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Abstract 
The leading threat to the conservation of whales and dolphins worldwide is 

incidental mortality (or bycatch) in fisheries. In longline fisheries, these interactions are 

commonly driven by an attraction to feed on bait or fish secured on fishing gear, a 

process known as depredation. Depredation is particularly common and costly in 

longline fisheries, where bait and catch are typically unprotected prior to gear retrieval. 

Bycatch of depredating whales can occur when animals become hooked or entangled in 

the gear while attempting to remove bait or catch. Depredation, and associated bycatch, 

is an exceedingly difficult problem to solve in open-ocean, or pelagic, longline fisheries, 

because the behavior often occurs at depth or at a large distance from the fishing vessel. 

Evidence of depredation may consist only of large stretches of missing bait or fish heads 

on hooks, because odontocetes have eaten the bodies of captured fish. Observations of 

bycatch are also rare and depend on on-board observers to carefully report details of the 

interactions. 

In my dissertation, I examined two longline fisheries in the United States heavily 

impacted by depredation and bycatch of cetaceans: the Hawai‘i deep-set longline fishery 

depredated by false killer whales (Pseudorca crassidens) and the Atlantic pelagic longline 

fishery depredated by short-finned pilot whales (Globicephala macrorhynchus). These two 

interactions are data rich (relative to most other pelagic longline fisheries), with detailed 
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observations of cetacean-fishery interactions and long-term, dedicated behavioral 

research programs focused on the two depredator species. Both fisheries also benefit 

from resources and institutional will as a consequence of legislative mandates to reduce 

bycatch by the U.S. Marine Mammal Protection Act. Nevertheless, managers and 

stakeholders in both fisheries have struggled to fully resolve the problem. I used a 

variety of different data sources and interdisciplinary methods to better characterize 

depredation and bycatch interactions in both fisheries, with the ultimate goal to identify 

potential mitigation solutions that may help reduce the negative impacts of depredation 

and bycatch on both whales and fishermen. 

In my first chapter, I reviewed common mitigation approaches to depredation 

and bycatch by marine mammals, and I conducted a case study analysis on the 

management process and its effectiveness in addressing depredation in the two focal 

fisheries. I identified past successes and failures and summarized the current situation 

for both fisheries and where bycatch management is going next. 

The next two chapters focused in-depth on the Hawai‘i deep-set pelagic longline 

fishery and depredation interactions by false killer whales. I first analyzed data collected 

by fisheries observers and from satellite-linked transmitters deployed on false killer 

whales to identify patterns of odontocete depredation that could help fishermen avoid 

overlap with whales. I identified several broad-scale patterns of depredation but found 

the best indicator of depredation to be the occurrence of depredation on a previous set of 
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the same vessel. I identified spatiotemporal scales of this ‘repeat’ depredation and 

analyzed satellite-tagged false killer whale data to better understand fine scale whale 

movement that may be relevant to avoiding depredation. I brought this information 

together to provide simple recommendations to fishermen that could reduce the 

occurrence of depredation from 18% to 9% on average (a 50% reduction).  

Next I used the same fishery-dependent data sources (observer-collected and 

logbook data) and a novel, multi-stage modeling approach to derive quantitative 

estimates of catch losses by depredating odontocetes in the Hawai‘i deep-set longline 

tuna fishery. Although depredation is relatively rare and variable on a per set basis, I 

estimated the total lost biomass and economic value of the top three catch species to 

average 100 t and one million USD per year, respectively. I also identified broad-scale 

spatiotemporal patterns where the relative losses of depredation by odontocetes are 

expected to be greatest, providing additional recommendations for how fishermen may 

be able to minimize costs of depredation. 

My final chapter focused on the Atlantic pelagic longline fishery and 

depredation and bycatch of the short-finned pilot whale. I conducted a baseline analysis 

of pilot whale behavior from a rich satellite tag dataset, identifying a previously 

undetected diel behavioral pattern and adding additional novel insights to a growing 

body of research on this population of whales. I then described a novel behavioral state 

that occurred when whales were in close proximity to fishing activity (< 50 km). 
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Although the resolution of these data precluded a detailed characterization of 

depredation events, my observations that whales change their behavior when in the 

proximity of vessels may help inform move-on rules that fishermen could employ to 

reduce the occurrence of depredation and bycatch. 
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1. Introduction: The challenges of managing 
depredation and bycatch of toothed whales in pelagic 
longline fisheries: two U.S. case studies. 
1.1 Introduction 

Direct interactions with fisheries are broadly recognized as the leading threat to 

the conservation of small cetaceans worldwide (Mitchell 1975, Read 2008, Brownell Jr. et 

al. 2019). Bycatch in gillnets is the most pressing problem (Read et al. 2006, Reeves et al. 

2013), currently contributing to declines of 11 of the 13 critically endangered small-

cetacean populations (Brownell Jr. et al. 2019) in freshwater, estuarine, and coastal 

environments. The threat is different in pelagic waters, where one of the primary gear 

types implicated in direct interactions with cetaceans is the pelagic longline (Lewison et 

al. 2014). Whereas some bycatch problems are a function of cetaceans failing to perceive 

gear (e.g., gillnets) or being actively entrapped by fishermen (e.g., purse seines), 

interactions between cetaceans and hook and line gear, such as longlines, are often 

driven by attraction of the animal to feed on bait or fish secured on the gear, a behavior 

known as depredation (Gilman et al. 2007a, Read 2008, Hamer et al. 2012). Many 

odontocete species are adept at depredation and can remove large quantities of catch, 

which can result in substantial economic costs to fishermen (Peterson et al. 2014, Tixier 

et al. 2020a). Switching from energetically costly, natural foraging on free-swimming 

prey to consumption of high-energy, restrained prey may provide energetic benefits to 

depredators and it has been shown that the reproductive output of depredating whales 
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has increased in at least two populations (Tixier et al. 2015a, Esteban et al. 2016). 

However, this behavior also increases the risk of hooking or entanglement in fishing 

gear (e.g., Garrison 2007, Forney et al. 2011) or lethal retaliation or harassment by 

fishermen (Guinet et al. 2015), both of which have led to negative population 

consequences for depredating populations (Poncelet et al. 2010, Guinet et al. 2015, Tixier 

et al. 2020b). 

Interactions between cetaceans and pelagic longlines have been documented as a 

concern for fishermen since shortly after the establishment of industrial longline 

operations in the 1950s (e.g., Sivasubramaniam 1964). An increase in published reports 

on depredation in the past two decades suggest that depredation is an increasing 

problem (Tixier et al. 2020b), and there has been strong interest in characterizing 

patterns of interactions between cetaceans and longlines to generate mitigation 

strategies (Werner et al. 2015, Tixier et al. 2020b). Numerous workshops involving 

fishermen, scientific experts, and fishery managers have assessed available mitigation 

strategies and considered approaches for research, testing, and implementation. These 

past efforts and general syntheses of odontocete-longline interactions and research have 

been summarized in several previous reviews (e.g., Gilman et al. 2007a, Hamer et al. 

2012, Werner et al. 2015, FAO 2018, Hamilton and Baker 2019, Tixier et al. 2020b). 

Many of these mitigation efforts have been motivated by a public desire to 

ensure that seafood is ethically and sustainably sourced (e.g., Roheim et al. 2018). In the 
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United States, for example, statutes such as the Marine Mammal Protection Act (MMPA) 

require fisheries to reduce incidental mortality or serious injury of marine mammals 

during fishing operations to ‘insignificant levels’ [16 U.S.C. § 1387]. International bodies 

such as the Food and Agriculture Organization of the United Nations (FAO) and 

regional fisheries management organizations (RFMOs), international governance bodies 

that manage fisheries in respective geographic regions, are increasingly addressing the 

bycatch of cetaceans and other vulnerable species (e.g., Clarke et al. 2014, Juan-Jordá et 

al. 2018, FAO 2020). Additionally, the mitigation of cetacean depredation and bycatch is 

motivated by a desire to reduce the direct economic impacts to the fisheries themselves 

(Werner et al. 2015, Tixier et al. 2020a). 

Depredation and bycatch in pelagic longline fisheries are related, but separate 

and unique problems that have proven exceedingly difficult to solve. There has been 

little success in implementing effective strategies to protect target catch and reduce the 

economic costs of depredation to fishermen (Hamer et al. 2012, Werner et al. 2015, Tixier 

et al. 2020a). Likewise, it has been challenging to reduce injuries or mortalities due to 

hookings or entanglements of depredating cetaceans, even when mandated by 

legislation (e.g., Baird 2019). In many parts of the world, data limitations and scarce 

resources make it difficult to characterize the nature of these interactions and 

understand the scope of the problem (Hamer et al. 2012, Tixier et al. 2020b). In cases 

where bycatch occurs as a result of depredation, management mandates typically extend 
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only to reducing bycatch or minimizing injury of bycaught cetaceans (e.g., the U.S. 

MMPA). Reducing depredation would result in a mutually positive outcome for 

industry and cetaceans, but in the absence of an effective strategy to reduce depredation, 

fishermen may be faced with costly measures to reduce bycatch that limit fishing effort, 

in addition to experiencing losses from depredation (Werner et al. 2015). 

In this paper, we briefly outline the nature of these interactions and the primary 

mitigation strategies available, including recent findings relevant to mitigation and 

impacts on depredating odontocetes. We then explore two case studies from the United 

States in which attempts have been made to address the depredation and bycatch of 

small cetaceans. In the U.S., the MMPA requires Take Reduction Teams (TRTs) to 

develop methods to reduce the bycatch of marine mammals when mortality exceeds a 

biological reference point, known as Potential Biological Removal (PBR) [16 U.S.C. § 

1362 (20)]. We situate these efforts in the context of global bycatch of odontocetes, in the 

hope that lessons learned from these well-funded, collaborative, and statutorily-

mandated attempts may offer insights to other countries and international fisheries 

management bodies as they grapple with these complex issues.  

1.2 Overview of the problem 

1.2.1 Depredation 

There are two distinct types of longline fishing, each susceptible to interactions 

with cetaceans in different ways. Demersal, or bottom, longlining is common in 



 

5 

temperate to sub-polar ecosystems, in which gear is deployed on the sea floor to target 

species such as halibut (Hippoglossus spp.) or sablefish (Anoplopoma fimbria) in the 

Northern Hemisphere (Sigler et al. 2008, Peterson et al. 2013) and toothfish (mostly 

Dissostichus eleginoides) in the Southern Hemisphere (Ashford et al. 1996, Hucke-Gaete et 

al. 2004, Roche et al. 2007). The primary depredating odontocetes in these demersal 

longline fisheries in both hemispheres are killer whales (Orcinus orca) and sperm whales 

(Physeter macrocephalus) (Ashford et al. 1996, Hucke-Gaete et al. 2004, Roche et al. 2007, 

Sigler et al. 2008, Hamer et al. 2012, Peterson et al. 2013). Due to the depths in which gear 

is fished (500-2000 m), depredation occurs mostly during the hauling phase (but see 

Richard et al. 2020). Both odontocete species have been observed hooked or entangled in 

demersal gear, but bycatch appears relatively rare in demersal longline fishing (e.g., 

Ashford et al. 1996). Negative population impacts have been tied to active killing by 

fishermen. For example, killer whales in the Southern Ocean are thought to have 

experienced population declines from the use of explosive deterrents and lethal 

retaliation in Illegal, Unreported, and Unregulated (IUU) fishing in the 1980s and 1990s 

(Poncelet et al. 2010, Guinet et al. 2015). There are other important concerns related to 

the interaction, for example: (1) the economic and stock consequences of target catch lost 

to whales (Peterson et al. 2013, Peterson et al. 2014, Peterson and Hanselman 2017, 

Hanselman et al. 2018, Tixier et al. 2020a); and (2) possible indirect effects on depredator 

populations and their ecological communities driven by food subsidies (Tixier et al. 
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2017, Tixier et al. 2019). Two long-term collaborations among scientists, managers, and 

fishermen, one in the Gulf of Alaska (e.g., Straley et al. 2015) and one in the Crozet and 

Kerguelen Island fisheries (e.g., Guinet et al. 2015), have provided important data on the 

nature of these interactions. 

In contrast, pelagic longlines typically target wide-ranging, pelagic species such 

as tunas (Thunnus spp.), swordfish (Xiphias gladius), and dolphinfish (Coryphaenus 

hippurus) by suspending baited hooks in the water column (Watson and Kerstetter 2006, 

Ward and Hindmarsh 2007). The gear is fished at depths that range from tens of meters 

for species such as swordfish, to over 400 meters for deeper species such as bigeye tuna 

(Thunnus obesus) (Watson and Kerstetter 2006, Ward and Hindmarsh 2007). Pelagic 

longline fishing is most common in tropical and sub-tropical habitats and is one of the 

primary gear types to interact with many species of oceanic cetaceans (Lewison et al. 

2014). At least 20 odontocete species have been observed as bycatch in pelagic longline 

fisheries (Werner et al. 2015, Tixier et al. 2020b), including the false killer whale 

(Pseudorca crassidens), short-finned pilot whale (Globicephala macrorhynchus), killer whale, 

and, to a lesser extent, Risso’s dolphins (Grampus griseus) (Hamer et al. 2012, Werner et 

al. 2015). As fishing operations and solutions to depredation vary greatly between these 

two fishery types, and because direct mortality of small cetaceans is currently a greater 

problem for pelagic than demersal longlines, we focus on depredation and bycatch 

mitigation in pelagic longlines in this paper. 
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1.2.2 Potential solutions 

There are three, semi-hierarchical categories of approaches generally considered 

for addressing odontocete depredation and bycatch (Werner et al. 2015, Hamilton and 

Baker 2019): (1) reducing the spatiotemporal overlap between whales and fishing 

operations to minimize encounters a priori; (2) deterring whales from the gear or 

reducing their ability to perceive, locate, or access bait or catch, for example by 

disrupting the echolocation abilities of whales or deploying protective sleeves around 

captured fish; and (3) reducing the probability of injury and mortality despite becoming 

hooked or entangled, for example with weak terminal gear or hooks that allow cetaceans 

to break free but retain target catch (Figure 1). Many potential solutions covering these 

three categories have been critically evaluated by both fishermen and scientists and 

these are reviewed in detail elsewhere (Gilman et al. 2007a, Hamer et al. 2012, Werner et 

al. 2015, Hamilton and Baker 2019, Zollett and Swimmer 2019, Swimmer et al. 2020). 

Here, we briefly consider the range of options and recent findings relevant to pelagic 

longline fishery interactions and our two case studies. 
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Figure 1: Hierarchical categories of bycatch mitigation. Outline of the 
hierarchical categories of bycatch mitigation solutions available to longline fisheries 

affected by depredation; including the strengths and weaknesses of each category and 
specific applications implemented by each Take Reduction Team. 
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Avoiding overlap between whales and longlines while maintaining target catch 

rates and fishery profitability (i.e., Category 1 listed above), is an ideal scenario. Many 

pelagic predators, including longline fishermen, range widely while tracking 

oceanographic conditions, and identifying the ecological drivers of co-occurrence could 

allow fishermen to avoid overlap and subsequent interactions. This ‘dynamic ocean 

management’ (Dunn et al. 2016) has been suggested as a means of reducing negative 

human-wildlife interactions, such as the bycatch of sea turtles (Howell et al. 2015) and 

ship strikes of migrating baleen whales (Hazen et al. 2017). Indeed, constantly 

improving oceanographic models and animal telemetry data have allowed 

unprecedented insights into habitat use by marine predators (Hays et al. 2019), 

including odontocetes that engage in depredation (e.g., Thorne et al. 2017, Anderson et 

al. 2020), and such information could be used to predict their overlap with pelagic 

longline fisheries. However, depredating whales may target similar oceanographic 

features as those sought by longline vessels. For example, short-finned pilot whales use 

the same shelf-break habitat and sea surface temperature patterns as the pelagic longline 

fleet along the U.S. east coast (Garrison 2007, Thorne et al. 2017, Stepanuk et al. 2018, 

Thorne et al. 2019). Similarly, false killer whale depredation and bycatch on Hawai‘i 

pelagic longline vessels is likely driven by whales and fishermen targeting the same 

prey species (Forney et al. 2011). In such instances, the use of spatial and temporal 
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avoidance would require fishing effort to relocate to sub-optimal areas with reduced 

rates of depredation and bycatch, but also lower catch rates of target species. 

When broad-scale avoidance of depredators is not possible, the next logical 

strategy is to reduce the probability of gear contact and bycatch by deterring 

depredators, limiting their ability to detect or access catch, or altering fishing operations 

to limit contact (Category 2) (Werner et al. 2015, Swimmer et al. 2020). These strategies 

are all challenging due to the strong attraction that odontocetes can have towards 

longline gear (Werner et al. 2015), potentially driven by energetic incentives to feed on 

captured fish (Esteban et al. 2016). Physical harassment (e.g., explosives) and lethal 

retaliation have been reported in longline fisheries (e.g., Poncelet et al. 2010) but have 

questionable effectiveness, in addition to obvious negative conservation outcomes 

(Werner et al. 2015). Acoustic deterrents have garnered much interest by fishermen but 

have thus far proven impractical (Werner et al. 2015), as depredating whales likely 

quickly habituate and may even be attracted to the presence of deterrents that notify 

whales of the location of catch (Tixier et al. 2015b, Werner et al. 2015). Strategies to 

disrupt echolocation abilities or otherwise mask detection of gear can similarly be 

susceptible to learning and habituation (Mooney et al. 2009). Protecting target catch with 

sleeves or other physical barriers has shown promise in demersal longline fisheries, 

where they can be triggered to protect captured fish during hauling, when most 

depredation occurs (Moreno et al. 2008). The nature of pelagic longline gear makes this 
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much more challenging as depredation does not occur exclusively during hauling and 

thus protective devices must be triggered by fish capture (Werner et al. 2015). These 

devices must also be cost effective and easy to store and deploy, both of which remain 

significant challenges; although further research may improve efficacy and feasibility 

(Rabearisoa et al. 2012, 2015; Hamer et al. 2015). 

Catch protection devices also do not protect against odontocete depredation of 

bait, which has long been suspected by fishermen in some pelagic longline fisheries 

(Ayers and Leong 2020). The relative rate of depredation of bait versus catch is unknown 

and likely varies among fisheries, although small cetaceans are likely to engage in this 

behavior (Gilman et al. 2007a, Werner et al. 2015). Recent video and acoustic evidence 

confirmed that false killer whales depredate pelagic longline bait in the daytime using 

both visual and audio cues (Thode et al. 2016). Garrison (2007) also showed lower 

bycatch rates of Risso’s dolphins in the U.S. East Coast pelagic longline fishery when fish 

bait was used in place of squid bait. These results suggest the potential for bait-focused 

mitigation strategies (e.g., chemicals to reduce palatability of bait or using artificial bait), 

although these techniques are untested and potentially challenging due to unintended 

impacts on target and non-target catch (Werner et al. 2015, Gilman et al. 2020). 

Other avoidance strategies involve operational changes to limit opportunities for 

interaction, such as fishermen leaving areas of known depredation, a strategy formally 

known as ‘move-on rules’ (Dunn et al. 2014, Werner et al. 2015). This is a challenging 



 

12 

strategy as odontocete depredators are highly mobile and may be able to perceive 

acoustic signatures from vessels over large distances. For example, sperm whales 

depredating demersal longlines in the Gulf of Alaska are attracted to cavitation noises of 

a ship’s propeller when the engine is engaged to begin hauling gear and can detect these 

sounds at distances of several kilometers (Thode et al. 2007). Recent findings on 

interactions between false killer whales and the Hawai‘i longline fishery suggest this 

mode of detection likely occurs with pelagic longlines as well. Passive acoustic 

monitoring of longline gear deployments detected false killer whales most commonly 

during the hauling phase, with whales potentially moving along the mainline away 

from the vessel as gear was being retrieved (Bayless et al. 2017). In another study, a 

group of satellite-tagged false killer whales was observed to show directed movements 

toward fishing gear during the hauling phase of some sets, although there was no 

apparent reaction to gear during other sets despite likely being within detection range 

(Anderson et al. 2020). Reducing the amount of gear set has also shown modest 

reductions in interaction rates in pelagic longline fisheries (Garrison 2007), and this 

technique could work synergistically with move-on strategies to limit possibilities for 

gear detection and contact by odontocetes (Tixier et al. 2015c). Together, these findings 

suggest that improved reporting of depredation interactions and communication among 

fishing vessels could help fleets avoid acoustic detection when depredation has been 

observed in a particular location. 
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If avoidance of depredators or minimizing contact with gear is not possible, 

modifying the terminal gear to release hooked animals or facilitating shedding of 

entangled gear may be the only option to mitigate bycatch impacts (Category 3) (Werner 

et al. 2015, Zollett and Swimmer 2019, Swimmer et al. 2020). In longline fisheries, this 

strategy generally entails guidelines to encourage fishermen to remove gear from 

hooked or entangled animals, or the use of hooks with a targeted bending strength, such 

that hooks are weak enough to straighten and release toothed whales but sufficiently 

strong to retain target catch (Bayse and Kerstetter 2010, Bigelow et al. 2012). This ‘weak-

hook’ strategy has been used successfully to reduce bycatch of large, non-target bluefin 

tuna (Thunnus thynnus) by 46% in the U.S. Gulf of Mexico pelagic longline fishery, with 

no statistically significant impact on catch rates of yellowfin tuna (Thunnus albacares) 

(Walter 2017). Controlled mechanical tests of bending strengths and behavior of hooks 

under strain in the lip tissue of dead odontocetes have helped identify candidate weak 

hooks for minimizing cetacean bycatch (McLellan et al. 2015). Field trials in the U.S. 

Atlantic large pelagics longline fishery and Hawai‘i deep-set longline fisheries have 

tested similar hook designs under controlled conditions (Bayse and Kerstetter 2010, 

Bigelow et al. 2012). The bycatch of cetaceans was too rare to determine whether weaker 

hooks had a positive influence on the outcome of such events, but weaker hooks were 

returned straightened more often than strong hooks in each study and one pilot whale 

was observed released by a straightened hook in the Atlantic (Bayse and Kerstetter 2010, 
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Bigelow et al. 2012). Comparable rates of target catch were recorded in each study, 

although the Hawai‘i study was not carried out during the season when the largest tuna 

are caught (Bigelow et al. 2012) and the size of swordfish was slightly smaller on weak 

hooks in some Atlantic trials (Bayse and Kerstetter 2010). One obstacle to 

implementation of such measures is the understandable reluctance of fishermen to 

modify their terminal tackle, particularly if such changes might reduce the catch rates of 

large and valuable target species (e.g., Bigelow et al. 2012, Ayers and Leong 2020). The 

post-release survival rates of animals hooked or entangled in pelagic longline gear are 

not well understood but have obvious and important implications for understanding 

population-level impacts (Garrison 2007, Werner et al. 2015). 

1.3 Regulatory frameworks to address odontocete-longline 
interactions in the United States 

1.3.1 U.S. Marine Mammal Protection Act and Take Reduction Teams 

The U.S. MMPA of 1972 regulates the ‘take’ of marine mammals in commercial 

fisheries, with the term ‘take’ defined as to harass, hunt, capture, or kill, or attempt to 

harass, hunt, capture, or kill any marine mammal [16 U.S.C. § 1362 (13)]. The general 

prohibition on taking under the MMPA has exemptions for certain activities, including 

commercial fishing, and authorizes the National Marine Fisheries Service (NMFS) to 

enforce this prohibition for all cetacean species in U.S. jurisdictions. Amendments to the 

MMPA passed in 1994 provide a mandate to assess the magnitude of bycatch relative to 

biological reference points and to implement conservation actions when takes exceed 
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these thresholds [16 U.S.C. § 1387]. The MMPA also requires assessments for all marine 

mammal stocks in the U.S. Exclusive Economic Zone (EEZ) to characterize, among other 

parameters, range and population structure, minimum population estimates, and the 

magnitude of bycatch in fisheries and other sources of human-induced mortality [16 

U.S.C. § 1386]. In addition to observed mortality, entangled or hooked marine mammals 

are considered takes if they are “likely to die”, defined as experiencing a serious injury 

that presents a greater than 50 percent chance of death (NOAA Fisheries 2014). Precise 

estimates of post-release mortality are not available for most cetacean species and types 

of interactions (NOAA Fisheries 2014), but specific criteria for designating the 

probability of mortality to marine mammals due to fisheries interactions have been 

developed by NMFS in several workshops, using expert elicitation amongst marine 

mammal scientists and veterinarians (Angliss and Demaster 1998, Andersen et al. 2008). 

These criteria have been formalized in NMFS’ Procedural Directive entitled “Process for 

distinguishing serious from non-serious injury of marine mammals (NOAA Fisheries 

2014),” which provides guidance for estimating mortality using the best available 

scientific information when follow-up on the condition of the injured animal is 

unavailable, as is the case in the vast majority of fishery interactions with small 

cetaceans, including those with pelagic longlines (NOAA Fisheries 2014). Marine 

mammals experiencing either bycatch mortality or injury likely to lead to death are 

designated as Mortality and Serious Injury (M&SI). This parameter is then compared 
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with a biological reference point, Potential Biological Removal (PBR) [16 U.S.C. § 1362 

(20)], calculated for each stock as a product of minimum population size, maximum rate 

of population increase, and a recovery factor (Wade 1998). PBR represents the maximum 

number of individuals that can be removed while maintaining the stock at or above 

optimal sustainable population size [16 U.S.C. § 1362 (9)], typically defined as half of 

carrying capacity. If human-caused M&SI for a particular stock exceeds PBR, a Take 

Reduction Team (TRT) [16 U.S.C. § 1387 (f)] must be convened. A TRT is a stakeholder 

group which includes members of the fishing industry, environmental groups, academic 

scientists, and government managers and scientists. 

Take Reduction Teams are asked to develop a Take Reduction Plan (TRP) to 

reduce M&SI to below PBR within six months of implementation and to a level 

approaching zero (the Zero-Mortality Rate Goal, ZMRG, defined as <10% of PBR) within 

5 years [16 U.S.C. 1387 (f) (2)]. To reduce the effects of inter-annual variation, a five-year 

average of M&SI is applied against PBR. The Team is required to agree to a plan by 

consensus, and the plan is typically comprised of a suite of regulatory and non-

regulatory measures. In the absence of a consensus plan, NMFS must generate a plan, so 

the impetus is on Team members to work together to craft a more effective strategy by 

consensus. Seven TRTs are currently active and their successes, failures, and the 

strengths and weaknesses of the TRT process have been reviewed elsewhere (McDonald 
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and Rigling-Gallagher 2015, McDonald et al. 2016, Borggaard et al. 2017, Punt et al. 

2018). 

Two of these Teams directly address odontocete interactions with pelagic 

longlines and are reviewed here: the Pelagic Longline Take Reduction Team (PLTRT), 

addressing short-finned pilot whale bycatch in the Atlantic pelagic longline fishery, and 

the False Killer Whale Take Reduction Team (FKWTRT), addressing false killer whale 

bycatch in the Hawai‘i pelagic longline fishery. Below, we describe these two teams, the 

strategies they have developed for addressing bycatch, and assess whether these 

measures are helping meet the goals of the MMPA. We draw on published peer-

reviewed studies, NOAA technical documents, and summary information prepared 

following Team meetings that are publicly available through NOAA Fisheries1,2.  

1.3.2 Pelagic Longline Take Reduction Team 

The U.S. large pelagics longline fishery targets pelagic swordfish, tunas, and 

billfish in the U.S. Atlantic and Gulf of Mexico EEZ. Both long-finned (Globicephala melas) 

and short-finned (G. macrorhynchus) pilot whales occur in the western North Atlantic, 

and both may depredate bait or catch from longlines and become hooked or entangled 

in gear as a result (Garrison 2007). Concern over bycatch of pilot whales in pelagic 

 

1 False Killer Whale Take Reduction - Key outcomes memoranda and summaries. Accessed on 14 September 2020 at 
https://www.fisheries.noaa.gov/national/marine-mammal-protection/false-killer-whale-take-reduction. 
 
2 Pelagic Longline Take Reduction Plan - Key outcomes memoranda and summaries. Accessed on 14 September 2020 
at https://www.fisheries.noaa.gov/national/marine-mammal-protection/pelagic-longline-take-reduction-plan. 
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longline fisheries emerged in the 1990s and 2000s (Waring et al. 2002), at a time when the 

demography and distribution of the two pilot whale species were not well understood. 

Initial stock assessments pooled abundance and takes of both species to calculate PBR 

and estimate M&SI (Waring et al. 2002). Subsequent research has identified the primary 

region of overlap to be along the continental shelf break between 38ºN and 40ºN 

latitude, with long-finned pilot whales occurring mostly north of this area and short-

finned pilot whales primarily to the south (Garrison and Rosel 2017). Short-finned pilot 

whales make seasonal movements north of this area in summer months and are known 

to occur farther offshore into Gulf Stream waters (Garrison and Rosel 2017, Thorne et al. 

2017). Most takes occur in times and locations where long-finned pilot whales are 

unlikely to occur, and all bycatch is thus assigned to the short-finned pilot whale. When 

takes occur farther north, a logistic regression model is used to estimate the probability 

of species occurrence and apply the take to each species as appropriate (Garrison and 

Rosel 2017, Hayes et al. 2019). 

In June 2005 NMFS convened the first meeting of the PLTRT to develop a plan to 

reduce the bycatch of pilot whales to below ZMRG. The Team consists of approximately 

20 members, including pelagic longline fishermen and other industry representatives, 

marine mammal and fisheries scientists, a representative from the U.S. Marine Mammal 

Commission, and representatives from environmental organizations and state and 

federal fisheries agencies. The Team held meetings every few months in 2005-2006, 
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during which subject-matter experts provided briefings on pilot whale biology, fishery 

characteristics and experiences with interactions, and relevant mitigation research and 

efforts in other fisheries. Team members formed working groups to explore potential 

mitigation options in more depth and identify research priorities specific to the fishery. 

Discussions to clarify the goals and intended scope of the team and ensuing TRP were 

also conducted, e.g., whether to include Risso’s dolphins in the scope of the plan or 

focus only on pilot whales; ultimately both species were included, but with a greater 

emphasis on pilot whales3. 

A draft TRP was agreed in June 2006, followed by a proposed rule open to public 

comment in 2008 and a final rule with regulations entering force in July 2009 (74 FR 

23349) (Federal Register 2009). The Final PLTRP comprised a series of three regulatory 

and four non-regulatory measures intended to significantly reduce M&SI of pilot whales 

and Risso’s dolphins in the Atlantic pelagic longline fishery (Table 1) (74 FR 23349) 

(Federal Register 2009). The regulatory measures included the designation of a region of 

particularly high bycatch rates as a priority area for future research and monitoring. To 

fish in this ‘Cape Hatteras Special Research Area’ (CHSRA), fishermen had to agree to 

carry observers who could conduct research targeted at bycatch reduction strategies (74 

FR 23349) (Federal Register 2009). The second measure was a 20-nm (37-km) upper limit 

 

3 Pelagic Longline Take Reduction Team Key Outcomes Memorandum – PLTRT Meeting (January 25-27, 2006). 
Accessed on 05 January 2021 at https://www.fisheries.noaa.gov/webdam/download/70623773.  
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on mainline length for pelagic longline sets in the Mid-Atlantic Bight (MAB), a region 

where bycatch is typically highest (74 FR 23349) (Federal Register 2009). This measure 

was informed by analyses conducted by NMFS scientists, who identified higher bycatch 

rates on sets greater than 20-nm in length in the MAB (Garrison 2007). Finally, an 

informational placard was required to be posted on every vessel outlining marine 

mammal careful handling and release guidelines (74 FR 23349) (Federal Register 2009). 

This measure was also informed by the Garrison (2007) study, which suggested that 

approximately equal proportions of observed pilot whale bycatch interactions involved 

hooking versus entanglement. In cases of entanglement, fishermen had some success in 

removing all trailing gear from animals using tools such as line cutters and, in such 

cases, entangled and released whales were typically not counted as serious injuries. 

Non-regulatory measures included a recommendation to increase observer coverage 

from ~8% to 12-15% of all trips in the Atlantic pelagic longline fishery; encouraging 

vessel operators to communicate with each other regarding interactions with protected 

species; advising NMFS to update careful handling and release guidelines; and a 

requirement for more frequent (quarterly) reporting of marine mammal interactions (74 

FR 23349) (Federal Register 2009). Several additional research priorities were identified 

as well as an understanding that the PLTRT would regularly evaluate the success of the 

TRP and amend the Plan based on the results of ongoing research and monitoring (i.e., 

manage adaptively) (74 FR 23349) (Federal Register 2009). 
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Following implementation of the Plan, the Team continued to meet regularly to 

assess progress towards meeting the MMPA goals, industry compliance with 

regulations, and outcomes of ongoing mitigation research projects. Pilot whale bycatch 

remained below PBR from 2009 until 2015, when the estimated 5-year average from 

2010-2014 exceeded PBR for the first time (M&SI 192/year; PBR 159) (Hayes et al. 2017). 

Updated abundance estimates resulted in an increase in PBR from 159 to 236 in 2016 

(Hayes et al. 2019). The most recent 5-year annual average of M&SI (2015-2019) of 136 

(Garrison, personal communication) is thus below PBR, although it is still above ZMRG 

(Figure 2). 

 

Figure 2: U.S. large pelagics longline fishery bycatch. Annual estimated 
mortality and serious injury (M&SI), 5-year moving average of M&SI, and potential 

biological removal (PBR) for short-finned pilot whales taken in the U.S. large pelagics 
longline fishery off the U.S. East Coast. The dashed red lines indicate the year of 

Pelagic Longline Take Reduction Team establishment (left, 2005) and year of 
publication of the final regulatory rule implementing the Pelagic Longline Take 

Reduction Plan (right, 2010). 
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Compliance with the mainline rule was less than 50% for the first 2-3 years of 

Plan implementation4. Compliance improved between 2012 and 2014, as fishermen 

began making sequential sets in which individual mainlines were less than 20-nm in 

length but separated by less than one nautical mile5. Considerable discussion has been 

devoted to whether this fishing strategy will lead to the intended reduction in bycatch 

rates and possible alternative strategies to limit mainline length. A modified consensus 

recommendation was reached in 2016, stipulating that a vessel may set no more than 30-

nm of active gear, with only one piece of gear in the water at a time, and that any 

mainline more than 20-nm long must include at least 1-nm of hookless line6. 

Even with full compliance, the Team has recognized the mainline rule and other 

measures do not appear sufficient to meet ZMRG7. Thus, the Team has also discussed 

implementing a weak-hook approach to further reduce mortality and serious injury. 

This culminated in consensus recommendations at the 2015 meeting for the adoption of 

weak terminal gear (1.8 mm leaders, 300 lbs breaking strength, 16/0 circle hooks with 

maximum 4.05 mm diameter or 18/0 circle hooks with maximum 4.4 mm diameter) and 

 

4 Pelagic Longline Take Reduction Team Key Outcomes Memorandum – PLTRT Meeting (August 21-23, 2012). 
Accessed on 05 January 2021 at https://www.fisheries.noaa.gov/webdam/download/70623617 
5 Pelagic Longline Take Reduction Team Key Outcomes Memorandum – PLTRT Webinar (June 18, 2014). Accessed 
on 05 January 2021 at https://www.fisheries.noaa.gov/webdam/download/70623614 
6 Pelagic Longline Take Reduction Team Key Outcomes Memorandum – PLTRT Webinar (October 31, 2016). 
Accessed on 05 January 2021 at https://www.fisheries.noaa.gov/webdam/download/70618731 
7 Pelagic Longline Take Reduction Team Key Outcomes Memorandum – PLTRT Meeting (December 1-3, 2015). 
Accessed on 05 January 2021 at https://www.fisheries.noaa.gov/webdam/download/70618735 
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to convene a workshop to develop better handling guidelines8. The Team also decided to 

repeal the CHSRA requirements, which has frustrated fishermen, as they have been 

required to call NMFS prior to fishing in the CHSRA to facilitate increased observer 

coverage in this area. However, no observers have been assigned for this purpose in 

over five years since the original recommendation9. In December 2020 NMFS published 

a proposed rule to reflect these changes (85 FR 81168) (Federal Register 2020). 

1.3.3 False Killer Whale Take Reduction Team 

The FKWTRT was convened in January 2010, when the five-year average of 

M&SI of false killer whales in the Hawai‘i-based, pelagic longline fishery exceeded PBR 

(Carretta et al. 2009) (Table 1). False killer whales are social, mobile, apex predators that 

occur in tropical and subtropical oceans worldwide (Baird 2018). They are pursuit 

predators, known to feed on a range of pelagic fish species including tunas, mahi-mahi, 

and wahoo (Acanthocybium solandri) (Baird et al. 2008), all of which are commonly 

captured in the Hawai‘i longline fishery. Three partially overlapping stocks of false 

killer whales occur around the Hawaiian Islands: an endangered, insular stock around 

the main Hawaiian Islands (MHIs) (Baird et al. 2008, Bradford et al. 2018), an insular 

stock closely associated with the Northwestern Hawaiian Islands (NWHIs) (Baird et al. 

 

8 Pelagic Longline Take Reduction Team Key Outcomes Memorandum – PLTRT Meeting (December 1-3, 2015). 
Accessed on 05 January 2021 at https://www.fisheries.noaa.gov/webdam/download/70618735 
9 Pelagic Longline Take Reduction Team Key Outcomes Memorandum – PLTRT Meeting (December 1-3, 2015). 
Accessed on 05 January 2021 at https://www.fisheries.noaa.gov/webdam/download/70618735 
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2013), and a pelagic stock that ranges broadly within and beyond the U.S. EEZ (Bradford 

et al. 2015, Anderson et al. 2020). Most false killer whale bycatch in the Hawai‘i longline 

fleet is from the pelagic stock, as vessels are currently restricted from fishing within the 

core range of the MHI population and not permitted to fish in the Papahānaumokuākea 

Marine National Monument, which encompasses the NWHIs. In rare cases of takes 

occurring in areas of overlap, bycatches are prorated to each stock based on relative 

stock occurrence and fishing effort (Carretta et al. 2019). 

There are two distinct, Hawai‘i-based, pelagic longline fisheries (WPRFMC 2020). 

Most effort is in the ‘deep-set’ fishery, which targets bigeye tuna year-round to the north 

and south of the Hawaiian Islands, both inside and outside of the U.S. EEZ. A smaller 

number of vessels fish with a ‘shallow-set’ configuration, targeting swordfish mainly 

north of the Hawaiian Islands. Both fisheries have experienced regulatory actions due to 

bycatch of several protected species. High bycatches of sea turtles led to closure of 

shallow-set operations in 2003-04 (Gilman et al. 2007b), and both fisheries have enacted 

operational and gear changes to mitigate the bycatch of sea turtles and seabirds (Gilman 

et al. 2007b, Gilman et al. 2008). Odontocete depredation and bycatch involving multiple 

species, but primarily the false killer whale, is a more common problem for the deep-set 

fishery (Forney et al. 2011) and is the main focus of the FKWTRT. Detailed bycatch 

information on bycatch and depredation is provided by on-board, independent 

observers present on approximately 20% of all deep-set trips (McCracken 2019). 
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NMFS convened and coordinated a series of meetings for the FWTRT, beginning 

with the first official in-person meeting in February 2010. At the time of Team formation, 

it was only possible for NMFS to calculate a PBR value for pelagic false killer whales 

inside the U.S. EEZ, so there was concern that fishing effort would increase outside of 

the EEZ to avoid punitive measures from the TRT (Federal Register 2010, 2012). Thus, in 

addition to the standard MMPA goals of reducing M&SI below PBR in 6 months and 

below ZMRG in 5 years, the FKWTRT had a third goal that fishery M&SI for the high-

seas component of the pelagic false killer whale stock (i.e., outside the U.S. EEZ) should 

not increase (Federal Register 2010, 2012). As with the PLTRT, early meetings provided 

team members with essential background information on the fishery, false killer whale 

biology and ecology, and the latest research findings regarding possible depredation 

and bycatch mitigation options (Federal Register 2010). 

Additional research specific to the deep-set fishery was commissioned by NMFS 

to inform team deliberations. One analysis assessed the influence of environmental and 

operational covariates on the occurrence of interactions of false killer whale depredation 

and bycatch between 2003-2009 (Forney et al. 2011). This research identified few clear 

patterns, except a seasonal incidence of lower depredation rates in summer months 

when the fleet typically fishes to the north, likely beyond the core range of pelagic false 

killer whales, and that sets were more likely to experience odontocete depredation if the 

preceding set was depredated, with a slight (~16%) decrease in risk by moving >100 km 
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following previous depredation. There was also some evidence that circle hooks may 

slightly reduce false killer whale incidental takes. A concurrent field-based, weak-hook 

study (Bigelow et al. 2012) determined that smaller, weaker circle hooks had no effect on 

bigeye tuna catch rates in the longline fleet, although fishermen on the Team disputed 

these results, because the trials were not conducted in spring when the biggest tuna are 

caught. These studies strongly influenced subsequent Team deliberations, which 

focused on gear changes and strategies to reduce mortality and serious injury after 

hooking or entanglement. 

The team met in person to develop a draft TRP with the Team’s 

recommendations, which was ultimately published as a Final Rule in December 2012 (77 

FR 71260) (Federal Register 2012) with regulatory and non-regulatory measures and a 

suite of research recommendations. The primary regulatory measure aimed at reducing 

the M&SI of false killer whales was to make the hook the weakest part of the terminal 

tackle, intended to release large animals (i.e., false killer whales) with minimal trailing 

gear. Specifically, the fishery is required to use circle hooks with round wire and a 

maximum wire diameter of 4.5 mm. Monofilament leaders and branch lines must be a 

minimum of 2.0 mm in diameter and 400 pounds breaking strength (77 FR 71260) 

(Federal Register 2012). Several additional regulatory measures were added to improve 

handling and release of bycaught false killer whales, such as expanding the content of 

existing Protected Species Workshops, requiring marine mammal handling and release 
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informational placards to be displayed on all vessels, and requiring the captain to be 

notified by crew and to supervise all marine mammal bycatch interactions (77 FR 71260) 

(Federal Register 2012). Finally, two space-time management measures were included: a 

permanent longline exclusion zone around the MHI (previously a seasonal closure area 

only) and a “Southern Exclusion Zone” (SEZ) to be closed when specified levels of M&SI 

within the U.S. Hawaiian EEZ are exceeded (77 FR 71260) (Federal Register 2012). 

The Team has continued to meet regularly to assess progress towards goals, 

fishery compliance, and research outcomes since Plan implementation. Annual M&SI for 

the pelagic stock inside the EEZ initially dropped from a pre-TRP five-year average of 

13.3 (2008-2012) (Carretta et al. 2016) to 4.92 (2013-2017) (Carretta et al. 2019, Oleson 

2020). It is currently 9.8 (2015-2019) and thus remains below PBR but above ZMRG 

(Table 1, Figure 3) (Oleson 2020). M&SI outside of the EEZ has shown a different 

pattern. In one year following Plan implementation, estimated M&SI for the pelagic 

stock outside of the U.S. EEZ rose from 6.6 whales in 2013 to 35.8 in 2014 (Carretta et al. 

2019). With some annual variation, this level has remained relatively high (and generally 

increasing), with the five-year average currently at 28.8 takes per year (2015-2019) 

(Oleson 2020) compared to the pre-TRP average of 10.0 (2008-2012) (Figure 3). This 

increase is consistent with an ongoing trend of a fleetwide shift in fishing effort to the 

north and east, outside of the EEZ. This shift may be due to tracking of oceanographic 

conditions for improved target-species catch rates, rather than a reaction to the TRP (i.e., 
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to avoid takes inside the EEZ that would lead to SEZ closure) (Woodworth-Jefcoats et al. 

2018). Nonetheless, the third goal of takes not increasing outside of the EEZ is not being 

met. Also problematic is that closure of the SEZ (triggered by 2 or more false killer 

whale takes inside the EEZ in a calendar year) occurred in two consecutive years (2018 

and 2019). 
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Figure 3: U.S Hawai‘i pelagic longline deep-set fishery bycatch. Annual 
estimated mortality and serious injury (M&SI), 5-year moving average of M&SI, and 
potential biological removal (PBR) for three false killer whale stocks taken in the U.S 
Hawai‘i pelagic longline deep-set fishery: (A) pelagic stock inside of the U.S. EEZ; (B) 

pelagic stock outside of the U.S. EEZ (no PBR available); and (C) insular, main-
Hawaiian Islands stock. The dashed red lines indicate the year of False Killer Whale 
Take Reduction Team establishment (left, 2009) and year of publication of the final 

regulatory rule implementing the False Killer Whale Take Reduction Plan (right, 
2012). 
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There has been some progress to mitigate false killer whale bycatch, but the 

Team has recognized that the weak-hook and handling guidelines are not fully 

adequate, at least as currently executed10. The Team has been provided with detailed 

reports of each observed false killer whale bycatch interaction in the deep-set fleet, 

assessing the details of the interaction and important outcomes such as captain and crew 

behavior, gear performance, and the fate of the animal11. Of 49 observed false killer 

whale interactions in the deep-set fishery between 2013-2018, the line was cut by captain 

or crew 19 times (39%) and broke 14 times (29%)12. In only four instances did the hook 

straighten as intended (~8% of interactions)13. In roughly half of the interactions the 

captain was not on deck, because the interaction was over before he reached the 

working deck or he was not notified of the interaction at all (Baird 2019). 

The final regulation for a 4.5 mm hook is not as ‘weak’ as the initial Team 

consensus or hooks tested by Bigelow et al. (2012), which was 4.0 mm. This may partly 

explain observed hook performance, and the Team is now considering a transition to 

even weaker hooks and stronger branch line (4.2 mm hooks and 2.3 mm branch line), 

 

10 False Killer Whale Take Reduction Team Key Outcomes Memorandum – FKWTRT Meeting (June 15, 2018). 
Accessed on 05 January 2021 at https://www.fisheries.noaa.gov/webdam/download/83268595 
11 False Killer Whale Take Reduction Team Key Outcomes Memorandum – FKWTRT Meeting (June 15, 2018). 
Accessed on 05 January 2021 at https://www.fisheries.noaa.gov/webdam/download/83268595 
12 False Killer Whale Take Reduction Plan – NOAA presentation given during 2019 Marine Mammal Commission 
Meeting. Accessed on 05 January 2021 at. https://www.mmc.gov/wp-content/uploads/False-Killer-Whale-2-
GARRETT-2019_05_21_FKWTRP_MMC_final.pdf 
13 False Killer Whale Take Reduction Plan – NOAA presentation given during 2019 Marine Mammal Commission 
Meeting. Accessed on 05 January 2021 at. https://www.mmc.gov/wp-content/uploads/False-Killer-Whale-2-
GARRETT-2019_05_21_FKWTRP_MMC_final.pdf 
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pending an additional field study to evaluate the impact of these measures on target 

catch rates and profitability14. There have also been concerns raised by Team members 

about captain and crew behavior during interactions. In particular, Baird (2019) has 

argued that the main bycatch reduction strategy of handling gear in a way to allow 

hooks to bend and release bycaught cetaceans is fundamentally flawed in the absence of 

full (100%) observer coverage. Even when observers were present, the line was cut in 

39% of interactions and the captain was not present to supervise half of the interactions. 

Baird argues that appropriate handling methods or captain involvement are even less 

likely in the remaining 80% of trips when an observer is not present, and thus that the 

estimated M&SI levels are almost certainly biased low. This argument has led the 

scientific and conservation caucus to argue for increased electronic monitoring (EM) in 

the fleet15, which has been trialed successfully for a small number of Hawai‘i longline 

vessels (Stahl and Carnes 2020). 

At time of writing, negotiations are ongoing but have been complicated by the 

emergence of the novel coronavirus which has caused large disruptions in the Hawai‘i 

fleet and the observer program. Importantly, the fleet intended to execute a weak hook 

trial in 2020 but this experiment will now be delayed at least until 2021. Nonetheless, 

 

14 False Killer Whale Take Reduction Team Key Outcomes Memorandum – FKWTRT Meeting (June 15, 2018). 
Accessed on 05 January 2021 at https://www.fisheries.noaa.gov/webdam/download/83268595 
15 False Killer Whale Take Reduction Team Key Outcomes Memorandum – FKWTRT Meeting (June 15, 2018). 
Accessed on 05 January 2021 at https://www.fisheries.noaa.gov/webdam/download/83268595 



 

32 

future Team discussions will likely, in some capacity, address the weak hook rules, EM, 

and the details of the SEZ agreement. NMFS is also working towards properly 

accounting for takes for the entire pelagic population (i.e., not just the portion inside the 

EEZ). Bradford et al. (2020) estimated, for the first time, pelagic false killer whale 

abundance for the entire central Pacific. A derivation of PBR for this portion of the 

population, as well as accounting of foreign fishery effort and potential takes in non-US 

fisheries, are still forthcoming. These results, when available, have the possibility to 

substantially alter the current PBR and M&SI situation and change the dynamics of the 

Team negotiations. 

Table 1: Outline of objectives and policy actions relevant to each TRT. See 
Figures 2 and 3 for timelines and specific bycatch estimates. 

 Pelagic Longline Take 

Reduction Team (PLTRT) 

False Killer Whale Take 

Reduction Team (FKWTRT) 

Fishery / Region • U.S. large pelagics 

longline fishery / U.S. East 

Coast 

• U.S. deep and shallow set 

longline fisheries / Hawai‘i 

USA 

Focal Species  • Short and long-finned pilot 

whales 

• Risso’s dolphins 

• False killer whale – 

Hawai‘i pelagic, insular 

(MHI), and NWHI stocks 

Goals • Below PBR in 6 months 

• Below ZMRG in 5 years 

• Below PBR in 6 months 

• Below ZMRG in 5 years 

• M&SI of high seas 

component of pelagic stock 

does not increase (11.2 per 

year at time of final rule) 
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M&SI (5-year 

average) / PBR, 

when convened 

• Pilot whales (both species 

pooled): 109 / 249 

• Risso’s dolphins: 20 / 129 

• Pelagic Stock, inside EEZ: 

13.6 / 9.1 

• Pelagic Stock, outside 

EEZ: 11.2 / PBR not 

determined 

• MHI Stock: 0.5 / 0.3 

M&SI (5-year 

average) / PBR, 

most recent 

• Short-finned pilot whales: 

136 / 236 (2015-2019) 

• Long-finned pilot whales: 

21 (includes takes from 

non-longline fisheries) / 

306 (2013-2017) 

• Risso’s dolphin: 54.3 / 303 

(2013-2017) 

• Pelagic Stock, inside EEZ:   

9.8 / 16 (2015-2019) 

• Pelagic Stock, outside 

EEZ: 28.8 / PBR not 

determined (2015-2019) 

• MHI Stock 0.01 / 0.3 

(2011-2015) 

Initial Plan Regulatory measures: 

• Cape Hatteras Special 

Research Area (CHSRA)  

• 20-nm upper limit on 

mainline length within 

MAB 

• Informational placard for 

careful handling and 

release of marine 

mammals in wheelhouse 

and on working deck. 

 
Non-regulatory measures: 

• Increase observer coverage 

of all Atlantic pelagic 

Regulatory measures: 

• Circle hooks with 

maximum wire diameter of 

4.5 mm, 10 degree offset or 

less, round wire 

• Minimum 2.0 diameter for 

monofilament leaders and 

branchlines, with minimum 

breaking strength of 400 

lbs (181 kg) 

• Longline exclusion zone 

around the MHI closed 

year-round 

• Expand existing, 

mandatory Protected 
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longline fisheries that 

interact with pilot whales 

or Risso’s dolphins to 12-

15% 

• Encourage captains to 

communicate with other 

vessels about protected 

species interactions 

• Update careful 

handling/release guidelines 

• Provide quarterly reports 

of marine mammal 

interactions to the PLTRT 

Species Workshop to 

include marine mammal 

interaction mitigation 

techniques 

• Informational placard on 

marine mammal handling 

and release posted on 

vessel 

• Captain must supervise 

handling and release of any 

hooked or entangled marine 

mammal 

• Require placard instructing 

crew to notify captain in 

event of MM interaction 

• Establish “Southern 

Exclusion Zone” (SEZ) 

closed when takes of 

FKWs meet thresholds 

 

Non-regulatory measures: 

• Increase precision of 

bycatch estimates 

• Notify team of observed 

interactions 

• Expedite process for 

species ID and injury 

determination 
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• Make changes to observer 

training and data collection 

• Expedite processing 2010 

HICEAS II survey data 

• Reconvene Team at regular 

intervals 

New or proposed 

recommendations 
• Implement weak hook 

approach 

• 16/0, 4.05 mm or 

18/0 4.4 mm round 

circle hooks 

• 1.8 mm leaders 

with terminal 

tackle > 300 lbs 

breaking strength 

• Modified mainline 

requirements 

• ≤ 30-nm of active 

gear, continuous 

more than 20-nm 

must be separated 

by at least 1-nm of 

mainline 

• Repeal CHSRA 

• Working group for 

handling training 

• Better observer reporting 

of depredation, collect 

straightened hooks 

• Further gear modifications 

• 4.2 mm diam. hooks 

• 2.3 mm diam. 

branchline 

• Electronic monitoring 

(EM) 

• Pending hook adoption 

and/or EM, removal of SEZ 

• More handling training 

• Move-on guidelines and 

research 
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1.4 Discussion 

Odontocete depredation and bycatch continue to be challenging management 

problems, despite strong interest of fishermen in avoiding depredation (Ayers and 

Leong 2020) and serious conservation concerns regarding bycatch (Read 2008). The 

nature of odontocete behavior and realities of longline fishing contribute to the 

complexity of the issue. We have summarized two attempts to reduce odontocete 

bycatch in U.S. pelagic longline fisheries. These two Take Reduction Teams have 

achieved some of their goals, but even with robust funding, political will, and 

collaborative stakeholder involvement, and under the authority of a robust marine 

mammal protective statute, neither Team has fully achieved their bycatch reduction 

targets, nor resolved the depredation issue. Nevertheless, we hope that our description 

of these collaborative processes, their common struggles, and considered solutions may 

provide insight to other managers and scientists working on depredation and bycatch 

issues around the world. 

Both take reduction teams invited participation from experts in marine mammal 

behavior, ecology, and bycatch as well as fishermen with practical knowledge of bycatch 

interactions and the respective fisheries. Together, they identified a comprehensive suite 

of potential mitigation solutions (e.g., Werner et al. 2015) that were considered carefully 

along with the specific nuances of each fishery. Additional research was commissioned 

to inform deliberations, much of which depended on high-quality, observer data on both 
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depredation and bycatch events. Both Teams first prioritized options in Categories 1 and 

2 (Figure 1), that is, limiting overlap with depredating odontocetes or preventing their 

contact with gear. For example, PLTRT analyses suggested that longer mainline length 

led to an increased interaction risk, and so the Team implemented a physical cap on 

mainline length. A high-interaction region was also designated a priority area for 

research, although no effort limitations were included that might directly reduce takes. 

The FKWTRT established a permanent area closure to protect the endangered, insular 

Main Hawaiian Island false killer whale stock, but no robust strategies for limiting 

overlap and avoiding interactions with the most commonly caught pelagic stock were 

identified. The other space-time measure (SEZ), in which high bycatch rates trigger 

closure of a large area important to the fishery, was meant as an incentive to limit 

bycatch more broadly. Interestingly, recent false killer whale density models suggest this 

may actually be an important area for the pelagic false killer whale population, and thus 

the SEZ may take on a new significance in future negotiations (Bradford et al. 2020). In 

general, fishermen in both Take Reduction Teams were reluctant to agree to any 

measure that restricted their ability to fish in particular times and areas, considering 

such measures as both punitive and unfair. 

Ongoing research has continued to improve understanding of the overlap and 

nature of interactions between these fisheries and species. Recent studies comparing the 

distribution of short-finned pilot whales and pelagic longline fishing effort suggest that 
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there might be some limited possibility of using extremely fine-scale spatial measures to 

avoid pilot whale bycatch, although areas of high bycatch generally correspond with 

high target catch rates (Stepanuk et al. 2018, Thorne et al. 2019). No clear environmental 

patterns have been identified that would help reduce false killer whale bycatch in the 

Hawai‘i fleet (Forney et al. 2011). More recent research has begun to elucidate fine-scale 

behavior of false killer whales in the vicinity of deep-set longline gear, but thus far no 

clear mitigation strategies have emerged for reducing depredation or bycatch rates 

(Bayless et al. 2017, Anderson et al. 2020). 

These research efforts have helped understand spatial and operational patterns 

of bycatch and suggest that avoidance strategies such as ‘move-on rules’ could help 

fishermen respond more effectively when interactions occur. However, none of these 

mitigation measures are considered likely to reduce interactions sufficiently to meet 

Team goals, and without clear options for limiting odontocete contact with gear 

(Categories 1 and 2), both Teams have resorted to reducing the number of serious injury 

determinations of bycaught animals (Category 3). The PLTRT initially specified 

guidelines for careful handling and release of marine mammals, although it did not 

include gear changes in its recommendations. Now, after several years with little 

progress in reducing pilot whale M&SI, a weak-hook strategy has emerged as the most 

acceptable solution. Together with plans for developing further improved handling 
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guidelines, this measure is currently pending under a public comment period in a new 

set of proposed regulations (85 FR 81168) (Federal Register 2020). 

The FKWTRT, with the advantage of learning from the PLTRT experience, 

adopted weak hook measures in its first round of recommendations in 2013. However, 

the implemented measures were not as stringent as initially agreed to by the Team (4.0 

mm initially agreed on, 4.5 mm adopted in Final Rule), and are not meeting 

management objectives. Between 2013-2018, the most frequent outcome during false 

killer whale interactions was that the line was cut before straightening could occur. The 

line also broke nearly four times as often as the hook straightened. These patterns 

indicate that the hook is not weak enough, the captain and crew are not handling the 

line as intended in the regulations, or most likely, a combination of both. The Team is 

now exploring options for moving to even weaker hooks and improving handling 

guidelines. 

The next few years will be important as both fisheries may implement these new 

or altered gear requirements. Yet, as Baird (2019) pointed out for the FKWTRT, weak-

hook regulations for cetaceans depend critically on proper handling which, in the 

Hawai‘i longline fleet, does not seem to occur, even in the presence of an independent 

observer16. Concerns over crew safety and economic expediency mean that the preferred 

 

16 False Killer Whale Take Reduction - Key outcomes memoranda and summaries. Accessed on 14 September 2020 at 
https://www.fisheries.noaa.gov/national/marine-mammal-protection/false-killer-whale-take-reduction. 
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reaction to a hooked odontocete is often for a crew member to cut the line. Thus, there 

must be adequate incentives to ensure the necessary steps are taken, when safe and 

appropriate to do so, so that these interactions are resolved safely and effectively. 

Without comprehensive observer coverage to monitor the behavior of fishermen during 

interactions, this ‘fatal flaw’ (Baird 2019) in weak-hook and handling approaches for 

reducing bycatch mortality will be present in any fleet. 

It is also worth noting the importance of specific statutory language and NMFS’s 

“Process for distinguishing serious from non-serious injury of marine mammals (NOAA 

Fisheries 2014)” in shaping the resulting regulatory directives for each Team. The 

MMPA specifies that incidental mortality or serious injury of marine mammals 

occurring during commercial fishing operations must be reduced to insignificant levels 

[16 U.S.C. § 1387]. NMFS defines serious injury for marine mammals as one that is more 

likely than not to lead to mortality (NOAA Fisheries 2014). However, determining the fate 

of hooked or entangled cetaceans released alive from gear is exceedingly difficult and 

likely varies with species and gear type (NOAA Fisheries 2014). Odontocete interactions 

on pelagic longlines occur quickly and can be dangerous for the crew, providing little 

opportunity for fishermen or observers to collect identifying information (e.g., dorsal fin 

photos for photo-identification) or deploy location satellite-linked tags. This reduces the 

opportunity to collect data on survival outcomes of released whales (NOAA Fisheries 

2014), as has been done for other taxa captured accidentally on longlines such as sea 
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turtles (Swimmer et al. 2014), billfish (Musyl et al. 2015), and sharks (Musyl and Gilman 

2019). In the absence of such empirical information, the criteria NMFS uses to categorize 

serious versus non-serious injury for these fleets (NOAA Fisheries 2014) have been 

developed almost entirely from expert opinion generated in a technical workshop held 

in 2007 (Andersen et al. 2008). The guidelines are based on scenarios that would lead 

directly to a determination of SI for a released marine mammal (e.g., an ingested hook) 

and have influenced the proposed strategies developed by each Team. For example, 

fishermen have been encouraged to remove hooks rather than minimizing the extent of 

trailing fishing line and leaving the hook in the animal. We note the importance of these 

2014 guidelines for context, as they have been influential during the development of 

consensus recommendations by each Team. They also illustrate the challenges of 

understanding the population-level consequences of non-lethal bycatch which, in the 

case of the MMPA, provides the legal basis for fisheries management action on marine 

mammal bycatch. Further research on handling techniques and post-release mortality of 

odontocetes remains an important priority, so that the impacts of bycatch on cetacean 

populations can be more fully assessed (NOAA Fisheries 2014, Zollett and Swimmer 

2019). 

The examples presented here are specific to U.S. fisheries management under the 

auspices of the MMPA, but depredation and bycatch in pelagic longline fisheries are a 

global challenge. Some international instruments indirectly acknowledge the issue and, 
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in some cases, charge fishing nations to address it. Foundationally, the United Nations 

Convention on the Law of the Sea obligates signatories to sustainably use and conserve 

marine living resources on the high seas and minimize impacts to other marine life, 

among other duties (UNCLOS 1982; e.g. Articles 61, 192, 194(5)). Other international 

instruments and agreements include non-binding measures and suggested guidelines to 

reduce marine mammal bycatch, such as, the Convention on the Conservation of 

Migratory Species (CMS) of Wild Animals (e.g., CMS Resolution 12.22 on Bycatch, CMS 

2018), the FAO International Guidelines on Bycatch Management and Reduction of 

Discards (FAO 2011), and the draft FAO Technical Guidelines to Reduce Bycatch of 

Marine Mammals in Capture Fisheries (FAO 2020). The International Whaling 

Commission’s recent Bycatch Mitigation Initiative is also currently working to reduce 

small cetacean bycatch globally. RFMOs also have authority and many have 

responsibilities to limit fisheries bycatch in their areas of jurisdiction. The tuna-based 

RFMOs have held joint meetings over the past decade, most recently in December 2019, 

to address bycatch in their fisheries (Joint t-RFMOs Bycatch Working Group 2019) and 

some have adopted conservation and management measures with relevance to reducing 

cetacean bycatch (Gilman et al. 2014, Juan-Jordá et al. 2018). 

Despite these existing frameworks, these case studies represent, to our 

knowledge, two of the most direct, regulatory attempts to mitigate bycatch of small 

cetaceans caused by depredation on pelagic longlines. They offer important insights as 
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other management bodies consider implementing their own strategies to reduce 

depredation and bycatch. They may also be relevant to non-U.S. pelagic longline fleets 

and in harvesting nations that export fisheries products into U.S. markets. The 2016 

MMPA Import Provisions Rule (81 FR 54389) (Federal Register 2016) requires nations 

exporting fish and fish products to the U.S. to be held to comparable standards for 

reducing marine mammal incidental mortality and serious injury in fisheries as those 

stipulated by U.S. regulations. As countries work to comply with the Import Rule to 

continue exporting fish and fish products into the U.S., the TRT case studies presented 

here offer the current U.S. standard in regulatory and consensus-driven management 

that harvesting nations can consider in their own management. 

Looking ahead: Depredation and bycatch are complex issues and will require a 

careful balance of monitoring, mitigation, and political will to reduce economic losses to 

fishermen and ameliorate population consequences for odontocetes. No mitigation 

measure will fully eliminate the problem, but there are a variety of mitigation and 

regulatory options that other fisheries can consider. We emphasize that, first and most 

importantly, high-quality observer programs are a crucial part of any mitigation 

strategy. Unbiased, independent, and representative data on fishing operations, catch, 

cetacean depredation, and bycatch are essential to accurately understand patterns of 

interactions and identify potential opportunities for mitigation. When mitigation 

strategies depend on gear changes and handling techniques, as in the two case studies 
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considered here, such data are critical to ensure compliance across the fleet. It is 

unrealistic to expect full observer coverage across the world’s pelagic longline fleets, 

most of which currently operate at 5% observer coverage or lower (Ewell et al. 2020). 

However, rapidly improving electronic monitoring technologies can fill these gaps in 

highly capitalized fisheries. Addressing and acknowledging the issue of bycatch, 

including depredation, in fisheries regulations and incorporating a variety of 

stakeholder perspectives, will be a step forward for fisheries that encounter depredation. 

This will help the world’s pelagic longline fisheries reduce the economic cost of 

depredation and ameliorate the impact of bycatch on small cetaceans.
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2. Patterns of depredation in the Hawai‘i deep-set 
longline fishery informed by fishery and false killer 
whale behavior. 
2.1 Introduction 

Many marine predators engage in depredation by consuming bait or fish secured 

on fishing gear. This behavior is very common and costly in longline fisheries 

worldwide (Read 2008, Hamer et al. 2012). Odontocetes, or toothed whales, are 

particularly adept at depredation and can remove large quantities of catch, often with 

substantial economic impacts (Tixier et al. 2020). Depredation reflects a switch from 

natural foraging behavior of prey pursuit to feeding on often high-energy but restrained 

prey. This behavior may reduce the energetic costs of foraging but increases the risk of 

hooking or entanglement in fishing gear. False killer whales (Pseudorca crassidens) 

depredate catch in a number of pelagic longline fisheries worldwide, including the 

Hawai‘i-based, deep-set longline fishery that targets bigeye tuna (Thunnus obesus) 

(Forney et al. 2011). False killer whales are the most frequently bycaught cetacean in this 

fleet and estimated fishery-related mortality and serious injury of this species has 

repeatedly exceeded allowable levels under the U.S. Marine Mammal Protection Act 

(MMPA) (Carretta et al. 2009). In the present study, we examine patterns of odontocete 

depredation in the Hawai‘i deep-set fishery and the behavior of tagged false killer 

whales to identify predictive factors that could be used to potentially reduce harmful 

interactions and the cost of depredation to fishermen. 
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At a global scale, depredation and subsequent marine mammal bycatch in 

longline fisheries has been an exceedingly difficult problem to solve, despite 

consideration of a wide range of mitigation strategies (e.g., Werner et al. 2015). The 

incentives to feed on large, energetically dense captured fish are likely high (Esteban et 

al. 2016), making it very difficult to create disincentives to this behavior. In addition, 

interactions are seldom observed directly, as they often occur at depth, at night, or far 

from the vessel (Werner et al. 2015). Acoustic harassment devices have been considered 

as a means of deterring marine mammals from engaging in depredation and reducing 

bycatch (Werner et al. 2015, Hamilton and Baker 2019), although in the case of longline 

depredation, odontocetes may habituate quickly to these signals and even be attracted to 

deterrents that notify whales of the location of catch, an apparent ‘dinner bell’ effect 

(Mooney et al. 2009, Tixier et al. 2015a). Many strategies thus focus on technological 

innovations that limit impacts after animals have encountered fishing gear. Gear 

modifications such as physical devices designed to protect catch (Rabearisoa et al. 2012) 

or weak hooks, designed to release hooked cetaceans, are in use in some fisheries (Bayse 

and Kerstetter 2010, Bigelow et al. 2012), including the Hawai‘i deep-set fishery (weak 

hooks). However, these approaches can be costly and unwieldy to deploy (catch 

protection) or ineffective in reducing the incidence of depredation (weak hooks). 

An alternative strategy is to adjust fishing behavior or operations to allow 

fishermen to avoid interactions with depredating species in the first place (e.g., Stepanuk 
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et al. 2018, Tixier et al. 2019). Such an approach might be implemented at two spatial 

scales: (1) predicting interactions a priori from broad-scale environmental drivers of 

overlap between fisheries and bycatch; and (2) understanding fine-scale behavior of 

depredators around gear to avoid interactions despite whale co-occurrence. Many 

pelagic predators range widely and their patterns of distribution may be influenced by 

static (e.g., sea floor topography, (Lindsay et al. 2016, Thorne et al. 2017)) or dynamic 

oceanographic features (e.g., sea surface temperature (SST) fronts, (Howell et al. 2008, 

Woodworth et al. 2011, Hazen et al. 2017)). Pelagic fishing vessels also range widely, 

tracking specific oceanographic conditions, and when the distribution of fishing 

activities converges with the distribution of depredating species in space and time, 

interactions may occur (Howell et al. 2008, Thorne et al. 2017, Stepanuk et al. 2018, 

Thorne et al. 2019). Identifying the ecological drivers of this co-occurrence could help 

fishermen avoid overlap and subsequent interactions. 

Given broad-scale spatiotemporal co-occurrence, depredation is further driven 

by the depredator’s behavior in the vicinity of fishing gear. The cues that depredating 

animals use to locate gear and their behavior during and around fishing operations are 

often species and fishery specific and thus are important to understand when 

developing mitigation strategies, such as limiting depredator access to gear or avoiding 

acoustic detection by depredators. For example, demersal longline fishing involves 

setting gear directly on the sea floor, and due to the extreme depths that this gear is 
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fished (500-2000 m), depredation interactions are thought to occur mostly during the 

hauling phase (but see Richard et al. 2020, Richard et al. 2021). In contrast, pelagic 

longline gear is suspended in the water column closer to the surface, and thus the gear is 

potentially accessible to depredation for the full duration of a fishing event (Rabearisoa 

et al. 2012, Thode et al. 2016). Acoustic signatures from vessels or gear are likely 

important cues for depredating odontocetes in both fishery types, although there are 

surely nuances in each case. Sperm whales (Physeter macrocephalus) depredating 

demersal longlines in southeast Alaska appear to respond to very specific acoustic 

signatures from the cavitation of a ship’s propeller when the engine is engaged to haul 

gear, detecting these sounds from several kilometers and arriving at a haul within 

minutes of a vessel beginning to retrieve gear (Thode et al. 2007, Thode et al. 2015). 

Passive acoustic monitoring of pelagic longline gear deployments detected false killer 

whales most commonly during the hauling phase, with whales moving along the 

mainline away from the vessel as gear was being retrieved (Bayless et al. 2017). 

Anderson et al. (2020) observed satellite-tagged false killer whales orienting their 

movements towards pelagic longline gear most commonly during the hauling phase, 

although they did not do so every time they were within likely detection range.  

2.1.1 False killer whale depredation and bycatch 

False killer whales are social, highly mobile, apex predators that occur in tropical 

and subtropical oceans worldwide. Independently of fisheries, they are known to feed 
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on a range of pelagic fish species, including tunas (Thunnus spp.), mahi-mahi 

(Coryphaenus hippurus), and wahoo (Acanthocybium solandri) (Baird et al. 2008), all of 

which are commonly captured in the Hawai‘i deep-set longline fishery. Three partially 

overlapping populations of false killer whales are recognized around the Hawaiian 

Islands: an endangered, insular population around the main Hawaiian Islands (MHIs) 

(Baird et al. 2008, Bradford et al. 2018), an insular population closely associated with the 

Northwestern Hawaiian Islands (NWHIs) (Baird et al. 2013), and a pelagic population 

that ranges broadly within and beyond the U.S. exclusive economic zone (EEZ) 

(Bradford et al. 2015, Anderson et al. 2020). Most false killer whale bycatch in the 

Hawai‘i longline fleet involves the pelagic population, as vessels are restricted from 

fishing within the core range of the MHI population and are not permitted to fish in the 

Papahānaumokuākea Marine National Monument, which includes waters surrounding 

the NWHIs. 

There are two distinct Hawai‘i-based, pelagic longline fisheries. Most effort 

occurs in the deep-set fishery, which targets bigeye tuna and operates year-round to the 

north and south of the Hawaiian Islands, both inside and outside of the U.S. EEZ. A 

smaller, shallow-set fishery targets swordfish (Xiphias gladius), operating mainly north of 

the Hawaiian Islands. Hawai‘i longline captains must fish with the same gear 

configuration (deep or shallow) for the duration of a trip. Regulations have been 

adopted to reduce the bycatch of several protected species in both fisheries. High rates 
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of sea turtle bycatch led to the closure of shallow-set operations in 2003-04 (Gilman et al. 

2007), and both fisheries have enacted operational and gear changes to mitigate sea 

turtle and seabird bycatch (Gilman et al. 2007, Gilman et al. 2008), primarily in response 

to litigation. Odontocete depredation and bycatch is a more common problem for the 

deep-set fishery (Forney et al. 2011), which is the focus of the current study. As in other 

pelagic longline fisheries experiencing odontocete depredation (e.g., Secchi and Vaske 

1998, Rabearisoa et al. 2018), depredation by toothed whales is rarely observed directly 

in the deep-set fishery (Bayless et al. 2017), but rather inferred by characteristic damage 

to individual caught fish retrieved during the haul (Forney et al. 2011). 

A variety of odontocete species have been observed as bycatch in this fishery, 

including false killer whales, short-finned pilot whales (Globicephala macrorhynchus), and 

Risso’s dolphins (Grampus griseus) (Forney and Kobayashi 2007). High levels of false 

killer whale bycatch led to formation of the False Killer Whale Take Reduction Team 

(TRT) in 2010, a multi-stakeholder group charged with reducing mortality and serious 

injury of false killer whales below levels stipulated by the MMPA. The U.S. National 

Marine Fisheries Service (NMFS) published a final Take Reduction Plan in 2012 (77 FR 

71260). The primary regulatory tool for mitigating bycatch was a requirement for vessels 

to use a combination of “weak” circle hooks (specified by a maximum shank diameter of 

4.5 mm) and strong terminal gear (minimum 2.0 mm branch line diameter) to allow 

release of hooked false killer whales while retaining target catch. Recently, the team has 
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acknowledged that these measures are not significantly reducing serious injury or 

mortality of false killer whales and have recommended studies to investigate the 

possibility of a transition to even weaker hooks (i.e., narrower diameter) and stronger 

(i.e., thicker diameter) branch lines1. This approach is designed to maximize the 

likelihood of survival for animals that become hooked, but it does not reduce the 

economic cost of depredation to the fishery. 

Avoiding interactions outright would benefit both whales and fishermen, and 

there has been long-standing interest from the false killer whale TRT to identify patterns 

and proximate mechanisms driving depredation. To this end, Forney et al. (2011) 

conducted a multivariate analysis of false killer whale depredation and bycatch between 

2003-2009 to assess the influence of environmental and operational covariates on the 

occurrence of interactions. The analysis identified few clear environmental covariates of 

depredation and bycatch, except for a seasonal pattern of lower depredation in summer 

when the fleet fishes farther to the north, likely beyond the primarily tropical and sub-

tropical range of pelagic false killer whales. The authors found evidence that sets were 

more likely to experience odontocete depredation if the preceding set was depredated, 

and that moving 100 km following depredation led to a slight (~16%) decrease in the risk 

of subsequent depredation. These findings suggest either pursuit of fishing vessels by 

 

1 False Killer Whale Take Reduction - Key outcomes memoranda and summaries. Accessed on 14 September 
2020 at https://www.fisheries.noaa.gov/national/marine-mammal-protection/false-killer-whale-take-
reduction 
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depredators or clumping of whales in space and time, although at the time there were 

insufficient data to assess patterns in space and time simultaneously. 

This previous work has provided important insights into the processes driving 

false killer whale depredation, but this behavior remains poorly understood and 

unmitigated. Here, we incorporate nine years of additional fisheries observer data to 

expand the analysis of Forney et al. (2011). This larger dataset provides more power to 

explore environmental and operational covariates and the ability to examine patterns in 

repeat depredation in both space and time across the fleet. We also analyze typical 

speeds and distances traveled by satellite-tagged pelagic false killer whales, allowing 

comparison of depredator movement behavior to the spatiotemporal patterns of 

depredation observed from fishery-dependent data. An improved understanding of 

broad and fine-scale patterns of depredation, and the animal behavior driving these 

interactions, will help inform efforts to reduce the negative consequences of depredation 

and bycatch for both whales and fishermen.
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2.2 Methods 

2.2.1 Study area and fishery-dependent data sources 

Hawai‘i deep-set gear consists of a single monofilament mainline (3.2–4.0 mm 

diameter) suspended in the water column by a series of floats (Appendix A1: Figure 

A21). Individual branch lines with a mackerel-type bait on a single hook are regularly 

spaced along ~45–80 km of mainline (Boggs and Ito 1993). The target depth for bigeye 

tuna is around 400 m and a typical deployment of fishing gear ranges from 1,000-3,000 

hooks. Deep-set fishermen generally deploy (‘set’), their gear in the morning, allowing it 

to fish (‘soak’) until the retrieval (‘haul’), begins around sundown. The hauling process 

may exceed 12 hours, depending on the catch and amount of gear deployed. We 

describe the full process of a single fishing event (i.e., the start of a set to the end of the 

haul) as a single ‘deployment’ or ‘event’, unless referring to a more specific step of the 

process. 

Fishery dependent data were derived from two sources: logbook data recorded 

by vessel captains and data collected by fisheries observers. For each deployment, 

captains are required to record and submit to NMFS the times and GPS coordinates of 

the start and finish of setting and hauling of gear (i.e., four times and locations per 

fishing event), the number of hooks deployed, and counts of caught fish by species. By 

regulation, deep-set vessels are required to carry a federal observer, if requested, with a 

fleet-wide target coverage of 20% of all trips. Observers collect more detailed data on 
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fishing effort, gear characteristics, and biological data from both target and non-target 

catch, including bycatch of protected species. Since late 2003, observers have also been 

trained to classify and systematically record depredation (i.e., damage to catch). Of 

interest in this study is odontocete depredation, which can be distinguished from other 

sources of depredation, such as squid or sharks, because toothed whales often predate 

the whole fish up to the gill plates, leaving only the head attached to the hook (e.g., 

Secchi and Vaske 1998). False killer whales are also known to depredate bait (Thode et 

al. 2016), but this is not systematically recorded by observers and is thus not reported 

here. Based on covariate data availability and model formulations, the multivariate 

analyses of depredation described below utilize observer-collected data from 2004-2017, 

while the spatial analyses utilize observer data from 2004-2018.  

2.2.2 Derivation of covariates 

We identified spatial, temporal, gear, operational, and environmental variables 

hypothesized to influence odontocete depredation rate (Appendix A1: Table A9). Space 

and time variables were associated with the start of the haul of the focal fishing 

deployment, as recorded by the on-board observer. Gear and operational variables were 

also based on observer-reported values for each fishing event, with the exception of 

vessel density, which utilized logbook data to calculate the number of all (i.e., not just 

observed) vessels that began a haul within 200 km and ±3 days of the observed (focal) 

haul. Number of hooks represents the total number of individual hooks deployed in the 



 

55 

focal fishing event. Soak was calculated as the time (h) between the last piece of gear 

entering the water (end of set) to the last piece of gear removed from the water (end of 

haul). Minimum depth of gear (m) is the sum of all vertical pieces of gear (float line + 

branch line + leader), but due to shoaling and concatenation of the main line, actual 

depth of gear varies widely throughout the soak and haul (Bigelow et al. 2006). Hooks 

between floats was used as a secondary indicator of gear depth, as more hooks between 

floats generally means the gear sinks deeper. All catch and catch per unit effort (CPUE) 

variables were derived from observer-recorded counts of hooked (not necessarily landed 

or kept) target and non-target catch. CPUE (number of fish caught per 1,000 hooks) was 

based on all hooked bony fish (i.e., not including sharks) in a haul. As an indicator of 

catch on nearby vessels, we also calculated the CPUE of tuna species (number of tunas 

caught per 1,000 hooks) caught on observed vessels that began a haul within 100 km and 

±1 day of the focal haul. We further identified, for each observed haul, whether 

odontocete depredation or bycatch of a false killer whale was recorded by the observer 

during the previous haul of the same vessel, with the first haul of each trip included but 

treated as an absence of previous depredation. 

Environmental variables included both static and dynamic variables and most 

were associated with haul begin location, with any distances calculated as the great 

circle distance (km) from the haul-begin location to the feature. We acknowledge that 

haul-begin location is only an approximate representation of fishing location as 
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longlines can be tens of kilometers long; however, we believe haul-begin location to be a 

reasonable characterization due to false killer whales evidently orienting most 

commonly to the hauling phase (Bayless et al. 2017, Anderson et al. 2020). The static 

variables depth and slope were derived from GEBCO 30 arc-second bathymetry data; 

and distance to nearest seamount was derived from the seamount database described in 

Allain et al. (2008). 

Sea surface temperature (SST) range was calculated as the difference between the 

highest and lowest SST (ºC) for all four recorded fishing locations per deployment, with 

SST derived from Level 4 daily, nighttime interpolated SST provided by the Group for 

High Resolution Sea Surface Temperature (JPL 2010). Chlorophyll-a concentration 

(mg·m-3) was Level 3 monthly, 9-km resolution from the Aqua MODIS satellite (OBPG 

2014). Absolute dynamic topography (adt, m), which is a measure of sea surface height, 

and total kinetic energy (tke, m2·s-2) were derived from the Archiving, Validation and 

Interpretation of Satellite Oceanographic data group hosted by the Copernicus Marine 

Environment Monitoring Service. Eddy distance and amplitude of the nearest eddy 

were derived from the database described in Chelton et al. (2011). Distance to 

oceanographic fronts was the distance to the nearest Cayula-Cornelius thermal front 

(Cayula and Cornillon 1992). El Niño-Southern Oscillation (ENSO) conditions were 

considered based on the Oceanic Niño Index (ONI) [3 month running mean of Extended 

Reconstructed Sea Surface Temperature (v4) anomalies in the Niño 3.4 region (5°N-5°S, 
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120°-170°W)]. We also conducted a lag-correlation analysis between the average 

monthly rate of odontocete depredation (centered and with seasonal trend removed) 

and monthly ONI, to assess if there was a delayed response to ENSO conditions. This 

identified a peak correlation in depredation 11 months following ONI (Appendix A1: 

Figure A22), and thus we included a variable for the 11-month lag value of ONI in 

addition to concurrent ONI in models. We used various tools in the Marine Geospatial 

Ecology Toolbox for extraction of many of the environmental variables (Roberts et al. 

2010). 

2.2.3 Multivariate data analysis 

We conducted a detailed data exploration and analysis to examine the influence 

of potential predictor variables on the occurrence of odontocete depredation in the deep-

set fishery from 2004-2017. We first assessed collinearity among explanatory variables by 

calculating Pearson correlation coefficients for all pairwise combinations of continuous 

variables, retaining only those with values less than 0.5. When two variables with 

similar ecological meaning were correlated, we retained the one with fewer missing 

values or a clearer ecological relationship to the response. After a first selection, we 

assessed the variables considered in the full models (Appendix A1: Table A9) using the 

Variance Inflation Factor (VIF), ensuring that none exceeded a threshold of 3. As the VIF 

of each variable depends on the other variables present, we recalculated VIF after 

model-selection, ensuring that no correlated variables were retained in the final models 
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either. We also assessed concurvity (Wood 2006) amongst variables in candidate final 

models to ensure that no variables were non-linearly related. 

We then used Generalized Additive Mixed Models (GAMMs) to examine the 

relationship between retained variables and the occurrence of odontocete depredation. 

GAMMs are a regression approach that calculate smooth functions to estimate 

relationships between predictor and response variables (Wood 2017). We chose GAMMs 

as we were interested in exploring the combined influence of a range of different 

variable types in a single model. The GAMM approach allows greater flexibility in 

specifying different terms within a single model, with fewer a priori assumptions on the 

nature of each relationship, than, for example, Generalized Linear Models (Wood 2017). 

A GAMM model uses a link function g() to relate a univariate response variable Y to a 

sum of smooth functions of the covariates Xi :	

𝑔(𝐸(𝑌) = 𝛼 +	*𝑓!(𝑋!) 

where α is the intercept and 𝑓! is a smooth function of the covariate 𝑋!. 

We used a logit link function to model the relationship between covariates and 

the binomial presence or absence of odontocete catch damage on at least one fish during 

a single set.. To increase sample size, we also included the occurrence of a hooked or 

entangled false killer whale as a ‘presence’, which added 29 observations. Although 

other odontocetes likely engage in depredation on Hawai‘i deep-set gear, we included 

only false killer whale bycatch as this species is the most frequently bycaught 
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odontocete, and we wanted the models to be as specific to false killer whales as possible. 

We explored two possibilities for a fully saturated model, one with no interactions 

(Appendix A1: Eqn. A1) and one including several interactions informed from 

exploratory analyses and a priori hypotheses (Appendix A1: Eqn. A2). These included 

interactions between month and latitude, month and ONI lag, and latitude and ONI lag. 

Following Zuur et al. (2009), we began model selection from the fully saturated models 

with penalized thin-plate regression splines used for all univariate smoothers and tensor 

product smooths for any interaction terms. We modeled month using a cyclic regression 

spline to ensure a smooth step from December to January. We treated the presence or 

absence of depredation on the previous set of the focal vessel as a categorical, parametric 

variable and vessel identity as a random effect to control for variation within vessels and 

individual trips. Penalized splines incorporate a penalty that drives the coefficients of 

non-contributing variables to zero (Wood 2006). These variables were removed after the 

first iteration, and then backward, stepwise selection was used on remaining variables 

using non-penalized splines, removing the variable with the highest p-value at each 

iteration until only variables with a p-value < 0.001 remained (Zuur et al. 2009). We 

explored model structures in which individual smoothed variables were constrained 

using ‘knots’, as well as formulations leaving variables unconstrained. Knots determine 

the complexity and flexibility of the curve and can limit over-fitting. Overall patterns 

and variable selection outcomes were similar for both strategies, but smooth terms were 
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determined to be more realistic and interpretable when constrained to 5 knots, a 

common, conservative default. We present results only from the constrained version. 

Various other combinations of smoother types, parameter settings, and model selection 

algorithms were explored, without noticeable differences on the resulting inferences. 

The final, best fit models from both the interaction model and non-interaction model 

iterations were compared using AIC. All analyses were implemented in the package 

mgcv, version 1.8-31 (Wood 2006, 2007) in RStudio statistical software, version 1.2.5033 

(R Core Team 2018). 

2.2.4 Scale-dependent spatiotemporal analyses 

We explored spatiotemporal patterns of depredation for all observed vessels 

simultaneously across a range of relevant space and time scales (maximum of 1,000 km 

and 20 days). We first used a variation of Ripley’s K function (Ripley 1977) to identify 

whether the occurrence of depredation exhibited spatiotemporal clustering across these 

scales. The technique treats the positions of specific events (e.g., depredation) as marked 

point processes to estimate the presence or absence of clustering of the event while 

controlling for the underlying distribution of all events (i.e., all fishing sets), as these are 

not randomly or evenly distributed themselves. By removing the effects of only space 

and only time, patterns of events due to space-time interactions can be identified (i.e., 

events that are close in both space and time). We also summarized the proportion of 

depredated or ‘marked’ fishing events amongst all vessels fishing within specified times 
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and distances from where the focal depredation event occurred (using the same space 

and time scales as the K analysis). Space and time locations for these analyses were 

based on the beginning of the haul for all observed fishing deployments from 2004-2018. 

For the clustering approach, we followed the approach of Dunn et al. (2014) and 

Bjorkland et al. (2015), applying the K function separately for all observed fishing 

deployments (all points, 𝐾.(𝑠, 𝑡, 𝑠𝑡)"##) and observed depredated deployments only 

(marked points, 𝐾.(𝑠, 𝑡, 𝑠𝑡)$"%&), across a range of space-time thresholds (Gardner et al. 

2008, Dunn et al. 2014): 

where N is the total number of events, A is total area, T is total length of the time series, 

si is the spatial location of event I, ti the time of event I, w(si,sj)v(ti,tj) an edge-correction 

factor, and I a function indicating events sj,tj within a distance s and time t of event si,ti 

(Dunn et al. 2014). As the fishery operates on a daily time scale (i.e., typically one full set 

and haul per 24-hour period), we used one day as our time interval, from a minimum of 

one day to maximum of 20 days. Similarly, as the gear can spread over tens of 

kilometers, we used 50 km as a minimum distance step and interval to a maximum of 

1,000 km. The maximum values for the distance and time steps were chosen to include 

all scales that could reasonably be considered actionable for mitigation purposes. We 

implemented 𝐾. calculations in the Splancs package, version 2.01-40 (Bivand et al. 2017) 

in RStudio statistical software, version 1.2.5033 (R Core Team 2018).  
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We calculated both 𝐾.(𝑠, 𝑡, 𝑠𝑡)"## and 𝐾.(𝑠, 𝑡, 𝑠𝑡)$"%& across each possible space-

time interval. Purely spatial and temporal effects (𝐾.(𝑠)	𝑎𝑛𝑑	𝐾.(𝑡);	Appendix A2: Eqns. A1 

and A2) for all fishing sets and depredated sets were then subtracted from the respective 

𝐾.(𝑠, 𝑡, 𝑠𝑡) (Appendix A2: Eqn. A3) to isolate processes correlated in both space and time 

only (i.e., space-time interactions). Finally, the space-time clustering of the full dataset 

was subtracted from that of the marked points 𝐾.(𝑠𝑡)$"%& − 𝐾.(𝑠𝑡)"##, to identify space-

time effects of only the marked points (i.e., controlling for the nonrandom distribution of 

fishing events). 

We then used random-labelling permutations to explore the spatiotemporal 

autocorrelation of depredation relative to randomly permuted fishing set events. This 

method builds envelopes of K by taking 1,000 random samples of the same size as the 

number of marked points from the overall dataset. These envelopes represent the range 

of expectations of K if there were no space-time structure to the data. We consider 

observed Ks that exceed the highest 95% threshold of these values at a particular space-

time threshold to exhibit clustering. We acknowledge concerns of this method for 

assigning statistical significance (Loosmore and Ford 2006), and we considered this only 

as a data exploration exercise to identify plausible scales of correlation. For visualization 

purposes, at each space-time threshold, we subtracted the value of the highest 95th 

percentile of permuted Ks from the observed K and set all zero (random) or negative 

values (overdispersed) to zero. We then divided these subtracted K values by the 
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highest K value across all space-time scales to standardize on a scale from zero to one, 

and we display this as a heat map to visualize specific space-time thresholds where 

aggregation is likely present (Gardner et al. 2008, Dunn et al. 2014). 

While the K function provides information on the intensity of spatiotemporal 

clustering at different scales, it does not translate directly to a quantitative 

understanding of the change in risk of depredation relative to an observed depredation 

event. Thus, we also summarized the occurrence of depredation as a function of space 

and time from an observed depredation event. Specifically, we calculated the empirical 

proportion of depredation (fraction of total sets that are marked), within each space-time 

boundary, for every observed depredation event. In other words, when depredation 

occurs, what is the average rate of occurrence of additional depredation on all other 

nearby vessels, within each space and time window of the original event? We note that 

this method does not isolate combined space-time effects like the K-analysis, and thus 

independent time or space effects may be aggregated here as well, such as seasonal or 

static habitat correlates. To put these scales in context, we also explored the typical 

behavior of fishermen in response to interactions, calculating distances moved and time 

elapsed between sets (end of one haul to beginning of next set), following the presence 

or absence of odontocete depredation or false killer whale bycatch. 
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2.2.5 False killer whale movement analysis 

Pelagic false killer whales were encountered and tagged with satellite tags 

during ship-based (Pacific Islands Fisheries Science Center, PIFSC) and small-boat 

(Cascadia Research Collective, CRC) cetacean surveys in 2013 (both), 2017 (PIFSC only), 

and 2020 (CRC only). See Appendix A3 in this paper, Baird et al. (2010), Baird et al. 

(2013), and Anderson et al. (2020) for further details on encounter, sampling, and 

tagging protocols. To avoid pseudo-replication, when multiple tags were deployed 

within a single group or animals tagged on separate days joined later, we included only 

the tag with the longest transmission time in subsequent analyses. 

Filtered Argos data were further processed using a Correlated Random Walk 

state-space model (crw-ssm) using the foieGras package, version 0.4.0, implemented in 

RStudio version 1.2.5033 (R Core Team 2018)  as described in Jonsen and Patterson 

(2019). The Correlated Random Walk model is a continuous time model that accounts 

for the irregular time intervals between positions available from Argos data. It estimates 

true locations while accounting for error in the Argos telemetry data and regularizing to 

consistent, pre-specified time intervals; in this case 4 hours. This allows data across 

multiple individuals to be normalized and as comparable as possible.  False killer whale 

locations were regularized to four-hour intervals for up to the first 59 days after which 

tags began duty-cycling. We then summarized horizontal distance moved and average 

speed along four-hour interval tracks and horizontal distance moved, speed, and total 
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displacement (straight-line distance from the first location of each day to the first 

location of the following day) for daily time steps. 

2.3 Results 

Between 2004 and 2018, a total of 267,231 sets [mean 17,815 per year, standard 

deviation (SD) 1,357] were made on 20,262 trips [mean 1,351 per year, SD 97] by 187 

unique vessels [mean 132 per year, SD 7] in the Hawai‘i deep-set longline fishery. 

Observers were present on 21.0% of trips covering 20.7% of sets, providing a dataset of 

55,247 sets [mean 3,683 per year, SD 254] with detailed data. Fishermen set an average of 

13.3 sets per trip [SD 3.7] and 2,355 hooks per set [SD 455.5] with an average soak time 

(end set to end haul) of 15.2 hours [SD 2.8]. Odontocete depredation on at least one 

captured fish was observed on 3,478 (6.3%) of all observed sets. Approximately half of 

trips (47.2%) experienced odontocete depredation on at least one set and 21.2% 

experienced odontocete depredation on two or more sets. The number of fish 

depredated per set was right-skewed, with a median of two and a maximum of 63 

depredated fish recorded on sets with depredation. Odontocetes depredated a variety of 

fish species, mostly tunas (Thunnus spp., 68%), followed by billfish (11%), mahi-mahi 

(6%), and wahoo (5%). These species represented 28%, 4%, 8%, and 2% of total catch, 

respectively. Several species were depredated infrequently relative to their proportion of 

total catch. Notably, the most frequently caught species in this fishery, the longnose 

lancetfish (Alepisaurus ferox), comprised 23% of fish caught by number but less than 2% 
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of fish depredated by odontocetes. This may be due to avoidance by odontocetes or the 

gelatinous nature of their flesh, which makes this discard species easily damaged and 

difficult for observers to categorize the source of damage. In general, odontocetes did 

not feed on captured sharks. The blue shark (Prionace glauca) is the third most frequently 

caught species (~8% of total catch), but only 7 individual sharks of 3 species had 

evidence of odontocete depredation. 

A diverse range of cetacean species were reported as hooked or entangled by 

observers, but most were odontocetes in the family Delphinidae (152 of 158 total 

animals). The most commonly caught cetacean was the false killer whale, representing 

approximately 70% of all bycaught cetaceans identified to species or genus (122 total). In 

total, 85 confirmed false killer whales were caught on 80 sets between 2004-2018, 

followed by 10 short-finned pilot whales (Globicephala macrorhynchus), 9 Risso’s dolphins 

(Grampus griseus), and 7 common bottlenose dolphins (Tursiops truncatus). There were 

also 13 unidentified ‘blackfish’ species, likely false killer whales or short-finned pilot 

whales (McCracken 2010). Depredation of catch was observed on 51 of 80 (~64%) sets in 

which one or more false killer whales were hooked. 

2.3.1 Multivariate Analysis 

We used GAMMs to predict the presence or absence of odontocete depredation 

per set (occurrence of >= 1 depredated fish or false killer whale bycatch event as a proxy 

for depredation) as a function of variables hypothesized to influence interaction rates. 
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The parameters included in the ‘best-fit’ final models, and their functional relationships 

to depredation, were very similar for each model type (i.e., with interactions and with 

no interactions, Appendix A1: Eqns. A3 and A4). The main differences were that the 

month x latitude interaction term was significant in the interaction model and distance 

to seamount was marginally significant in the no-interaction model, but not kept in the 

interaction model. The interaction model had the lowest AIC value and highest deviance 

explained and thus was considered further. The final interaction model included the 

interaction between month and latitude, 11 additional quantitative variables, 1 

categorical variable, and a random vessel identification effect, although overall deviance 

explained was still low at 8.11% (Table 2, Figure 4). There was a clear seasonal and 

spatial relationship, with a decrease in depredation occurrence in the second and third 

quarters of the year and at higher latitudes. Of the ONI variables, only the 11-month 

lagged version was kept in the final model and was positively associated with 

depredation. The only other significant oceanographic variable was a positive 

relationship between depredation and absolute dynamic topography. 
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Table 2: Results for the best-fit GAMM predicting odontocete depredation 
rates in the Hawai‘i deep-set longline fishery from 2004-2017. 

Parametric terms Estimates Standard 
Error 

e.d.f. Chi sq. p-values 

Intercept -3.04 0.03   < 0.001 
Depredation on previous set 0.90 0.06   <0.001 
Smoothed terms      
Latitude x Month   14.0 302.10 < 0.001 
Number of hooks set   1.91 110.93 < 0.001 
Soak time (Hours)   2.35 30.26 < 0.001 
Bigeye tuna (# caught)   3.93 379.51 < 0.001 
Yellowfin tuna (# caught)   2.85 54.08 < 0.001 
Mahi-mahi (# caught)   3.46 32.25 < 0.001 
Wahoo (# caught)   2.06 27.61 < 0.001 
Sharks (# caught)   1.00 17.39 < 0.001 
CPUE (# fish / 1,000 hooks)   3.89 73.69 < 0.001 
Nearby tuna CPUE (# tuna / 1,000 
hooks) 

  3.49 141.22 < 0.001 

ONI 11 mo. Lag   1.00 19.83 < 0.001 
adt (m)   1.00 28.71 < 0.001 
Vessel ID   65.95 124.16 < 0.001 
n = 49,579      
R-squared (adj.) = 0.048      
Deviance explained = 8.11%      
UBRE = -0.571      

 

Operationally, the probability of depredation increased with the number of 

hooks set and more time the gear spent in the water. Depredation was also significantly 

more likely if the vessel experienced depredation on the previous haul of the same trip. 

These factors led to relatively large shifts in the model-predicted probability of 

depredation. For example, the predicted probability of depredation more than doubled 

when fishermen set 3,000 versus 1,500 hooks or when depredation occurred on the 

previous set. Finally, several catch-related variables were significant. There was a 
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consistent, nonlinear relationship between depredation and catch of four of the most 

common target species (bigeye and yellowfin tuna, mahi-mahi, and wahoo) in which the 

likelihood of depredation decreased with increasing catch, and then leveled off or 

increased again at high levels of catch. Overall CPUE (number of bony fish per 1,000 

hooks on the focal vessel) showed the same relationship, while average, tuna-only CPUE 

on vessels setting within 100 km and ±1 day had a linear, positive association with the 

risk of depredation. Number of sharks caught also had a linear, positive relationship 

with depredation occurrence, and vessel ID was highly significant as a random effect. 
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Figure 4: Depredation GAMM results. Smooth and parametric functions for 
variable output in binomial GAMM model of depredation occurrence. Figures 

represent presence/absence of odontocete depredation as function of each variable 
when all others are at their average value. Y-axis values are transformed from log-
odds to probability scale and shifted by the model intercept to represent expected 
probability when all other variables are at their average value. The overall model-
predicted probability (~0.06) of depredation is indicated by a dashed line in each 
figure so that the influence of each variable on probability of depredation can be 

directly assessed and compared. Distribution of observed values indicated by rug plot 
along x-axis. Shading reflects 2x standard error curves. Interaction term indicated by 

topographic ‘perspective’ plot. 
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2.3.2 Scale-dependent spatiotemporal analyses 

The GAMM results showed an increased probability of depredation when a 

vessel experienced depredation on their prior set of the same trip. The modified Ripley’s 

K method allows further exploration of this pattern by considering the occurrence of 

depredation across all co-occurring vessels that are close in space and time. This analysis 

showed a clear, spatiotemporal aggregation of depredation occurrence at most scales up 

to 1,000 km and 20 days (Figure 5a). The peaks in this surface indicate where clustering 

or aggregation is most intense – these occurred over areas of between 350-450 km and 

periods of 9-11 days. Our summary of empirical, or observed, depredation rates relative 

to distance and time since previous depredation events is consistent with the indicated 

spatiotemporal clustering. The observed depredation rate was 18% for vessels setting 

less than 50 km and 24 hours from previous depredation, but this rate dropped the 

farther away a vessel fished from a previous encounter. At the peaks from the Ripley’s 

K, roughly 400 km and 9 days, the empirical depredation rate flattened to about 9% (a 

50% reduction) and there was little additional benefit from moving farther (Figure 5b). 

Empirical depredation rates declined somewhat more rapidly with distance than time 

from the observed event, such that increased risk may be persistent for several days or 

more. 
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(a)       (b) 

 

Figure 5: Spatiotemporal analysis of odontocete depredation. (a) 
Spatiotemporal clustering of odontocete depredation in the Hawai‘i deep-set longline 
fishery from 2004-2018 represented by modified Ripley’s K. Colored tiles are relative 

strengths of clustering, with any color-shaded tile (i.e., non-gray) representing 
spatiotemporal clustering above 95% random permutations at that space-time scale. 
The highest values represent the strongest levels of spatiotemporal clustering. (b) 

Percent occurrence of odontocete depredation based on time and distance (begin of 
haul) from a previous depredation event in the Hawai‘i deep-set longline fishery. 

The analysis of fishermen behavior showed that, in the absence of odontocete 

interactions, fishermen moved a median 35 km [interquartile range (IQR) 16–64 km] 

with a median duration of 4.3 h [IQR 2.9–6.1 h] from the end of that haul to the 

beginning of their next set. If depredation was experienced on a haul, they moved a 

median 46 km [IQR 24–83 km] in 4.7 h [IQR 3.2–7.3 h] before starting the next set, and 61 

km [IQR 34–205 km] in 5.8 h [IQR 3.5–25.3 h] if a false killer whale bycatch event 

occurred. 

2.3.3 False killer whale movement analysis 

Tags were deployed on eight pelagic false killer whales during six encounters in 

2013, 2017, and 2020. CRC deployed three tags in a group of approximately 16 
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individuals on 22 October 2013 and one tag in a group of 48 individuals on 14 May 2020 

off of Hawai‘i Island. PIFSC deployed one tag in a group of an estimated 23 individuals 

on 15 May 2013 and one tag in a group of estimated 15 individuals on 26 May 2013, both 

in the NWHIs. PIFSC deployed an additional two tags near the island of Kauaʻi, one in a 

group of approximately 32 individuals on 12 September 2017 and one in a group of 

approximately 19 individuals on 13 September 2017. Total tag durations, geographic 

use, and potential direct interactions with pelagic longline operations for the whales 

tagged in 2013 are described in greater detail in Anderson et al. (2020). 

 

Figure 6: False killer whale satellite tag tracks. Red diamonds indicate tag-on 
locations. Dashed line represents the U.S. EEZ around the Hawaiian Islands. See text 

and Table 3 for further details. 

 

There were five independent tags, with two (PcTagP02 and PcTag065) 

transmitting for about two weeks and the other three (141702, PcTag041, PcTagP01) 

transmitting beyond the 59 days of daily transmissions considered here (Figure 6). We 
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included only full days of transmission, leaving 12 days for PcTagP02, 15 days for 

PcTag065, and 57 days each for the longer three (Table 3). Total distance traveled ranged 

from 1,653 km in 12 days for PcTagP02 to 8,099 km in 57 days for tag 141702. Median 

distance traveled in 4-hours for all animals was 19 km [range 1–75 km], translating to a 

median speed of 4.8 km/h [range 0.3–18.8 km/h] (Table 3, Figure 7). When considered at 

the daily scale, animals moved a median distance of 117 km [range 64–335 km] and 

median speed of 4.9 km/h [range 2.7–14.0 km/h]. Median displacement (straight-line 

distance from first location of day to first location of following day) was 81 km [range 2–

333 km]. 

 

Table 3: Details on pelagic false killer whale tag deployments. Five tags were 
included in movement analysis after filtering through Douglas Argos-Filter and 

Correlated Random Walk state-space model. 

Tag ID Deployed 
by: 

Deploy date End date # 
days 

Cum. 
dist. (km) 

Med. 4-h 
km 

[range] 

Med. daily km 
[range] 

PcTagP01 PIFSC 2013-05-16 2013-07-13 57 6,705 18 [2–54] 113 [64–203] 
PcTagP02 PIFSC 2013-05-27 2013-06-09 12 1,653 21 [2–44] 125 [71–169] 
PcTag041 CRC 2013-10-22 2013-12-19 57 6,602 17 [1–63] 112 [65–192] 

141702 PIFSC 2017-09-12 2017-11-09 57 8,099 21 [1–75] 129 [64–335] 
PcTag065 CRC 2020-05-15 2020-05-31 15 2001 21 [4–49] 121 [105–149] 
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(a)       (b) 

 

(c)       (d) 

 
(e)        

 
 

Figure 7: Summary histograms of false killer whale movement. Sub-daily (4-
hour) track-line distance traveled and speed (a, b), daily track-line distance and speed 
(c, d), and total daily displacement (e) from five pelagic false killer whale satellite tags 

processed through Douglas Argos-Filter and Correlated Random Walk state-space 
models. Red values indicate median. 
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2.4 Discussion 

We used several complementary approaches to explore patterns of odontocete 

depredation in the Hawai‘i deep-set longline fishery. We first utilized a large observer 

dataset to explore relationships between odontocete depredation and environmental and 

operational covariates concurrent with deep-set fishing activity. These model outcomes 

largely corroborated those from an earlier analysis (Forney et al. 2011), with the larger 

dataset allowing for increased resolution of several patterns. The model did not identify 

environmental or operational covariates that could be used in a predictive management 

context, but it showed that the risk of depredation doubled if the previous set on the 

same trip experienced depredation. We explored whether the occurrence of depredation 

on other, nearby vessels also influenced depredation risk, and identified the space and 

time scales of such ‘repeat’ depredation to understand how risk changes with proximity 

to observed interactions. We also summarized false killer whale travel speeds and 

distances derived from satellite tags to help contextualize these scales of depredation 

and understand how movement of the depredating species contribute to the patterns we 

observed. Our analyses provide specific guidance on how fishermen can reduce the 

probability of repeated interactions following a depredation or bycatch event. Thus, our 

results have direct relevance to the ongoing deliberations of the False Killer Whale TRT 

and may inform management of other odontocete-longline interactions. 
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2.4.1 GAMM analysis of environmental and operational covariates 

The overall explanatory power of the best-fit model was low, but several clear 

patterns emerged from the multivariate analysis of depredation occurrence. There was a 

marked decrease in interaction rates during the second and third quarters of the year 

and at higher latitudes, beyond around 18-20º N (Figure 4). This pattern was also 

observed by Forney et al. (2011) and is to be expected as the fleet extends north and east 

in these months (Woodworth-Jefcoats et al. 2018) into areas where false killer whale 

densities are predicted to be the lowest for this region of the Pacific (Forney et al. 2015, 

Bradford et al. 2020). Depredation is generally lowest at the northernmost extent of 

fishing effort, but it seemed to decrease at all latitudes during the Northern Hemisphere 

summer months (Figure 4). False killer whales likely move seasonally in response to 

changes in sea surface temperature (Bradford et al. 2020), and this could influence the 

intensity of overlap with fishing activity across the fleet’s range. We also note that, 

although bycatch records and direct observation (Thode et al. 2016) suggest that false 

killer whales are the primary depredator species in this fishery, some depredation 

observations are likely due to other odontocete species. These broad space and time 

patterns may thus be partially influenced by interactions between these species’ ranges, 

environmental conditions, and fishery behavior that cannot be disentangled here. 

Depredation occurrence increased with absolute sea surface height, which is an 

indication of mesoscale features such as eddies and fronts (Chelton et al. 2011). This may 
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relate to higher depredation in more productive habitats along these features, which is 

consistent with the higher depredation rates observed when target-species CPUE is 

high. We also documented a possible relationship between odontocete depredation and 

ENSO conditions. A weak but significant positive correlation (~0.14) was detected 

between the Oceanic Niño Index (ONI) and depredation 11 months later (Appendix A1: 

Figure A22), and this lagged ONI value was significantly positively associated with 

depredation rate in the GAMM analysis. It is unclear what ecological processes underlie 

this pattern. There could be a seasonal correlation component as El Niño events (ONI ≥ 

0.5) disproportionately occurred in quarters 1 and 4 when there were higher rates of 

depredation. However, La Niña events (ONI ≤ -0.5) had a similar monthly distribution 

to El Niño and yet La Niña was associated with low depredation rates. A seasonal 

pattern would also not likely account for the apparent yearly fluctuations, and 

interaction terms between ONI lag and month and ONI lag and latitude were not 

significant in the depredation models. Strong El Niño events are known to disrupt 

oceanographic conditions and marine food webs, although effects on upper trophic level 

predators are not well understood (Lehodey et al. 1997, Stenseth et al. 2002). Perhaps 

false killer whales opportunistically target fishing vessels more frequently when El Niño 

periods destabilize their normal food webs, and this occurs at the observed lag due to 

impacts taking time to move through the prey community. However, it would be very 

difficult to empirically test this hypothesis and, for now, we simply note the pattern. 
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Operationally, we observed that the probability of depredation increased with 

number of hooks set and soak time in hours. Indeed, fishermen could reduce their risk 

by approximately 50% (~0.06 to ~0.03) by making sets less than 1,500 hooks or 

completing the haul in less than 10 hours. Soak time and the amount of gear have 

similarly been observed to influence depredation rates in demersal longline fisheries 

(Tixier et al. 2015b, Janc et al. 2018), reinforcing that simple strategies that reduce 

depredator access can be beneficial in reducing interactions. We also observed 

relationships between depredation and a number of catch indicators. For four of the 

most common target species there was a similar, non-linear relationship in which the 

probability of depredation decreased with catch, then leveled off at low probabilities or 

increased back to more neutral effects at high catch rates. We also observed an increase 

in the probability of depredation as the CPUE of tuna species by all vessels within 3 

days and 200 km increased, as well as with the number of sharks caught. These patterns 

suggest that depredation is more common in areas where CPUE is high, which is to be 

expected, given false killer whales are apex predators that target many of the same 

species as the fishery (Baird et al. 2008). Most of the commonly caught shark species in 

this fishery are also apex predators and may similarly be drawn to regions that are 

favored by false killer whales. The nonlinear patterns at the focal vessel may be 

explained by generally low catch rates when depredation occurs. False killer whales are 

known to depredate bait in the deep-set fishery (Thode et al. 2016, Bayless et al. 2017), 
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which could depress overall catch rates. The fish heads counted by observers are also an 

imperfect indicator of depredation and it is possible that the whole fish is sometimes 

removed by the depredating whale or falls off the line before the hook is hauled. This 

would also be consistent with the more linear trend for sharks, as sharks are almost 

never depredated by odontocetes (see also Oleson et al. 2010). The uptick in depredation 

at very high catch levels may be associated with the general pattern of false killer whales 

occurring in relatively productive areas. 

2.4.2 Spatiotemporal depredation patterns 

The GAMM shed light on finer scale patterns of depredation as well, such that 

depredation was significantly more likely if a vessel experienced depredation on the 

previous set of its same trip. This is consistent with the results reported by Forney et al. 

(2011) and reports from fishermen (TEC 2009), which suggest fishermen experience 

repeat depredation on trips and may actively move following depredation to reduce the 

probability of repeat occurrences. Forney et al. (2011) suggested that moving 100 km 

following a depredated set leads to slight reductions in risk (from 16% to 14% expected 

occurrence), but there was insufficient sample size in their analysis to assess time and 

space together and only interactions on the focal vessel were considered (i.e., not what is 

happening on other, nearby vessels). 

We addressed these gaps using a variation of Ripley’s K to estimate 

spatiotemporal autocorrelation of depredation simultaneously for all vessels across a 
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range of actionable space and time scales. This approach has been used in other fisheries 

experiencing depredation or bycatch to identify scales of clustering, which can then be 

used to provide recommendations of distances to move, and/or times to wait, to avoid 

future negative encounters; these are commonly referred to as move-on rules. We 

identified spatiotemporal clustering of depredation in the deep-set fishery across most 

scales we considered, suggesting that a vessel should generally expect to encounter 

higher depredation rates near previously observed depredation events due to 

spatiotemporal clustering of events alone (i.e., independent of any effects of just time or 

just space). 

To give a clearer picture of what fishermen could actually expect in terms of risk 

of depredation relative to the time and location of previous depredation, we also 

identified the average proportion of sets experiencing depredation (for all vessels 

simultaneously) within the same space-time thresholds from the observed depredation 

event (i.e., within 20 days and 1,000 km at increments of 24 hours and 50 km). As for a 

single vessel, the rate of depredation across all vessels is highest when a previous 

depredation event is observed nearby in space and time. On average, the proportion of 

sets experiencing depredation within 24 hours and 50 km of a previously observed 

depredation event is ~18%, compared to the overall background rate of ~6%. Consistent 

with the K-analysis, this proportion decreases with both space and time since the 

observed event. The peaks from the K-analysis indicate that ~400 km and ~9 days is the 
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most effective distance to move and time to wait, respectively, for reducing repeat 

depredation. On average, the depredation rate decreased from 18% to 9% (~50% 

reduction) at this threshold, with little additional benefit gained by moving farther or 

waiting longer. 

There also seems to be a greater benefit from moving rather than waiting, 

suggesting that these clusters of depredation activity may be relatively confined in space 

(still potentially over several hundred km), but persistent in time (i.e., lasting for up to 

several weeks). This may be beneficial to the fleet, as moving is likely to be a more 

practical strategy than simply waiting without fishing, although there are obvious costs 

associated with both. Indeed, past fishing practices suggest that pelagic longline 

fishermen tend to react to depredation and bycatch by moving but fishing again as soon 

as possible. Fishermen moved around 31% farther between sets when they experienced 

odontocete depredation and 74% farther when there was a false killer whale bycatch 

event, but the median times for each scenario were all under six hours, indicating a 

tendency to move but still set on the same day (so that a potential fishing day was not 

missed). We also note, however, that although the median times are similar, the upper 

quartile of time between sets increased to >24 hours following a false killer whale 

bycatch event, suggesting that at least some vessels or captains may be likely to both 

move and wait an extra day before fishing again. The K-analysis does suggest that any 

movement farther from an observed interaction will decrease the likelihood of repeat 
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occurrences, but based on our move-on analysis, the distances typically moved may 

provide only very minor benefits when fishing again within 24 hours. For example, the 

average percentage of depredated sets within 61 km and 24 hours of a previously 

observed depredation event was 17% (compared to 18% within 50 km and 24 hours), 

while this decreased to 12% on the same day but 200 km away. 

2.4.3 Depredator behavior and avoidance 

The incidence of depredation is ultimately driven by the behavior of the 

depredator, and there have been important recent advances in understanding the nature 

of interactions between false killer whales and the Hawai‘i deep-set longline fleet, and 

for interactions with odontocetes in other fisheries. For example, passive acoustic 

monitoring of longline gear deployments detected false killer whales most commonly 

during the hauling phase, with whales potentially moving along the mainline away 

from the vessel as gear was being retrieved (Bayless et al. 2017). Satellite-tagged false 

killer whales were also observed to show directed movements toward fishing gear 

during the hauling phase of some sets (from as far as 100 km away) and no apparent 

reaction to gear during other sets, despite being within apparent detection range 

(Anderson et al. 2020). It is still unclear how false killer whales locate gear, although 

work with other species and fisheries suggests that acoustic detection is very likely. 

Thode et al. (2007) showed that sperm whales depredating demersal longlines in 

southeast Alaska cue in on acoustic signatures from the cavitation of a ship’s propeller 
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when the engine is engaged to begin hauling gear, which they can detect from at least 4-

8 km away. Thode et al. (2015) further point out that sperm whale clicks are more 

intense than the vessel noises themselves, and thus once at the gear location, 

depredating sperm whales may intentionally or unintentionally alert other whales from 

even farther away. Richard et al. (2021) recently identified clear acoustic signatures 

during setting operations of demersal longlines in a sub-Antarctic fishery. They argue 

that there may be multiple acoustic cues available to depredating whales for a given 

fishery and that different cues may travel different distances. This may help explain 

observations that killer whales in South Georgia orient to demersal longlines at 75-100 

km (Towers et al. 2019), while they seem to orient to herring purse seine vessels in 

Norway when within 20 km (Mul et al. 2020).  

Taken together, these studies demonstrate that false killer whales are likely 

capable of locating vessels from tens of kilometers away, following vessels, and moving 

along gear removing bait and target catch once found, although they do not always do 

so. Our spatiotemporal analysis identifies clear space-time aggregation of longline 

depredation, which could be a result of this type of active targeting and following of 

vessels by whales, simple overlap of whales and vessels targeting similar dynamic 

oceanographic conditions or, more likely, some combination of both. We provide a 

summary of baseline pelagic false killer whale movement behavior, using the same tags 

as Anderson et al. (2020) plus an additional tag from PIFSC in 2017 and CRC in 2020, to 
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place in context the mobility of these pelagic predators and provide guidelines for what 

would be required to avoid or escape whales that are actively pursuing a vessel. 

Over four-hour time periods, comparable to the typical duration between the end 

of a deep-set haul to beginning the next set, the median distance moved by the five focal 

whales was 19 km (median speed of 4.8 km/h). However, all five whales moved over 40 

km in a four-hour period (speed of 10 km/h), two were observed to move over 60 km (15 

km/h), and one exceeded 70 km in four hours on three different days (17.5 km/h). This 

compares to kinematic predictions of false killer whale speed based on morphology and 

cost of locomotion, which suggest cruising speeds of 11 km/h and highest efficiency of 

swimming at 13-14 km/h (Fish 1998). Burst speeds are likely much greater than could be 

maintained over four hours. Fish (1998) estimated maximum velocities for false killer 

whales of 27 km/h and Baird (personal observation) observed a group of false killer 

whales near Hawai‘i maintaining speeds of 18 km/h for over 30 minutes. 

Over daily time periods, the median along-path distance was 117 km with a 

median speed of 4.9 km/h. However, distributions were again right skewed with whales 

observed to move well over 200 km in 24-hour periods, maintaining speeds of at least 10 

km/h. We note that reported along-path distances are all minimum values as whales are 

unlikely to move in straight lines for four or 24 hours. More accurate GPS-based tags, as 

well as better estimation of false killer whale cost of transport and aerobic capacity, 
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could further inform how long animals are able to maintain high cruising speeds and 

how long they might be expected to pursue vessels. 

False killer whales have a complex social structure and groups are often 

comprised of multiple sub-groups spread over distances up to at least 35 km (Baird et al. 

2008, Bradford et al. 2014, Martien et al. 2019). Individuals within groups have been 

observed separating by over 100 km and rejoining the same group over a period of 

several days (Baird et al. 2010). Assuming a minimum detection range of 4-8 km for 

vessel noise and no movement by the depredating whales, it is thus possible that a 

vessel would have to move 40–50 km (acoustic propagation of vessel noise + spread of 

sub-groups) just to reach the edge of detection range for a large group of false killer 

whales. This distance could, of course, increase if individual whales disassociate and 

reassociate as observed by Baird et al. (2010) or follow the vessel as it moves to a new 

fishing location, which is known to occur in other odontocete-fishery interactions. Tixier 

et al. (2015b) demonstrated that a single pod of killer whales (Orcinus orca) could follow 

longline vessels for multiple days and suggest that the whales may even maintain their 

bearing, such that they can encounter and depredate gear several days later, despite 

likely losing contact with the acoustic signal of the vessel. 

How long a vessel would have to move to outpace following whales depends on 

the speeds of the vessel and whale. The average maximum speed of Hawai‘i longline 

vessels is about 15 km/h (obtained from MarineTracker.com), which is similar to the 
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maximum speeds maintained in four hours by tagged false killer whales. Thus, it is 

possible that a vessel at maximum speed could still have following whales after four 

hours. Even if whales were moving at 10 km/h, which all tagged whales were easily 

capable of, a vessel moving at 15 km/h would only be 20 km from the following whales 

after four hours. As it could take three hours just to reach the conservative edge of 

detection range of 40-50 km, whales may be able to maintain detection well beyond four 

hours, even if the vessel moves at maximum speed. Our spatiotemporal analysis 

suggests that when fishing again within one day, vessels are unlikely to experience large 

decreases in depredation risk unless they move fairly large distances. We recognize 

constraints may limit a vessel’s ability to move certain distances. Deep-set gear is 

typically deployed (set) in the morning with haul-back beginning around sunset and 

finishing in the early morning hours. A captain who wishes to fish two days in a row 

typically has only a few hours to redeploy gear at the optimal time of day, hence the 

median of ~4 hours from end of haul to beginning the next set. Unfortunately, even at 

the average maximum speed for these vessels, fishermen are unlikely to decrease their 

interaction risk within only four hours. We thus recommend that when depredation is 

known to occur, vessels move away as far and as quickly as practical. It may also benefit 

to diverge from the course of travel for 10-20 km before setting gear, as false killer 

whales may behave like killer whales and continue following in one direction after 
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losing acoustic detection of the vessel (Tixier et al. 2015b). Vessels will experience greater 

reduction in risk if they wait to set until the following fishing day. 

2.4.4 Recommendations and implications 

Our work was motivated by the goal of identifying patterns of odontocete 

depredation and depredator behavior in a way that can be used by fishermen to mitigate 

these negative interactions. We detected some interesting patterns, but there were no 

unequivocal geographic, environmental, or operational covariates that could be used in 

a management context. As has been shown before, the probability of interaction 

increases with fishing effort (hooks set and time soaked). But, in general, odontocete 

depredation is likely driven at broad scales by convergence in space and time of fishing 

activities and the occurrence of these apex predators, which are both targeting similar 

prey fields. Both fishermen and whales are likely cueing on the same set of 

environmental factors to locate these areas. Nevertheless, depredation is still a relatively 

rare event, and thus high predictive accuracy based on a priori environmental factors 

alone is not currently possible. 

Given the clumped occurrence of this behavior in space and time, it is not 

surprising that the best predictor of depredation is where and when it was observed 

previously. We characterize the boundaries of risk associated with previously observed 

events, which suggest that depredation risk consistently decreases until about 9 days 

later and 400 km away, with little expected reduction beyond that. Risk seems more 
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persistent in time than in space. For example, the same proportion of sets were 

depredated within 50 km and 8 days of a depredated set than within 200 km only one 

day later. Thus, if vessels wish to fish again within 24 hours, they will experience the 

greatest reduction in risk by moving or staying as far away as possible, ideally 200-300 

km. 

We further considered the behavior of tagged pelagic false killer whales. False 

killer whales can pace fishing vessels for at least four hours. We recommend that 

fishermen steam at high speeds (> 15 km/h) for seven to eight hours if setting the same 

day, but again, they will experience further benefit if they wait until the next day to fish, 

allowing time to move even farther. This may be challenging under typical fishing 

operations, so fishermen who intend to fish on consecutive days may be able to 

capitalize on synergies between the reduction of risk at lower fishing effort and greater 

distances moved following depredation. By setting slightly less gear they should finish 

hauling earlier in the day. If depredation were to occur on that haul or be known to have 

occurred recently in their area, they would thus have more time to move to a safer 

location on the same day. 

We also showed that risk is increased for all vessels in the vicinity of known 

interactions, suggesting that improved communication among vessels in the fleet would 

help reduce risk (Gilman et al. 2006). It may be difficult for a vessel at the center of a 

group of whales to escape detection within a day, but other vessels fishing in the same 
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area can use that knowledge to reduce their own risk. Elevated depredation risk may 

persist within 100-200 km for a week or more, so it is important for other vessels to 

know where interactions occur so that they do not inadvertently fish again within high-

risk areas. We understand that competition may reduce incentives to communicate 

among some vessels, and cooperation may be even less likely outside of the U.S. EEZ, 

where vessels from a number of other nations may also be longline fishing. However, 

reducing bycatch risk is in the best interest of all U.S. fleet members, given the potential 

management implications of high bycatch rates. 

Finally, we recognize that although moving and waiting reduce odontocete 

interaction risks, they also incur costs themselves. Ultimately each captain must make 

decisions based on the perceived costs and the benefits of moving versus continuing to 

fish. We have attempted to provide information to help them evaluate part of this 

calculation, specifically the expected risk reduction from given avoidance measures. We 

hope that they can use this information to more precisely evaluate the tradeoffs in 

adopting these recommendations. Further work assessing the costs in terms of lost fish 

catch would be beneficial in helping fill in additional parts of these calculations that are 

not addressed here. 

Depredation and associated bycatch are global issues but remain poorly 

understood in many ways, especially for pelagic longline fisheries where depredating 

animals are rarely seen in the vicinity of gear. Our study adds to a growing body of 
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work for the Hawai‘i longline fleet but is also relevant to pelagic longline depredation in 

other parts of the world. Unfortunately, depredation and bycatch will be difficult to 

avoid whenever the predators and fisheries target the same species. However, for 

species that occur in low densities with relatively low interaction rates, such as false 

killer whales, it may be possible to avoid areas of overlap and find other productive 

grounds to fish without whales. The tools used here can help identify the intensity and 

scale of risk where whales are known to occur, and the avoidance strategies most likely 

to be effective in minimizing further risk to the fishery. We demonstrate that rates of 

interaction can be reduced by up to 50% with appropriate avoidance measures. We hope 

that fishermen will add these measures to their toolkit for deciding where to fish, 

reducing economic burdens on the fleet and improving conservation outcomes for 

vulnerable bycatch species. 
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3. No free lunch: Estimating the biomass and ex-vessel 
value of target catch lost to depredation by odontocetes 
in the Hawai‘i longline deep-set tuna fishery 
3.1 Introduction 

The expansion of human exploitation of marine living resources during the past 

century has created and exacerbated conflicts between fisheries and top predators 

(Lewison et al. 2004, Lewison et al. 2014, Guerra 2019). Some interactions are indirect, 

such as competition with predators for shared resources, or other trophic effects arising 

from exploitation of target species (Branch et al. 2010, Morissette et al. 2010). Others are 

more direct, such as entanglement and bycatch, or predators feeding on bait or fish 

secured on fishing gear, an interaction known as depredation (Gilman et al. 2007, 

Gilman et al. 2008, Tixier et al. 2020b). A wide range of marine predators are known to 

engage in depredation with a diverse array of fishing gear (Tixier et al. 2020b). The 

impacts of depredation extend to fishermen, predators, and ecosystem structure and 

function (Gilman et al. 2007, Gilman et al. 2008, Hamer et al. 2012, Mitchell et al. 2018).  

Depredation can lead to substantial socioeconomic costs for affected fisheries 

(Peterson et al. 2014, Tixier et al. 2020a). These include direct costs from damage to gear 

and loss of bait or catch, and indirect costs caused by increasing fishing effort to make 

up for lost catch. Depredating species are also affected in multiple ways. Feeding on 

restrained catch may reduce energetic costs of foraging and create access to new 

foraging opportunities (Esteban et al. 2016). However, depredation also increases the 
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risk of injury or mortality due to hooking or entanglement in fishing gear (Forney et al. 

2011) and retaliatory responses from fishermen (Poncelet et al. 2010, Guinet et al. 2015). 

Depredation can have broader ecosystem consequences, including changes to predator-

prey interactions. Finally, depredation can lead to higher exploitation rates of fish stocks 

and bias in stock assessments, as depredated catch is not typically included in estimates 

of fishing mortality (Peterson et al. 2013, Esteban et al. 2016, Peterson and Hanselman 

2017, Hanselman et al. 2018). Thus, it is important to obtain accurate estimates of catch 

losses accruing from depredation to understand these diverse ecological and 

socioeconomic impacts. 

 Longline fisheries are particularly susceptible to depredation as bait and catch 

are suspended in the water column for long periods (Gilman et al. 2007, Gilman et al. 

2008, Tixier et al. 2020b). Depredation has been reported in longline fisheries by 

cetaceans, sharks, squid, and seabirds (Tixier et al. 2020b). Depredation by odontocete 

cetaceans is particularly common and problematic for fishermen. Some odontocete 

species are skilled in locating fishing gear, sequentially removing fish as gear is hauled 

or traveling along lengths of gear to remove bait or catch (Towers et al. 2019, Anderson 

et al. 2020). These behaviors can lead to substantial economic cost to affected fishermen 

(Peterson et al. 2014, Tixier et al. 2020a). 

In Hawai‘i, two pelagic longline fisheries experience odontocete depredation and 

bycatch. The deep-set fishery targets bigeye tuna (Thunnus obesus) and operates year-
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round north and south of the Hawaiian Islands, both inside and outside of the U.S. EEZ. 

A smaller, shallow-set fishery operates mainly north of the Hawaiian Islands targeting 

swordfish (Xiphias gladius). Odontocete depredation and bycatch is more common in the 

deep-set fishery (Forney et al. 2011), where false killer whales (Pseudorca crassidens) 

depredate bait and catch and are the most common species of cetacean taken as bycatch 

(Thode et al. 2016, Bayless et al. 2017). Other odontocete species such as short-finned 

pilot whales (Globicephala macrorhynchus) and Risso’s dolphins (Grampus griseus) are also 

occasionally recorded as bycatch, likely driven by depredation as well (Forney and 

Kobayashi 2007, Forney et al. 2011, Fader et al. 2021). Unsustainable levels of false killer 

whale bycatch have led to regulatory actions by the National Marine Fisheries Service 

(NMFS), following recommendations from the False Killer Whale Take Reduction Team 

(FKWTRT), a multi-stakeholder group charged with reducing mortality and serious 

injury of false killer whales below levels stipulated by the U.S. Marine Mammal 

Protection Act (Federal Register 2010). The FKWTRT has recommended gear changes, 

handling requirements, and spatiotemporal closures that are triggered when false killer 

whale bycatch exceeds certain levels. These restrictions impart additional costs to the 

fishery beyond losses due to depredation itself. 

There are a few video records of false killer whales depredating bait and acoustic 

recordings of false killer whales near depredated gear (Thode et al. 2016, Bayless et al. 

2017) but, in general, depredation by odontocetes is rarely observed directly in the deep-
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set fishery. Instead, depredation of catch is inferred by characteristic damage to 

individual fish retrieved during the haul (Forney et al. 2011, Fader et al. 2021). Studies to 

date have focused on characterizing depredation patterns to inform potential mitigation 

solutions (Forney et al. 2011, Fader et al. 2021) and there have been no quantitative 

assessments of the economic impact that depredation has on the fishery or of the 

potential effects of these losses on target stocks. In this paper, we estimate aggregate and 

annual removals of target catch by odontocetes in the Hawai‘i deep-set longline fishery 

and assess broad-scale spatial and temporal patterns of depredation across the range of 

the fishery. 

3.2 Methods 

3.2.1 Data sources and data preparation 

3.2.1.1 Study area and fishery-dependent data sources 

Hawai‘i deep-set gear consists of a single monofilament mainline (3.2–4.0 mm 

diameter), suspended in the water column by a series of floats. Between each float, 

individual, monofilament branch lines are regularly spaced, each terminating with a 

single, mackerel-type bait attached to a circle hook (Boggs and Ito 1993). The target 

depth for bigeye tuna is around 400 m and typical deployment of fishing gear ranges 

from 1,000-3,000 hooks over ~45–80 km of mainline. When targeting bigeye tuna, deep-

set fishermen typically deploy (‘set’), their gear in the morning, allowing it to fish 

(‘soak’) for several hours until the retrieval (‘haul’) begins around sundown. The hauling 
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process may range from four to over 12 hours, depending on the catch and amount of 

gear deployed. 

We derived fishery-dependent data from two sources: ‘logbook’ data recorded 

by vessel captains and ‘observer’ data collected by on-board, independent fisheries 

observers. All deep-set captains are required to record and submit logbooks to NMFS 

which record the times and GPS coordinates of the start and finish of each set and haul 

of gear (i.e., four times and locations per fishing event), the number of hooks deployed, 

and counts of captured fish by species. Deep-set vessels are also required to carry a 

federal fisheries observer, if requested by NMFS, with a fleet-wide target coverage of 

20% of trips per year. Observers collect detailed data on fishing operations, gear 

characteristics, and biological data from both target and non-target catch. Observers 

monitor the entire haul-back of each gear deployment, identifying each captured species 

to the highest taxonomic level possible. Since 2009, observers also systematically 

measure to the nearest centimeter every third fish landed. Most bony fish are measured 

with standard fork-length, while billfish are measured using an eye-fork measurement. 

Observers are also trained to classify and systematically record incidences of 

depredation. Evidence of odontocete depredation is distinct from other sources, such as 

squid or sharks, because toothed whales typically consume the whole fish up to the gill 

plates, leaving only the head attached to the hook (e.g., Secchi and Vaske 1998) (Figure 

8). False killer whales are also known to depredate bait from deep-set gear (Thode et al. 
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2016), but this is not systematically recorded by observers and is thus not considered or 

reported here. It is also likely that whales at times remove entire fish, in which case 

depredation may underestimated or not recorded at all. 

 

Figure 8: Examples of odontocete depredation on three commonly depredated 
catch species: (a) unidentified tuna species, (b) mahi-mahi, and (c) unidentified 

billfish. Note characteristic tooth-rakes on top of the tuna head. Photos courtesy of the 
National Marine Fisheries Service. 

 

3.2.1.2 Overview of multi-stage modeling approach 

We utilized a multi-stage modeling approach to estimate the total biomass of 

target species lost to odontocete depredation in the deep-set fleet. We focused our 

analyses on bigeye tuna, yellowfin tuna (Thunnus albacares), and mahi-mahi (Coryphaena 

hippurus). The tuna species caught in this fishery cannot be reliably distinguished from 

the head and gills of individual depredated fish, so we first modeled expected species 

identity for the two target tuna species (Stage 1). There is only one common species of 

mahi-mahi caught in this fishery and thus this step was only necessary for tuna. We then 

estimated the expected biomass of each depredated fish, by species, by modeling its 

(a)        (b)           (c) 
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expected length and calculating its expected mass from established length-weight 

relationships (Stage 2). We aggregated the estimated biomass from individual fish for all 

observed sets in 5º x 5º x month cells and modeled the expected total biomass of 

depredated fish by species on observed sets (Stage 3). Finally, we used the best models 

of aggregated depredated biomass to predict total depredated biomass for the entire 

fishery (i.e., extrapolating to unobserved fishing sets using logbook records). 

3.2.1.3 Derivation of covariates 

We considered a suite of spatial, temporal, gear, operational, and/or 

environmental variables hypothesized to influence target species type, size, or 

aggregated depredated biomass for Stages 1, 2, and 3, respectively. Operationally, depth 

of gear has an important influence on both species and size composition of catch 

(Bigelow and Maunder 2007). As shoaling and concatenation of the main line makes it 

difficult to estimate the precise depth of gear directly (Bigelow et al. 2006), in both Stages 

1 and 2 we utilized two gear-based variables that indicate the relative depth of an 

individual caught fish within a single set and relative to other sets. First, we calculated 

the standardized distance of each caught fish from the nearest float (HKDIST), such that 

a value of 0 is the first or last hook of the basket, while a value of 0.5 is the very middle 

of the basket. Due to the concatenation of mainline between floats, hooks closer to the 

middle of the basket are expected to be deeper in the water than those near the float 

(Bigelow et al. 2006). Secondly, we used the number of hooks between floats (HBF) for 
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the entire fishing event (a parameter held constant as a boat deploys its gear across 

floats) as a general indicator of gear depth. More hooks between each float generally 

causes the gear to sink deeper (Bigelow et al. 2006). 

We considered a range of static and dynamic environmental variables in all three 

stages including (detailed description and sources in Table 4): depth (DEP), sea surface 

temperature (SST), standard deviation of sea surface temperature (SSTDEV), the log of 

chlorophyll-a concentration (CHLA), mixed layer depth (MLD), sea surface salinity 

(SAL), absolute dynamic topography (ADT), total kinetic energy (TKE), Oceanic Niño 

Index (ONI), and lunar phase (Stages 1 and 2 only). The first four covariates were 

extracted for the 2009-2018 study period using NOAA ERDDAP servers 

(https://coastwatch.pfeg.noaa.gov/erddap/index.html) and the rerddapXtracto package 

in RStudio statistical software, version 1.4.1103 (R Core Team 2018). MLD, SAL, ADT, 

and TKE for 2009-2018 were derived and processed from the EU Copernicus Marine 

Service (https://marine.copernicus.eu/). Spatial resolutions of the data ranged from 

1/12º–1/4º and temporal resolutions from days to months (Table 4). 

For Stages 1 and 2, each environmental variable was associated with the spatial 

location of a single fishing set. As longlines can be tens of kilometers long, we derived 

the geographic centroid of each fishing set from the four observed spatial locations (set 

begin, set end, haul begin, haul end) and then created a bounding box of 0.25º x 0.25º 

around the centroid point, which encompasses the average spatial footprint of observed 
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sets of 250 km2. For environmental variables of a resolution higher than 0.25º x 0.25º, we 

used nearest neighbor resampling to take the average value within this box for each set. 

Similarly, in Stage 3, we used nearest neighbor resampling to standardize covariates to 

the desired spatiotemporal resolution of 5º x 5º x month. 

Table 4: Description of environmental covariates included in this study. 

Covariate Units  Data name and source Original 
spatial 
resolution 

Original 
temporal 
resolution 

Depth m General Bathymetric 
Chart of the Oceans 
(GEBCO) 
Grid1 

15 arc-
seconds 

NA 

Sea surface 
temperature 
(SST) 

°C NASA JPL Multi-scale 
Ultra-high Resolution 
(MUR) SST Analysis 
fv04.12 

0.01° Daily 

SST Standard 
Deviation 
(SSTDEV) 

NA NASA JPL Multi-scale 
Ultra-high Resolution 
(MUR) SST Analysis 
fv04.12 

0.01º Daily 

Chlorophyll-a 
concentration 
(CHL) 

Natural 
log of 
mg•m-3 

NASA Aqua MODIS 
Level 33 

4 km Monthly 

Mixed Layer 
Depth (MLD) 

m Global Ocean Physics 
Reanalysis 
GLORYS12V14 

1/12º Daily 

Surface 
Salinity (SAL) 

1e-3 
 

Global Ocean Physics 
Reanalysis 
GLORYS12V1 

1/12º Daily 

Absolute 
Dynamic 

m Global ocean gridded L4 
sea surface heights and 

1/4º Daily 
 

 

1 https://coastwatch.pfeg.noaa.gov/erddap/info/GEBCO_2020/index.html 
2 https://coastwatch.pfeg.noaa.gov/erddap/info/jplMURSST41/index.html 
3 https://coastwatch.pfeg.noaa.gov/erddap/info/erdMH1chlamday/index.html 
4 https://resources.marine.copernicus.eu/product-download/GLOBAL_REANALYSIS_PHY_001_030 
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Topography 
(ADT) 

derived variables 
reprocessed5 

Total Kinetic 
Energy (TKE) 

m2·s-2 Global ocean gridded L4 
sea surface heights and 
derived variables 
reprocessed 

1/4º  Daily 

Oceanic Niño 
Index (ONI) 

NA NWS Climate Prediction 
Center6 

NA 3-month 
average 

Lunar phase NA Package ‘lunar’7 NA Daily 
 

3.2.2 Modelling approach 

3.2.2.1 Data preparations 

We conducted detailed data explorations prior to model fitting for each Stage to 

identify appropriate inclusion of predictor variables. We assessed collinearity among 

explanatory variables by calculating Pearson correlation coefficients for all pairwise 

combinations of continuous variables, retaining only those with values less than 0.7. 

When two variables with similar ecological meaning were correlated, we retained the 

one with fewer missing values or a clearer ecological relationship to the response. We 

also plotted covariates in histograms, against response variables, and in residual plots 

from preliminary models. 

 

5 https://resources.marine.copernicus.eu/product-
download/SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047 
6 https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php 
7 https://cran.r-project.org/web/packages/lunar/lunar.pdf 
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3.2.2.2 Generalized additive modeling approach 

We used variations of generalized additive models (GAMs) in each of the three 

Stages. GAMs are a regression approach that calculate smooth functions to estimate 

relationships between predictor and response variables (Wood 2017). The GAM 

approach allows flexibility in specifying different terms within a single model, with 

minimal a priori assumptions on the nature of each relationship (Wood 2017). They allow 

for a wide range of distribution families, so that diverse types of response variables can 

be accommodated (Zuur et al. 2009). A link function g() is used to relate a univariate 

response variable Y to a sum of smooth functions of the covariates Xi : 

𝑔(𝐸(𝑌) = 𝛼 +	*𝑓!(𝑋!)	 

where 𝛼 is the intercept and 𝑓! is a smooth function of the covariate 𝑋!. 

Following general approaches outlined in Zuur et al. (2009) and Dunn and 

Smyth (2018), for each species in each Stage, we began model selection from fully 

saturated models with cubic regression splines used for all univariate smoothers and 

tensor product smooths for any interaction terms. We used a cyclic cubic regression 

spline for month to ensure a smooth step from December to January. Splines were 

implemented with a shrinkage parameter, which incorporates a penalty on the null 

space that drives the coefficients of non-contributing variables to zero (Wood 2006). 

These variables were removed after the first iteration, and then backward, stepwise 

selection was used on remaining variables to arrive at a final model (Zuur et al. 2009). 
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All analyses were conducted in RStudio statistical software, version 1.2.5033 (R Core 

Team 2018). Stage 1 and 3 models were implemented with the package mgcv, version 

1.8-31 (Wood 2006, 2007), and Stage 2 models were implemented using the gamm4 

package, version 0.2-6 (Wood and Scheipl 2014). Further detail on each modeling Stage 

is provided below. 

3.2.2.3 Stage 1 – Predicting tuna species for unknown depredated tuna 

Tuna caught in the Hawai‘i deep-set fishery include bigeye, yellowfin, skipjack, 

and albacore and these four species cannot be reliably identified from the head alone. 

Thus, we developed a classification model to predict the probability that each observed, 

odontocete-depredated tuna head was a particular tuna species. I utilized a GAM based 

on multinomial logistic regression, treating the species of tuna (one of four) as an 

unordered, categorical response variable. Covariates considered included gear (i.e., 

depth) and environmental variables described above, as well as space (i.e., latitude and 

longitude coordinates) and time (month) to account for spatial, seasonal, and inter-

annual variation in distributions of tuna species. We also included covariates for set-

specific tuna species proportions, calculated as the number of each tuna species caught 

on the focal set divided by the total number of all tuna caught on that set.  

We removed several candidate variables that were highly correlated with other 

variables or did not have noticeable discriminatory capability for the different species 
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(i.e., the histogram distributions were nearly identical for each species). The resulting, 

fully saturated GAM was of the form: 

 

Tuna Type ~ 𝛽' + s(YFT_prop) + s(SKJ_prop) + s(ALB_prop) + s(Longitude) + s(Latitude) 

+ c(Month) + s(Year) + s(SST) + s(HKDIST) 

 

Multinomial GAMs produce p-values that indicate the ability to discern each class from 

a base or reference class (in this case, bigeye tuna). For the 4-class model, there were 

three sets of p-values for each variable. To arrive at an optimal model, we utilized 

backwards, stepwise model selection, sequentially removing variables that were not 

significant for any of the three other tuna classes. We assessed model fit and prediction 

accuracy by fitting models to a training set of half the available data, and then testing 

those models on out-of-sample test data. We selected models with a higher specificity 

and/or lower AIC. The resulting best model was used to predict, for each individual 

depredated fish, the probability that it was each of the four species of tuna. 

3.2.2.4 Stage 2 – Predicting depredated fish length 

To derive estimates of the length (and ultimately biomass) of observed, 

depredated fish heads, we modeled the length of all intact (i.e., non-depredated), 

observer-measured fish for each of the three focal fish species. We used fork length in 

centimeters for each fish species as a Gaussian-family response variable with an identity 
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link function. Covariates considered included the two gear/depth variables from Stage 1, 

a time/space interaction between month and the latitude and longitude of the centroid of 

the fishing event, consecutive month from 2009-18, and the environmental covariates. 

We included the presence or absence of depredation on the same set of the focal vessel 

as a categorical, parametric variable. Finally, we included set and trip ID as nested, 

random effects to control for variation within a single set and across individual trips. 

The final, saturated GAMs were of the form: 

 

Fish Lengthspecies ~ 𝛽'+ s(Longitude, Latitude, Month) + s(Consecutive Month) + s(HBF) + 

s(HKDIST) + s(DEP) + s(SST) + s(SSTDEV) + s(CHLA) + s(MLD) + s(ADT) + s(TKE) + 

s(ONI) + s(LUN) + Depredation + random(Set ID | Trip ID) 

 

We first removed all variables with a p-value > 0.1 and shrunken coefficients 

(expected degrees of freedom < 1). We then proceeded by removing the non-significant 

or the least significant covariates at each stage and refitting the model. We evaluated the 

prediction accuracy of candidate models at each stage using 5-fold cross-validation, 

fitting each candidate model to five different slices of the data, each time leaving out one 

fifth of the available data to test as novel data. We continued eliminating variables until 

we identified the model with the lowest average root mean squared error (RMSE) across 
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the five folds, using the Akaike Information Criterion (AIC) to help decide between 

models in cases of very similar RMSE values. 

GAMs allow various approaches for constraining the smoothness of individual 

variables to prevent overfitting. We left individual smoothed variables ‘unconstrained’ 

for initial formulations of all saturated models. Following model selection, we tested 

whether assigning a ‘gamma’ value, which constrains the flexibility of the model and 

counteracts overfitting by placing a heavier penalty on each degree of freedom (Wood 

2007, Zuur et al. 2009, Wood 2017), led to further increases in prediction accuracy 

(RMSE) for the best candidate model. 

We used the best candidate model by species to predict the expected fork length 

for each observed, depredated fish head and then used published length-weight 

relationships to convert predicted lengths into predicted mass in kilograms (Uchiyama 

and Kazama 2003, Uchiyama and Boggs 2006). For mahi-mahi, we summed the 

predicted depredated biomass into 5º x 5º x month strata. Given uncertainty in species 

identity for depredated tunas, we derived predicted biomass for both bigeye tuna and 

yellowfin tuna for every depredated tuna and assigned the predicted probability of tuna 

species from Stage 1 to each tuna head. We then resampled the dataset 5,000 times, 

randomly selecting at each iteration a species identity for each tuna head according to 

the predicted probabilities from the multinomial GAM. For each iteration we summed 

all bigeye and yellowfin tuna predicted biomass into 5º x 5º x month strata, and then 
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chose the median biomass across the 5,000 samples as the best estimate of that tuna 

species in each stratum. 

3.2.2.5 Stage 3 – Predicting aggregated depredated biomass 

We used GAMs to model the aggregated, predicted biomass depredated per 

species derived in Stages 1 and 2, using kilograms of biomass per species per 5º x 5º x 

month strata as the response variable. Covariates considered included the 

environmental variables described above, as well as year, month, and a year x month 

interaction term. We used the total number of observed hooks as an offset term to 

account for variations in sampling intensity in each strata (Zuur et al. 2009). Fully 

saturated models for each species were of the form: 

 

Catch Removals (kg) ~ 𝛽'+ s(Year, Month) + s(Year) + s(Month) + s(DEP) + s(SST) 

+ s(SSTDEV) + s(CHLA) + s(MLD) + s(ADT) + s(TKE) + s(ONI) + s(SAL) + offset(Number 

of hooks) 

 

Distributions of the response variable for each species indicated many zeros and 

overdispersion. We thus explored two different model formulations suited to these 

types of data. We first used a tweedie distribution with a log link function, which is a 

flexible, non-negative, continuous distribution that can accommodate large numbers of 

true zeros (Shono 2008, Zuur et al. 2009, Dunn and Smyth 2018). We also explored a two-
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stage, delta approach commonly used for zero-inflated datasets (Shono 2008, Zuur et al. 

2009, Sagarese et al. 2014). This approach involves first modeling the presence/absence 

of depredated biomass in each stratum using a binomial error distribution with a logit 

link function. A separate model is then used to model the conditional presence in non-

zero strata. We used a gamma distribution with a log-link for the presence-only model. 

Both model formulations (tweedie and delta-gamma) were carried through full model-

selection and diagnosis processes. We conducted model selection as described in Stage 2, 

basing decisions of best models on the average RMSE on out-of-sample test data from 5-

fold cross-validation. We also tested whether including a gamma term improved 

prediction accuracy by restricting over-fitting. The tweedie model formulations had the 

highest accuracy for each species and were used in subsequent prediction steps. 

3.2.2.6 Predictions of depredation loss across the fishery 

For each species, the best selected model was applied to the logbook data to 

predict depredated biomass across 5º x 5º x month strata for the entire fishery. To avoid 

inappropriate extrapolations to novel environmental conditions, we constrained 

predictions to only the range of individual environmental covariates present in the 

observed sets. We then summed these predictions into month and year summaries. 

To identify estimates of economic losses to depredation, we extracted data from 

the POP auction in Honolulu, HI, where deep-set fishermen sell their catch following 
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each trip. These data were publicly available from POP Fishing and Marine in 20198, 

although they are no longer available from this location. The data include, for every day 

with auctioned fish catch from 2012–2018, the number of fish sold at auction, the total 

weight of fish sold that day, and the average price per pound. The data are separated 

into ahi (bigeye and yellowfin tuna) and ‘miscellaneous’, which includes any other 

species sold at auction. We calculated the average price per pound per month for each 

category of fish and applied this value to the total biomass losses by month predicted by 

the GAM models. 

3.2.2.7 Detection of depredation hotspots 

We used the model predictions for bigeye tuna removals to calculate the average 

depredation per unit effort (DPUE) across the range of the fishery. This was done by 

summing the predicted biomass in kilograms and the total number of hooks fished in 

each stratum across all years, and then dividing the total biomass by the number of 

hooks for each 5º x 5º cell. We then mapped the predicted DPUE for each month to 

visualize depredation hotspots for bigeye tuna throughout the year across the range of 

the fishery. 

 

8 https://pop-hawaii.com/wp/ 
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3.3 Results 

Between 2009 and 2018, a total of 182,525 sets were made on 13,465 trips by 169 

unique vessels in the Hawai‘i deep-set longline fishery. Observers were present on 

20.8% of trips covering 20.4% of sets, providing a dataset of 37,185 fishing events with 

detailed catch and depredation data. Approximately 85 different fish species were 

recorded as catch, although most were rarely observed. The top 10 caught species 

accounted for 87% of individually captured fish, and bigeye tuna and mahi-mahi 

accounted for nearly half of all retained fish (Table 5). Odontocete depredation on at 

least one captured fish was observed on 2,394 (6.4%) of all observed sets. The number of 

fish depredated per set was right-skewed, with a median of two and a maximum of 63 

depredated fish recorded on sets that experienced depredation. Approximately half of 

trips (48.4%) experienced odontocete depredation on at least one set and 22.6% 

experienced odontocete depredation on two or more sets. Observers recorded 9,428 

individual fish with damage from odontocete depredation, or around 1% relative to the 

total number of individual fish landed and kept for market. Tunas were the most 

commonly depredated fish (70%), followed by billfish (11%), wahoo (5%), and mahi-

mahi (4%) (Table 5). 
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Table 5: Fish species encountered in the Hawai‘i deep-set tuna longline fishery. 
Observations are organized by species as percent of total caught and identified, 
percent of caught species that were landed and kept by vessels, and percent by 

species depredated. Note depredated species are largely lumped into taxonomic 
categories to account for the difficulty of identifying remains of the most frequently 

depredated taxa. 
 

Total Caught Total kept Total Depredated 
 

Species  % of 
total 

cum. 
% 

Species % of 
total 

cum. 
% 

Species % of 
total 

cum. 
% 

1 Longnose 
Lancetfish 

24 24 Bigeye Tuna 35 35 Unidentified 
Tuna 

70 70 

2 Bigeye Tuna 19 43 Dolphinfish 14 49 Unidentified 
Billfish 

11 81 

3 Blue Shark 8 51 Sickle Pomfret 12 62 Wahoo 5 86 

4 Snake Mackerel 8 59 Skipjack Tuna 6 68 Dolphinfish 4 90 

5 Dolphinfish 8 66 Yellowfin 
Tuna 

6 74 Opah 3 93 

6 Sickle Pomfret 6 73 Escolar 6 80 Unidentified 
Pomfret 

2 96 

7 Escolar 5 78 Opah 4 85 Swordfish 1 96 

8 Skipjack Tuna 4 81 Wahoo 4 89 Unidentified 
Bony Fish 

1 97 

9 Yellowfin Tuna 4 85 Shortbill 
Spearfish 

3 91 Longnose 
Lancetfish 

1 98 

10 Opah 2 87 Albacore Tuna 3 94 Escolar 1 99 

 

The selected model for the multinomial tuna discrimination analysis included the 

longitude and latitude of the centroid of the fishing set; year; month; the proportion of 

yellowfin, skipjack, and albacore tuna; and the standardized hook distance. The 

variables that showed the largest influence on species-discrimination were the 

proportion of species and hook location (Figure 9). Higher proportions of the overall less 

common tuna species (i.e., YFT, SKJ, ALB) occurring on the same set were associated 

with a higher probability of occurrence for that species. In other words, the more 
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individuals of a particular species that were positively identified on the same set, the 

more likely an unknown tuna species was also that same species (Figure 9 a-c). 

Standardized hook distance, as a proxy for depth, was also influential for discriminating 

tuna species. Yellowfin and skipjack tuna, and to a lesser extent albacore tuna, were 

more likely to be caught in shallower portions of the set compared to bigeye tuna 

(Figure 9 d-e). 

 
 

 
 

 
 

Figure 9: Statistical relationships between covariates and discrimination of 
three tuna species from bigeye tuna in multinomial GAM. Plots (a) and (d) represent 
discrimination of skipjack tuna from bigeye, (b) and (e) yellowfin from bigeye, and 
(c) and (f) albacore from bigeye. Y-axes are transformed to the probability scale to 
represent the expected probability of each species at particular covariate values. 
Distributions of observed values are indicated by a rug plot along each x-axis. 

Shading reflects 2x standard error curves. 

The mean lengths of bigeye tuna, yellowfin tuna, and mahi-mahi were 111.9 cm 

[SD 23.1], 114.0 cm [SD 25.3], and 85.6 cm [SD 14.3], respectively. The length models that 

(b) (c) 

(d) (e) (f) 

(a) 
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led to the best out-of-sample prediction included the interaction term between spatial 

location and month and the consecutive month term for each of the three focal species. 

The consecutive month variable indicated substantial interannual variation in predicted 

fish length for each species (Figure 10 a-c). The size of bigeye tuna showed a decreasing 

trend over the 10 years assessed, but yellowfin and mahi-mahi did not show clear long-

term trends. The optimal yellowfin tuna model additionally included terms for SST and 

ONI, while the mahi-mahi model included SST, ONI, and MLD (Figure 10 d-h). Larger 

yellowfin tuna lengths were associated with more extreme ONI values, while the 

relationship between mahi-mahi length and ONI was less clear. Conversely, mahi-mahi 

showed a clear positive relationship between length and SST, while the relationship 

with yellowfin tuna was less clear. There was a slight unimodal relationship between 

mahi-mahi length and MLD, with the largest mahi-mahi associated with MLD values 

around 40m. For bigeye tuna, several variables that were considered significant in the 

GAMs (p<0.01) were dropped during model selection, as removing them led to 

increased prediction accuracy. These included ONI, SST, standardized hook distance, 

and the presence of marine mammal depredation on the same set. 
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Figure 10: Statistical relationships between covariates and fork length (cm) for 
three target fish species. Plots (a-c) indicate the relationship between fish size and 

consecutive month for bigeye tuna (a), yellowfin tuna (b), and mahi-mahi (c). Plots (d-
e) and (f-h) indicate additional environmental covariates included in best-fit models 

for yellowfin tuna and mahi-mahi, respectively. Y-axes are of the same scale to 
facilitate comparisons of variable importance on length for each species. 

Distributions of observed values are indicated by a rug plot along each x-axis. 
Shading reflects 2x standard error curves. 

Depredation of bigeye tuna occurred in 34% of 5º x 5º x month strata for which 

fishing effort was observed. In strata with depredation, the mean estimated biomass of 

depredated bigeye tuna was 179.5 kg [SD 225.4] per cell per month. Yellowfin tuna were 

depredated in 13% of observed strata with a mean of 94.4 kg [SD 117.0] when present. 

Mahi-mahi were depredated in 11% of observed strata with mean of 9.3 kg [SD 7.1] 

(

d) 

(

e) 

(

f) 

(

g) 

(

h) 

(a) (b) (c) 

(d) (e) 

(f) (g) (h) 
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when present. GAMs with a tweedie error distribution for the response variable and a 

log link had comparably higher prediction accuracy for each species than the two-step 

delta-gamma models. The best selected models for bigeye tuna, yellowfin tuna, and 

mahi-mahi had explained deviances of 18%, 32%, and 18%, respectively. All three 

included the single temporal covariates year and month (Figure 11), while the 

interaction between year and month was also included for both yellowfin tuna and 

mahi-mahi (not shown). All three species showed lower levels of depredation north of 

the equator in summer months, although this was most pronounced for bigeye tuna and 

mahi-mahi (Figure 11 b, f, and m). The bigeye tuna model indicated a variable and 

slightly positive relationship between predicted depredation and DEP and a nearly 

linear, positive relationship with SST (Figure 11 c-d). The yellowfin tuna model included 

the environmental covariates DEP, CHL, SAL, ADT, and TKE (Figure 11 g-k); and the 

best mahi-mahi model included ADT and MLD (Figure 11 l-o). Some of these patterns 

were relatively weak or showed variable and unclear relationships, while others were 

clearer. Yellowfin tuna and mahi-mahi depredation levels had clear positive associations 

with ADT (Figures 11 j and o). The significant effect between yellowfin depredation and 

salinity showed a mostly flat relationship with a sharp decline at high salinity levels 

(Figure 11 i). 
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Mahi-mahi 
 

   
 

 
Figure 11: Statistical relationships between select covariates and predicted 

depredation (kg) for three target fish species. Plots (a-d) indicate the relationship 
between predicted bigeye tuna catch removals, plots (e-k) show relationships for 

yellowfin tuna, and plots (l-o) for mahi-mahi. Y-axes are of the same scale to facilitate 
comparisons of variable importance on length for each species. Distributions of 
observed values are indicated by a rug plot along each x-axis. Shading reflects 2x 

standard error curves. 

We applied the best selected models for each species to equivalent hook and 

environmental data derived from the logbooks (i.e., all deep-set fishing effort) to predict 

depredated biomass for each species in each 5º x 5º x month strata. We then summed the 

predicted depredated mass for each species to explore monthly and yearly patterns 

(Figure 12a). We then applied monthly averages of auction prices for landed fish to 

estimate the economic costs associated with depredation on each species (Figure 12c). 

The predicted total depredated biomass of bigeye tuna, yellowfin tuna, and mahi-mahi 

from 2009-2018 was 781.8 t [95% CI 523.4–1040.3], 157.5 t [57.8–257.5], and 12.9 t [6.5–

19.2] respectively, with annual means of 78.2 t [52.3–104.0], 15.8 t [5.8–25.7], and 1.3 t 

(l) (m) (n) 

(o) 
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[0.7–1.9], or 95.2 t [58.8–131.7] in aggregate. The average annual estimated cost across all 

three species from 2012-2018 was $1,117,000 USD [$694,000–$1,541,000]. On a finer scale, 

the median predicted catch removal for ahi tuna on sets that experienced odontocete 

depredation was 55.2 kg [52.0–57.9], corresponding to a median cost of $579 USD [$549–

$614]. The median ahi catch removal on trips that experienced depredation at least once 

was 88.0 kg [83.7–92.9 kg] corresponding to $921 USD [$871–$971]. 

 

  
 

     
 

Figure 12: Predicted annual biomass lost by species (a) and total economic 
costs (b) resulting from catch removals by odontocetes in the deep-set fishery. Error 
bars indicate 95% confidence intervals. Also displayed is the total number of hooks 

set annually across the entire deep-set longline fishery (c). 

(

c) 

(a) (b) 

(c) 
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Predicted catch removal rate or DPUE (kg depredated fish / fishing effort) for 

bigeye tuna was averaged across years and mapped for each 5º x 5º x month strata to 

visualize relative depredation rates over the year (Figure 13). Predicted bigeye tuna 

depredation rates were highest in the first and last quarters (November – April) and in 

the southwestern regions of the fishery. Depredation rates were lowest in the summer 

months (June – August). 
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Figure 13: Predicted bigeye tuna depredation rates (kg bigeye tuna removed / 

1000 hooks set) averaged across the 10 study years (2009-2018). The scale is the same 
for each figure, with the darkest green color corresponding to the highest observed 

depredation rate across all months (5.21 kg / 1000 hooks). 
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3.4 Discussion 

We used a multi-stage, tiered modeling approach to derive quantitative 

estimates of catch losses by depredating odontocetes in the Hawai‘i deep-set longline 

tuna fishery. Depredation is relatively rare and variable on a per set basis, but lost catch 

and economic costs can be substantial when they do occur. Similarly, the intensity of 

depredation varies in time and space, but exceeded 100 t and one million USD in 

estimated costs to the fleet in each of the last four study years (2015-18). These values 

may be underestimates also, as fish entirely removed by the whales cannot be counted 

and we do not have a good estimate of the rate at which entire fish are lost or consumed. 

These findings demonstrate the broad-scale significance of odontocete depredation in 

this fishery and help quantify the ecological and economic implications of this 

interaction. 

3.4.1 Depredation patterns 

The estimated rates of occurrence of depredation on a per-set and per-trip level 

in this study are consistent with previous assessments of this fishery (Forney et al. 2011, 

Fader et al. 2021). Forney reported a nearly identical set-level depredation rate of 6% 

extending back to 2003. Summaries of catch rates by species, including depredated fish, 

have also been reported for this fishery and are largely consistent with the present study 

(Oleson et al. 2010, Fader et al. 2021). As shown here, tuna are consistently observed as 

the most frequently depredated species, but odontocetes consume a range of commonly 
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caught species including mahi-mahi, wahoo, and billfishes. Most species were 

depredated at rates that were proportional to their composition of total catch, although 

some were depredated infrequently relative to their overall catch rates. For example, 

sharks, although a common non-target catch in this fishery, are virtually never 

depredated. Depredation on the longnose lancetfish (Alepisaurus ferox) was also rare, 

even though it was the most commonly caught species. This may be, at least in part, due 

to the gelatinous nature of their flesh, which makes it difficult for observers to categorize 

the source of damage for this discard species. 

Most observed, depredated fish were either target species or non-target species 

commonly retained for sale (Table 5). However, to date there have been no detailed 

efforts to quantify the aggregate losses to depredation in this fishery. TEC 2009 reported 

estimates of fish biomass lost and economic implications due to odontocete depredation, 

but these estimates were based on estimates provided by fishermen of the proportion of 

total catch lost per depredated set. The present study utilizes a rich dataset that includes 

unbiased observations of catch and the occurrence of depredation. We built on 

observations of depredated fish to derive minimum estimates of catch removals by 

odontocetes. We also took advantage of the fact that there is a single auction in which 

the vast majority of Hawai‘i deep-set fish are sold, allowing me to estimate the price 

fishermen could have expected to receive had they landed and sold depredated fish. 
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Despite the detailed observations of depredation described here, there were 

notable challenges in scaling up from observed fish remains to biomass estimates from 

the observer -collected data set. Odontocetes typically depredate the entire body of the 

fish, leaving behind only the jaws and gills. Some species, such as mahi-mahi, are still 

relatively identifiable when depredated. Tuna are more challenging, as several species 

are regularly caught and cannot be reliably distinguished by the head alone. We used 

multinomial GAMs to account for uncertainty in tuna species identification when 

aggregating predicted catch removals by species. The models provided strong out-of-

sample classification accuracy on known tuna species, with the strongest predictors 

based on the proportion of species for positively identified, non-depredated fish as well 

as the relative depth on the set. Of note, bigeye tuna is more commonly caught on 

deeper gear than the next two most common tuna species, yellowfin, and skipjack. By 

utilizing this approach, we identified the most likely species to occur based on general 

catch trends and known operational characteristics, while incorporating the uncertainty 

in positive species identification.  

An additional layer of complexity is that observers do not collect morphometric 

measurements that could be used to estimate the size of depredated fish. Bigeye tuna 

caught in this fishery range from 27 cm to 205 cm, and there is considerable variation in 

the size of captured fish seasonally, interannually, and geographically (Woodworth-

Jefcoats and Wren 2020). Thus, simply applying an average mass for each species may 
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be inappropriate as the true value varies greatly depending on where and when the 

vessel caught a particular fish. Since 2009, observers have systematically recorded the 

length of every third landed fish, providing a robust dataset of fish lengths for 

undamaged fish caught concurrently or in similar environmental conditions. We used 

this dataset to develop models predicting fish length for each focal species based on 

spatial, temporal, operational, and environmental covariates. Space and time covariates 

were consistently important in models for each species, indicating a likely cohort and 

recruitment structure, as has been observed in other studies in the region (Woodworth-

Jefcoats and Wren 2020). 

Our approach assumes that depredated fish are otherwise equivalent to non-

depredated, measured fish, such that all fish are equally likely to be selected by a 

depredator species. It is possible that predators could preferentially select either smaller 

or larger fish, for example due to easier handling (smaller) or increased likelihood of 

detection and/or larger reward of capture (larger). Either scenario would bias estimates 

of fish length for unmeasured depredated fish. To better understand this possibility, we 

incorporated a categorical variable in the starting models for fish length indicating 

whether odontocete depredation occurred on the same set. This variable was not 

included in the best-predicting model for any of the three species, although it was 

marginally significant and one of the last variables to be removed from the bigeye tuna 

models during model selection. The direction of the effect suggested that non-
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depredated, measured bigeye tuna were slightly larger on sets where depredation did 

not occur. There are at least two mechanisms that could explain this pattern. It is 

possible that depredation occurs more commonly on sets where the fishery catches 

smaller tuna on average. This could be driven by space and time patterns of fishery 

effort and depredation occurrence, for example if fish were larger in northern areas 

where the fishery experiences lower depredation rates (Forney et al. 2011, Fader et al. 

2021). The space, time, and/or environmental covariates would likely account for this 

pattern however, rather than a categorical predictor of depredation. An alternative 

explanation is that depredators are more likely to consume larger fish when they 

encounter a set, and thus any remaining, non-depredated fish on that set, which are the 

only ones available to be measured, are actually smaller than would otherwise be 

expected. False killer whales are known to attack and consume large, pelagic fish such as 

tunas, mahi-mahi, swordfish, and billfish in the wild (Baird et al. 2008, Baird 2009). 

There is little reason to suspect that this large predator would preferentially select 

smaller fish, and indeed, consuming hooked and restrained fish may allow them to 

consume even larger fish than they could capture if the prey was free-swimming. This 

hypothesis also aligns with reports by fishermen suggesting that whales prefer to 

depredate large ahi tuna (TEC 2009). Thus, this pattern may suggest a slight 

underestimate of depredated fish length and negatively bias the aggregated estimates of 

depredated biomass. Any effect is likely to be very small regardless, as the statistical 
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effect of larger fish on non-depredated sets was approximately a one-centimeter 

difference. 

 The final step to estimate levels and patterns of depredation across the fishery 

was to scale estimates of catch removal from the observed dataset, representing 

approximately 20% of total deep-set effort, to the entire fleet. We utilized a catch 

standardization approach, commonly used in stock assessment analyses to estimate 

relative abundances from CPUE data (e.g., Shono 2008, Tascheri et al. 2010, Mateo and 

Hanselman 2014). This approach models CPUE relative to covariates, and then predicts 

abundance, or in this case, biomass of depredated fish, in areas with only effort and 

covariate data. To better detect and account for broad-scale patterns of depredation, and 

because depredation is relatively rare on a per-set basis, we aggregated observed 

depredation and environmental covariates into 5º x 5º x month strata. This still resulted 

in a high number of zero observations, and thus we explored several methods to account 

for zero-catch data. 

Tweedie distributions in a GAM framework provided the best predictions, fit to 

model assumptions, and amount of deviance explained and were used to extrapolate 

depredation rates into all fished strata, including those without detailed observer data. 

This allowed estimates of catch removals for focal species across the fishery, as well as 

identification of potential hotspots of higher depredation risk. Several environmental 

covariates were influential in predictions for each species. Bigeye tuna catch removals 
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increased with increasing SST, which is consistent with anecdotal reports of fishermen 

suggesting that depredation is less likely in waters cooler than 67-68ºF (~19–20ºC) (TEC 

2009). Depredation intensity was positively associated with ADT for both yellowfin tuna 

and mahi-mahi, which is consistent with observations in Fader et al. (2021) that the 

probability of depredation is lower when fishing in waters with lower ADT values. 

Predicted depredation intensity for bigeye tuna, aggregated by month across the 

10 years of the study, indicated the highest rates of total bigeye catch removals from 

odontocete depredation in the first and last quarters of the year. There were also 

apparent spatial hotspots in the southwest and, to a lesser extent, the northeastern areas 

of the fishery, while depredation rates were low in the northernmost parts of the fishery 

in all months. These patterns are consistent with previous quantitative assessments, 

which have indicated relatively lower depredation rates north of the equator in summer 

months when the fleet fishes farther to the north (Forney et al. 2011, Fader et al. 2021), as 

well as anecdotal information from fishermen who have reported potential depredation 

hotspots in the south and southwest portions of the fishery (TEC 2009). 

3.4.2 Catch removals and implications 

The present study suggests that depredation is relatively rare on a per-set basis, 

but when it occurs, it can result in high rates of lost catch on individual fishing sets or 

trips. The median estimated cost, when depredation occurs on a set, was just under $600 

USD, although the worst 10% of depredated sets experienced estimated losses of more 
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than $2,300 USD. The worst 10% of depredated trips exceeded $3,500 in estimated losses. 

Due to the long durations and great distances traveled to reach fishing grounds, costs 

are already high in the Hawai‘i longline fishery, regularly exceeding $30,000 per trip 

(Chan and Pan 2021). The prospect of losing several thousands of dollars in a single day 

of fishing is thus understandably a significant concern for longline fishermen. These 

estimates also do not account for additional costs of depredation that are difficult or 

impossible to quantify, such as bait lost to depredating whales or wasted on depredated 

fish. There are also opportunity costs such as lost gear, crew and vessel time, and costs 

likely incurred to make up for lost catch, as suggested in other fisheries subject to 

odontocete depredation (Gilman et al. 2007, Peterson et al. 2014, Tixier et al. 2020a). 

When considered in aggregate, total losses to depredation by odontocetes are 

economically and ecologically meaningful. We estimate that between 100-150 t and over 

one million USD in losses of the three focal species were incurred in each of the last four 

years of the study period, mostly due to depredation on bigeye tuna. The Hawai‘i 

longline fishery operates on regional catch limits for bigeye tuna set by two Regional 

Fisheries Management Organizations (RFMOs): the Inter-American Tropical Tuna 

Commission (IATTC) in the Eastern Pacific Ocean and the Western and Central Pacific 

Fisheries Commission (WCPFC). The fishery experienced partial closures in each of the 

10 study years by reaching catch limits (Ayers et al. 2018). If catch removals from 

depredation were included in stock assessments, these limits would be reached more 
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quickly, and the additional effort to account for depredated catch removals may 

indirectly increase fishing pressure on target stocks. The total annual loss of 100-150 t 

may seem relatively small on an ocean-basin scale in which 72,391 t of bigeye tuna was 

caught by longlines in 2019 in the WCPFC area alone, but the Hawai‘i fishery accounts 

for only 5% of total landed bigeye in the Central Pacific Ocean (WCPFC 2019). If this 

analysis was extended to all fishing effort managed by these two RFMOs, the scale of 

catch losses caused by odontocete depredation is likely sufficiently large to warrant 

inclusion in stock assessments. 

Finally, we documented an increase in catch removals and associated economic 

losses over the study period. Much of this increase is undoubtedly due to the increase in 

fishing effort observed in the fishery (Figure 12c). The peak in 2016-2017 is not entirely 

explained by aggregate fishing effort, however, and corresponds to an evident increase 

in depredation rates for bigeye tuna (Figure 12a). Interestingly, yellowfin tuna and 

mahi-mahi depredation rates show distinct patterns over the decade, with a small 

increase in yellowfin since 2016 and a general decline in the depredation rate for mahi-

mahi. wet is unclear whether these patterns were driven by changes in distributions or 

behaviors of target species, odontocetes, the fishery itself, or some combination of these 

factors. 
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3.4.3 Conclusions 

This study uses a novel approach for estimating catch removals from odontocete 

depredation in longline fisheries and identifying hotspots of depredation activity. The 

estimates of loss derived here can help fishery managers and fishermen to better 

understand the economic and ecological consequences of depredation and inform 

mitigation strategies by helping to understand drivers and predictors of depredation 

patterns at large spatial and temporal scales. Such information is important for 

improving ecosystem-based fisheries management and refining stock assessments to 

account for mortality of target species caused from depredation. This approach also 

demonstrates the importance of detailed observer data to document and contextualize 

patterns of relatively rare, but important, events such as depredation and bycatch. 
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4. Behavioral patterns of pilot whales near longline 
fishing vessels 
4.1 Introduction 

Direct interactions with fishing gear are a major conservation threat to marine 

mammal populations worldwide (Mitchell 1975, Read 2008, Brownell Jr. et al. 2019). 

Such interactions can be the result of passive entanglement or purposeful entrapment in 

gear, but bycatch of odontocetes, or toothed whales, may also be driven by whales 

feeding directly on bait or catch secured on fishing gear (Gilman et al. 2007, Read 2008, 

Hamer et al. 2012). This behavior, known as depredation, is particularly common and 

costly in longline fisheries, where bait and catch are typically unprotected prior to gear 

retrieval (Read 2008, Hamer et al. 2012). Bycatch of depredating whales can occur when 

animals become hooked or entangled in the gear itself. 

Pelagic longline gear is suspended in the water column and targets fish at depths 

from tens to hundreds of meters, with gear extending horizontally over tens of 

kilometers in a single fishing event (Watson and Kerstetter 2006, Ward and Hindmarsh 

2007). Thus, depredation events in pelagic longline fisheries are difficult to characterize, 

because the behavior may occur at depth or at some distance from the fishing vessel. 

Evidence of depredation may consist only of the absence of bait or heads of target fish 

remaining on retrieved hooks, because odontocetes have sequentially removed most or 

all baits (Thode et al. 2016, Bayless et al. 2017) or eaten the bodies of captured fish (e.g., 

Secchi and Vaske 1998). Observations of bycatch are also rare and depend on on-board 
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observers to carefully report details of the interactions; events often occur so quickly that 

even the species of whale may be difficult to ascertain (Forney et al. 2011, Baird 2019). 

Advances in satellite telemetry have provided important insights into the 

behavior of odontocetes around longline gear and, in some cases, into depredation 

events themselves. Such observations can provide insight into the spatial scales of 

interactions and the nature of whale behavior near fishing gear. For example, Anderson 

et al. (2020) observed satellite-tagged false killer whales (Pseudorca crassidens) orienting 

their movements towards pelagic longline gear most frequently during hauls, although 

they did not do so every time they were within detection range of the gear. Satellite-

tagged killer whales (Orcinus orca) displayed attraction to Norwegian herring purse 

seine vessels at distances of up to 20 km (Mul et al. 2020), and a satellite-tagged killer 

whale and sperm whale (Physeter macrocephalus) followed a demersal longline vessel in 

the Southern Ocean for 302 km and 182 km, respectively (Towers et al. 2019). These 

insights can help provide behavioral context for interactions between fisheries and 

odontocetes and provide the basis for development of potential mitigation strategies. 

The northeast continental shelf ecosystem off the East Coast of the United States 

is an important foraging ground and habitat for many cetaceans as well as key fishing 

grounds for commercial and recreational fisheries (Kenney et al. 1997, Thorne et al. 2017, 

Stepanuk et al. 2018). The U.S. large pelagics longline fishery targets pelagic swordfish, 

tunas, and sharks in this area, and both long-finned (Globicephala melas) and short-finned 



 

133 

(Globicephala macrorhynchus) pilot whales depredate bait and catch and become hooked 

or entangled in gear as a result (Garrison 2007). Short-finned pilot whales, in particular, 

inhabit the same shelf-break and canyon habitats that are heavily used by the pelagic 

longline fleet in the Mid-Atlantic Bight (MAB) area (Garrison 2007, Thorne et al. 2017, 

Stepanuk et al. 2018, Thorne et al. 2019). 

Short-finned pilot whales are deep-diving odontocetes that forage on deep-water 

squid and fish in this area (Mintzer et al. 2008, Quick et al. 2017). Depredation on bait 

and target catch may reduce the energetic costs of foraging for pilot whales, but this 

behavior also increases the risk of serious injury or mortality through hooking or 

entanglement in fishing gear. Bycatch of short-finned pilot whales exceeded statutory 

limits in this fishery during eight of ten years from 2010-2018 (Fader et al. 2021b). As a 

result, a Take Reduction Team, mandated by the U.S. Marine Mammal Protection Act, 

implemented a number of mitigation measures intended to reduce the mortality of pilot 

whales in this fishery, including restrictions on the length of mainlines and training in 

safe handling and release of marine mammals (74 FR 23349) (Federal Register 2009). 

Despite these measures, depredation and bycatch of pilot whales continues to be a 

problem in this fishery, perhaps because the incentive to fish in prime pilot whale 

habitat, or the incentive for whales to depredate bait and catch is so strong. 

Recent studies combining satellite telemetry of pilot whales and fishery-

dependent data characterized the spatiotemporal overlap of whales and fishing vessels 
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(Thorne et al. 2017, Stepanuk et al. 2018, Thorne et al. 2019). These studies suggested 

that, at broad scales, pilot whales forage in the same areas targeted by the fishery, along 

the shelf break and in deep water canyons. The fine-scale behavior of individual whales 

near fishing gear is less-well understood but such information could help inform 

potential mitigation strategies such as move-on rules (Dunn et al. 2014, Werner et al. 

2015). Here we use hidden Markov models (HMMs) to analyze a rich dataset of 

movements of satellite-tagged pilot whales in relation to the distribution of pelagic 

longline fishing activities. We first characterize the typical movement behavior of tagged 

whales and then explore whether whales react to or change their behavior near fishing 

gear. Our work is designed to inform conservation strategies to reduce the frequency 

and severity of such interactions. 

4.2 Methods 

4.2.1 Satellite telemetry 

We deployed 19 Wildlife Computers SPLASH10 satellite-linked time-depth 

recording (SLTDR) tags in the Low Impact Minimally Percutaneous External-electronics 

Transmitter (LIMPET) configuration (Andrews et al. 2008) on short-finned pilot whales 

off Cape Hatteras in 2014-2017. Tags were deployed from a 9.1 m rigid-hulled boat using 

a pneumatic projector and secured to the dorsal fin or base of the dorsal fin with two 

titanium darts with backward facing petals. SPLASH10 tags deployed in 2014-2016 were 

programmed to transmit position data and compressed depth data through the Argos 
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system for 10-17 hours/day for 20 days and were then duty-cycled to transmit on 

intervals of every three or five days. SPLASH10 tags deployed in 2017 were 

programmed to transmit for 17 hours per day and were not duty cycled. We restricted 

our analyses to full days of transmission before duty-cycling began. We also truncated 

the data record from one additional whale (GmTag182) because it was part of a 

controlled exposure experiment on September 12, 2017, in which the animal was 

exposed to mid-frequency active (MFA) sonar signals. All other tagged whales were 

greater than 300 km from the source of the signals at this time and thus their behavior 

was unlikely to have been affected by the sonar signals. 

Argos SLTDR tags are prone to gaps in diving records due to data transmission 

limitations and the behavior of deep-diving animals (Quick et al. 2019) (Figure 14). We 

discarded data from any tags that had both more than three percent of the total records 

missing and if any single gap was greater than four hours. In a few cases, multiple 

whales were tagged in the same social group or on the same or subsequent days and 

some of these whales showed similar behavior over the course of their tracks. To avoid 

pseudoreplication, we removed duplicative tag records from either the animal with the 

shortest track or the track with the longest duration of diving gaps in the diving record. 

Ultimately, we removed five tags due to gaps in dive records and three tags due to 

pseudoreplication, leaving 11 tag records on which we focused subsequent analyses 

(Table 6).  
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Figure 14: Two example tags, one with many gaps in the dive record (a) and 

one with very few gaps (b). Gaps are defined as any break in the dive record longer 
than two minutes. 

(

b) 

(a) 

(b) 



 

137 

4.2.2 Data processing 

Estimates of animal locations were obtained through Service Argos using the 

Kalman algorithm and processed through the Douglas Argos-Filter (Douglas et al. 2012).  

All location class ‘Z’ positions and unreasonable positions based on the maximum rate 

of animal movement were discarded (Douglas et al. 2012; maximum rate of movements 

= 18 km h–1, maximum redundant distance = 5 km). The resulting filtered Argos data 

were then fitted to a continuous-time correlated random walk (CRW) model using the 

momentuHMM package, version 1.5.1 (McClintock and Michelot 2020), which uses a 

wrapper function to implement the Crawl package. The CRW model is a continuous-

time model that accounts for the irregular time intervals between positions available 

from Service Argos. It estimates true locations while accounting for error in the Argos 

telemetry data and regularizing the output to consistent, specified time intervals. We 

used a three-hour time interval which we determined suitable based on an average lag 

between observed Argos locations of 93 minutes and an average number of 15 positions 

per day (Table 6).  

Tags deployed in 2014-2015 were programmed to record all dives exceeding 20 

(2014) or 30 m (2015) and 30 seconds. To minimize gaps in time series of deep diving 

data, 2017 tags were programmed to only record dives exceeding 75 m and 30 seconds. 

We standardized tags across all years by removing any recorded dives shallower than 75 

m from all tags, counting these events as part of surface behavior in subsequent 
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analyses. To associate diving behavior with the location information, which occurs at 

much coarser temporal resolution than individual dives, various summaries dive data 

were associated with each regularized three-hour time interval in the CRW locations. 

Specifically, we calculated the number of dives observed exceeding particular maximum 

depth thresholds (200 m, 400 m, and 600 m), as well as the total duration of time spent 

on dives that exceeded these thresholds, within a three-hour window of the predicted 

location. 

 

Table 6: Summary of raw short-finned pilot whale SLTDR data considered for 
analysis. 

Animal ID Deployment 
Date 

Pre-duty 
cycle 
duration 
(days) 

No. of 
Locations 

Avg. 
Locations 
d-1 

Included 
in HMM 
analysis 
(Y/N)* 

GmTag085 5/14/14 13.3  240 17.1 Y 
GmTag093 6/11/14 19.0  311 16.4 N (gaps) 
GmTag098 9/11/14 19.1  284 14.9 N (PR) 
GmTag100 9/11/14 19.0  308 16.2 Y 
GmTag123 5/16/15 13.9  225 16.1 N (gaps) 
GmTag127 5/19/15 19.1  352 18.5 Y 
GmTag135 10/15/15 19.1  331 17.4 Y 
GmTag138 10/20/15 19.0  355 18.7 N (gaps) 
GmTag172 5/10/17 32.8  512 15.1 Y 
GmTag173 5/11/17 23.8  346 14.4 Y 
GmTag174 5/11/17 31.4  492 15.4 Y 
GmTag175 5/16/17 25.6  316 12.2 Y 
GmTag176 5/16/17 11.8  163 13.6 N (PR) 
GmTag177 5/17/17 28.3  444 15.3 N (gaps) 
GmTag178 5/17/17 18.7  283 14.9 N (PR) 
GmTag180 5/17/17 19.4  291 14.6 Y 
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GmTag181 8/20/17 30.9 444 13.9 Y 
GmTag182 8/20/17 29.5  259 10.8 Y 
GmTag183 8/20/17 32.2  474 14.4 N (gaps) 
All tags  425.9 6,430 15.1  
Tags included in 
HMM 

 263.9  3,891 14.8 11 

* ‘gaps’ were tags removed because of substantial gaps in diving data, ‘PR’ indicates 
tags remove because of concerns with pseudoreplication. 
 

 

4.2.3 Pelagic longline fishery data 

Pelagic longline captains are required to submit logbooks to the National Marine 

Fisheries Service (NMFS) recording the times and GPS coordinates of the start of each 

set of gear, the number of hooks deployed, and counts of captured fish by species. When 

requested by NMFS, vessels are also required to carry a federal fisheries observer, with a 

fleet-wide target coverage of 12-15% of trips per year (74 FR 23349) (Federal Register 

2009). Observers collect detailed data on fishing operations, gear characteristics, and 

biological data from both target and non-target catch. To explore overlap with tagged 

whales and potential fishery-whale interactions, we obtained anonymized vessel 

logbook and observer-collected data for pelagic longline vessels fishing from 2014-2017 

in the Mid-Atlantic Bight (MAB), South Atlantic Bight, Northeast Coastal, Florida East 

Coast, and Sargasso Sea fishing areas. 

We used logbook data in the main analyses because this data set includes all 

fishing events. We utilized observer data for exploratory analyses and to summarize 

operational characteristics of fishing activity in more detail. Pelagic longlines can be tens 
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of kilometers long and fishing events may exceed 24 hours from the beginning of setting 

gear until the last piece of gear is retrieved. The starting time and location of a fishing 

event is thus only an approximate representation of fishing activity. To better 

understand the spatial scale or footprint of a single fishing event, we calculated the 

maximum spread of the fishing gear for each observed set (i.e., the maximum Euclidean 

distance across all locations recorded by an observer for a single set). To assess whale 

behavior near fishing activity and best account for the full duration of a potential fishing 

event, we identified the distance and angle of each whale estimated position to the 

nearest fishing vessel within three hours before the start of fishing to 21 hours following 

the start of fishing. This accounts for the three-hour step-length of the estimated whale 

tracks and the potential for vessel movement to influence whale behavior before gear is 

placed in the water. We selected 21 hours following the beginning of the set as this 

captures the duration of fishing for most (75%) fishing events recorded by observers. 

4.2.4 Whale behavior 

We assessed whale behavior using hidden Markov models (HMMs), which are 

discrete, state space models that use unsupervised classification to infer unknown or 

hidden state sequences, such as behavioral patterns, from observed, state-dependent 

processes (McClintock et al. 2020). As we did not know a priori what effects, if any, 

fishing vessels may have on whale behavior, we conducted the analysis in two stages. 

We first modeled whale behavior without including information on nearby fishing 
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activity to determine baseline behavioral patterns. We did this in two steps, first by 

modeling predicted whale locations and summary dive behavior in three-hour time 

steps. As a great deal of resolution in the dive time series is lost by summarizing over 

multiple hours, we also built a second model considering only the time series of dive 

data, thus ignoring location but accounting for every dive over 75 m for the entire tag 

record. 

Following exploration of baseline pilot whale behavior, we incorporated 

additional data streams and covariates associated with nearby fishing activity, to test 

several hypotheses for how the presence of fishing activity might influence whale 

behavior. Specifically, we explored whether whales biased movement towards (i.e., were 

attracted to) the locations of fishing vessels, whether the presence of fishing vessels 

influenced the movement parameters of tagged whales (i.e., step length, angle of 

movement, and dive behavior), and whether the vessel distance influenced the 

transition probability between states. 

We built models iteratively for each stage, starting with simple formulations of 

models and adding complexity to identify the best fitting models in each case, using 

Akaike’s Information Criterion (AIC), examination of pseudo-residual plots, and 

assessment of parameter estimates to decide between competing models. Each candidate 

model included “data streams,” or observed time-series of behavior, which were each 

modeled using an appropriate distribution. Covariates were then added to models to 
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allow the potential influence of covariates on transition probabilities between identified 

states, the distribution parameters describing different data streams, or both. For the 

best supported models, we used the Viterbi algorithm (Forney 1973) to identify the most 

likely sequence of states based on the estimated state-dependent distributions for 

observed data streams and the transition probabilities between states. We fitted the 

models using maximum likelihood methods in the R package momentuHMM, version 

1.5.1 (McClintock and Michelot 2020). 

4.2.4.1 Stage one (no fishing activity) 

In the location-based model in the first stage, we included step length, turning 

angle, and the number of dives as observed data streams, modeled as gamma, wrapped-

Cauchy, and Poisson distributions, respectively. We first tested whether two-states 

(travel and area-restricted search (ARS)) or three-states (travel, ARS, and rest) provided 

a better fit to the data. In each case we constrained the traveling state to have longer step 

lengths and greater angle concentration of movement relative to ARS (2-state version) or 

resting behavior (3-state version). And, in each case, we explored whether including the 

number of dives exceeding 200 m, 400 m, or 600 m as the dive data stream led to the best 

model fit and discrimination of behavioral states. Model formulations with different 

dive formulations cannot be compared by AIC as the underlying data differs, thus we 

could only assess pseudo-residual plots and parameter estimates to make comparisons 

between models with different summary dive data metrics. We also used the cosinor 
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function in MomentuHMM to incorporate a 24-hour, cyclical pattern as a covariate on 

dive behavior. 

We approached the dive-only model in a similar way, testing two- and three-

state models and building on complexity iteratively. We did not consider more than 

three states, because previous studies on the same population of pilot whales, using 

high-resolution, but short duration, digital acoustic recording tags (DTAGs), identified a 

four-state model as the best descriptor of behavior (Quick et al. 2017). Quick et al. (2017) 

included dives starting at 20 m and their shallowest state included dives occurring 

nearly exclusively below 75 m. As the dive records in our study were limited to dives 

greater than 75 m, we considered a maximum of three states. We included the maximum 

depth and total duration of the dive in the dive-only model, both modeled as gamma 

distributions. We tested the effect of including the 24-hour, cosinor variable on the state 

transition probabilities as well as on the individual parameter estimates. 

4.2.4.2 Stage two (including fishing activity) 

A three-stage model best described whale behavior in the absence of fishing 

activity information for the location-based model in the first stage. Thus, for the second 

stage, we added a fourth, “vessel-associated” state, to explore whether the presence of a 

fishing vessel influenced whale behavior. In addition to allowing the model to fit a new 

state, we also incorporated the distance to the nearest fishing vessel as an additional 

data-stream, modeled as a Weibull distribution. As the nearest fishing vessel to a whale 
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location ranged from less than 5 km to greater than 1,000 km, we constrained the scale 

parameter of the distribution to be less than 35, which effectively restricted the vessel-

associated state from occurring beyond approximately 100 km from the nearest fishing 

vessel. Because of this constraint, we did not include the effect of scaled boat distance as 

a separate covariate on transition probability parameters. We also constrained the shape 

parameter of the Weibull distribution for all four states to be less than three, which helps 

avoid excessively peaked distributions (McClintock et al. 2013). 

We again started with a covariate-free model for the four-state model, including 

just the four states and data streams. We first added the same 24-hour cosinor covariate 

on dive behavior. To investigate the potential for bias of whale movement to fishing 

activity, we included the Euclidean distance between whale locations and the nearest 

fishing activity as a covariate on the turn angle concentration parameter of the wrapped 

Cauchy distribution for the boat-associated state. We also included the angle to the 

nearest vessel as an angular covariate, weighted by distance, to determine whether the 

strength of bias varied with distance. We also included distance to fishing activity as a 

covariate on the step mean parameter and dive lambda parameter. 

4.3 Results 

4.3.1 Data overview 

The duration of tag records for the 11 whales prior to duty-cycling ranged from 

11.8 to 32.8 days and included 3,891 Argos locations, averaging 14.8 location messages 
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per day (Table 6). This corresponded to 2,032 regularized steps at three-hour intervals 

after processing as a CRW through the Crawl function. The total number of dives 

recorded (i.e., any submergence exceeding 75 m and 30 seconds) was 9,800, with 2,754 of 

these dives exceeding 600 m. The movements of tagged whales varied from following 

the continental shelf-break to swimming far offshore, and even traveling south to coastal 

waters off the Florida coast (Figure 15). 

There were 19,056 pelagic longline sets deployed across the study area between 

2014-2017, with 6,802 of these occurring in the Mid-Atlantic Bight. There was an 

observer present on 2,402 (~13%) of all fishing sets and 924 of the sets in the MAB 

(~14%). The median length of mainline deployed for a single fishing set, as reported by 

captains in logbooks, was 37 km (IQR 30–50) and the median number of hooks deployed 

per set was 694 (IQR 580–850). The median spatial spread, or maximum Euclidean 

distance, across a single set, was 35 km (IQR 25–46 km). The median time that a set was 

initiated was 18:23 Eastern Standard Time (EST), and the median set duration (from the 

time that gear was first placed in the water to the last piece of gear brought on board the 

vessel) of observed sets was 18.8 h (IQR 16.1–20.7 h). A total of 116 pilot whales were 

recorded as bycatch on 97 (4%) of the observed sets, with marine mammal depredation 

occurring on 6% of all observed sets (9% of sets had either bycatch or depredation). The 

median distance of CRW pilot whale locations to the nearest fishing event was 78 km 
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(IQR 27–166 km). Pilot whales spent approximately 60% of their time within 100 km of 

fishing activity and 18% of their time within 20 km. 

 

(a) 
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(b) 

 

Figure 15: Map of individual tracks of short-finned pilot whales re-sampled to 
a three-hour time step in a continuous-time correlated random walk model. 2014-15 

tags (a) and 2017 tags (b). 

 

4.3.2 Whale behavior 

4.3.2.1 Stage one (no fishing activity) 

In the first analysis stage, there was strong support for a three-state model. Using 

the number of dives exceeding 600 m (deep dives) as the diving data stream provided 
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the best state discrimination and model fit and was used in all remaining analyses. 

Additionally, the best-supported model included the effect of hour of day on the 

number of deep dives per three-hour interval. Including the hourly covariate in the 

formula for state transition probabilities was not favored by AIC relative to the single 

covariate version. 

State 1 seemed to indicate a transiting or faster movement behavior, with the 

longest step lengths and highest angle concentration (indicating more directional 

persistence). State 2 had the shortest step lengths, smallest angle concentration, and the 

fewest number of deep dives, potentially indicating a resting phase. State 3 had the 

greatest number of deep dives, with moderate step lengths and angle concentration, 

possibly indicating a foraging phase. The effect of hour of day was most pronounced on 

state 3. The model indicated that tagged whales made more deep dives during the 

morning hours (EST) than in the late afternoon or evening (Figure 16d). Individual 

whales varied in the amount of time spent in each state, ranging from 10-47% for state 1, 

4-68% for state 2, and 7-60% for state 3. Taken as a whole, the average time in each state 

across whales was 31%, 35%, and 35%, respectively. 
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Figure 16: Results for the best Stage 1 model (no fishing effects). Fitted state 
dependent parameter distributions (colored lines) and observed data (gray bars) (a-c). 

Covariate effect of hour of day on number of deep dives (> 600 m) per three-hour 
interval in state three (ARS) (d). 

The best dive-only model also supported three states and included the hourly 

covariate on the state transition probabilities. The best model did not include a direct 

effect on the depth or duration parameters themselves. The three states included a 

shallow dive state (state 1) with a mean depth of 209 m (SD 84.7 m) and duration of 9.0 

minutes (SD 2.7 min), a medium dive state (state 2) with a mean depth of 439 min (SD 

111 m) and duration 12.6 min (2.3 min), and a deep state (state 3) with a mean depth of 

752 m (SD 132.1 m) and duration 16.9 min (SD 2.2 min) (Figure 17a-b). Hour of day had 

(c) (d) 

(a) (b) 
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the largest effect on states 1 and 3, with state 3 slightly more likely in the morning hours 

(EST) and state 1 more likely from late afternoon to very early morning (Figure 17c). On 

average, state 2 was most common with an average of 48% of time spent across whales, 

followed by state 3 (29%) and state 1 (23%). All individual whales engaged in all diving 

states, ranging from 15-33%, 9-72%, and 11-55% for states 1, 2, and 3, respectively. 

 

  
 

 
Figure 17: Results for the best-fit dive-only model. Fitted state dependent 

parameter distributions (colored lines) and observed data (gray bars) (a-b). Covariate 
effect and 95% confidence intervals of hour of day on the stationary probability of 

dive state for all tags (c). 

(a) (b) 

(c) 
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4.3.2.2 Stage two (including fishing activity) 

The relative parameter values for the baseline behavioral states (States 1, 2, and 

3) were largely unchanged from the three-state compared to the four-state model, when 

we included proximity to fishing vessel as a data-stream (Figure 18a-c). The distribution 

for the vessel parameter indicated that a distinct fourth state occurred at distances up to 

no more than 50 km from the nearest fishing activity. The other three states all occurred 

over a greater range of distances from fishing activity, although state 2 (resting), and to a 

lesser extent state 3 (foraging), tended to occur most commonly within 100-200 km of 

fishing locations. At the mean distance to the nearest boat for the vessel state (~16 km), 

whales had relatively short step lengths, low angle concentration, and medium number 

of deep dives (Figure 18a-c). 

We sequentially explored a range of possible model structures in which the 

distance and/or angle to the nearest vessel could influence the state-dependent 

probability distributions of parameters in the boat state. The best fit model based on AIC 

included the effect of scaled distance to nearest vessel on the number of deep dives and 

step length for state 4. The effects of vessel distance on the two parameters were 

marginal and characterized by high variance. However, the closer whales were to a 

fishing vessel, the shorter their step lengths and fewer dives beyond 600 m (Figure 19). 

An additional model that included the effect of vessel distance on angle concentration 

was nearly identical in AIC (< 1 AIC unit) to the best-fit model, and a third including 
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angle and distance to vessel covariates on the mean angle movement parameter was also 

only slightly worse in AIC. However, the effects of vessel distance and angle on pilot 

whale movement angle were minor in both models, and thus, in combination with the 

worse AIC scores, there was not a strong reason to consider them further or to be better 

fits than the simpler model. 

 
 

  
 

  
 

Figure 18: Results for the best Stage 2 model (with fishing effects). Fitted state 
dependent parameter distributions and observed data (gray bars), showing step 

length (a), angle (b), number of deep dives (c), and distance to nearest fishing boat (d) 
for each state. 

 

(a) (b) 

(c) (d) 
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Figure 19: Estimated effects of distance to the nearest fishing activity on step 
length (a) and number of deep dives per 3 h interval (b). 

 

 

Figure 20: Time series, pseudo-residual plots, and auto correlation function for 
all four data streams (step length, angle, number of deep dives, and distance to 

nearest boat) for the best-fit four-state model. 

(a) (b) 
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Global state decoding using the Viterbi algorithm assigned 16% of the overall 

three-hour time steps to state 1, 26% to state 2, 32% to state 3, and 26% to state 4 (Table 

7). Individual whales varied in the amount of time spent in each state, including the 

vessel state (state 4), in which tagged whales spent from 8 to 58% of time. State showed 

strong persistence, with the probability to persist in the same state from one time step to 

the next near or exceeding 90% for all four states (Table 8). Whales were most likely to 

enter state 4 from the resting state, but this with a low probability (~6%). 

 

Table 7: Proportion of time steps assigned to each state in the four-state model. 
States were assigned by global state decoding of the hidden Markov model using the 

Viterbi algorithm. 
 

States (prop. time) 

Whale ID 1 2 3 4 
GmTag085 0.03 0.54 0.04 0.39 
GmTag100 0.16 0.03 0.51 0.30 
GmTag127 0.05 0.20 0.17 0.58 
GmTag135 0.01 0.22 0.33 0.44 
GmTag172 0.07 0.32 0.42 0.20 
GmTag173 0.12 0.41 0.39 0.08 
GmTag174 0.07 0.22 0.37 0.34 
GmTag175 0.12 0.36 0.43 0.08 
GmTag180 0.37 0.42 0.08 0.13 
GmTag181 0.42 0.20 0.23 0.15 
GmTag182 0.28 0.04 0.35 0.33 
Total 0.16 0.26 0.32 0.26 
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Table 8: Transition probabilities between all states (row -> column). 
 

State 1 State 2 State 3 State 4 
State 1 0.950 0.017 0.029 0.003 
State 2 0.003 0.886 0.051 0.060 
State 3 0.020 0.045 0.931 0.004 
State 4 0.005 0.061 0.016 0.918 

 

4.4 Discussion 

4.4.1 Baseline behavior 

Our baseline analysis adds to a growing body of work describing the behavioral 

patterns of short-finned pilot whales in the Mid-Atlantic Bight. We demonstrate that 

pilot whales engage in several behavioral modes in this region, confirming previous 

work by Quick et al. (2017) and Thorne et al. (2017). We identified three distinct 

behavioral modes, including travel, resting, and foraging behavior. This is consistent 

with previous analyses of location-only tags for this same population of whales, which 

identified distinct behavioral stages of transit and area-restricted search (Thorne et al. 

2017, Foley 2018). In our case, the addition of dive data allowed the distinction of the 

additional third state, which was similar to the foraging state in step length and angular 

movements, but had very few deep dives. Indeed, despite having the shortest step 

lengths of all states (mean 3.6 km, SD 2.6 km), often indicative of concentrated foraging 

behavior, whales in state 2 made only 98 total dives greater than 600 m compared to 

2,466 dives to over 600 m in state 3. The use of summary dive data to other depths, for 

example dives over 200 m or 400 m, produced similar results, but the distinction 
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between foraging and resting states, and overall model fit, was clearer when we used 

600 m as the deep dive threshold. 

The number of dives in a three-hour window is an imperfect metric regardless of 

the depth threshold employed, but given the nature of Argos-transmitting satellite tags 

and the deep-diving behavior of pilot whales it is not possible to obtain a temporal 

resolution equivalent to the frequency of individual dives in a location-based analysis. 

Therefore, we also assessed dive patterns on an individual dive basis without 

considering location. This is similar to the approach taken by Quick et al. (2017), who 

used HMMs to analyze short-finned pilot whale diving behavior from this same 

population using high-resolution DTAGs. DTAGs measure depth at high frequencies 

(e.g., 1 Hz), and record three-dimensional kinematic behavior and acoustic recordings. 

These authors identified four behavioral states, with the greatest number of foraging 

buzzes (rapid echolocation clicks employed by whales closing on prey) occurring in the 

two deepest dive states, and especially in the state characterized by dives mostly over 

600 m. The best-fit HMM for our relatively coarse dive data indicated three distinct dive 

states, comparable to three of the dive states described by Quick et al. (2017). 

Baseline models for location-based and dive-only HMMs indicated a diel pattern 

in dive behavior. The location model suggested that foraging whales dove to depths 

greater than 600 m more often during the morning to mid-day hours, and less often in 

the evening to nighttime. This effect was a difference of less than a single dive on 
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average, but the model showed reasonably strong support for including the covariate. 

The dive-only model again suggested a pattern of deeper dives occurring in the early 

morning hours. In this case, the best-fit model included the effect of time of day on the 

probability of occurring in specific states, rather than on depth. The stationary state 

probability plot indicates a moderate but clear pattern of a higher probability of 

occurring in the deep state and lower probability of occurring in the shallow state in the 

morning, while this relationship flips in the late evening (Figure 17c). 

Similar diel patterns are commonly observed in diving animals, including other 

populations of short-finned pilot whales, and have been suggested as an adaptation to 

the diel migration of prey (Baird et al. 2002, Aguilar de Soto et al. 2008). Interestingly, 

earlier studies on this population of pilot whales have failed to detect a diel diving 

pattern. Indeed, one analysis including some of these same tags (from 2014 and 2015) 

did not detect a discernible diel pattern in the number of dives or the maximum depth of 

dives (Bowers 2016). Quick et al. (2017) also did not detect clear diurnal patterns in their 

analysis of high-resolution DTAGs deployed on pilot whales from 2008 to 2014, 

although the maximum tag duration in this analysis was only ~18 hours. We conclude 

that the addition of seven additional tags to the data set analyzed by Bowers (2016) and 

the multi-day deployments made possible with SLTDR compared to DTAGs, helped 

identify this pattern, which is slight but clear. The fact that all three states occur 

throughout all hours, suggests that this observation may indeed be a response to shifting 
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depths of prey throughout the day, although this is difficult to confirm without further 

information on foraging attempts or success (e.g., echolocation buzzes). 

4.4.2 Behavior near fishing vessels 

The broad-scale overlap between short-finned pilot whales and the pelagic 

longline fishery has been well-described, with the pelagic longline fleet favoring some of 

the same shelf-break and canyon habitats and sea surface temperature patterns as short-

finned pilot whales (Thorne et al. 2017, Stepanuk et al. 2018, Thorne et al. 2019). Our 

objective was to better understand whether pilot whale behavior is modified when 

animals are in the vicinity of actively fishing vessels. 

To explore whether there were effects of fishing vessel proximity on fine-scale 

whale behavior, we started from the same baseline model parameters as the three-state, 

non-fishing model, and added a fourth data stream (distance to fishing vessel) and 

fourth possible behavioral state. The fourth state was unrestricted with respect to any 

data stream parameters except for distance to vessel, in which a constrained scale 

parameter restricted the possibility that the “vessel state” could occur beyond 

approximately 100 km. The candidate models consistently constrained this fourth state 

to within a maximum of 50 km (mean of ~16 km) from the nearest fishing activity.  

The best fit model additionally indicated slight decreases in both step length and 

the number of deep dives the closer whales were to the starting location of fishing 

activity. These patterns occurred over only short distances to fishing location (< ~20 km) 
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and had wide confidence intervals, but the pattern, especially for number of deep dives, 

is consistent with what we expect during depredation behavior. The maximum length of 

vertical gear as measured by observers on pelagic longline vessels from 2014-2017 was 

32.0 m (SD 12.5 m). The typical configuration of longline gear results in concatenation of 

gear so the actual fished depths are several times greater than this minimum vertical 

length (Bigelow et al. 2006), but the gear is highly unlikely to reach depths considered as 

deep foraging dives in the present study (i.e., 600 m). Tagged whales in the vessel phase 

had a similar number of deep dives to the deep foraging phase when averaged across 

the whole state (1.6 versus 2.1 per three-hour interval on average for the deep state). Yet, 

they appear to engage in shallower diving as they become very close to the best-known 

location of fishing activity. This may represent a change from normal deep foraging 

behavior to depredating on relatively shallow fishing gear. 

The similar spatial scales of the occurrence of the vessel phase (mean 16 km) and 

potential influence of vessel proximity on actual movement behavior (no more than 10-

20 km), may also suggest a response threshold or detection limit of whales to vessels 

and/or longline gear. How pilot whales locate gear to depredate is not known, although 

studies in several other systems and species indicate that acoustic detection of vessel 

sounds is likely. Thode et al. (2007) showed that sperm whales depredating demersal 

longlines in southeast Alaska are attracted to acoustic signatures from the cavitation of a 
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ship’s propeller from at least 4-8 km away. Mul et al. (2020) showed that killer whales 

orient to herring purse seine vessels in Norway at ranges of up to 20 km. 

Given the uncertainty in the locations of both pilot whale locations and longlines 

in this analysis, it is not possible to say with certainty whether the spatial patterns 

observed indicate a detection threshold. There was no strong support for a model that 

included the effect of vessel distance on movement angles, indicating there is no clear 

bias in movement towards fishing vessels, at least as identified in the current models. 

Nonetheless, the observation of distinct behavioral changes near fishing activity, despite 

the overall uncertainty and coarseness of data, was notable. Also notable is the fact that 

despite being within 20 km of fishing gear nearly 20% of the time, whales do not engage 

continuously in depredation. This is consistent with reports from our colleagues in the 

fishing industry, who report that depredation is stochastic and not necessarily predicted 

by the presence of pilot whales around their vessels. Combined rates of depredation and 

bycatch rates are still less than 10% per set, despite the heavy use of similar habitat by 

both whales and fishermen in this area (Stepanuk et al. 2018). 

4.5 Conclusions 

Using novel quantitative methods and a rich tagging dataset, we demonstrated 

several patterns of behavior of short-finned pilot whales. Tagged pilot whales exhibited 

deep diving behavior throughout the day but tended to dive to shallower depths during 

the nighttime than in the daytime. We also describe a novel behavioral state that 
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occurred when whales were in close proximity to fishing activity (< 50 km). During this 

state, whales exhibited shorter step lengths and shallower dives, consistent with 

depredation behavior on longline gear. The resolution of our data precludes detailed 

characterization of depredation events, but our observations that whales change their 

behavior when in the proximity of vessels may help inform move-on rules that 

fishermen could employ to reduce the occurrence of depredation and bycatch. Improved 

observer coverage or access to more detailed vessel movements through vessel 

monitoring systems, combined with improvements in cetacean tagging technologies, 

would provide finer-grained insight into this difficult problem. 

 

  



 

162 

5. General Conclusions 
Depredation and associated bycatch are global issues but remain poorly 

understood in many ways, especially for pelagic longline fisheries where depredating 

animals are rarely seen in the vicinity of gear. My dissertation brings together disparate 

data sources and novel quantitative methods to better characterize depredation and 

bycatch interactions in two U.S. fisheries, providing important insights into the nature of 

interactions and guidance on potential mitigation strategies that are not only useful in 

these fisheries, but potentially relevant to pelagic longline depredation in other parts of 

the world as well. 

In my first chapter, I reviewed general mitigation approaches to depredation and 

bycatch by marine mammals, and I conducted a case study analysis on the management 

process and its effectiveness in addressing depredation in two U.S. fisheries heavily 

affected by odontocete depredation and bycatch. I highlighted that despite relatively 

robust research programs, observer coverage, legislative authority, and institutional 

will, these fisheries have largely failed to reduce bycatch interactions sufficiently below 

target bycatch limits. There has been even less success in reducing depredation 

interactions, which in turn would reduce bycatch rates, and thus both fisheries have 

largely resorted to efforts to reduce the mortality or injury of whales after they become 

caught in longline gear. This does not solve the problem for fishermen, whose main 
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concern is understandably the financial repercussions of depredation behavior, rather 

than the hooking of a marine mammal. 

My dissertation is largely motivated by the goal of identifying patterns of 

odontocete depredation and depredator behavior in a way that can be used by 

fishermen to avoid depredation interactions, and subsequent bycatch, in the first place. 

In my second and third chapters, I analyzed data from fisheries observers, 

environmental ocean observations, and satellite-linked transmitters deployed on false 

killer whales to identify patterns of odontocete depredation that could help fishermen 

avoid overlap with whales or better understand the consequences of interactions when 

they do occur. There were no unequivocal geographic, environmental, or operational 

covariates that could be used in a predictive management context. I did identify large 

spatial and temporal patterns of depredation risk which may help fishermen understand 

broad-scale patterns and expectations of depredation impacts. However, these results 

are unlikely to help fishermen precisely predict interaction risk on a set-by-set or daily 

basis. 

Consistent with earlier studies, odontocete depredation in this fishery seems to 

be driven at broad scales by convergence in space and time of fishing activities and the 

occurrence of false killer whales, which are likely both cueing on similar environmental 

conditions to locate productive areas. However, the occurrence of depredation on a 

previous set of the same or a nearby vessel was a fairly strong predictor of depredation 
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occurring on a later set. I characterized the boundaries of risk associated with these 

clumped depredation events and found that depredation risk consistently decreases 

until about 9 days later and 400 km away, with little expected reduction beyond that. 

Thus, although a priori forecasting may continue to be challenging, reactive avoidance 

and improving decision-making following known interactions can help alleviate the 

problem. Ultimately, these strategies could help reduce depredation rates by up to 50%, 

depending on the actions taken by fishermen. 

My final chapter focused on the Atlantic pelagic longline fishery and 

depredation and bycatch of the short-finned pilot whale. Similar to the false killer whale 

interaction, pilot whales overlap heavily with pelagic longline vessels in their home 

ranges and habitat use. Although previous work has suggested some small adjustments 

in deciding where to fish could reduce immediate overlap and the probability of bycatch 

interactions, generally fishermen tend to fish in the same areas that whales are most 

concentrated, and it is difficult to reduce overlap to a large extent. Thus again, fine-scale 

behavior of fishermen and whales may be an important consideration for ways to 

reduce depredation interactions. Although whales may frequent particular habitats, they 

are patchily distributed and overall interaction rates are relatively low. Understanding 

the behavior of whales around fishing gear and whether there are thresholds of 

detection, could help fishermen make better decisions for how to respond and escape 

whales when they or another nearby fishing vessel encounters pilot whales. 
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I conducted an analysis of pilot whale behavior from a rich satellite tag dataset to 

better understand whale behavior in the vicinity of fishing gear. I identified a novel 

behavioral state that occurred when whales were in close proximity to fishing activity (< 

50 km). Although the resolution of these data precluded a detailed characterization of 

depredation events or the mechanisms leading to behavioral changes, these observations 

help improve understanding of fine scale whale behavior in ways that may help design 

avoidance or reactive strategies. 

Unfortunately, depredation and bycatch will be difficult to avoid whenever the 

predators and fisheries target the same species, as in the Hawaii fishery, or overlap 

heavily in habitat use, as is the case in both fisheries. However, for species that occur in 

low densities with relatively low interaction rates, such as false killer whales and pilot 

whales, understanding how best to react when whales are observed or known to be 

present in an area could substantially improve the ability of fishermen to avoid 

depredation interactions and find other productive grounds to fish without whales. The 

tools used here can help identify the intensity and scale of risk where whales do occur 

and the behavioral characteristics of whales that influence if and how a fisherman may 

avoid future depredation events. These insights would not be possible without high-

quality observer data and difficult to obtain animal tagging data. Improved observer 

coverage or access to more detailed vessel movements through vessel monitoring 

systems, combined with improvements in cetacean tagging technologies, will provide 
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finer-grained insight into this difficult problem. I hope that fishermen will add these 

measures to their toolkit for deciding where to fish, reducing economic burdens on fleets 

and improving conservation outcomes for vulnerable bycatch species. 
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Appendix A 

Appendix A1 

 

 
Figure A21: Schematic of pelagic longline gear used in the Hawai‘i deep-set 

fishery. 
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Table A9: GAMM Variables. Variables considered in the fully-saturated 
generalized additive mixed model of probability of presence/absence of depredation. 

All variables represent characteristics relative to a single, observed longline 
deployment or environmental conditions at the haul-begin location of that set. 

Space and time 

• Haul begin location (Longitude, Latitude) 

• Month 

Gear and operational 

• Vessel density (Number of all vessels within 200 km and ±3 days) 

• Number of hooks set 

• Soak time (Hours) 

• Minimum depth of gear (length in m of float line + branch line + leader) 

• Hooks between floats (number of hooks deployed between each pair of floats) 

• Catch (# fish caught), each separately: Bigeye tuna, yellowfin tuna, mahi-mahi, 

wahoo, billfish, swordfish, sharks 

• Catch per unit effort (CPUE, caught bony fish per 1,000 hooks) 

• Nearby tuna CPUE –CPUE of tuna species across all observed vessels within 100 km 

and ±1 day 

• Presence of depredation or false killer whale bycatch on previous set of same vessel 

• Individual vessel (random effect) 

Environmental 

• Depth (m) 

• Slope (m) 

• Distance to seamount (km) 

• SST range (difference between highest and lowest SST for all four fishing points, ºC) 

• Chlorophyll-a (mg·m-3) 

• Absolute dynamic topography (adt, m) 

• Total kinetic energy (tke, m2·s-2) 

• Distance to nearest eddy edge (km) 

• Amplitude of nearest eddy (cm) 
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• Distance to nearest thermal Cayula-Cornelius front (km) 

• Oceanic Niño Index (ONI) 

- Concurrent 

- 11-months prior to observed set 

• Moon phase 

 

 

 

Eqn. A1. Fully saturated model without interactions 

 

(𝐸(𝑌) = 𝛼 + 	𝑠(𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒) + 𝑠(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) + 𝑠(𝑚𝑜𝑛𝑡ℎ) + 𝑠(𝑣𝑒𝑠𝑠𝑒𝑙	𝑑𝑒𝑛𝑠𝑖𝑡𝑦)

+ 𝑠(𝑛𝑢𝑚. ℎ𝑜𝑜𝑘𝑠	𝑠𝑒𝑡) + 𝑠(𝑠𝑜𝑎𝑘) + 𝑠(𝑚𝑖𝑛. 𝑔𝑒𝑎𝑟	𝑑𝑒𝑝𝑡ℎ)

+ 𝑠(ℎ𝑜𝑜𝑘𝑠	𝑏𝑒𝑡𝑤. 𝑓𝑙𝑜𝑎𝑡𝑠) + 𝑠(#	𝑏𝑖𝑔𝑒𝑦𝑒	𝑡𝑢𝑛𝑎) + 𝑠(#	𝑦𝑒𝑙𝑙𝑜𝑤𝑓𝑖𝑛	𝑡𝑢𝑛𝑎)

+ 𝑠(#	𝑚𝑎ℎ𝑖	𝑚𝑎ℎ𝑖) + 𝑠(#	𝑤𝑎ℎ𝑜𝑜) + 𝑠(#	𝑏𝑖𝑙𝑙𝑓𝑖𝑠ℎ) + 𝑠(#	𝑠𝑤𝑜𝑟𝑑𝑓𝑖𝑠ℎ)

+ 𝑠(#	𝑠ℎ𝑎𝑟𝑘𝑠) + 𝑠(𝐶𝑃𝑈𝐸) + 𝑠(𝑛𝑒𝑎𝑟𝑏𝑦	𝐶𝑃𝑈𝐸) + 𝑝𝑟𝑒𝑣. 𝑑𝑒𝑝𝑟𝑒𝑑𝑎𝑡𝑖𝑜𝑛

+ 𝑠(𝑣𝑒𝑠𝑠𝑒𝑙	𝐼𝐷, 𝑟𝑎𝑛𝑑𝑜𝑚) + 𝑠(𝑑𝑒𝑝𝑡ℎ) + 𝑠(𝑠𝑙𝑜𝑝𝑒) + 𝑠(𝑠𝑒𝑎𝑚𝑜𝑢𝑛𝑡	𝑑𝑖𝑠𝑡. )

+ 𝑠(𝑆𝑆𝑇	𝑟𝑎𝑛𝑔𝑒) + 𝑠(𝑐ℎ𝑙. 𝑎) + 𝑠(𝑎𝑑𝑡) + 𝑠(𝑡𝑘𝑒) + 𝑠(𝑒𝑑𝑑𝑦	𝑑𝑖𝑠𝑡. )

+ 𝑠(𝑒𝑑𝑑𝑦	𝑎𝑚𝑝. ) + 𝑠(𝑓𝑟𝑜𝑛𝑡	𝑑𝑖𝑠𝑡. ) + 𝑠(𝑂𝑁𝐼) + 𝑠(𝑂𝑁𝐼	𝑙𝑎𝑔)

+ 𝑠(𝑚𝑜𝑜𝑛	𝑝ℎ𝑎𝑠𝑒) 

 

Eqn. A2. Fully saturated model including interactions 
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(𝐸(𝑌) = 𝛼 + 	𝑠(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒	𝑥	𝑚𝑜𝑛𝑡ℎ) + 𝑠(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒	𝑥	𝑂𝑁𝐼	𝑙𝑎𝑔) + 𝑠(𝑚𝑜𝑛𝑡ℎ	𝑥	𝑂𝑁𝐼	𝑙𝑎𝑔)

+ 𝑠(𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒) + 𝑠(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) + 𝑠(𝑚𝑜𝑛𝑡ℎ) + 𝑠(𝑣𝑒𝑠𝑠𝑒𝑙	𝑑𝑒𝑛𝑠𝑖𝑡𝑦)

+ 𝑠(𝑛𝑢𝑚. ℎ𝑜𝑜𝑘𝑠	𝑠𝑒𝑡) + 𝑠(𝑠𝑜𝑎𝑘) + 𝑠(𝑚𝑖𝑛. 𝑔𝑒𝑎𝑟	𝑑𝑒𝑝𝑡ℎ)

+ 𝑠(ℎ𝑜𝑜𝑘𝑠	𝑏𝑒𝑡𝑤. 𝑓𝑙𝑜𝑎𝑡𝑠) + 𝑠(#	𝑏𝑖𝑔𝑒𝑦𝑒	𝑡𝑢𝑛𝑎) + 𝑠(#	𝑦𝑒𝑙𝑙𝑜𝑤𝑓𝑖𝑛	𝑡𝑢𝑛𝑎)

+ 𝑠(#	𝑚𝑎ℎ𝑖	𝑚𝑎ℎ𝑖) + 𝑠(#	𝑤𝑎ℎ𝑜𝑜) + 𝑠(#	𝑏𝑖𝑙𝑙𝑓𝑖𝑠ℎ) + 𝑠(#	𝑠𝑤𝑜𝑟𝑑𝑓𝑖𝑠ℎ)

+ 𝑠(#	𝑠ℎ𝑎𝑟𝑘𝑠) + 𝑠(𝐶𝑃𝑈𝐸) + 𝑠(𝑛𝑒𝑎𝑟𝑏𝑦	𝐶𝑃𝑈𝐸) + 𝑝𝑟𝑒𝑣. 𝑑𝑒𝑝𝑟𝑒𝑑𝑎𝑡𝑖𝑜𝑛

+ 𝑠(𝑣𝑒𝑠𝑠𝑒𝑙	𝐼𝐷, 𝑟𝑎𝑛𝑑𝑜𝑚) + 𝑠(𝑑𝑒𝑝𝑡ℎ) + 𝑠(𝑠𝑙𝑜𝑝𝑒) + 𝑠(𝑠𝑒𝑎𝑚𝑜𝑢𝑛𝑡	𝑑𝑖𝑠𝑡. )

+ 𝑠(𝑆𝑆𝑇	𝑟𝑎𝑛𝑔𝑒) + 𝑠(𝑐ℎ𝑙. 𝑎) + 𝑠(𝑎𝑑𝑡) + 𝑠(𝑡𝑘𝑒) + 𝑠(𝑒𝑑𝑑𝑦	𝑑𝑖𝑠𝑡. )

+ 𝑠(𝑒𝑑𝑑𝑦	𝑎𝑚𝑝. ) + 𝑠(𝑓𝑟𝑜𝑛𝑡	𝑑𝑖𝑠𝑡. ) + 𝑠(𝑂𝑁𝐼) + 𝑠(𝑂𝑁𝐼	𝑙𝑎𝑔)

+ 𝑠(𝑚𝑜𝑜𝑛	𝑝ℎ𝑎𝑠𝑒) 

 

Eqn. A3. Final, best-fit model without interactions. 

(𝐸(𝑌) = 𝛼 + 	𝑠(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) + 𝑠(𝑚𝑜𝑛𝑡ℎ) + 𝑠(𝑛𝑢𝑚. ℎ𝑜𝑜𝑘𝑠	𝑠𝑒𝑡) + 𝑠(𝑠𝑜𝑎𝑘) + 𝑠(#	𝑏𝑖𝑔𝑒𝑦𝑒	𝑡𝑢𝑛𝑎)

+ 𝑠(#	𝑦𝑒𝑙𝑙𝑜𝑤𝑓𝑖𝑛	𝑡𝑢𝑛𝑎) + 𝑠(#	𝑚𝑎ℎ𝑖	𝑚𝑎ℎ𝑖) + 𝑠(#	𝑤𝑎ℎ𝑜𝑜) + 𝑠(#	𝑠ℎ𝑎𝑟𝑘𝑠)

+ 𝑠(𝐶𝑃𝑈𝐸) + 𝑠(𝑛𝑒𝑎𝑟𝑏𝑦	𝐶𝑃𝑈𝐸) + 𝑝𝑟𝑒𝑣. 𝑑𝑒𝑝𝑟𝑒𝑑𝑎𝑡𝑖𝑜𝑛

+ 𝑠(𝑣𝑒𝑠𝑠𝑒𝑙	𝐼𝐷, 𝑟𝑎𝑛𝑑𝑜𝑚) + 𝑠(𝑠𝑒𝑎𝑚𝑜𝑢𝑛𝑡	𝑑𝑖𝑠𝑡. ) + 𝑠(𝑎𝑑𝑡) + 𝑠(𝑂𝑁𝐼	𝑙𝑎𝑔) 

 

Eqn. A4. Final, best-fit model including interactions. 

 

(𝐸(𝑌) = 𝛼 + 	𝑠(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒	𝑥	𝑚𝑜𝑛𝑡ℎ) + 𝑠(𝑚𝑜𝑛𝑡ℎ) + 𝑠(𝑛𝑢𝑚. ℎ𝑜𝑜𝑘𝑠	𝑠𝑒𝑡) + 𝑠(𝑠𝑜𝑎𝑘)

+ 𝑠(#	𝑏𝑖𝑔𝑒𝑦𝑒	𝑡𝑢𝑛𝑎) + 𝑠(#	𝑦𝑒𝑙𝑙𝑜𝑤𝑓𝑖𝑛	𝑡𝑢𝑛𝑎) + 𝑠(#	𝑚𝑎ℎ𝑖	𝑚𝑎ℎ𝑖)

+ 𝑠(#	𝑤𝑎ℎ𝑜𝑜) + 𝑠(#	𝑠ℎ𝑎𝑟𝑘𝑠) + 𝑠(𝐶𝑃𝑈𝐸) + 𝑠(𝑛𝑒𝑎𝑟𝑏𝑦	𝐶𝑃𝑈𝐸)

+ 𝑝𝑟𝑒𝑣. 𝑑𝑒𝑝𝑟𝑒𝑑𝑎𝑡𝑖𝑜𝑛 + 𝑠(𝑣𝑒𝑠𝑠𝑒𝑙	𝐼𝐷, 𝑟𝑎𝑛𝑑𝑜𝑚) + 𝑠(𝑎𝑑𝑡) + 𝑠(𝑂𝑁𝐼	𝑙𝑎𝑔) 
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Figure A22: ENSO patterns. (a) Monthly Oceanic Niño Indicator (ONI) from 
2004-2017; (b) monthly deviation from mean depredation rate on Hawai‘i deep-set 

longline hauls after removing seasonal trend (i.e., ‘trend’ component in decompose 
function in RStudio, version 1.2.5033 (R Core Team 2018) ); and (c) lag correlation 

analysis (auto-cross correlation function, ACF) between monthly ONI and average 
monthly depredation rate. The peak at 11 months following ONI was used in the 

GAMM models. 
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Appendix A2 

 

Eqn. A1. 
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Eqn. A2. 

𝐾.(𝑡) = 	
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Eqn. A3. 

𝐾.(𝑠𝑡) = 𝐾.(𝑠, 𝑡, 𝑠𝑡) − 𝐾.(𝑠) ∗ 𝐾.(𝑡) 
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Appendix A3 

Further details on false killer whale tagging protocols and data filtering 

In a given sighting the group size was estimated, individuals were photographed 

for individual identification, and skin biopsy samples obtained for genetic analyses. All 

individuals considered in this analysis were confirmed to be from the pelagic population 

of false killer whales using established photo-identification and genetic databases and 

protocols (Baird et al. 2008, Martien et al. 2014). Individual whales in each group were 

tagged with SPOT5 Wildlife Computer satellite tags in the Low Impact Minimally 

Percutaneous External-electronics Transmitter configuration (Andrews et al. 2008) under 

relevant permits from the NMFS. Tags were deployed from a pneumatic projector and 

secured to the dorsal fin or base of the dorsal fin with two titanium darts. Tags were 

programmed to transmit daily position data through the Argos system for the first 60 

days of deployment and then were duty-cycled to transmit every other or every several 

days. As we were interested in fine-scale, daily and sub-daily movement patterns, we 

focused our analyses on the first 59 days (or the maximum number of full days of 

transmission if tag-transmission ended prematurely). Estimates of animal locations were 

obtained through Service Argos using the Least Squares algorithm and processed 

through the Douglas Argos-Filter (Douglas et al. 2012) using the settings described by 

Baird et al. (2010) and Baird et al. (2013). 
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