assume the use of 36 fishing nets per trip, which is approximately the mean number of nets used per trip.

https://doi.org/10.1371/journal.pone.0212786.g004
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Discussion

In this study, we present estimates and distinct spatio-temporal patterns of seabird bycatch in

the extensive small-vessel gillnet fishery along the entire Norwegian coast. Our findings repre-

sent new and important contributions to the seabird bycatch literature, especially because sta-

tistically-valid knowledge of the extent of bycatch for this large-scale type of fishery has been

very limited. Even when excluding extreme events, the associated total estimate of bycatch in

the 10-year study period amounted to approximately 52,000 seabirds (SE = 15,000), although

with large variation among years. Approximately 60% of this bycatch consisted of equal num-

bers of common guillemots and fulmars, which amounts to an approximate estimate of 1300

birds of each of the two species being killed annually as bycatch. The high percentage of sur-

face-feeding seabirds taken was perhaps the most surprising result from our findings and con-

tradicts the general perception of surface-feeding birds not being as susceptible to bycatch in

bottom-set gillnets as diving species [1] (but see [28]). These findings are thus intriguing and

concerning from an international perspective. Many surface-feeding procellariform species

have been identified as threatened by incidental bycatch in longline fisheries [7]. Considering

the world-wide use of gillnets, our results make it reasonable to question if surface-feeding sea-

birds are under-represented in the international literature on bycatch in gillnet fisheries.

The temporal trend in bycatch, with higher bycatch rates of diving species in winter than in

summer, could be expected for several reasons. One is that most of these birds, comprising

41% of the bycatch, were of species that only breed in a relatively small number of colonies,

many of which are within protected areas where fishing close to land is restricted between 15

April and 31 July. In comparison, only 7% of the bycatch belonged to more wide-spread diving

Fig 5. Predicted bycatch of surface-feeding seabirds: Distance to coast. Predicted bycatch of surface-feeding seabirds per fishing trip (± SE indicated in grey) against

distance to coast, divided by area (colour of lines) and month (panes). The predictions are averaged over all fishing trips and years. Further, the predictions assume the

use of 36 fishing nets per trip, which is approximately the mean number of nets used per trip.

https://doi.org/10.1371/journal.pone.0212786.g005
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species (common eider, cormorants and black guillemot). Also, the five most abundant spe-

cies, constituting 85.5% of the bycatch, are highly pelagic species that typically forage on food

supplies found far offshore where gillnet fisheries are less common. Outside the breeding sea-

son, seabirds are free to move more opportunistically. Further, the pelagic species are some-

times attracted to forage in coastal areas because of temporal availability of food, such as

capelin Mallotus villosus (that spawns mainly on the Finnmark coast), or larger herring Clupea
harengus brought to surface by whales. The fisheries targeting such fish stocks, or targeting

larger predatory fish attracted to the stocks (such as cod Gadus morhua), may also represent

an attractive source of food, especially in periods where natural food is less available because of

prolonged periods of bad weather and reduced light conditions.

The peak in bycatch of surface-feeding seabirds, especially fulmars, in May and June is

somewhat more puzzling. However, most seabirds are still incubating early in the breeding

season, leaving the off duty parent more time to explore larger areas than when both adults are

caring for the offspring later in summer. It has also been shown that the proportions of imma-

ture fulmars in the bycatch is higher in this period than later in the season [29], possibly

because these birds are likely to prospect for potential future colonies more when the estab-

lished breeders are busy caring for their young.

Our results provide new information for improvement of mitigation methods to reduce

and avoid seabird bycatch in gillnets, and also address the urgent need to understand which

species groups are susceptible to bycatch in such fisheries in order to initiate the most effective

mitigation measures. For diving seabirds, the clear trend of elevated bycatch rates in specific

areas, at specific fishing depths, distances to shore and time periods, indicates that measures

such as space/time closures in the fishery might be an effective mitigation action for reducing

seabird mortality. In particular, ensuring a minimum fishing depth and minimum distance

from the coast for the fishery in the winter months may have the potential to lower the bycatch

rate for diving seabirds in general. Another option would be to enforce obligatory gear change

or modifications (e.g., [30, 31]). By enforcing specific closures or obligatory gear modifica-

tions, for a shorter time, the mitigation measures might effectively be balanced against associ-

ated social benefits of the fisheries, such as for example food security and local job

opportunities.

For surface-feeding seabirds, we also recognized a distinct spatio-temporal pattern, with the

highest bycatch rates in May and June, and generally higher bycatch rates in the northeast and

central fishing areas. The apparent small increase in bycatch rates for some areas, as well as the

effect of increased bycatch rates with minimum fishing depth as shown by our second- and

third-most supported models, are more difficult to explain from a biological perspective. It is

possible, however, that both distance to the coast and minimum fishing depth are associated

with variables not included in our analysis. One could, for example, expect distance from the

coast to be associated with increased wave height, or rougher seas in general. Thus, the

observed tendency of increased bycatch with distance to the coast could simply be due to more

movements and/or decreased visibility of the nets while they are being set or hauled, increasing

the risk for birds to get entangled. Also, the effect of distance from the coast might be related

to the distribution of the susceptible species in Norwegian waters, with fulmars feeding further

away from the coastline than other surface-feeding seabirds, as the species is overrepresented

in the catch. Further, as there was no clear effect of minimum fishing depth, we suspect that

most surface-feeding seabirds are stuck in the nets during setting or hauling. This hypothesis

was supported by the fishers that collected the data, when questioned on the specific patterns

of this bycatch. In their experience, the movement of the boat and fishing gear when setting

and hauling in rough conditions most often lead to birds getting trapped in the nets. During

fishing, nets are often hauled and set again in one operation. The associated presence of fish
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on the surface attracts surface-feeding birds, which risk being dragged down quickly if they are

in contact with the fishing gear when set again. An understanding of how and why these birds

are caught points to some obvious actions that can likely help reduce the bycatch of surface-

feeding seabirds. Measures such as scaring lines, gear modifications and reduction in release of

wastewater during fishing operation (e.g., [16, 32]) are probably a more effective mitigation

approach for this group of birds than the implementation of space/time closures. For both sur-

face feeding and diving seabirds, we did not find a clear effect of mesh size. Thus, we do not

find any support for changing mesh size as a possible way of mitigating seabird bycatch.

On a population level, the effects of bycatch mortality depend not only on the number of

birds caught, but also on the sex and age structure of the birds killed, which source population

they belong to, and the status of those populations [33, 34]. In our study, we did not have

access to this information. Previous bycatch studies of fulmars in the same areas have, how-

ever, shown that adult male birds dominated the bycatch and that these birds likely originated

from populations breeding in more temperate regions [35]. It is therefore plausible that the

same applies in this study. Fulmars travel far and have extensive foraging ranges [36] and birds

on the Norwegian coast could thus originate from colonies far away from the point of capture.

An estimated 2.4–4.4 million pairs of fulmars breed in the northeastern Atlantic [37, 38], but

several of the populations are now in decline [39, 40], making it imperative to identify the driv-

ers of the negative trend. This especially applies to the small and nationally endangered breed-

ing population of fulmars along the Norwegian mainland (e.g., [41]).

Common guillemots, the second most affected species in the study, were primarily taken as

bycatch during the winter in northeastern Norway. Preliminary results from the SEATRACK

project, which tracks seabirds over time (http://www.seapop.no/en/seatrack/), show that this is

a key wintering area for common guillemots from colonies in the southwestern Barents Sea

(http://seatrack.seapop.no/map/), whereas birds from colonies further south rarely stay in the

Barents Sea in winter. The Finnmark and Bjørnøya populations in Norway have increased sub-

stantially since a huge population crash in the mid-1980s [41, 42], and now probably total

more than 300,000 breeding birds. It is difficult to assess what effect the bycatch of 1300+ com-

mon guillemots per year has had on the populations, especially when the age structure of birds

taken as bycatch is unknown. In the extreme case that they were all breeders from the Norwe-

gian colonies, it would have decreased annual survival by 0.4 percentage points (1300 of

300,000), reducing the long-term survival rate from 93.1% to the observed 92.7% [42] and

accounting for approximately 6% of the annual loss of adults. Empirical data on the age distri-

bution and origins of the birds affected would most likely reduce this estimate significantly.

The inclusion of extreme events in the estimates would have the opposite effect.

An obvious restriction in our study is the inability to estimate and predict where, how and

when extreme bycatch events might occur, despite having a rather large dataset. We decided to

exclude the extreme events when constructing the GLMM-models, as they were very rare in

our data and could thus not be predicted with any statistical reliability. Given that the three

extreme events represent less than 0.02% of the data, the episodes most likely reflect rare peaks

in the spatial-temporal distribution overlap between birds and fishing activity in an area over a

short period, for instance when the seabirds and the fish are targeting high concentrations of

the same prey. Up-scaled estimates based on a few such events should in general be handled

with caution, as they are likely to cause much controversy and be highly biased, such as the

extreme estimates reported by Strann et al. [43]. On the other hand, the rarity of these extreme

events in the reference fleet might not reflect the true situation for the whole fleet. Even though

we have confidence that the fishers in the reference fleet report true bycatch numbers due to

the close follow up by IMR, they might also be more focused on avoiding hot spots and situa-

tions producing extreme bycatch events. However, we believe this is also the situation for most
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fishers, as getting a large seabird bycatch is in general an unwanted situation. The unpredict-

able occurrence of such extreme events, and in particular how they might modify and/or bias

bycatch estimates, emphasizes the need for either more and longer time series, or carefully

designed bycatch studies to better capture the real frequency and implications of such events.

Our results indicate in particular that sampling effort should be increased in areas where the

fishery targets fish species in shallow, nearshore waters where they coincide with high densities

of diving seabirds. It is also informative to present estimates both with and without extreme

and rare bycatch events to better understand how these events alter the estimates.

For reasons discussed above, the population effects of the Norwegian gillnet fishery on sea-

birds are somewhat inconclusive, but previous work has raised substantial conservation con-

cerns related to the level of bycatch of diving species in gillnets [1, 6] and procellariform

species in longline fisheries (e.g., [7, 44]). Our results do, however, emphasize the need for a

more holistic, spatio-temporal assessment of the effects of bycatch on a wide range of seabird

species across multiple types of fisheries and fishing gear to evaluate the cumulative impact of

the fishing activity. We found clear spatio-temporal trends regardless of net type used. Thus, it

is likely that management would benefit from a stronger focus on general mitigation measures

as discussed above, rather than a focus on fisheries defined by their target species. Also, the

small-vessel gillnet fisheries obviously have broader ecological effects than seabird bycatch

alone, alongside associated social benefits such as employment, economic security and food.

Therefore, it is not a straightforward task to reduce bycatch by implementing what could be

perceived as rather drastic mitigation measures for the fishers, such as time or area closures.

Although the effect of a mitigation measure on seabird bycatch might be evident in a seabird

perspective, the total outcome of the measure includes multiple aspects, as it might affect local

jobs, income and food security. So, we can only agree with Northrigde et al. [32] who pointed

out that management efforts need to consider all of these factors to find suitable and acceptable

ways to minimize the impacts of gillnet fishing on vulnerable taxa, while maintaining, or even

enhancing, the benefits these fisheries provide.

Supporting information

S1 Equations. Formulas for the mean stratified estimator and the GLMM used in the anal-
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