
SCRS/2022/104 Collect. Vol. Sci. Pap. ICCAT, 79(5): 165-177 (2022) 
 

165 

 

 

ECOTEST, A PROOF OF CONCEPT FOR EVALUATING  

ECOLOGICAL INDICATORS IN MULTISPECIES FISHERIES, WITH THE 

ATLANTIC LONGLINE FISHERY CASE STUDY 
 

 

Quang C. Huynh1, Tom Carruthers2, Nathan G. Taylor3 

 

 

SUMMARY 

 

There is a need for rigorous science to inform decision makers for Ecosystem Based Fisheries 

Management (EBFM). It is important to establish challenging and plausible scenarios for 

ecosystem dynamics and then test whether current and potential indicators can reflect stock 

status. Without the validation of indicators and the testing of relevant policy guidance to mitigate 

ecosystem impacts, there is a credibility gap between scientific practitioners of ecosystem science 

and decision makers that need to defend their actions in large multi-party negotiations. A multi-

species framework that supports tactical decision making can make significant progress towards 

the essential goals of EBFM. We present a management strategy evaluation framework called 

“EcoTest”. This is an extension to openMSE software, used for single-species modeling, that 

simulates multi-species fisheries dynamics. A range of features are possible in EcoTest, such as 

the ability to evaluate current indicators as well as design new indicators and identify the 

conditions under which indicators operate reliably. Here we demonstrate the use of EcoTest 

using the Atlantic longline fishery as a case study. 

 

RÉSUMÉ 

 

Il est nécessaire de disposer d'une science rigoureuse pour informer les décideurs de la gestion 

des pêches fondée sur l'écosystème (EBFM). Il est important d'établir des scénarios stimulants et 

plausibles pour la dynamique des écosystèmes, puis de vérifier si les indicateurs actuels et 

potentiels peuvent refléter l'état des stocks. Sans la validation des indicateurs et le test des 

orientations politiques pertinentes pour atténuer les impacts sur les écosystèmes, il existe un 

manque de crédibilité entre les praticiens de la science des écosystèmes et les décideurs qui 

doivent défendre leurs actions dans de grandes négociations multipartites. Un cadre multi-

espèces qui soutient la prise de décision tactique peut faire des progrès significatifs vers les 

objectifs essentiels de l'EBFM. Un cadre d'évaluation des stratégies de gestion appelé 

« EcoTest » est présenté dans ce document. Il s'agit d'une extension du logiciel openMSE, utilisé 

pour la modélisation mono-espèce, qui simule la dynamique des pêches multi-espèces. Une série 

de fonctionnalités sont possibles dans EcoTest, comme la possibilité d'évaluer les indicateurs 

actuels ainsi que de concevoir de nouveaux indicateurs et d'identifier les conditions dans 

lesquelles les indicateurs fonctionnent de manière fiable. Nous démontrons ici l'utilisation 

d'EcoTest en utilisant la pêcherie palangrière de l'Atlantique comme étude de cas. 

 

RESUMEN 

Se necesita una ciencia rigurosa para informar a los que toman las decisiones de la ordenación 

pesquera basada en el ecosistema (EBFM). Es importante establecer escenarios difíciles y 

plausibles para la dinámica del ecosistema y luego probar si los indicadores actuales y 

potenciales pueden reflejar el estado de los stocks. Sin la validación de los indicadores y la 

comprobación de las orientaciones normativas pertinentes para mitigar los impactos en los 

ecosistemas, existe una brecha de credibilidad entre los profesionales de la ciencia de los 

ecosistemas y los responsables de la toma de decisiones que deben defender sus acciones en las 

grandes negociaciones multipartitas. Un marco multiespecífico que apoye la toma de decisiones 

tácticas puede suponer un avance significativo hacia los objetivos esenciales de la EBFM. 

Presentamos un marco de evaluación de estrategias de ordenación denominado "EcoTest". Se 
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trata de una extensión del software openMSE, utilizado para la modelación para una sola 

especie, que simula la dinámica de las pesquerías multiespecíficas. En EcoTest es posible 

realizar una serie de funciones, como la capacidad de evaluar los indicadores actuales, así como 

diseñar nuevos indicadores e identificar las condiciones en las que los indicadores funcionan de 

forma fiable. Aquí demostramos el uso de EcoTest utilizando la pesquería de palangre del 

Atlántico como caso de estudio. 
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Introduction 

 

Operationalizing initiatives related to EBFM has proven challenging for most t-RFMOs.  ICCAT and other t-

RMFOs rely on a system of indicators for EBFM. ICCAT compiles these in an Ecosystem Report Card, but these 

indicators have not frequently been validated to ensure that they are representative and sufficiently responsive to 

changes in the underlying species. For example, apparent decreases bycatch rates may be caused by either declines 

in the underlying bycatch population size, or be driven by changes in fleet distribution in search of target species 

leading some to conclude that CPUE generally cannot provide information needed to assess and manage 

communities or ecosystems (Maunder et al. 2006; Suzuki et al., 1977; Bigelow et al. 2003). 

 

Single-species stock assessments do not account for the impact of proposed management strategies for target 

species on associated bycatch species. These species may include for example, non-commercial species such as 

birds and turtles, and commercial species that are incidentally caught by some sectors of the fishery yet targeted 

in others, such as sharks and billfish. Therefore, a multi-species framework that supports tactical decision making 

can make significant progress towards the essential goals of EBFM. Such a framework can also support current 

efforts to develop indicators supporting EBFM. Simulation testing of indicators and management strategies linked 

to those indicators can validate their ability to characterize ecosystem impacts. 

 

For simulation testing of indicators, it is important to establish challenging and plausible scenarios for ecosystem 

dynamics. In this way, it will be possible to test if current and yet-to-be-developed indicators can be expected to 

correctly detect ecosystem dynamics of interest. In situations where indicators detect potential problems, it is also 

necessary to test mitigation measures, i.e., management procedures (Punt et al. 2016), in order to meet conservation 

objectives. Management procedures (MPs) linked to the indicators so that a clear pathway from data to 

management policies has been evaluated. For example, in response to declining bycatch rates, the prescription of 

a size limit for a target species, or a time-area closure could be tested. Most indicators currently being considered 

for EBFM at ICCAT, along with harvest strategies that respond to changes to such indicators, have been validated. 

Without the validation of indicators and the testing of relevant policy guidance to mitigate ecosystem impacts, it 

is unclear how an indicator system can be used for decision making. 

 

The complexity of multi-species modeling has been the biggest obstacle for simulation testing. Here, we present 

a management strategy evaluation framework: “EcoTest”. It is an extension to openMSE software used to simulate 

multi-species fisheries dynamics. A range of features are possible in EcoTest, such as the ability to simulate the 

performance of current indicators as well as design new indicators. Bycatch indicators and policy options can also 

be formally and rigorously evaluated in EcoTest. 

 

Here we describe the use of EcoTest using the Atlantic longline fishery as a preliminary case study example, 

testing how several reference MPs applied in primary (target) species affect the conservation and yield 

performance in the secondary (bycatch) species. 
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1. Methods 

 

The EcoTest framework applied here consisted of four steps: 

 

(1) Develop operating models representing a range of species caught in a multispecies fishery 

(2) Develop hypotheses regarding the fishing dynamics and how catch of one species affects other species 

(3) Develop projections, accounting for the fishing dynamics specified in Step 2 

(4) Evaluate outcomes from simulation testing and whether there is proposed indicators can differentiate 

between good and poor outcomes 

1.1 Operating models 

 

We developed operating models (OMs) for six ICCAT species: bigeye tuna (BET), North Atlantic swordfish 

(SWO), blue shark (BSH), North Atlantic shortfin mako shark (SMA), white marlin (WHM), and blue marlin 

(BHM). Recent Stock Synthesis 3 assessments produced by the respective working groups were used to specify 

the operating model dynamics, (Table 1, Figure 1), including growth, fecundity, natural mortality, and estimated 

historical trajectories in abundance, recruitment, and fishing mortality. A two-fishing gear structure (“Longline” 

and “Other”) was created in the operating models by aggregating fleets from the assessments. Fleets, typically 

stratified by country and spatial area, were identified by gear, either based on longline or other surface gear (purse 

seine, bait boat, etc.), and the operating model calculated the selectivity of the gear by aggregating the fishing 

mortality (F) of the constituent assessment fleets (Figure 2).  

1.2 Fishing dynamics  

 

The historical fishing mortality rates were used to develop a model to describe the relationship between longline 

fishing mortality among species. Multivariate linear regression was used to predict F for one subset of species 

based on the F from another subset. Here, the predictor species in the regression were BET and SWO. They were 

identified as “primary” species of high economic importance. Fishing mortality for these species could be a 

predictor of overall longline effort. The F for the other four species (BSH, SMA, WHM, BUM) were the response 

variables in the regression. They were identified as “secondary” species that may be incidentally caught or targeted 

less frequently than primary species. Fishing mortality of secondary species may respond to regulations and 

dynamics related to the primary species.  

 

A regression predicted fishing mortality as a linear relationship: 

 

𝐹𝑦⃗⃗  ⃗
𝑠
= 𝐹𝑦⃗⃗  ⃗

𝑝
𝜷 

 

where the fishing mortality for secondary species (a vector denoted by superscript “s”) in year y is predicted from 

the value in the primary species (a vector denoted by superscript p), and the matrix of estimated slope coefficients 

𝜷.  

 

1.3 Projections 

 

For demonstration purposes, deterministic 50-year projections were run with three fishing scenarios to illustrate 

outcomes arising from the proposed regression model. First, the primary species were fished at FMSY, and the 

longline F of the secondary species were predicted by the linear relationship estimated in the previous section (this 

scenario is labeled “FMSY_primary”). Second, the primary species were fished at 50% FMSY, with the secondary 

species longline F predicted by the linear relation (“0.5FMSY_primary”). For both, the ratio of F between the 

Longline and Other gears in the primary species were held constant in the projection period to that in the most 

recent historical year. For the secondary species, the Other F was also held constant in the projection period to the 

value in the most recent year. To allow for comparison, the third scenario set F = 0 (no fishing mortality) for all 

stocks. All projections were run without process error, i.e., no variability in the recruitment predicted by the stock-

recruitment relationship.  

 

1.4 Indicators 

 

From the projections, indicators can be calculated from simulated observations and operating model dynamics. 

Here we simulate two indicators: longline CPUE and longline mean length (of catches). The CPUE was 

proportional to the biomass vulnerable to the longline fishery, while the mean length was calculated from the 

simulated catch-at-length vector generated from a multinomial sampling distribution. To illustrate the effect of 
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fishery interactions in EcoTest more clearly, no observation error was modeled in the CPUE and the sample size 

was high (10,000) in order to approximate the vulnerable length distribution in the operating model. In this way 

the relationship of the indicator to the underlying population is clear and not obscured by observation error. 

 

 

2. Results 

 

Historical fishing mortality in the longline fishery are positively correlated to some extent among the six species 

(Figure 3). Strong correlations occur for some species pairs, e.g., between SWO-BSH and between SMA-BET, 

whereas several others have weaker correlations with more noise in the relationship, e.g., BET-BSH. The 

relationship in some pairs appeared to be time-varying, which different slopes in the early time period compared 

to the recent period, e.g., between BUM and each primary species. This suggests that the fishery developed at 

different rates historically, with increasing bycatch exploitation rates experienced earlier for BUM. 

 

The linear relationship showed different rates of change in F among secondary species (Figure 4). For example, 

the change in BSH F is strongly dependent on the F for SWO, but very little on BET F. On the other hand, the 

gradient in F of the other three secondary species is related to values from both BET and SWO. WHM had the 

steepest changes in F out of the four secondary species.  

 

With the FMSY fishing scenario for the primary species, three out of the four secondary species, i.e., BUM, SMA, 

and WHM, were in an overfished state (SSB/SSBMSY < 1) at the end of the projection (Figure 5). For the operating 

model that we investigated, BUM and WHM were already overfished at the beginning of the projection and 

remained so, while SSB of SMA declined during the projection. In the 50% FMSY fishing scenario, spawning 

biomass for all species were higher (Figure 6). For BUM, SMA, and WHM, the stocks were near SSBMSY by the 

end of the projection. For both fishing scenarios, BSH remained above SSBMSY.  

 

Stock biomass increased the fastest in the no fishing scenario for five of the six species. For SMA, the stock 

declined during the first third of the projection regardless of future fishing mortality. This appears to be a result of 

juvenile mortality caused by low steepness and selectivity of predominantly immature animals (Figure 2). 

Recovery in the spawning biomass is delayed until the survival of new cohorts is increased.  

 

The longline CPUE and mean length increased roughly linearly over time for three of the four species (except 

SMA; Figure 7). The rates of increase are inversely proportional to fishing mortality. Between the FMSY and 50% 

FMSY scenarios, the magnitude in the indicators is similar initially in the projection and more time is needed in 

order to produce contrast in the indicator space. For SMA, the indicators are out of phase with stock status owing 

to differences between selectivity and maturity. Spawning biomass declines during the projection because past 

fishing mortality on immature animals will reduce survival to maturity, and in turn, reduces recruitment in the 

middle of the projection. Accordingly, the CPUE and mean length decrease in the middle of the projection 

following an initial increase. This creates a hook-like trajectory during the projection in contrast to the linear 

increases observed in the other species (Figure 7). 

 

 

3. Discussion 

 

With projections of a multispecies fishery under various scenarios (for example any adopted MP in those fisheries), 

the corresponding behavior of indicators can be evaluated. Indicators such as mean length and ratios of indices 

have been developed using equilibrium assumptions, e.g., constant recruitment and mortality (Beverton and Holt 

1956; Ricker 1975). The MSE approach provides the opportunity to simulation test indicators and their suitability 

as a proxy for population status. Equilibrium assumptions are violated where stocks may experience changes in 

mortality over time, e.g., through rebuilding plans or multispecies fishery interactions, and recognizing density-

dependent recruitment. For example, either an increase in mortality or episodic recruitment can decrease mean 

length. Here, selectivity pattern and low stock-recruit steepness of SMA generates different transient behavior of 

the indicators compared to the other five stocks evaluated in the species complex. Evaluation in EcoTest identifies 

when these indicators and others, such as species catch ratios, are informative and sufficiently responsive to 

changes in status and exploitation; this can also show when indicators are not responsive to changes in status and 

exploitation. 
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This initial demonstration used recent assessments for generating operating models for billfish, tuna, and shark 

species. Operating models can also be developed for other species that are not assessed. In a data-limited situations, 

operating models need not make statements about current status (Sagarese et al. 2018). Rather, these operating 

models can be the basis for evaluating which indicators are likely to be valuable and robust under uncertain 

conditions. Overall, a testing platform that uses population dynamics models can increase confidence for use of 

indicators for assigning status. 

3.1 Next steps 

 

Modeling a multispecies fishery require specifying the relationship between effort and fishing mortality among 

species in the complex. Here, we used a “top-down approach” to look at broad trends in historical fishing mortality 

based on estimates from a limited number of single-species assessments. Overall, there was a positively correlated 

relationship for fishing mortality among species based on the expansion of the longline fishery during the 20th 

century, which was modeled broadly as a linear function in the projection. Further exploration can be used to 

specify more complex relationships, e.g., power function (Hilborn and Walters 1992) or stepwise functions in 

fishing mortality. By reducing the correlation in mortality, projections can explore how much the fishery needs to 

avoid incidental catch to avoid harm to incidental species. 

 

Fisheries frequently switch targeting between species and effort may depend on availability and spatial distribution 

of the underlying stock. EcoTest has capabilities for developing spatial operating models to describe abundance 

hotspots and coldspots, and potential range contraction. Likewise, fishing mortality for a fleet that targets based 

on availability can be distributed among regions as: 

𝐹𝑦,𝑟 = 𝐸𝑦

𝑉𝐵𝑦,𝑟
𝜆   

∑ 𝑉𝐵𝑦,𝑟
𝜆

𝑟
 

 

where 𝑟 indexes spatial area, 𝐸 is an index of overall fishing effort, 𝑉𝐵 is the vulnerable biomass, and 𝜆 is the 

targeting parameter. These features were not included in the demonstration, but can be more representative of the 

underlying fishery dynamics. Spatial fishery data such as the Task 1 and Task 2 ICCAT statistical databases 

provide information on parameterizing these spatial operating models (Figure 8). This “bottom-up approach” 

models bycatch hotspots and coldspots (Mannocci et al. 2020; Mucientes et al. 2022), which are dynamics more 

complex than what is modeled in single species assessments. In turn, indicators used for EBFM can be simulated 

and evaluated to test their core assumptions. For example, history has shown the need for taking great care with 

analyzing fishery CPUE (Walters 2003). In a spatial operating model, we can test the extent to which CPUE is 

proportional to stock abundance, an emergent property of the spatial dynamics (stock movement and fishery 

targeting) incorporated in the operating models. 

 

Finally, there has been a lack of coordination between management measures that respond to EBFM indicators 

(Juan-Jordá et al. 2018). Management actions linked to indicator values can be operationalized in MPs and tested 

in EcoTest as an extension of management strategy evaluation. Evaluation of these MPs against ecosystem 

objectives will provide the justification for EBFM implementation. 
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Table 1. Brief description of SS3 stock assessments used to develop operating models. 

 

Stock Reference Description 

BET Anonymous (2021) M = 0.2 and steepness = 0.8 

SWO Schirripa and Hordyk 

(2020) 

Base Model (M = 0.2 and steepness = 0.75) 

BSH Courtney (2016) Run 6 (Best convergence diagnostics, less weight to the 

length composition likelihood) 

SMA Anonymous (2017), 

Courtney et al. (2017) 

Run 1, steepness = 0.354 

WHM Anonymous (2020), 

Schirripa (2020) 

Model 6 (Use all CPUE indices except EU_Spain longline, 

without a catch multiplier, with variance reweighting) 

BUM Anonymous (2018), 

Schirripa (2018) 

Base Model (M = 0.122 and steepness = 0.50) 

 

 

Table 2. Estimated slope coefficients (𝛽) for the linear relationship in historical longline F. 

 

 Primary Species 

Secondary Species BET SWO 

BSH 0.03 0.66 

SMA 0.91 0.08 

WHM 1.55 1.16 

BUM 0.43 0.08 
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Figure 1. Spawning biomass estimated in SS3 assessments. See Table 1 for description and references. 

 

  

 

 

 
Figure 2. Aggregate selectivity (relative to maturity) of the longline and other (non-longline) gears from the 

operating models. 
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Figure 3. Phase plots over time of historical longline apical fishing mortality between the primary and secondary 

species. Numbers in lower right report the correlation in F in each panel. 
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Figure 4. Contour plot of longline F predicted for the secondary species (in solid lines) by the F of the primary 

species using the linear relationship. Dotted horizontal and vertical lines denote FMSY for the primary species. 

 

 

  

  
 

Figure 5. Projected SSB/SSBMSY for the six stocks under the 3 fishing scenarios. 
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Figure 6. Projected spawning biomass for the six stocks under the 3 fishing scenarios. 

 

 

 
 

 

Figure 7. Phase plot of simulated longline mean length vs CPUE (relative by species) for the secondary species 

in the projections under the three fishing scenarios.
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Figure 8. Spatial correlation in longline CPUE (kg/hook) between six species for 2009. CPUE were obtained from 

the ICCAT Task 2 CE database where records are aggregated to spatial grid (5˚ x 5˚), flag, and month.  

 


