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Marine top predators can include species that occupy  
  a high trophic level (e.g., predatory sharks), have 

few predators (e.g., marine turtles), or can exert top-
down control on food webs due to their large energetic 
demands (e.g., whales). While many species in the open 
ocean are widely distributed (e.g., Read et al. 2013; 
Reygondeau et al. 2012), the higher trophic levels are 
noteworthy as they are also wide-ranging (e.g., tuna 
(Itoh et al. 2003; Block et al. 2011; Hobday et al. 2015), 
seabirds (Shaffer et al. 2006), turtles (Shillinger et al. 
2008; Briscoe et al. 2016)). These wide-ranging species 
can serve as ecological linkages within and across ocean 
basins, through both ontogenetic (larvae to adult) and 
seasonal migrations (Boustany et al. 2010; Hobday et 
al. 2015; Briscoe et al. 2016). Many wide-ranging marine 
animals show site fidelity at particular times during their 
lives or have relatively small and well-defined areas of 
critical habitat, which facilitates both exploitation (e.g., 
Hobday et al. 2015) and protection (e.g., Ban et al. 2014). 
This fidelity can be related to the temporal and spatial 
predictability of their physical habitats, as evidenced by 

predictable seasonal aggregations of high-trophic fishes, 
birds, turtles, and mammals (Scales et al. 2014), which is 
aided by sensory capabilities that permit them to locate 
specific physical and biological features.

These species are also of interest, as they are often 
charismatic, providing commercial, cultural, or ecological 
value (e.g., Weng et al. 2015). Top predators in marine 
ecosystems are supported by the productivity of primary 
and secondary consumers; thus they integrate a range 
of processes across these lower levels in the trophic 
food web. Their relatively long life spans and wide-
ranging movements mean that many marine predator 
populations integrate variability across larger spatial 
and temporal scales than many lower-trophic-level 
populations (Shaffer et al. 2006). Top predators also have 
movement and sensory capabilities that permit active 
targeting of biophysical features (Scales et al. 2014). 
These characteristics make assessments of top predator 
populations particularly valuable for investigations of 
large-scale ecosystem variability and change.
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For example, in the California Current System (CCS), 
plankton (Fisher et al. 2015; Lluch-Belda et al. 2005) and 
nekton (Lynn 2003; Phillips et al. 2007; Lluch-Belda et al. 
2005) exhibit distributional shifts associated with El Niño-
Southern Oscillation (ENSO) events, which are echoed 
by changes in the distribution of top predators. While 
the distribution of planktonic organisms is indicative 
of changes in circulation and habitat suitability, shifts 
in the distributions of top predators and other nekton 
are often the result of changes in migration patterns 
based on the availability of prey. Historical observations 
of the distributions of top predators indicate that along 
the West Coast of North America, populations are 
typically displaced poleward during El Niño events. Also, 
distributions of species with ranges that are typically 
offshore (e.g., highly migratory fishes) are contracted 
towards the West Coast, and the catch-per-unit-effort of 
tunas and yellowtail are often increased in response to 
the increased availability to nearshore fishers (Sydeman 
and Allen 1999; Benson et al. 2002; Henderson et al. 
2014). Shifts in species distributions attributed to El Niño 
are often documented in local newspapers and fishing 
reports as well as in scientific publications (Lluch-Belda 
et al. 2005; Cavole et al. 2016). However, many predator 
populations resident to the CCS (e.g., common murre, 
Cassin’s auklet, and splitnose rockfishes) exhibit extreme 
negative productivity anomalies during El Niño (Black 
et al. 2014), and these events are the most prominent 
anomalies in time-series spanning multiple decades. 
Mass strandings of pinnipeds (e.g., sea lions) and die-offs 
of seabirds have also been associated with El Niño events. 
These unusual mortality events have been attributed to 
reduced availability of forage fishes and the exacerbated 
effects of harmful algal blooms that accompanied past El 
Niño events (McCabe et al. 2016).

This nearshore compression of viable habitat can also 
expose these species to a range of relatively concentrated 
anthropogenic threats, including fishing, oil and gas 
exploration, transport, and pollution (e.g., Ban et al. 2014). 
For example, Maxwell et al. (2013) combined electronic 
tracking from eight top predator species in the CCS with 
data on 24 anthropogenic stressors to develop a metric 

of cumulative utilization and impact. The distribution of 
these stressors and species showed that comprehensive 
management approaches are required, as no single 
approach was likely to be successful. Predicting the 
time-varying distribution and abundance of these and 
other high-trophic-level species may offer additional 
management insight, and allow a dynamic approach to 
management and conservation (e.g., Hobday et al. 2014; 
Scales et al. 2014; Lewison et al. 2015; Maxwell et al. 2015; 
Hazen et al. 2016).

Using top predators to monitor ocean changes
There is a suite of tools available for monitoring the 
response of top predator populations and distributions 
to variation in environmental conditions. At-sea surveys 
record the presence and abundance of air-breathing 
marine predators, such as seabirds, whales, sea turtles, 
and pinnipeds, which can be reliably sighted at the ocean 
surface or detected using acoustic methods. Standardized, 
repeat surveys such as the California Cooperative Oceanic 
Fisheries Investigations (CalCOFI; Bograd et al. 2003) 
and NOAA’s Cetacean Ship Surveys (e.g., CalCurCEAS 
2014; Rankin et al. 2016) provide longitudinal datasets 
informative for understanding population trends and 
regional habitat preferences (Forney et al. 2015; Sydeman 
et al. 2014). When combined with in situ measurements 
of physical conditions and prey distributions, survey 
datasets generate insight into the finer-scale biophysical 
mechanisms that underlie the dynamics of predator-
prey interactions (Benoit-Bird et al. 2013; Embling et al. 
2012). Over broader scales, aerial surveys are useful for 
mapping distributions of air-breathers (Barlow & Forney 
2007), and as new technologies become more widely 
available—such as autonomous underwater vehicles 
(AUVs), unmanned aerial vehicles (UAVs) (Christiansen et 
al. 2016; White et al. 2016), and passive acoustics (Morano 
et al. 2012)—they are increasingly used to survey and 
study predator populations.

Animal tracking and telemetry allow for remote 
acquisition of data describing movements and behaviors 
of marine predators as they move freely through their 
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natural environment. Tracking individuals of known age, 
sex, body condition, and breeding status has revealed 
previously cryptic at-sea behaviors (Block et al. 2011; 
Hazen et al. 2012; Hussey et al. 2015). For example, 
satellite telemetry has revealed the complexities of 
ocean-basin scale migrations in several populations (e.g., 
seabirds (Clay et al. 2016; Shaffer et al. 2006), sea turtles 
(Briscoe et al. 2016), and pinnipeds (Robinson et al. 
2012)). Understanding migratory behaviors improves our 
knowledge of phenology (timing) and increases chances 
of detecting climate change responses. Telemetry 
datasets have also proven particularly powerful in 
identifying important foraging habitats (e.g., Block et al. 
2011; Grecian et al. 2016; Raymond et al. 2015). When 
linked with measures of body condition or population-
level metrics, such as breeding success, tracking 
datasets provide novel insights into population status 
and responses to physical variability (e.g., Biuw et al. 
2007). Together, these technologies have revolutionized 
understanding of at-sea habitat use by marine predator 
populations across the global ocean and hold promise 
for the use of top predators themselves as monitors of 
ecosystem change.

Additional statistical tools are necessary to relate predator 
distribution data to their prey and the environment. 
Species Distribution Models (SDMs) quantify predator 
habitat preferences by combining movement or 
distribution datasets with physical data from in situ 
measurements, satellite remote sensing, or ocean models 
(Robinson et al. 2011). A variety of techniques are used for 
modeling habitat preferences, such as Resource Selection 
Functions (e.g., generalized linear or additive models), 
machine learning (e.g., regression or classification trees; 
Elith & Leathwick 2009), and ensemble predictions 
from multiple algorithms (Scales et al. 2015). SDMs can 
enhance the value of tracking data in identifying foraging 
habitats and provide insight into how predictability in 
the locations of at-sea habitats links to persistence in 
the physical environment historically, in real-time, or for 
future projections (Hobday and Hartmann 2006; Hazen et 
al. 2013; Becker et al. 2014; Hazen et al. 2016). Individual-
based or agent-based models link biological responses to 

heterogeneity and variability in the physical environment 
using sets of mechanistic rules that underlie biophysical 
interactions. To date, individual-based models have been 
used most extensively for lower trophic-level marine 
predators, such as small pelagic fish (e.g., Pethybridge et 
al. 2013), as the mechanisms that link the distributions of 
these organisms to biophysical conditions are generally 
better understood than for top predators. However, 
this approach has distinct advantages for modeling top 
predator habitat use as it explicitly includes prey-field 
dynamics, an aspect often missing from SDMs owing to 
the lack of empirical data describing broad-scale prey 
distributions. Recent advances using regional ocean 
models with an individual-based model framework have 
proven effective in modeling predator habitat selection 
(e.g., California sea lions (Fiechter et al. 2016)) and hold 
promise for forecasting top predator distributions in 
changing oceanic seascapes. In particular, a combination 
of statistical and mechanistic models can identify non-
stationarity in predator-environment relationships and 
can use energetic and movement rules to incorporate 
prey into predictive models (Muhling et al. 2016).

Managing for a changing climate
Marine top predators are actively managed in many 
regions to provide social (e.g., tourism), economic 
(e.g., harvesting), or ecological benefits (e.g., healthy 
reefs). Traditional management approaches remain an 
important tool for managing top predators exploited in 
marine fisheries and addressing conservation objectives. 
However, in regions with both short-term and long-term 
change, static spatial management may not represent the 
best solution when there are competing goals for ocean 
use (protection or exploitation), as oceanic habitats are 
mobile and static protection often requires large areas to 
cover all of the critical habitat for a particular time period 
(Hobday et al. 2014; Maxwell et al. 2015). Instead, dynamic 
spatial management may be a suitable alternative, 
provided that species movements are predictable and 
suitable incentives exist (Hobday et al. 2014; Maxwell et 
al. 2015; Lewison et al. 2015). Several approaches, using 
data and models described in the previous section, can 



36

be used to develop a dynamic management approach 
in response to variable species distributions, including 
those based on historical patterns (e.g., past responses 
to ENSO), real-time, and forecasted prediction of species 
occurrence. Real-time approaches can use observed data 
(e.g., satellite data or assimilated ocean model output), 
while seasonal and decadal approaches require validated 
models and forecasts of ocean state (Figure 1).

The longest standing real-time example comes from the 
Australian Eastern Tuna and Billfish Fishery (ETBF; Hobday 
and Hartmann 2006). Fishers in this multi-species longline 
fishery often target different species—yellowfin, bigeye, 
and southern bluefin tunas; marlin; and swordfish—
depending on seasonal availability and prevailing ocean 
conditions, and are themselves subjected to management 
decisions that alter their fishing behavior. In this region, 
dynamic ocean management was first used in 2003 to 
reduce unwanted bycatch of quota-limited southern 
bluefin tuna (SBT). The distribution of likely SBT habitat, 
which can change rapidly with the movement of the East 
Australian Current, was used to dynamically regulate fisher 
access to east coast fishing areas. A habitat preference 

model was used to provide near real-time advice to 
management about the likely SBT habitat (Hobday et al. 
2010). Managers use these habitat preference reports to 
frequently update spatial restrictions to fishing grounds, 
which involve dividing the ocean into a series of zones 
based on expected distribution of SBT. These restrictions 
limit unwanted interactions by fishers that do not hold 
SBT quota (SBT cannot be landed without quota and 
in that situation must be discarded) and allow access 
to those that do have SBT quota to operate efficiently 
(Hobday et al. 2010). The underlying habitat model has 
evolved from a surface temperature-based model to an 
integrated surface and sub-surface model, and currently 
includes a seasonal forecasting element to aid managers 
and fishers planning for future changes in the location 
of the habitat zones (Hobday et al. 2011). This ongoing 
improvement and adaptation of the system has seen 
new oceanographic products tested and included in the 
operational model. This dynamic approach has reduced 
the need for large area closures while still meeting the 
management goal but does require more flexible fishing 
strategies to be developed, including planning vessel 
movements, home port selection, and quota purchase.

Figure 1. Decisions relevant to fisheries, aquaculture, and conservation sectors at forecasting timescales are noted above the 
time line. Seasonal forecasting is considered most useful for proactive marine management at this time, with decadal forecasting 
in its infancy. Modified from Hobday et al. 2016.
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In parallel with improved biological data, numerical 
climate forecast systems have greatly improved over 
the last 30 years and now have the capability to provide 
useful seasonal forecasts (National Research Council, 
2010). Dynamic forecast systems include i) global climate 
models (GCMs), which consist of atmosphere, ocean, 
land, and ice components; ii) observations from multiple 
sources (e.g., satellites, ships buoys); iii) an assimilation 
system to merge the observations with the model’s “first 
guess” to initialize forecasts; and iv) post-processing 
software to display and disseminate the model output. 
Such systems are currently used to make forecasts at 
scales on the order of 100 km on seasonal and even 
decadal timescales (e.g., Kirtman et al. 2014; Meehl et al. 
2014; Stock et al. 2015). In addition, output from the GCMs 
is being used to drive much higher-resolution forecasts 
from regional ocean models (Siedlecki et al. 2016). Model 
skill on seasonal timescales is a function of persistence, 

multi-year climate modes (e.g., ENSO, IOD), and its 
teleconnections and transport by ocean currents. Model 
skill on decadal timescales arises due to anthropogenic 
climate change and slowly evolving ocean circulation 
features such as the Atlantic Meridional Overturning 
Circulation (AMOC; Salinger et al. 2016). GCM-based 
forecast systems are currently being used to predict sea 
surface temperature, sub-surface temperatures, and 
other ocean conditions that are subsequently used in 
marine resource applications described above (Hobday et 
al. 2011; Eveson et al. 2015, Figure 2). However, skill from 
statistical methods is currently on par with those from 
much more complex and computer-intensive numerical 
models (Newman 2013; Jacox et al. 2017), and forecast 
skill will always be limited regardless of the quality of both 
models and observations due to the chaotic elements of 
the climate system.

Figure 2. Ecosystem predictions require a suite of inputs and modeling steps to ensure both physical and biological components 
in the ecosystem are adequately represented. Physical models (from 1 degree to 1/10 degree downscaled models) can be used 
to predict higher trophic level distributions directly or can be used to drive individual based movement models of prey and 
predator to incorporate trophic dynamics in ecosystem predictions.
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Where do we go from here?
As described above, ocean forecast systems and 
biological data are being linked to advance top predator 
management. Three priorities to strengthen this link and 
better inform management efforts include: (i) gather and 
share data, (ii) identify effective measures and improve 
mechanistic understanding of prey availability, and (iii) 
understand the spatial and temporal overlap between 
humans and particular focal species.

First, while the capacity to monitor marine top predators 
has made considerable strides in recent years (Hussey 
et al. 2015), juvenile portions of many top predator 
populations can be under-represented and need 
particular attention (Hazen et al. 2012). Tagging efforts 
provide detailed data on animal movement and can 
provide finer-scale data than traditional shipboard 
surveys. However, there are only a few examples of 
broad-scale tagging efforts that allow for measurement 
of diversity and multi-species habitat use, such as the 
Tagging of Pacific Predators and the Ocean Tracking 
Network (Block et al. 2011, Hussey et al. 2015). There is a 
growing trend for these data to be made widely available 
in repositories (e.g., Ocean Biogeographic Information 
System Spatial Ecological Analysis of Megavertebrate 
Populations (OBIS-SEAMAP), Seabird Tracking Database) 
that allow for greater synthesis than individual datasets 
alone (Halpin et al. 2006; Lascelles et al. 2016). This 
should be encouraged as standard practice, as in the 
oceanographic community (e.g., Global Ocean Ship-
Based Hydrographic Investigations Program (GO-SHIP) 
database). Data collection must continue, as climate 
variability and change influence the relationship between 
top predators and their environment, and additional data 
are necessary to both test and refine predictive models.

Second, while the movements of many highly migratory 
predators are tied closely to prey availability, most models 
of marine top predator habitat use remotely sensed or 
in situ oceanographic measurements as proxies for prey 
distribution, which is rarely available. The difficulty is in 
measuring prey distribution at the scales appropriate 
for predators (e.g., Torres et al. 2008). We can measure 

fine-scale foraging behavior using archival tag data and 
associated prey measurements (e.g., Goñi et al. 2009; 
Hazen et al. 2009), but these ship-based approaches 
cannot provide data at the scales used in management-
focused habitat models (see Lawson et al. 2015). We 
can model prey distributions mechanistically to inform 
models of top predator movements (Fiechter et al. 2016), 
but these approaches have not yet been coupled with 
real-time prediction. Prey data at migration-wide scales 
would greatly improve both statistical and mechanistic 
models by offering insight to where residence times 
are highest, yet these data remain difficult beyond fine-
spatial scales (Benoit-Bird et al. 2013; Boyd et al. 2015).

Finally, both animals and humans use the marine 
environment at multiple spatial and temporal scales. For 
example in the Pacific, blue whales migrate from high-
latitude foraging grounds to tropical breeding grounds 
seasonally and travel to discrete foraging hotspots based 
on prey availability (Bailey et al. 2009), and container 
vessels are making decisions such as ship speed, choice 
of shipping lanes, and port of call on multiple time scales 
as well (Hazen et al. 2016). This requires information 
on long-term habitat pathways and high-use areas 
(e.g., for static protection), as well as the shorter-term 
(e.g., seasonal) triggers of migration and identification 
of ocean features that result in high prey aggregations 
and increased residence times. Comparably, a fisher 
may change her long-term investment decisions (e.g., 
quota purchase, hiring crew) based on projections of 
long-term stock dynamics, or may decide when to start 
fishing seasonally based on weather and proximity to 
port, or when to set a net based on when fish schools are 
plentiful (Figure 1). Thus, management approaches could 
also be nested to include real-time predictions, seasonal 
forecasts, and decadal projections to inform multiple 
management processes (Hobday and Hartmann 2006; 
Hobday et al. 2011; Salinger et al. 2016). This suite of 
dynamic spatial management tools would represent an 
adaptive strategy robust to shifting habitats and species 
in response to climate variability and change.
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