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Executive summary 
This paper presents a stock assessment of blue shark in the Indian Ocean using Stock Synthesis 

(version 3.30.16.02 http://nft.nefsc.noaa.gov/Download.html). The blue shark assessment 

model is an age structured (25 years), spatially aggregated (1 region) and two sex model. The 

catch, effort, and size composition of catch, are grouped into 8 fisheries covering the time 

period from 1950 through 2019. Six indices of abundance, all from longline fisheries were 

considered for this analysis. This assessment considered two alternative time series of total 

catch. The diagnostic case model is parameterized using indices of abundance from the 

Portugal (2000-2019), Reunion (2007-2019) and the Japanese late (1992-2019) series, along 

with estimates of catch generated via a generalized additive model. The estimated abundance 

trend is decreasing throughout the time frame of the model, and spawning stock abundance 

has decreased to approximately 1.21 times SSBMSY, (80% CI is 1.08-1.36). The fishing mortality 

has increased   over the model time frame with F2019/FMSY= 0.81 (80% CI =0.66 to 0.96). 

 

Blue sharks are most often caught as bycatch in the Indian Ocean tuna fisheries, though some 

directed mixed species (sharks and tunas/billfish) fisheries do exist. Commercial reporting of 

landings has been minimal, as has information regarding the targeting and fate of blue sharks 

encountered in the fisheries. Useful data on catch and effort is mostly limited to recent years, 

and time series of historical catches have been estimated based on reported and observed 

catch rates, as well as observed ratios of blue shark to target species. 

 

This analysis was developed as an assessment model that included the Portuguese, EU-France 

(Reunion) and Japanese late CPUE series, with the estimates of total catch based on generalized 

additive model based GAM series as the diagnostic case, as it is referred to in the main text 

when presenting the model parametrization and diagnostics.  The upcoming 17th meeting of the 

Indian Ocean Tuna Commission Working Party on Ecosystems and Bycatch (WPEB17) will 

recommend the final parameterization as a base case model for the provision of stock status. 

Initial analysis based on the sensitivity analysis done with SS3 indicated that the stock is not over 

fished nor experiencing overfishing.  
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Changes made to this August 29 draft. 

1) Three annexes have been added to the analysis, Annex 1 Additional model diagnostics, 

Annex 2, Control file specifications, and Annex 3. Stock assessment of Indian Ocean blue 

shark using JABBA. 

2) The text has been updated to reflect the addition of these Annexes. 
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1 Introduction  

Blue shark (Prionace glauca) are a large pelagic species, broadly distributed throughout the 

Indian Ocean to a southern limit of ~50° S (Figure 1).  Indian Ocean blue shark have been 

incidentally caught by the Japanese longline fleet since the early 1950s.  The population was not 

heavily exploited before targeted fisheries (or bycatch rates increased) in the early 1990s.  At 

this time the Taiwanese long line vessels began taking large numbers, initially in the SW region, 

followed by the other areas (Figure 1).  The European longline fleet (predominantly Spanish 

vessels) started a targeted fishery in the 1990s, while only small numbers are reported in the 

driftnet fisheries, and purse seine catches are very rare. 

  

2 Methods  

Data 

There are many different fleets catching blue shark in the Indian Ocean, with vastly different 

gear types and levels of data quality (Martin et. al. 2015).  This model uses the same fishing 

fleet structure previously used (Rice 2017, Rice and Sharma 2015), 8 fleets representing a wide 

variety of gears, some of which have been aggregated (e.g. F1 Miscellaneous). The number of 

CPUE series  recommended by the WPEB data prep meeting is 6, all of which are based on 

longline fisheries. There is enough uncertainty about the selectivity assumptions with respect to 

time, and the low numbers of size composition data, that the size composition data are not 

expected to be very informative about year-class strength. Hence, in the assessment presented 

here, the length-composition data are down weighted so as to inform the selectivity but not 

alter the model fit to the abundance trend.  

 

Total catch 

Catch estimates by year and fishery are shown in Figure 2. In the previous assessment (Rice 

2017), estimates of total catch were produced based on generalized additive models (GAM) and 

the ratio of blue shark (BSH) to total target catch. While the total catch data are estimates, they 
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are derived in large part from the industrial fleets in the Indian Ocean and are thought to be 

more reasonable for blue shark than for the other shark species.  

 

The major concern identified with respect to the catch time series are that catch-and-effort for 

BSH are highly incomplete.  Reliable data are thought to be available for a limited number of 

years (i.e., from the late-1990s onwards) and for a very limited number of fisheries. In the 

previous assessments an alternative catch series was used based on trade based estimates 

using the proportion of tuna caught (Clarke, 2011). This series extends from 1981-2011, and 

was previously extended (both earlier and later) using a ratio based approach. This method 

used the average ratio of the nominal to trade based estimates from the years previous to 2011 

to estimate the values for the years prior to 1981 and post 2011. Because of the uncertainty in 

the reported nominal catches introduced by using the average ratio, this method was not 

repeated for this analysis.  

2.1 Relative abundance indices 

The standardized CPUE series in 2021 were similar to those from those previously submitted to 

the WPEB. Newly estimated CPUE series by Japan, Taiwan, Portugal, Spain, South Africa and EU 

France (Reunion) were used in this analysis (Figure 2).  All of these are based on bycatch in the 

longline fisheries. Excerpts from the working papers are presented here for an overview of the 

CPUE series. For further information consult the working papers.  

 

S2 Japanese Late Series JPN  (IOTC-2020-WPEB16-20) 

This paper presented revised standardized catch rates for blue shark from Japanese observer 

data in the Indian Ocean from 1992 to 2019, including the following abstract provided by the 

authors: 

“We updated the Japanese observer data until 2019 and standardized nominal catch-per-

unit-effort (CPUE) of blue shark caught by Japanese tuna longline fisheries in the Indian 

Ocean from 1992 to 2019. We used generalized linear model (GLM) with negative binomial 

error distribution to standardize the nominal CPUEs. The most parsimonious model was 

selected by Akaike Information Criterion (AIC) as the best model for the estimation of annual 
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CPUEs. The goodness-of-fits were diagnosed by residual plots. The 95% confidence intervals 

were estimated from the bootstrapping method. The annual CPUEs had a similar trend to 

those shown in the previous analysis except in 2000.The annual CPUE increased in 1990s and 

reached to the peak in 2000, and then gradually decreased with a large fluctuation until 

2013. Since 2014, the annual CPUE showed an increasing trend. We suggest that the 

estimated annual CPUE should be utilized as one of the candidates of primary abundance 

indices in the next stock assessment of blue shark in the Indian Ocean scheduled in 2021 

because the Japanese observer data covers a wide range of the main distribution area 

(temperate water) of blue shark in the Indian Ocean and a longer time period compared to 

the other fleets’ CPUE data”. 

 

S3 Portuguese Longline (IOTC-2021-WPEB17(DP)-10) 

This paper presented catches and standardized CPUE of blue shark in the Indian Ocean from the 

Portuguese longline fleet from 2000 to 2019, including the following abstract provided by the 

authors: 

“The Portuguese pelagic longline fishery in the Indian Ocean started in the late 1990’s, targeting 

mainly swordfish in the southwest region. This working document analyses catch, effort and 

standardized CPUE trends for blue shark captured by this fishery. Nominal annual CPUEs were 

calculated in biomass (kg/1000 hooks), and were standardized with Generalized Linear Mixed 

Models (GLMMs) using year, quarter, season and targeting as fixed effects, and vessel as 

random effects. The standardized CPUE trends shows a general decrease in the initial years 

between 2000 and 2005, followed by a more stable period with some oscillations until 2019. 

These results present an updated annual index of abundance for the blue shark captured by the 

Portuguese pelagic longline fleet in the Indian Ocean that can now be consider3d for utilization 

in the 2021 IOTC blue shark stock assessment..”   

 

S4 Spanish Longline (IOTC-2021-WPEB17(DP)-09)  

This paper presented standardized catch rates for blue shark from the Spanish surface longline 

fleet from 2001 to 2019, including the following abstract provided by the authors: 
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“ This paper provides an update of standardized catch rates in weight of blue shark using a 

Generalized Linear Model (GLM) from a total of 2,301 trips carried out by the Spanish surface 

longline fleet targeting swordfish in the Indian Ocean during the 2001-2019 period. The criteria 

used to define explanatory variables were similar to those used in previous papers. The main 

factors considered in the analysis were year, quarter, area, ratio, gear and the interaction 

quarter*area. The results indicate that the ratio factor (an indicator of target criteria of the 

skippers) defined as the ratio between the two most prevalent species caught -swordfish and 

blue shark- was the most important factor which explained the CPUE variability. The GLM 

results explained 80% of CPUE variability in weight. The index showed a stable trend over time.” 

 

S5 Taiwanese Longline (IOTC–2021-WPEB17(DP)-07)  

This paper provided an updated and revised standardized catch rate of blue sharks caught by 

the Taiwanese longline fishery in the Indian Ocean, including the following abstract provided by 

the authors: 

"The catches and efforts of the blue shark in the Indian Ocean were estimated based on the 

observers’ records (2004-2019) of Taiwanese tuna longline fisheries. To cope with the large 

percentage of zero shark catch, the catch per unit effort (CPUE) of blue shark, as the number of 

fish caught per 1,000 hooks, was standardized using a two-step delta-lognormal model (DLN) 

that treats the proportion of positive sets and the CPUE of positive catches separately. The 

standardized CPUE showed a stable increasing trend for blue sharks from 2008 to 2014 (the 

peak), although decreased in 2015, it increased again in 2016. Overall, the standardized CPUE 

series of the blue shark caught by Taiwanese longline fishery showed a stable trend. The stable 

trend suggested that blue shark stocks in the Indian Ocean seems at the level of optimum 

utilization.” 

 

 

S7 EU (France) Réunion Longline (IOTC–2021-WPEB17(DP)-08)  
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This paper presented standardized CPUE of blue shark from the French swordfish longline 

fishery in the southwest Indian Ocean from 2007 to 2019, including the following abstract 

provided by the authors: 

“ The blue shark Prionace glauca is the main bycatch species of the French swordfish-targeting 

longline fishery operating in the south-west Indian Ocean. Using observer and self-reported data 

collected aboard commercial longliners between 2007 and 2020, we propose a standardized 

CPUE series for blue shark for this fishery estimated with a lognormal generalized linear mixed 

model (GLMM) to be used for stock assessment. We propose to use the standardized CPUE for 

the period comprised between 2011 and 2020 where the monitoring effort has been consequent 

in comparison with previous years. Throughout 2011-2020, the standardized CPUE for the blue 

shark shows a significant decreasing trend. 

 

S8 South Africa (IOTC-2021-WPEB17(DP)-11) 

This paper presented standardized CPUE of blue shark from the   joint-venture Japanese flagged 

vessels fishing in the South African EEZ and includes the following abstract provided by the 

authors: 

“The blue shark Prionace glauca is caught as bycatch in the large pelagic longline fishery in 

South Africa. The fleet includes a domestic component with varying but increasing degree of 

observer coverage, and a foreign-flagged component of Japanese vessels that operate under 

joint venture agreements with South African Right Holders. Japanese flagged vessels have been 

operating under a mandatory 100% observer coverage since 2007. The catch and effort data 

include consistent records of bycatch species in numbers caught per set. We investigated blue 

shark abundance by standardising the Catch per Unit Effort (CPUE) in numbers from Observer 

data for the time series 2007 to 2019. To do this, we applied a Generalised Additive Mixed 

Model (GAMM) with a Poisson error distribution. Explanatory variables of the final model 

included year, month, grid (lat, long) with the number of blue shark caught in a set offset by the 

number of hooks set, so as to maintain a count distribution. Vessel was included as a random 

effect. Despite a period of relatively low catch rates (2009-2012) followed by a period of 

relatively high catch rates (2015-2017), the results indicate that blue shark CPUE in the south-
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western IOTC area has been stable overall. Our dataset is unique in that the joint-venture 

Japanese flagged vessels have required 100% observer coverage since 2007. Given the increasing 

stricter catch regulation on shark species, our observer dataset may be the most appropriate dataset 

to accurately represent trends in abundance of blue sharks in the south-western IOTC region.” 

2.2 Size composition data 

As with the previous analysis sex based length-composition data collected by observers and 

from logsheets for the main fleets (Japan, Taiwan and Portugal) were used (Coelho et al 2017) 

along with additional length composition data submitted to the IOTC.  In all, between 10 and 20 

years  of length composition data from the LL fleets were organized and used in the analysis. 

Some size and sex composition data of catch were available, but in many cases the data were in 

aggregated form covering several years, or size sampling was incomplete across fisheries. Many 

of the time series suffered from low sample sizes and inconsistencies across years. For this 

reason and because of the evidence that there was a conflict between the CPUE and the size 

data (see results below) lower weight was given to the size data in the model. This allowed the 

model to estimate selectivity, but did not allow the size data to dominate the estimates of 

abundance in the model. We assumed an annual effective sample size calculated as the overall 

(male and female) sample size divided by 40. The annual sample size was then weighted (once) 

by the Francis (2011 and 2014) likelihood weighting method.  

  

2.3 Software 

The analysis was undertaken with Stock synthesis SS V3.30.16.02, 64 bit version (Methot 2000, 

2009, executable available from http://nft.nefsc.noaa.gov/SS3.html), running on MS 

WindowsTM  10).  Typical function minimization of the fully disaggregated model on a 3.0 GHz 

personal computer required about 10 minutes.  Additional simplifications and aggregations 

could probably reduce the minimization time further, without significant loss to the stock status 

inferences.   

http://nft.nefsc.noaa.gov/SS3.html


IOTC–2021–WPEB17(AS)-15 

 Page 10 of 108 

 

2.4 Model Assumptions 

The most important model assumptions are described in the following sections.  Standard 

population dynamics and statistical terms are described verbally, while equations can be found 

in Methot (2000, 2009).  Attachment 1 is the template specification file for all of the models, 

and includes additional information on secondary elements of model formulation which may be 

omitted in the description below.  All of the specification files are archived with the IOTC 

Secretariat. Table 2 lists the assumptions for the sensitivity runs.  

2.5 Time Period 

The model was iterated from 1950-2019 using an annual time-step, however, further analysis of 

seasonal processes is encouraged.   

 

2.6 Biological inputs and assumptions 

Blue sharks have an Indian Ocean wide distribution, and genetic evidence of distinct population 

structure within other oceans (e.g. Pacific) has not been found (Taguchi and Yokawa 2013), and 

hence was assumed to be homogenous here as well. Conventional tagging studies need to be 

examined in the Indian Ocean, but currently limited data exist, though some tagging effort in 

the Pacific shows limited movement to the western Australian EEZ.  In addition to assumptions 

regarding stock structure, the other critical information on the biology of blue shark necessary 

for the stock synthesis assessment relates to sex-specific growth, natural mortality, maturity 

and fecundity.  

2.7 Growth 

The standard assumptions made concerning age and growth in the SS model are (i) the lengths-

at-age are assumed to be normally distributed for each age-class; (ii) the mean lengths-at-age 

are assumed to follow a von Bertalanffy growth curve. For any specific model, it is necessary to 

assume the number of significant age-classes in the exploited population, with the last age-class 

being defined as a “plus group”, i.e. all fish of the designated age and older. For the results 

presented here, 25 yearly age-classes have been assumed, as age 25 approximates to the age at 

the theoretical maximum length of an average fish. 
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No attempt was made to estimate growth within the model due to the uninformative nature of 

the size data to track cohorts through time. The previous assessment considered the growth 

curves from Hsu et al. (2011) as well as specific formulations based on data from the Indian 

Ocean. This assessment uses new sex specific growth curves based on data from the Indian 

Ocean (Andrade et al 2017).  A CV of 0.22 was used to model variation in length-at-age. All 

lengths reported from the assessment relate to fork length (FL). 

2.8 Natural mortality 

Sets of age and sex-specific natural mortality ogives were considered in the assessment based 

on the Peterson and Wroblewski (1984) method (Rice 2021) (Table2). 

2.9 Maturity and fecundity 

For the purpose of computing the spawning biomass, we assume a logistic maturity schedule 

based on length with the age-at-50% maturity for females equal to 145cm (Nakano and Seki 

2003).  There is no information which indicates that sex ratio differs from parity throughout the 

lifecycle of blue shark.  Fecundity was fixed to an average of 25 pups per annual gestation 

period. 

2.10 Population and fishery dynamics 

The model partitions the population into 30 yearly age-classes in one region (Figure 1). The last 

age-class comprises a “plus group” in which mortality and other characteristics are assumed to 

be constant. The population is “monitored” in the model at yearly time steps, extending 

through a time window of 1950-2019. The main population dynamics processes are as follows: 

In this model “recruitment” is the appearance of age-class 1 fish (i.e. fish averaging 

approximately 50 cm in the population). The results presented in this report were derived using 

one recruitment episode per year, which is assumed to occur at the start of each year. Annual 

recruitment deviates from the recruitment relationship were estimated, but constrained 

reflecting the limited scope for compensation given estimates of fecundity. Deviations from the 

SRR were estimated in two parts (i) the early recruitment deviates for the 5 years prior to the 
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model period which has the bulk of the length composition information (1966 -1970) and (ii) 

the main recruitment deviates that covered the model period (1971 - 2019). 

There is no information which indicates that sex ratio differs from parity throughout the 

lifecycle of blue shark. In this assessment the term spawning biomass (SB) is a relative measure 

of spawning potential (the mature female population) and is a dimensionless term. It is not 

comparable to total biomass. 

2.11 Initial population state 

In the previous model it was assumed that the blue shark population was at an unfished state 

of equilibrium at the start of the model (1950) with the beginning of longline fishing occurring 

in the following years (at least from the 1950s onwards).  

  

The population age structure and overall size in the first year is determined as a function of the 

estimate of the first years recruitment (R1) offset from virgin recruitment (R0), the initial 

‘equilibrium’ fishing mortality discussed above, and the initial recruitment deviations. As the 

size data were found to be uninformative about initial depletion and recruitment variation only 

a small number (five) of initial recruitment deviates were estimated. 

2.12 Selectivity Curves 

Selectivity is fishery-specific and was assumed to be time-invariant. A double-half normal 

functional form was assumed for all selectivity curves except the miscellaneous fishery which 

was set to a logistic.  An offset on the peak and scale was estimated for sex-specific differences 

in selectivity that were evident in the data. The selectivity function location and scale were 

estimated for fleets 3, 4, 6, 7 and 8 and the ascending and descending functions were fixed to a 

best fit when estimated independently. Only the location parameter was estimated for fleet 5 

as the model failed to converge if the scale was also estimated. 

2.13 Parameter estimation and uncertainty 

Model parameters were estimated by maximizing the log-likelihoods of the data plus the log of 

the probability density functions of the priors, and the normalized sum of the recruitment 

deviates estimated in the model. For the catch and the CPUE series we assumed lognormal 
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likelihood functions while a multinomial was assumed for the size data. The maximization was 

performed by an efficient optimization using exact numerical derivatives with respect to the 

model parameters (Fournier et al. 2012). Estimation was conducted in a series of phases, the 

first of which used arbitrary starting values for most parameters.  The Hessian matrix computed 

at the mode of the posterior distribution was used to obtain estimates of the covariance matrix. 

This was used in combination with the Delta method to compute approximate confidence 

intervals for parameters of interest. 

2.14 Profile Likelihood  

An investigation of the information content in the data components was undertaken via the use 

of profile likelihood on the global scaling parameter (R0) (Lee et al 2014). The negative log 

likelihood of a specific parameter or data component should, in theory, decline to an obvious 

minimum.  In situations where this does not happen, at least from one side, there may be 

insufficient information within the data to estimate other parameters.  Virgin recruitment (R0) 

is an ideal scaling parameter because it is proportional to the unfished biomass. Profiles were 

run with the natural log of virgin recruitment, ln(R0), fixed at various values above and below 

the model estimated value; the corresponding likelihood profile quantified how much loss of fit 

was contributed by each data source. One of the primary uses of the likelihood profile is to 

identify conflicting data and provide a rationale for down weighting or excluding any data. 

 

2.15  Hierarchical cluster analysis 

A hierarchical cluster analysis (HCA) was used to identify groupings of CPUE series that 

represented similar, or same states of nature. The goal of this analysis was to develop a 

framework for identifying groupings of CPUE series that were similar, so that the model did not 

include trends that implied conflicting states of nature (i.e. increasing and decreasing). The 

methods were adapted from those recently implemented in an Atlantic shortfin mako 

assessment conducted by the International Commission for the Conservation of Atlantic Tunas 

(ICCAT 2017).   As noted in the Atlantic shortfin mako assessment (ICCAT 2017), “it is not 

uncommon for CPUE indices to contain conflicting information. However, when CPUE indices 
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are conflicting, including them in a single assessment (either explicitly or after combining them 

into a single index) tends to result in parameter estimates intermediate to what would be 

obtained from the data sets individually. Schnute and Hilborn (1993) showed the most likely 

parameter values are usually not intermediate but occur at one of the apparent extremes. 

Including conflicting indices in a stock assessment scenario may also result in residuals not 

being identically and independently distributed (IID) and so procedures such as the bootstrap 

cannot be used to estimate parameter uncertainty. Consequently, when CPUEs with conflicting 

information are identified, an alternative is to assume that indices reflect hypotheses about 

states of nature and to run scenarios for single or sets of indices that represent a common 

hypothesis.”  

 

The HCA used methods conducted in R using FLR (http://www.flr-project.org/). and the diags 

package. FLR provides a set of common methods for reading these data into R, plotting and 

summarizing them to assess the consistency in the CPUE trends. The CPUE time series along 

with a lowess smoother fitted to CPUE each year using a general additive model (GAM) to 

compare trends for the CPUEs. Hierarchical cluster analysis identified two groupings of time-

series neither of which matched exactly the pervious groupings. The first group was 

characterized by time-series which were lightly positively correlated with each other, EU-

Reunion and EU Spain,  and which had some highly negative correlations with TWN and South 

Africa. The second group was characterized by time-series which were less correlated with each 

other or were slightly negatively correlated with the CPUE series in other (positively correlated) 

group. This group was mad up of Taiwan, South Africa, Japan and EU Portugal. In fact EU 

Portugal was positively correlated with all of the other CPUE series except Taiwan. Because 

CPUEs with conflicting information were identified, it may be reasonable to assume that the 

indices reflect alternative hypotheses about states of nature and to run separate scenarios for 

each group. For this analysis it is recommended that we utilize the previous bas case grouping 

that was defined by expert opinion as well as the groupings defined through the HCA. 
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2.16 Selection of a diagnostic case and initial grid.  

During the data prep meeting (April 2021) the WPEB noted that there are conflicting trends 

among some CPUE series and that the inclusion of conflicting data would result in a mis-

specified model. This assessment follows from the 2017 assessment that used the EU Portugal, 

EU France (Reunion) and Japanese CPUE series, the choice of which was based in part on the 

hierarchal cluster analysis and in part on expert opinion to give more spread to the data.  With 

respect to the estimated catch history the 17 WPEB data prep meeting noted that the available 

nominal catch data currently held in the IOTC database is likely a gross underestimate of the 

true catch.  Given that approximately one third of the total reported sharks in the IOTC 

database are non species specific reports (i.e. reported as “sharks”) it is reasonable to assume 

that some of these reports represent blue shark given that blue shark are the most commonly 

caught pelagic shark.  Therefore the diagnostic case assumes that the GAM estimated catches 

are the appropriate catch estimates.  

 

An updated hierarchal cluster analysis showed that the most highly correlated CPUE series were 

EU Spain and EU France (La Reunion fleet - REU); these two series showed similar declining 

trends in recent years. The other grouping was made up of Taiwan China, South Africa, EU PRT 

and Japan. Taiwan was slightly negatively correlated with this group. Of note the EU Portugal 

series was positively correlated with all the other series except the Taiwan.   

 

Sensitivity trials were run using the other CPUE time series and combinations of CPUE. During 

the 2017 assessment meeting the WPEB noted that the early and late Japanese CPUE series 

would likely have been affected by the changes in market demand for fins and blue shark meat 

over time.  Sensitivities to the base case CPUE series groupings were run for those groups 

identified in Table 3.  Groupings of CPUE series will be chosen by the WPEB which will seek to 

use the results of the HCA as well as expert opinion to extend the spatial extent and the 

temporal coverage of the CPUE series groupings. Initial groupings of CPUE series used in this 

report are A) Previous base case PRT, REU, JPN, B) EU ESP, EU REU   C) EUESP, EU PRT, EU REU, 

South Africa, D) TWN, REU, JPN and D)all. In addition to the CPUE series groupings additional 
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parametrizations of steepness (values of 0.75 and 0.8) and sigma r (an alternative value of 0.4) 

were considered.  

 

2.17 Benchmark and Reference Point Methods  

Benchmarks included estimates of absolute population levels and fishing mortality for the 

terminal year, 2019 (F2019, SSB2019, B2019). These values are reported against reference points 

relative to MSY levels, and depletion estimates (relative to virgin levels).   

 

2.18 Other Model Considerations 

As explained above the length composition annual sample sizes were re-weighted by the 

Francis (2011) likelihood weighting method.  The minimum average CV associated with the 

indices of abundance length likelihoods were re-weighting based on the Francis (2014) method.  

The life history and biology in the model are treated as constants, these parameters, along with 

the catch inputs influence the plausible range of population dynamics in the model.  

2.19 Diagnostics and additional model runs 
Additional model  diagnostics which were carried out  includes expanded analysis on the 

residual and hierarchal cluster analysis, runs tests and joint residual plots, likelihood profiles, 

and hindcasting cross-validation.  

 

Additional model runs using an application of the generalized Bayesian State-Space Surplus  

Production Model framework JABBA (Just Another Bayesian Biomass Assessment) were carried 

out.  JABBA has been previously applied and tested in assessments of Indian Ocean swordfish, 

South Atlantic blue shark, North Pacific blue shark, Mediterranean albacore tuna, North Atlantic 

shortfin mako shark, and South Atlantic swordfish.  

3 Results   

In this section we focus on the results from the diagnostic case model and the key results and 

diagnostics for this model. We then comment on any important differences in both outputs and 
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model diagnostics for the sensitivity analyses, and present all results. The assessment model 

was implemented in Stock Synthesis version 3.30.16.02  (SS3 Methot 2013). A newer version of 

the model is available (version 3.30.17) but due to time constraints and the overall similarity of 

the model versions for the features implemented in this assessment.  Stock Synthesis 

3(v3.30.16.02) was implemented here as a length-based age-structured stock assessment 

model (Methot and Wetzel 2013; e.g., Wetzel and Punt 2011a, 2011b). Stock synthesis utilizes 

an integrated modeling approach (Maunder and Punt 2013) to take advantage of the many 

data sources available for the Indian Ocean stock of blue shark (Prionace glauca). An advantage 

of the integrated modeling approach is that the development of statistical methods that 

combine several sources of information into a single analysis allows for consistency in 

assumptions and permits the uncertainty associated with each data source to be propagated to 

final model outputs (Maunder and Punt 2013).  

 

3.1 Diagnostic case model 
The diagnostic case model choice is described in section 2.16.  The choice of model parameters 

and data inputs reflected the input of the WPEB 17 data prep meeting and the available 

updated data for biology and life history. This will be further refined by input at the WPEB 

assessment meeting.  

 
Model Fits to Abundance Indices 
The model was able to fit the general trends of the indices of abundance (Figure 10). Although 

the CPUE series S2 and S3 had periodic increases in the CPUE that the model was unable to fit   

As a result, the model fitted the central tendency of each series, which for S2 the Japanese 

series was a slight increase in the early 1990 until 1999, after which a slight decline and levelling 

off is evident.  The fits to S3 the Portuguese series and S7 Reunion show a modest and slight 

decline, respectively, throughout. The model interpreted these trends by predicting a 

decreasing total biomass through time.  The spawning output was estimated to increase slightly 

in the late 1990s to the early 2000s followed by a period of decline coincident with the increase 

in catch (Figure 2) and decline in the CPUE series. 
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Fits to the Length composition 
The differences estimated in the sex-specific selectivity curves for many of the fisheries 

reinforce the observations of biologists for areas of sex-segregation during the life history of 

blue sharks (Figure 12). With the exception of the Japanese longline fishery; all fisheries where 

sex specific selectivity could be estimated resulted in a lower peak selectivity (therefore 

catchability) for females. 

 

The overall fit to the length data was generally good (Figure 13). Fleet specific annual length 

samples were often quite different, i.e. left skewed one year and bimodal the next, which 

accounts for the small amount of misfit in the aggregated samples.  When attempting to 

estimate selectivity curves for fisheries with sex specific patterns the model often did not 

converge, therefore the sex specific offsets were fixed. Pearson residuals of the fit to the length 

compositions were small – on the order of 2 to -2 and did not show any temporal trend (Figures 

14-15).  

 

Stock-recruitment Parameters 

The predicted virgin recruitment (R0; number of age 0 pups) was approximately 2,014,000 

animals and the number of estimated pups was relatively constant from the early 1960 through 

the early 1980s, after which estimated recruitment slowly declined, and then experienced large 

fluctuations from 1990-2019 (Figure 16). The bias correction estimated in the model is shown in 

Figure 17. The corresponding estimated stock recruitment relationship and annual deviations 

are also shown in Figure 18.  

 

Fishing Mortality 

Estimated F/FMSY and fleet-specific instantaneous fishing mortality rates are presented in 

Figures 19 and 20 respectively. Fishing mortality was relatively low from the 1950 to the mid 

1990s, which is in accordance with low catches and effort during that period. In the late 1990s 

fishing mortality increased with the advent of F1 the Miscellaneous fishery, this fishery is 

comprised mostly of coastal longline (>98%), with trolling, sport and artisanal fisheries 

contributing small percentages of the catch. Starting in the  late-1990s overall fishing mortality 
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began to increase sharply, with large fluctuations in the individual fisheries contribution to  the 

overall fishing mortality. The overall fishing mortality has been below FMSY (i.e. overfishing is not 

occurring) for the entire time series, however, in recent years the confidence intervals have 

included values greater than one. 

 
Estimated stock status and other quantities 
The estimated equilibrium yield curve for the diagnostic case model is shown in Figure 21. The 

estimated MSY is approximately 33,500 MT and this is predicted to occur at 34% of the 

unfished biomass (Figure 21), which is less than the standard Schaefer production model 

(0.5B0). The diagnostic case model estimates that the total biomass of the stock was at 

approximately 100% of the unfished level at the start of the model period (Figure 11) and 

steadily decreased to an estimate of   SB2019/SBMSY = 1.2 that corresponds with F2019/FMSY = 0.81.  

Recruitment is fairly well estimated throughout the model time period (Figure 8), with recent 

recruitment estimated to be lower than the implied stock recruitment curve  due to deviations 

implied by the length data. The estimates of recruitment were quite tightly constrained to the 

stock recruitment curve for the initial period of the model when there was no length 

information to inform the model. The main trends in the population dynamics can be explained 

through the estimated fishing mortality which was greatly increased in the 1990s and early 

2000s due to the increase in catch (Figures 19 and 20). These changes in fishing mortality 

correspond to an overall stock status that is headed from a virgin state to the direction of 

overfished and overfishing (Figure 22).  

 

Model Uncertainty 

Stock status uncertainty was evaluated delta-Multivariate lognormal (MVLN)approximation  

  to generate joint error distributions for SSB2019/SSBMSY and F2019/FMSY.  Figure 22 shows the 

estimated stock status based on the MVLN analysis for the base case model and Figure 23 

shows the estimated timeseries based on the MVLN approximation.  Figure 24 shows the 

distribution of the  MLE estimates of SSB2019/SSBMSY and F2019/FMSY. 

 



IOTC–2021–WPEB17(AS)-15 

 Page 20 of 108 

 

Stock synthesis provides estimates of the MSY-related quantities and these and other quantities 

of interest for management are provided in Table 4.  We note that the IOTC has not yet 

adopted target or limit reference points for any shark species, so a suite of MSY-related 

quantities are presented. 

 

Retrospective Analysis 
As part of an analysis of model structure, retrospective analysis (sequentially deleting 1 year of 

data from the end of the model and re-running) was run using the base case formulation (the 

Portuguese, Japanese late and Reunion series and the GAM estimated catches). The estimates 

of spawning depletion remain very similar across all the retrospective model runs considered  

(Figure 25) indicating that the changes in estimates of virgin spawning biomass are based on 

the total catch (Figure 25 right panel). The last retrospective run (-5 years) estimated a more 

depleted stock that corresponds to a slightly smaller virgin recruitment (Figure 25 right panel), 

this is associated with higher estimated total fishing mortalities in the last 4 years.  In general 

the retrospective analysis shows no large departures from the estimated scale, depletion, or 

overall trend based on the sequential deletion of the last 7 years of data. 

 

3.2 Other model diagnostics 
 
Annex 1 shows the results of the expanded analysis on the residuals, hierarchal cluster analysis, 

runs tests joint residual plots, likelihood profiles, age structured production model and 

hindcasting cross-validation are presented in Annex 1. Select details from Annex 1 are repeated 

here, the reader is encouraged to read Annex 1 in its entirety. Additionally the control file used 

for the diagnostic case model is shown in Annex 2. 

 

The runs test indicated that the Japanese CPUE and length data did contain some patterns in 

the residuals, indicating a trend in the departure from the expected values the (Figures A7 and 

A8) the cause of this was the early time period in which the index had high contrast and little 

data. The joint residual plots (Figure A6) shows that in the latter part of the time series the 

model fits the Japanese data fairly well.  
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An age structured production model (ASPM) can help evaluate whether the catch and CPUE 

data give evidence for a production function within the model (Carvalho 2017). Overall the 

ASPM evaluates whether the  effect of  surplus production and observed catches alone could 

explain trends in the CPUE, in contrast to  a more complex model (i.e. SS3) that incorporates 

annual recruitment deviations   to improve the fit (Carvalho et al 2021).  Maunder and Piner 

(2017) note that if the ASPM fits well to the indices of abundance with contrast the production 

function is likely to drive the stock dynamics and the indices will provide information about 

absolute abundance (Minte-Vera et al., 2017).  Figure A13 shows that the biomass trajectories 

for both models (ASPM and the diagnostic) follow the same trend and that the estimates of  

LN(R0) are comparable.  The fits to the indices are shown in Figure A14 and indicate an overall 

good fit, indicating that the information content in the data is sufficient.   

 

Annex 3 shows the application of the generalized Bayesian State-Space Surplus  Production 

Model framework JABBA (Just Another Bayesian Biomass Assessment) to the 2021 IOTC 

assessment input data for Indian Ocean blue shark.  Five alternative scenarios were considered, 

with the groupings chosen to reflect the groupings outlined in the stock synthesis (SS3) 

assessment. Results indicate that the stock was not overfished nor subject to overfishing. All 

F/FMSY trajectories indicate that sustainable fishing mortality has never been exceeded for 

blue shark in the Indian Ocean, and that the probability of the stock being in the “green” 

quadrant of the Kobe plot is >99% in four out of five scenarios. 

4  Conclusion 

Although most pelagic sharks can be considered data poor when compared to targeted tuna 

and other teleosts, the information for blue shark in the Indian Ocean is relatively abundant 

because they are the most commonly caught pelagic shark. Although blue shark lack the 

traditional fisheries statistics such as landings and historic catch rates (CPUE series), blue shark 

have been caught in mixed target fisheries for at least the last two decades. The resulting CPUE 

series from these fisheries are concentrated in the most recent decade, and all come from 

fishery dependent longline sources. An issue of concern regarding the indices of relative 
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abundance, is that many of them show inter-annual variability that does not seem to be 

compatible with the life history of the species, suggesting that the GLMs used to standardize 

the indices did not include all factors to help track relative abundance or that the spatial scope 

of sampling is too limited to allow for precise inference about stock-wide trends.  The CPUE 

series that were used in the base case model came from on board observers and covered the 

majority of the southern Indian Ocean, however, the bulk of the observed effort was in the 

southwestern Indian Ocean in the waters from South Africa and Madagascar.  In the future 

intersessional work to further develop the indices of abundance would be important. 

 

Recent work has led to similar estimates with respect to age, growth, reproduction and the 

associated life history characteristics.  As such the range of variation investigated in the 

previous assessment was not undertaken for this study. The parameterization of the model 

reflected the best available estimates.  Changes to the biology and life history inputs were 

minor with respect to the last assessment.  Changes were: steepness is now 0.8 (from a range 

0.3 – 0.5); the theoretical maximum length has changed a few centimeters.  These changes 

affect the potential productivity/resiliency of the stock in different ways but the overall 

characteristics of shark with moderate productivity (fecundity) and an annual long gestation 

period have remained. 

 
The results of the assessment are compared across different groupings of CPUE series and show 

the diagnostic case parameterization resulting in estimates of SB2019 /SBMSY  =1.21 and F2019/FMSY  

= 0.81   Stock status is reported in relation to MSY based reference points however the authors 

note that the IOTC has not yet adopted reference points for sharks.  Due to the inherent 

unreliability of recruitment estimates in the terminal year this study defines ‘current’ as the 

average of the first four of the last five years (i.e. 2015-2018), and reports ratios of SB and F as 

current as well as with respect to 2019.  

 
The main conclusions of this assessment are: 

• The estimates of catch are highly influential in the model, but mostly in terms of scale, 
as the current depletion and fishing mortality indicators are approximately equal 
across all alternative catch estimates for a given CPUE series. 
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•  The scale of the assessment is influenced by the CPUE series chosen, across these 
estimates the estimates of B0 range from approximately 1million MT to 
approximately 1.9 million MT.  

 

The main drivers of this assessment are the trend in the catch and CPUE series. In particular the 
large increase in recent years of catch has different interpretations (within the model). based 
on whether the CPUE series is variable (Japanese late) or decreasing (Portuguese and Reunion 
Fleet). Recommended studies that would improve future analyses are: 

• Develop appropriate length inputs for all fleet.  

• Further investigation of CPUE series and their representativeness. 

• Develop region specific biological inputs. 

• Further work on developing catch histories.  

• Undertake collaborative study of blue shark CPUE from multiple Indian Ocean longline 
fleets  
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7 Tables 

 
 
Table 1.  Fishery definitions for the Indian Ocean Assessment 

 
Fleet/ Survey Number and Short 

Name 
Gear(s)   Selectivity 

F1 MISC Costal longline, trolling, 

sport and artisanal 

fisheries 

  Fixed logistic 

F2 GILL Gillnet Fisheries   Fixed logistic 

F3 OTHER_LL All longline  fishery 

other than Japan, TWN, 

China, Korea, Portugal 

and Spain. 

  Estimated double normal 

F4 JPN_LL Japanese longline fishery   Estimated double normal 

F5 KOR_LL Korean longline fishery   Estimated double normal 

F6 PRT_LL Taiwanese longline 

fishery 

  Estimated double normal 

F7 TWN_LL Portuguese longline fishery Estimated double normal 

F8 ESP_LL Spanish longline fishery   Estimated double normal 

S2 JPN_LATE Japan late years longline CPUE NA 

S3 POR Portugal longline CPUE   NA 

S4 ESP Spain longline CPUE   NA 

S5 TWN Taiwanese longline 

CPUE   
NA 

S7 REU EU-Reunion longline 

CPUE   
NA 

S8 ZAF South African EEZ 

Longline  
NA 
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Table 2: Estimates of age-specific natural mortality used in the assessment. The diagnostic case used those 
based on the approach of Peterson and Wroblewski (1984) method and estimates of growth from Andrade et al 
2019. 

Age Female Male 

0 0.453 0.453 

1 0.288 0.277 

2 0.222 0.212 

3 0.187 0.179 

4 0.165 0.158 

5 0.15 0.144 

6 0.139 0.134 

7 0.131 0.126 

8 0.124 0.121 

9 0.119 0.116 

10 0.115 0.113 

11 0.112 0.11 

12 0.109 0.107 

13 0.107 0.105 

14 0.105 0.104 

15 0.103 0.102 

16 0.102 0.101 

17 0.101 0.1 

18 0.1 0.1 

19 0.099 0.099 

20 0.098 0.098 

21 0.098 0.098 

22 0.097 0.097 

23 0.097 0.097 

24 0.096 0.097 

25 0.096 0.097 

26 0.095 0.096 

27 0.095 0.096 

28 0.095 0.096 

29 0.095 0.096 

30 0.095 0.096 
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Table 3.  Summary of SS3 specification options for the Indian Ocean blue shark assessment models.  Other 
assumptions were constant for all models, a total  6 sensitivity runs were completed. The bold text indicates the 
base case configuration. 

 

 
 

CPUE Grouping 

Number CPUE data included Notes

1 PRT, REU, JPN Previous Base Case

2 ESP, REU Positively correlated Group1

3 PRT, ESP, REU, JPN, ZAF Positively correlated Group2

4 TWN, REU, JPN Minimally negatively correlated

5 All

Stepness Assumptions Notes 

0.75 Lower bound of 95% CI

0.8 Estimate (Rosa & Coelho 2017)

0.84 Upper bound of 95% CI

Recruitment deviation

0.2 Low (Reference Case)

0.4 Hi
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Table 4: model (in bold text) and sensitivity runs. Stock status in 2019 is in the grey shaded rows. 
 

    
 

CPUE PRT, REU, JPN ESP, REU PRT, ESP, REU, JPN, ZAFTWN, REU, JPN All PRT, REU, JPN PRT, REU, JPN PRT, REU, JPN

Steeepness 0.8 0.8 0.8 0.8 0.8 0.75 0.8 0.84

SigmaR 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.2

C2019_msy 1.29 1.29 1.22 1.26 1.20 1.34 1.27 1.25

Y_MSY 33,532                33,600                35,452                34,212                36,022                32,251                34,180                34,525                

B_zero 1,029,200          1,031,360          1,091,270          1,050,480          1,109,390          1,035,310          1,043,160          1,025,020          

B_msy 338,377             339,090             358,411             345,321             364,293             354,130             343,616             325,447             

B_cur 384,354             384,882             442,014             405,148             459,087             381,991             406,037             386,117             

SB_zero 118,625             118,874             125,779             121,077             127,867             119,329             120,233             118,143             

SB_msy 39,001                39,083                41,310                39,801                41,988                40,817                39,605                37,511                

SB_cur 51,492                51,729                58,682                54,108                60,833                51,192                54,077                51,716                

SB_2019/SB_msy 1.21 1.21 1.35 1.27 1.39 1.15 1.27 1.27

SB_cur/SB_msy 1.32 1.32 1.42 1.36 1.45 1.25 1.37 1.38

SB_cur_init 0.43 0.44 0.47 0.45 0.48 0.43 0.45 0.44

Fcur 0.28 0.27 0.24 0.26 0.23 0.28 0.26 0.27

F_msy 0.31 0.31 0.31 0.31 0.31 0.28 0.31 0.33

F_2019/msy 0.81 0.81 0.68 0.76 0.64 0.91 0.74 0.74

F_cur/msy 0.90 0.89 0.77 0.85 0.74 1.00 0.85 0.82

SB_2019 47,315                47,168                55,724                50,412                58,244                46,892                50,120                47,627                

F_2019 0.25 0.25 0.21 0.23 0.20 0.25 0.23 0.25

B_2019 354,936             353,351             421,637             379,228             441,293             351,513             387,050             357,464             
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8 Figures 

 
Figure 1. Study area and reported longline effort by decade 1960s-2010s. The darker colors 
indicate higher effort (in millions of hooks), note the scale varies by decade.  
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Figure 2  Estimated total blue shark catch in mass by fishery over time for the Indian Ocean 
based on the GAM estimates of catch (top panel). Comparison of the 2021 estimated catch, 
the 2017 estimated catch and the nominal  catch(bottom panel).  
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Figure 3.  Standardized CPUE  for Japanese, Portuguese, Taiwanese ,Spanish, South African, 
and EU Reunion longline fleets based on papers submitted to WPEB-16 and 17.  All series 
have been rescaled by their mean so that they are visually comparable for relevant periods of 
overlap.  
 

 
Figure 4. Sex-specific growth curves (from Coelho et al 2017) calculated based on blue sharks in the Indian 
Ocean.  
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Figure 5: Temporal data coverage for the diagnostic case model for the assessment of blue sharks in the north 
Pacific. 
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Figure 6: Likelihood profiles for length composition, the bottom panel is a close up version of the top..   
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Figure 7: Likelihood profiles for the CPUE components for the reference run, The Bottom panel 
is a close up of the top.  
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Figure 8 Likelihood profile for the total likelihood, based on the diagnostic run.  
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Figure 9. Correlation matrix for CPUE indices available for the Indian Ocean blue shark. Blue 
indicates positive and red negative correlations. The order of the indices and the rectangular 
boxes are chosen based on a hierarchical cluster analysis using a set of dissimilarities. 
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Figure 10: Diagnostic case fit to the CPUE series, presented on a log scale. The top left panel is the Japanese late 
series (S2) the top right is the Portuguese series (S3) and the bottom  is S7 Reunion. 
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Figure 11: Total biomass (left) and spawning potential (output) for the diagnostic case 
parameterization model. The filled dot represents the pre-model estimate of unfished 
biomass. 
 

 
 
Figure 12: Selectivity curves estimated for female  and male   from the diagnostic case model for the assessment 
of blue sharks in the Indian Ocean. 
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Figure 13  Fit to the female length frequency data for the diagnostic case model for the assessment of blue 
sharks in the Indian Ocean. 
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Figure 14  Residuals from the fit to the  length frequency data for the diagnostic case model for the assessment 
of blue sharks in the Indian Ocean, Fleets 2-5. combined sex length data is shown in black, female length data in 
red and male length data in blue. Closed bubbles are positive residuals and open bubbles are negative residuals, 
bubble sizes are scaled to maximum within each panel. Thus, comparisons across panels should focus on 
patterns, not bubble sizes 
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Figure 15  Residuals from the fit to the  length frequency data for the diagnostic case model for the assessment of blue sharks in the Indian Ocean, Fleets 6-
8. Combined sex length data is shown in black, female length data in red and male length data in blue. Closed bubbles are positive residuals and open 
bubbles are negative residuals, bubble sizes are scaled to maximum within each panel. Thus, comparisons across panels should focus on patterns, not 
bubble sizes. 
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Figure 16 .Estimated recruitment including the estimate of virgin recruitment (filled circle at 
the start of the time series) for the diagnostic case model for the assessment of blue sharks in 
the Indian Ocean. 
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Figure 17 .Estimated bias adjustment in the model.    
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Figure 18  Stock recruitment curve used in the assessment and time series of estimates of 
recruitment deviations (colored points). 
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Figure 19 Estimated total fishing mortality/FMSY.  
 
 



IOTC–2021–WPEB17(AS)-15 

 Page 46 of 108 

 

Figure 20. Estimated fleet specific fishing mortality by year for the base case model 
configuration.  
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Figure 21. Equilibrium yield curve for the diagnostic case model for the assessment of blue 
sharks in the Indian Ocean.    
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Figure 22. Kobe plot of the annual stock status  
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Figure 23. Estimated timeseries based on the MVLN approximation  
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Figure 24. Estimated spawning biomass in 2019 relative to MSY (SSB2019/SSBMSY, top panel) 
and estimated total fishing mortality in 2019 relative to MSY (F2019/FMSY, bottom panel) for 
the base case model configuration, dashed lines indicate the 50th quantile.  
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Figure 25.  Estimated spawning biomass relative to MSY (SB/SBmsy, left panel) by year along 
with 95% asymptotic uncertainty (shaded areas) and the maximum likelihood estimate (MLE, 
vertical lines) and asymptotic uncertainty (bell shaped curves) of the natural log of virgin 
recruitment size (right panel) for each of the retrospective model runs conducted for the base 
case model configuration. 
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Figure 26 Spawning biomass depletion for the sensitivity   The top panel shows the depletion 
(from BMSY)   and the bottom panel shows the estimated spawning output. 
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Figure 27 Density estimates for the virgin spawning biomass from sensitivities using different 

CPUE series. 
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Figure 28.  Kobe plot showing the results the estimation of SB/SBMSY and F/FMSY, for the 
terminal year of the model (2015).
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Figure 29.  Kobe plot showing the results the estimation of B/BMSY and F/FMSY, for the terminal 
year of the model (2019) for the sensitivities using alternative groupings of CPUE series, 
steepness and sigmaR.  
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9 Annex 1. Diagnostic Tests for the Diagnostic Case SS3 Model 

 
Diagnostic tests are important in determining the robustness of estimates for management 
advice in integrated stock assessment models. The diagnostics tests included in are based on 
diagnostics prepared for the previous assessment as well as recently developed methods 
(Carvallo et al. 2021). Here we present the model diagnostics for the diagnostic model run 
presented in the main assessment analysis.  
 

9.1 Goodness of fit 
Residual and Hierarchal cluster analysis  
Data misfit often stems from inappropriate model structure, particularly with respect to the 
information contained in the CPUE data. By including divergent CPUE trends model mist fit  and 
The CPUE time series are plotted in Figure A1, along with a lowess smoother fitted to CPUE 
each year using a general additive model (GAM) to compare trends for the submitted CPUEs.  
 
The overall trend for fit to the indices is an initial decrease, a more dramatic decrease beginning 
in the early 1990s, following the Japanese CPUE, with a decrease through the 2000’s and a 
nearly stable or slightly declining trend during the 2010-2019 timeframe.  
 
Residuals from the smoother fits to CPUE are compared in Figure A2 to look at deviations from 
the overall trends. This allows conflicts between indices (e.g. highlighted by patterns in the 
residuals) to be identified. For example, in both the EU Portugal and the EU France (Reunion)  
time-series, the early part is mostly positive and the latter part is mostly a series  negative 
residuals  indicating that these time-series do not follow the overall trend, and provide 
evidence of a more rapidly decreasing trend in the stock trajectory in recent years than the 
overall trend. In contrast, The Japanese and South African  series provide evidence of a more 
gradually increasing trend in the stock trajectory in recent years than the overall trend. 
 
Correlations between indices are evaluated in Figure A3. The lower triangle shows the pairwise 
scatter plots between indices with a regression line, the upper triangle provides the correlation 
coefficients, and the diagonal provides the range of observations. A single influential point may 
cause a strong spurious correlation, so it is important to look at the plots as well as the 
correlation coefficients. Also, a strong correlation could be found by chance if two series only 
overlap for a few years.  
 
A hierarchical cluster analysis evaluated for the indices using a set of dissimilarities is provided 
in Figure A4. If indices represent the same stock components, then it is reasonable to expect 
them to be correlated. If indices are not correlated or are negatively correlated, i.e. they show 
conflicting trends, then this may result in poor fits to the data and bias in the parameter 
estimates obtained within a stock assessment model. Therefore, the correlations can be used to 
select groups of indices that represent a common hypothesis about the evolution of the stock 
(ICCAT 2017).  
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The hierarchical cluster analysis (HCA) identified two groupings of time-series. The first group 
includes Portugal and Reunion. This group is characterized by time-series which are highly 
correlated with each other and which have some highly negative correlations with some time-
series not included in the group. The second group includes the other indices. This group is 
characterized by time-series which are less highly correlated with each other or slightly 
negatively correlated with each other. Notably the HCA identified that the Portuguese CPUE 
was positively correlated with all the other CPUE series except the Taiwanese CPUE. The 
Taiwanese CPUE was negatively correlated with all of the other CPUE series, though only 
minimally with the CPUE series from Reunion and Japan. The South African CPUE series was 
positively correlated with only the Portuguese and Japanese CPUE series.  
 
Cross-correlations for the CPUE series are plotted in Figure A5 (i.e., the correlations between 
series when they are lagged by -10 to 10 years). The diagonals show the autocorrelations of an 
index lagged against itself.  The lag refers to how far the series are offset, and its sign 
determines which series is shifted. Note that as the lag increases, the number of possible 
matches decreases because the series overlap at the ends and do not overlap. The value of the 
lag with the highest correlation coefficient represents the best fit between the two series. 
 
You can plot the correlation coefficients versus lag to look for periodicities in the original time 
series. If the data is periodic, there will be an oscillation in the correlation coefficients with lag. 
They will be positive and have large values when the two series are in phase, and negative with 
large values when the two series are out of phase (peaks aligned with troughs). 
 
Runs test and joint residual plots. 
The goodness of fit of the model can be used as an indication of whether there is presence of 
significant model misspecification. Models that do not fit the data should be considered 
suspect, and further investigated. Here we use residual plots to investigate the trends and 
patterns in the data over time. Temporal correlation (autocorrelation) can drive bias and drift in 
the model estimates over time. A runs test (Wald and Wolfowitz, 1940) can test for 
randomness in a data sequence, such as model residuals (Carvalho et al., 2021). Residuals can 
also be investigated along side the root mean square error (RMSE,  Carvalho et al., 2017), and a 
joint residual plot (Winker et al., 2018), which can highlight the systematically auto-correlated 
residual patterns.  
 

9.2 Model consistency 
 
R0 Profile  
Use of a likelihood component profile on the a global scaling parameter (or other parameter) 
has been identified as a key model diagnostic   to identify the influence of information sources 
on model estimates (Carvalho et al. 2017, Ichinokawa et al., 2014; Lee et al., 2014; Wang et al., 
2014).  Here the equilibrium recruitment parameter, R0, is used because it represents an ideal 
global scaling parameter given that unfished (virgin) recruitment is proportional to unfished 
biomass (Carvalho et al 2021, Lee et al., 2014; Maunder and Piner, 2015; Wang  et al., 2014).  
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A relatively large change in negative log-likelihood units along the profile suggests a relatively 
informative data source for that particular model. Close association in the location of the 
minimum negative log-likelihood along the profile between data sources suggest that model 
consistency, and lack of conflict in the data.  Figures A9-A11 show the profile likelihoods of R0 
for the overall, CPUE and length components of the model. Figure A12 shows the fit to the 
CPUE series for the range of LN(R0) assumed.  The likelihood profiles show that overall the 
LN(R0) parameter is well estimated, led by the length likelihood  then the index likelihood and 
then the recruitment. Interestingly the lower edge of the likelihood is better defined (steeper) 
for all three components than the upper (Figure AA9). The fleet indices are generally in 
agreement (Figure AA10), however the length data shows different minimums (Figure A11), 
which is consistent with the fleets that encounter different components of the stock. The fits to 
the CPUE series at different values of LN(R0) show that values of approximately 7.5 fit the series 
(Figure A12).  
 
Age-Structured Production Model (ASPM) 
This diagnostic can help evaluate whether the catch and CPUE data give evidence for a 
production function within the model (Carvalho 2017). Overall the ASPM evaluates whether the   
effect of  surplus production and observed catches alone could explain trends in the CPUE, in 
contrast to  a more complex model (i.e. SS3) that incorporates annual recruitment deviations   
to improve the fit (Carvalho et al 2021).  Maunder and Piner (2017) note that if the ASPM fits 
well to the indices of abundance with contrast the production function is likely to drive the 
stock dynamics and the indices will provide information about absolute abundance (Minte-Vera 
et al., 2017).  Figure A13 shows that the biomass trajectories for both models (ASPM and the 
diagnostic) follow the same trend and that the estimates of  LN(R0) are comparable.  The fits to 
the indices are shown in figure Figure A14 and indicate an overall good fit, indicating that the 
information content in the data is sufficient.   
 
Retrospective analysis 
Retrospective analysis is common in fisheries stock assessment to check the consistency of 
model estimates  (Brooks and Legault, 2016; Carvalho et al., 2017; Hurtado-Ferro et al., 2015; 
Miller and Legault, 2017). A retrospective analysis is carried out by sequentially deleting a 
number of years of day (i.e. from 0 to 7) and re-running the model.  Comparisons of model 
estimates from the full time-series and the truncated time-series can illuminate the bias and 
accuracy of the modelled quantities. Statistical analysis in the form of calculating the 
retrospective bias, rho (ρM,  Mohn (1999), is common, with values between -0.15 and 0.2 being 
considered indicative of no bias.  Figure A15 shows the analysis of spawning stock biomass 
(SSB) and fishing mortality estimates for Indian Ocean blue shark along with the Mohn’s rho 
which indicates no retrospective bias. Forecasting the next year based on the retrospective 
analysis  shows similar analysis (Figure A16). 
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9.3 Prediction Skill 
Kell et al. (2016) proposed the hindcasting cross-validation technique (HCXval) where 
observations are compared to their predicted future values. The key concept behind the HCXval 
approach is ’prediction skill’, which is defined as any measure of the accuracy of a forecasted 
value   to the actual observed that is not known by the model (Kell et al., 2021). The difference, 
which is referred to as the ’prediction residual’ (Michaelsen, 1987) can be evaluated by the 
mean absolute scaled error (MASE; Hyndman and Koehler, 2006). Carvalho et al note that a 
MASE  score > 1 indicates that the average model forecasts are worse than a random walk. 
Conversely, a MASE score of 0.5 indicates that the model forecasts twice as accurately as a 
naïve baseline prediction; i.e.  the model has prediction skill. For the CPUE series that constitute 
the diagnostic case the MASE values are 1.36, 0.93 and 1.09 for the Japanese, Portugal and 
Reunion series (respectively, Figure A17), this indicates a mix of poor, good and decent 
prediction skill.  
 
  



IOTC–2021–WPEB17(AS)-15 

 Page 61 of 108 

 

 

10 Figures 

  

Figure A1. Indian Ocan time series of agreed CPUE indices; Points are the standardized values, 
continuous black lines are a lowess smoother showing the average trend by area (i.e. fitted to 
year for each area with series as a factor). X-axis is time, Y-axis are the scaled indices. 
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Figure A2. Time series of residuals from the smooth fit to CPUE indices. X-axis is time, Y-axis are 
the scaled indices. 
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Figure A3. Pairwise scatter plots for CPUE indices. X- and Y-axis are scaled indices. 
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Figure A4. Correlation matrix for CPUE indices; blue indicates positive and red negative 
correlations, the order of the indices and the rectangular boxes are chosen based on a 
hierarchical cluster analysis using a set of dissimilarities. 
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Figure A5 Cross-correlations between CPUE indices to identify lagged correlations (e.g., due to 
year-class effects). X-axis is lag number, and y-axis is cross-correlation. 
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Figure A6. Joint residual plots for  CPUE fits (left) from the Japanese (blue, S2),   EU Portugal 
(Red, S3), and EU Reunion (Green S7) from the Indian Ocean blue shark Assessment,. And (c) 
annual mean length estimates for  multiple fishing fleets. Vertical lines with points show the 
residuals (in colors by index), and solid black lines show loess smoother through all residuals. 
Boxplots indicate the median and quantiles in cases where residuals from the multiple indices 
are available for any given year. Root-mean squared errors (RMSE) are included in the upper 
right-hand corner of each plot. 
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Figure A7. Runs tests results illustrated for three catch-per-unit-effort (CPUE) fits (top left pane 
Japanese LL, top right EU Portugal, bottom (Reunion) from the Indian Ocean SS3 blue shark 
(BSH). Green shading indicates no evidence (p ≥ 0.05) and red shading evidence (p < 0.05) to 
reject the hypothesis of a randomly distributed time-series of residuals, respectively. The 
shaded (green/red) area spans three residual standard deviations to either side from zero, and 
the red points outside of the shading violate the ‘three-sigma limit’ for that series.   
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Figure A8. Runs tests results illustrated for the length composition fits (with names and fleet 
numbers on top) from the Indian Ocean SS3 blue shark (BSH). Green shading indicates no 
evidence (p ≥ 0.05) and red shading evidence (p < 0.05) to reject the hypothesis of a randomly 
distributed time-series of residuals, respectively. The shaded (green/red) area spans three 
residual standard deviations to either side from zero, and the red points outside of the shading 
violate the ‘three-sigma limit’ for that series.   
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Figure A9. Total likelihood and component profiles (recruitment, length and index (CPUE) 
components).  

 
Figure A10. CPUE likelihoods for the diagnostic model.   
 
 



IOTC–2021–WPEB17(AS)-15 

 Page 70 of 108 

 

 
Figure A11.R0 profiles likelihoods for the fit to the length data.  
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Figure A12. Fits to the component CPUE series (black dots and lines) for various profile 
likelihood values colored lines. Only the CPUE series that were fit in the diagnostic case are 
presented. The top panel is the fit to the Japanese CPUE, middle panel is the fit to the 
Portuguese CPUE and the bottom panel is the fit to the Reunion CPUE series  
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Figure A13. Comparison of spawning biomass trajectories for the ASPM and the diagnostic case 
of the assessment model carried out in stock synthesis (left panel), and the estimation of the 
densities for the stock recruitment parameter LN(R0) on the right hand side. 
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Figure A14. Fits to the indices for the ASPM and Diagnostic case on the log scale. The panels 
indicate the fits to the Japanese (top let), Portuguese (top right) and Reunion (bottom) CPUE 
series.  
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Figure 15. Retrospective analysis of spawning stock biomass (SSB) and fishing mortality 
estimates for Indian Ocean blue shark conducted by re-fitting the reference model (Ref) after 
seven years, one year at a time sequentially.  Mohn’s rho statistic are denoted on top of the 
panels. Grey shaded areas are the 95 % confidence intervals from the reference model in cases 
where the analysis was run with Hessian.  
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Figure 16. Retrospective results shown for the most recent years only. Mohn’s rho statistic and 
the corresponding ‘hindcast rho’ values (in brackets) are printed at the top of the panels. One-
year-ahead projections denoted by color-coded dashed lines with terminal points are shown for 
each model.  
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Figure A17. Hindcasting cross-validation (HCxval) results from CPUE fits, showing observed 
(large points connected with dashed line), fitted (solid lines) and one-year ahead forecast 
values (small terminal points). HCxval was performed using one reference model (Ref) and five 
hindcast model runs (solid lines) relative to the expected CPUE. The observations used for 
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cross-validation are highlighted as color-coded solid circles with associated 95 % confidence 
intervals. The model reference year refers to the endpoints of each one-year-ahead forecast 
and the corresponding observation (i.e., year of retrospective + 1). The mean absolute scaled 
error (MASE) score associated with each CPUE.  
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ANNEX 2  

Model Specifications 

Stock assessment of blue shark (Prionace glauca) in the Indian Ocean using SS3. 
Control File 

#V3.30.16.02;_2020_09_21;_trans;_Stock_Synthesis_by_Richard_Methot_(NOAA)_using_ADMB_

12.2 

#Stock Synthesis (SS) is a work of the U.S. Government and is not subject to 

copyright protection in the United States. 

#Foreign copyrights may apply. See copyright.txt for more information. 

#_user_support_available_at:NMFS.Stock.Synthesis@noaa.gov 

#_user_info_available_at:https://vlab.ncep.noaa.gov/group/stock-synthesis 

#_data_and_control_files: DATA.SS // CONTROL.SS 

0  # 0 means do not read wtatage.ss; 1 means read and use wtatage.ss and also read 

and use growth parameters 

1  #_N_Growth_Patterns (Growth Patterns, Morphs, Bio Patterns, GP are terms used 

interchangeably in SS) 

1 #_N_platoons_Within_GrowthPattern  

#_Cond 1 #_Platoon_within/between_stdev_ratio (no read if N_platoons=1) 

#_Cond  1 #vector_platoon_dist_(-1_in_first_val_gives_normal_approx) 

# 

2 # recr_dist_method for parameters:  2=main effects for GP, Settle timing, Area; 

3=each Settle entity; 4=none, only when N_GP*Nsettle*pop==1 

1 # not yet implemented; Future usage: Spawner-Recruitment: 1=global; 2=by area 

1 #  number of recruitment settlement assignments  

0 # unused option 

#GPattern month  area  age (for each settlement assignment) 

 1 1 1 0 

# 

#_Cond 0 # N_movement_definitions goes here if Nareas > 1 

#_Cond 1.0 # first age that moves (real age at begin of season, not integer) also 

cond on do_migration>0 

#_Cond 1 1 1 2 4 10 # example move definition for seas=1, morph=1, source=1 dest=2, 

age1=4, age2=10 

# 

1 #_Nblock_Patterns 

1 #_blocks_per_pattern  

# begin and end years of blocks 

 1994 1994 

# 

# controls for all timevary parameters  

1 #_time-vary parm bound check (1=warn relative to base parm bounds; 3=no bound 

check); Also see env (3) and dev (5) options to constrain with base bounds 

# 

# AUTOGEN 
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1 1 1 1 1 # autogen: 1st element for biology, 2nd for SR, 3rd for Q, 4th reserved, 

5th for selex 

# where: 0 = autogen time-varying parms of this category; 1 = read each time-varying 

parm line; 2 = read then autogen if parm min==-12345 

# 

#_Available timevary codes 

#_Block types: 0: P_block=P_base*exp(TVP); 1: P_block=P_base+TVP; 2: P_block=TVP; 3: 

P_block=P_block(-1) + TVP 

#_Block_trends: -1: trend bounded by base parm min-max and parms in transformed units 

(beware); -2: endtrend and infl_year direct values; -3: end and infl as fraction of 

base range 

#_EnvLinks:  1: P(y)=P_base*exp(TVP*env(y));  2: P(y)=P_base+TVP*env(y);  3: 

P(y)=f(TVP,env_Zscore) w/ logit to stay in min-max;  4: P(y)=2.0/(1.0+exp(-

TVP1*env(y) - TVP2)) 

#_DevLinks:  1: P(y)*=exp(dev(y)*dev_se;  2: P(y)+=dev(y)*dev_se;  3: random walk;  

4: zero-reverting random walk with rho;  5: like 4 with logit transform to stay in 

base min-max 

#_DevLinks(more):  21-25 keep last dev for rest of years 

# 

#_Prior_codes:  0=none; 6=normal; 1=symmetric beta; 2=CASAL's beta; 3=lognormal; 

4=lognormal with biascorr; 5=gamma 

# 

# setup for M, growth, wt-len, maturity, fecundity, (hermaphro), recr_distr, 

cohort_grow, (movement), (age error), (catch_mult), sex ratio  

# 

3 #_natM_type:_0=1Parm; 

1=N_breakpoints;_2=Lorenzen;_3=agespecific;_4=agespec_withseasinterpolate 

 #_Age_natmort_by sex x growthpattern (nest GP in sex) 

 0.288 0.222 0.187 0.165 0.15 0.139 0.131 0.124 0.119 0.115 0.112 0.109 0.107

 0.105 0.103 0.102 0.101 0.1 0.099 0.098 0.098 0.097 0.097 0.096 0.096

 0.095 0.095 0.095 0.095 0.095 0.094 

 0.277 0.212 0.179 0.158 0.144 0.134 0.126 0.121 0.116 0.113 0.11 0.107 0.105

 0.104 0.102 0.101 0.1 0.1 0.099 0.098 0.098 0.097 0.097 0.097 0.097

 0.096 0.096 0.096 0.096 0.096 0.096 

# 

2 # GrowthModel: 1=vonBert with L1&L2; 2=Richards with L1&L2; 3=age_specific_K_incr; 

4=age_specific_K_decr; 5=age_specific_K_each; 6=NA; 7=NA; 8=growth cessation 

0.5 #_Age(post-settlement)_for_L1;linear growth below this 

999 #_Growth_Age_for_L2 (999 to use as Linf) 

-999 #_exponential decay for growth above maxage (value should approx initial Z; -999 

replicates 3.24; -998 to not allow growth above maxage) 

0  #_placeholder for future growth feature 

# 

0 #_SD_add_to_LAA (set to 0.1 for SS2 V1.x compatibility) 

0 #_CV_Growth_Pattern:  0 CV=f(LAA); 1 CV=F(A); 2 SD=F(LAA); 3 SD=F(A); 4 logSD=F(A) 

# 

1 #_maturity_option:  1=length logistic; 2=age logistic; 3=read age-maturity matrix 

by growth_pattern; 4=read age-fecundity; 5=disabled; 6=read length-maturity 
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5 #_First_Mature_Age 

2 #_fecundity option:(1)eggs=Wt*(a+b*Wt);(2)eggs=a*L^b;(3)eggs=a*Wt^b; (4)eggs=a+b*L; 

(5)eggs=a+b*W 

0 #_hermaphroditism option:  0=none; 1=female-to-male age-specific fxn; -1=male-to-

female age-specific fxn 

3 #_parameter_offset_approach for M, G, CV_G:  1- direct, no offset; 2- 

male=fem_parm*exp(male_parm); 3: male=female*exp(parm) then old=young*exp(parm) 

# 

#_growth_parms 

#_ LO HI INIT PRIOR PR_SD PR_type PHASE env_var&link dev_link dev_minyr dev_maxyr 

dev_PH Block Block_Fxn 

# Sex: 1  BioPattern: 1  NatMort 

# Sex: 1  BioPattern: 1  Growth 

 10 120 49.8 45 10 6 -4 0 0 0 0 0.5 0 0 # L_at_Amin_Fem_GP_1 

 40 410 283.2 400 10 6 -2 0 0 0 0 0.5 0 0 # L_at_Amax_Fem_GP_1 

 0.1 0.25 0.129 0.15 0.8 6 -4 0 0 0 0 0.5 0 0 # VonBert_K_Fem_GP_1 

 -10 10 1 1 0.8 0 -4 0 0 0 0 0.5 0 0 # Richards_Fem_GP_1 

 0.01 1 0.22 0.0834877 0.8 6 -3 0 0 0 0 0.5 0 0 # CV_young_Fem_GP_1 

 -3 3 -0.4 0 0.8 6 -3 0 0 0 0 0.5 0 0 # CV_old_Fem_GP_1 

# Sex: 1  BioPattern: 1  WtLen 

 -3 3 5.388e-06 5.388e-06 0.8 6 -3 0 0 0 0 0.5 0 0 # Wtlen_1_Fem 

 -3 3.5 3.102 3.102 0.8 6 -3 0 0 0 0 0.5 0 0 # Wtlen_2_Fem 

# Sex: 1  BioPattern: 1  Maturity&Fecundity 

 -3 300 145 55 0.8 6 -3 0 0 0 0 0.5 0 0 # Mat50%_Fem 

 -3 3 -0.138 -0.138 0.8 6 -3 0 0 0 0 0.5 0 0 # Mat_slope_Fem 

 -3 46 38 37 0.8 6 -3 0 0 0 0 0.5 0 0 # Eggs_scalar_Fem 

 -3 3 0 0 0.8 6 -3 0 0 0 0 0.5 0 0 # Eggs_exp_len_Fem 

# Sex: 2  BioPattern: 1  NatMort 

# Sex: 2  BioPattern: 1  Growth 

 -3 3 0.0323 0 0.8 0 -3 0 0 0 0 0.5 0 0 # L_at_Amin_Mal_GP_1 

 -3 3 -0.0214 0 0.8 0 -2 0 0 0 0 0.5 0 0 # L_at_Amax_Mal_GP_1 

 -3 3 0.1306 0 0.8 0 -3 0 0 0 0 0.5 0 0 # VonBert_K_Mal_GP_1 

 -3 3 0 0 0.8 6 -3 0 0 0 0 0.5 0 0 # Richards_Mal_GP_1 

 -3 3 0 0 0.8 6 -3 0 0 0 0 0.5 0 0 # CV_young_Mal_GP_1 

 -3 3 -0.4 0 0.8 6 -3 0 0 0 0 0.5 0 0 # CV_old_Mal_GP_1 

# Sex: 2  BioPattern: 1  WtLen 

 -3 3 3.293e-06 3.293e-06 0.8 6 -3 0 0 0 0 0.5 0 0 # Wtlen_1_Mal 

 -3 3.5 3.225 3.225 0.8 6 -3 0 0 0 0 0.5 0 0 # Wtlen_2_Mal 

# Hermaphroditism 

#  Recruitment Distribution   

 -4 4 0 0 99 0 -3 0 0 0 0 0.5 0 0 # RecrDist_GP_1 

 -4 4 0 0 99 0 -3 0 0 0 0 0.5 0 0 # RecrDist_Area_1 

 -4 4 4 0 99 0 -3 0 0 0 0 0.5 0 0 # RecrDist_timing_1 

#  Cohort growth dev base 

 0.1 10 1 1 1 6 -1 0 0 0 0 0.5 0 0 # CohortGrowDev 

#  Movement 

#  Age Error from parameters 

#  catch multiplier 
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#  fraction female, by GP 

 0.000001 0.999999 0.5 0.5  0.5 0 -99 0 0 0 0 0 0 0 # FracFemale_GP_1 

# 

#_no timevary MG parameters 

# 

#_seasonal_effects_on_biology_parms 

 0 0 0 0 0 0 0 0 0 0 

#_femwtlen1,femwtlen2,mat1,mat2,fec1,fec2,Malewtlen1,malewtlen2,L1,K 

#_ LO HI INIT PRIOR PR_SD PR_type PHASE 

#_Cond -2 2 0 0 -1 99 -2 #_placeholder when no seasonal MG parameters 

# 

3 #_Spawner-Recruitment; Options: 1=NA; 2=Ricker; 3=std_B-H; 4=SCAA; 5=Hockey; 6=B-

H_flattop; 7=survival_3Parm; 8=Shepherd_3Parm; 9=RickerPower_3parm 

0  # 0/1 to use steepness in initial equ recruitment calculation 

0  #  future feature:  0/1 to make realized sigmaR a function of SR curvature 

#_          LO            HI          INIT         PRIOR         PR_SD       PR_type      

PHASE    env-var    use_dev   dev_mnyr   dev_mxyr     dev_PH      Block    Blk_Fxn #  

parm_name 

             4            12       7.67098             7             1             6          

1          0          0          0          0          0          0          0 # 

SR_LN(R0) 

0.1 0.9 0.8 0.35 10 6 -2 0 0 0 0 0 0 0 # SR_BH_steep 

0 2 0.2 0.3 0.8 6 -3 0 0 0 0 0 0 0 # SR_sigmaR 

            -5             5             0             0             1             6         

-1          0          0          0          0          0          1          1 # 

SR_regime 

             0             0             0             0            99             0         

-1          0          0          0          0          0          0          0 # 

SR_autocorr 

#Next are short parm lines for timevary  

 -10 10 0.00447741 0 5 6 4 # SR_regime_BLK1add_1994 

2 #do_recdev:  0=none; 1=devvector (R=F(SSB)+dev); 2=deviations (R=F(SSB)+dev); 

3=deviations (R=R0*dev; dev2=R-f(SSB)); 4=like 3 with sum(dev2) adding penalty 

1992 # first year of main recr_devs; early devs can preceed this era 

2015 # last year of main recr_devs; forecast devs start in following year 

2 #_recdev phase  

1 # (0/1) to read 13 advanced options 

 -10 #_recdev_early_start (0=none; neg value makes relative to recdev_start) 

 1 #_recdev_early_phase 

 0 #_forecast_recruitment phase (incl. late recr) (0 value resets to maxphase+1) 

 1 #_lambda for Fcast_recr_like occurring before endyr+1 

 1979.1 #_last_yr_nobias_adj_in_MPD; begin of ramp 

 2004.2 #_first_yr_fullbias_adj_in_MPD; begin of plateau 

 2016 #_last_yr_fullbias_adj_in_MPD 

 2020.5 #_end_yr_for_ramp_in_MPD (can be in forecast to shape ramp, but SS sets 

bias_adj to 0.0 for fcast yrs) 
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 0.4257 #_max_bias_adj_in_MPD (typical ~0.8; -3 sets all years to 0.0; -2 sets all 

non-forecast yrs w/ estimated recdevs to 1.0; -1 sets biasadj=1.0 for all yrs w/ 

recdevs) 

 0 #_period of cycles in recruitment (N parms read below) 

 -10 #min rec_dev 

 10 #max rec_dev 

 0 #_read_recdevs 

#_end of advanced SR options 

# 

#_placeholder for full parameter lines for recruitment cycles 

# implementation error by year in forecast:  0 

# 

#Fishing Mortality info  

0.2 # F ballpark value in units of annual_F 

2010 # F ballpark year (neg value to disable) 

3 # F_Method:  1=Pope; 2=instan. F; 3=hybrid (hybrid is recommended) 

5 # max F or harvest rate, depends on F_Method 

# no additional F input needed for Fmethod 1 

# if Fmethod=2; read overall start F value; overall phase; N detailed inputs to read 

# if Fmethod=3; read N iterations for tuning for Fmethod 3 

4  # N iterations for tuning F in hybrid method (recommend 3 to 7) 

# 

#_initial_F_parms; count = 1 

#_ LO HI INIT PRIOR PR_SD  PR_type  PHASE 

 1e-07 0.1 6.32571e-05 0.001 1 6 1 # InitF_seas_1_flt_1F1_MISC 

# 

#_Q_setup for fleets with cpue or survey data 

#_1:  fleet number 

#_2:  link type: (1=simple q, 1 parm; 2=mirror simple q, 1 mirrored parm; 3=q and 

power, 2 parm; 4=mirror with offset, 2 parm) 

#_3:  extra input for link, i.e. mirror fleet# or dev index number 

#_4:  0/1 to select extra sd parameter 

#_5:  0/1 for biasadj or not 

#_6:  0/1 to float 

#_   fleet      link link_info  extra_se   biasadj     float  #  fleetname 

         9         1         0         0         0         1  #  S1_JPN_EARLY 

        10         1         0         0         0         1  #  S2_JPN_LATE 

        11         1         0         0         0         1  #  S3_EU_POR 

        12         1         0         0         0         1  #  S4_EU_ESP 

        13         1         0         0         0         1  #  S5_TAI 

        14         1         0         0         0         1  #  S6_IND 

        15         1         0         0         0         1  #  S7_REUNION 

        16         1         0         0         0         1  #  S8_ZAF 

-9999 0 0 0 0 0 

# 

#_Q_parms(if_any);Qunits_are_ln(q) 
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#_          LO            HI          INIT         PRIOR         PR_SD       PR_type      

PHASE    env-var    use_dev   dev_mnyr   dev_mxyr     dev_PH      Block    Blk_Fxn  #  

parm_name 

           -25            25      -7.99572             0             1             0         

-1          0          0          0          0          0          0          0  #  

LnQ_base_S1_JPN_EARLY(9) 

           -25            25      -8.27437             0             1             0         

-1          0          0          0          0          0          0          0  #  

LnQ_base_S2_JPN_LATE(10) 

           -25            25      -7.74816             0             1             0         

-1          0          0          0          0          0          0          0  #  

LnQ_base_S3_EU_POR(11) 

           -25            25      -6.23723             0             1             0         

-1          0          0          0          0          0          0          0  #  

LnQ_base_S4_EU_ESP(12) 

           -25            25      -8.51087             0             1             0         

-1          0          0          0          0          0          0          0  #  

LnQ_base_S5_TAI(13) 

           -25            25      -8.95108             0             1             0         

-1          0          0          0          0          0          0          0  #  

LnQ_base_S6_IND(14) 

           -25            25      -7.14633             0             1             0         

-1          0          0          0          0          0          0          0  #  

LnQ_base_S7_REUNION(15) 

           -25            25      -7.14633             0             1             0         

-1          0          0          0          0          0          0          0  #  

LnQ_base_S8_ZAF(16) 

#_no timevary Q parameters 

# 

#_size_selex_patterns 

#_discard_options:_0=none;_1=define_retention;_2=retention&mortality;_3=all_discarded

_dead;_4=define_dome-shaped_retention 

#_Pattern Discard Male Special 

 1 0 0 0 # 1 F1_MISC 

 1 0 0 0 # 2 F2_GL 

 24 0 4 0 # 3 F3_OTHER_LL 

 24 0 3 0 # 4 F4_JPN_LL 

 24 0 0 0 # 5 F5_KOR_LL 

 24 0 4 0 # 6 F6_PRT_LL 

 24 0 4 0 # 7 F7_TWN_LL 

 24 0 0 0 # 8 F8_ESP_LL 

 5 0 0 5 # 9 S1_JPN_EARLY 

 5 0 0 5 # 10 S2_JPN_LATE 

 5 0 0 6 # 11 S3_EU_POR 

 5 0 0 8 # 12 S4_EU_ESP 

 5 0 0 7 # 13 S5_TAI 

 5 0 0 8 # 14 S6_IND 

 5 0 0 8 # 15 S7_REUNION 
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 5 0 0 8 # 16 S8_ZAF 

# 

#_age_selex_patterns 

#_Pattern Discard Male Special 

 11 0 0 0 # 1 F1_MISC 

 11 0 0 0 # 2 F2_GL 

 11 0 0 0 # 3 F3_OTHER_LL 

 11 0 0 0 # 4 F4_JPN_LL 

 11 0 0 0 # 5 F5_KOR_LL 

 11 0 0 0 # 6 F6_PRT_LL 

 11 0 0 0 # 7 F7_TWN_LL 

 11 0 0 0 # 8 F8_ESP_LL 

 11 0 0 0 # 9 S1_JPN_EARLY 

 11 0 0 0 # 10 S2_JPN_LATE 

 11 0 0 0 # 11 S3_EU_POR 

 11 0 0 0 # 12 S4_EU_ESP 

 0 0 0 0 # 13 S5_TAI 

 0 0 0 0 # 14 S6_IND 

 0 0 0 0 # 15 S7_REUNION 

 0 0 0 0 # 18 S8_ZAF 

# 

#_          LO            HI          INIT         PRIOR         PR_SD       PR_type      

PHASE    env-var    use_dev   dev_mnyr   dev_mxyr     dev_PH      Block    Blk_Fxn  #  

parm_name 

# 1   F1_MISC LenSelex 

             1           300           200           100           0.1             6         

-2          0          0          0          0        0.5          0          0  #  

SizeSel_P1_F1_MISC(1) 

             1           339            75           100           0.1             6         

-3          0          0          0          0        0.5          0          0  #  

SizeSel_P2_F1_MISC(1) 

# 2   F2_GL LenSelex 

             1           300           200           100           0.1             6         

-2          0          0          0          0        0.5          0          0  #  

SizeSel_P1_F2_GL(2) 

             1           339            75           100           0.1             6         

-3          0          0          0          0        0.5          0          0  #  

SizeSel_P2_F2_GL(2) 

# 3   F3_OTHER_LL LenSelex 

           170           200       189.703           190             1             6          

2          0          0          0          0        0.5          0          0  #  

SizeSel_P1_F3_OTHER_LL(3) 

           -10            -9      -9.57032          -9.5             0             0          

2          0          0          0          0        0.5          0          0  #  

SizeSel_P2_F3_OTHER_LL(3) 

           -15            15       6.90381             0             0             0         

-4          0          0          0          0        0.5          0          0  #  

SizeSel_P3_F3_OTHER_LL(3) 
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           -15            15             8             0             0             0         

-5          0          0          0          0        0.5          0          0  #  

SizeSel_P4_F3_OTHER_LL(3) 

          -999          -999          -999             0             0             0         

-2          0          0          0          0        0.5          0          0  #  

SizeSel_P5_F3_OTHER_LL(3) 

          -999          -999          -999             0             5             0         

-2          0          0          0          0        0.5          0          0  #  

SizeSel_P6_F3_OTHER_LL(3) 

           -20           200            10           125            50             0         

-4          0          0          0          0          0          0          0  #  

SzSel_Fem_Peak_F3_OTHER_LL(3) 

           -15            15             0             4            50             0         

-4          0          0          0          0          0          0          0  #  

SzSel_Fem_Ascend_F3_OTHER_LL(3) 

           -15            15             1             4            50             0         

-4          0          0          0          0          0          0          0  #  

SzSel_Fem_Descend_F3_OTHER_LL(3) 

           -15            15             0             4            50             0         

-4          0          0          0          0          0          0          0  #  

SzSel_Fem_Final_F3_OTHER_LL(3) 

           -15            15          0.33             4            50             0         

-5          0          0          0          0          0          0          0  #  

SzSel_Fem_Scale_F3_OTHER_LL(3) 

# 4   F4_JPN_LL LenSelex 

           145           165       160.157           150             0             0          

1          0          0          0          0        0.5          0          0  #  

SizeSel_P1_F4_JPN_LL(4) 

           -10            -9      -9.69863          -9.5             0             0          

2          0          0          0          0        0.5          0          0  #  

SizeSel_P2_F4_JPN_LL(4) 

           -15            15       8.42507             0             0             0         

-4          0          0          0          0        0.5          0          0  #  

SizeSel_P3_F4_JPN_LL(4) 

           -15            15             7             0             0             0         

-5          0          0          0          0        0.5          0          0  #  

SizeSel_P4_F4_JPN_LL(4) 

          -999          -999          -999             0             0             0         

-2          0          0          0          0        0.5          0          0  #  

SizeSel_P5_F4_JPN_LL(4) 

          -999          -999          -999             0             5             0         

-2          0          0          0          0        0.5          0          0  #  

SizeSel_P6_F4_JPN_LL(4) 

           -20           200           -15           125            50             0         

-4          0          0          0          0          0          0          0  #  

SzSel_Male_Peak_F4_JPN_LL(4) 
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           -15            15             0             4            50             0         

-4          0          0          0          0          0          0          0  #  

SzSel_Male_Ascend_F4_JPN_LL(4) 

           -15            15             0             4            50             0         

-4          0          0          0          0          0          0          0  #  

SzSel_Male_Descend_F4_JPN_LL(4) 

           -15            15             0             4            50             0         

-4          0          0          0          0          0          0          0  #  

SzSel_Male_Final_F4_JPN_LL(4) 

           -15            15           0.5             4            50             0         

-5          0          0          0          0          0          0          0  #  

SzSel_Male_Scale_F4_JPN_LL(4) 

# 5   F5_KOR_LL LenSelex 

           140           165       149.848           150           0.5             6          

1          0          0          0          0        0.5          0          0  #  

SizeSel_P1_F5_KOR_LL(5) 

           -15            15            -3             0             0             0         

-2          0          0          0          0        0.5          0          0  #  

SizeSel_P2_F5_KOR_LL(5) 

           -15            15             8             0             0             0         

-4          0          0          0          0        0.5          0          0  #  

SizeSel_P3_F5_KOR_LL(5) 

           -15            15             7             0             0             0         

-5          0          0          0          0        0.5          0          0  #  

SizeSel_P4_F5_KOR_LL(5) 

          -999          -999          -999             0             0             0         

-2          0          0          0          0        0.5          0          0  #  

SizeSel_P5_F5_KOR_LL(5) 

          -999          -999          -999             0             5             0         

-2          0          0          0          0        0.5          0          0  #  

SizeSel_P6_F5_KOR_LL(5) 

# 6   F6_PRT_LL LenSelex 

           155           175       170.181           165             0             0          

1          0          0          0          0        0.5          0          0  #  

SizeSel_P1_F6_PRT_LL(6) 

            -1             1     -0.556314          -0.4             0             0          

3          0          0          0          0        0.5          0          0  #  

SizeSel_P2_F6_PRT_LL(6) 

           -15            15           6.5             0             0             0         

-5          0          0          0          0        0.5          0          0  #  

SizeSel_P3_F6_PRT_LL(6) 

           -15            15           6.5             0             0             0         

-5          0          0          0          0        0.5          0          0  #  

SizeSel_P4_F6_PRT_LL(6) 

          -999          -999          -999             0             0             0         

-2          0          0          0          0        0.5          0          0  #  

SizeSel_P5_F6_PRT_LL(6) 
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          -999          -999          -999             0             5             0         

-2          0          0          0          0        0.5          0          0  #  

SizeSel_P6_F6_PRT_LL(6) 

           -20           200            10           125            50             0         

-4          0          0          0          0          0          0          0  #  

SzSel_Fem_Peak_F6_PRT_LL(6) 

           -15            15             0             4            50             0         

-4          0          0          0          0          0          0          0  #  

SzSel_Fem_Ascend_F6_PRT_LL(6) 

           -15            15             0             4            50             0         

-4          0          0          0          0          0          0          0  #  

SzSel_Fem_Descend_F6_PRT_LL(6) 

           -15            15             0             4            50             0         

-4          0          0          0          0          0          0          0  #  

SzSel_Fem_Final_F6_PRT_LL(6) 

           -15            15           0.2             4            50             0         

-5          0          0          0          0          0          0          0  #  

SzSel_Fem_Scale_F6_PRT_LL(6) 

# 7   F7_TWN_LL LenSelex 

           195           215       208.809           209             0             0          

1          0          0          0          0        0.5          0          0  #  

SizeSel_P1_F7_TWN_LL(7) 

           -10            -9      -9.42939          -9.5             0             0          

2          0          0          0          0        0.5          0          0  #  

SizeSel_P2_F7_TWN_LL(7) 

           -15            15           7.5             0             0             0         

-4          0          0          0          0        0.5          0          0  #  

SizeSel_P3_F7_TWN_LL(7) 

           -15            15          7.75             0             0             0         

-5          0          0          0          0        0.5          0          0  #  

SizeSel_P4_F7_TWN_LL(7) 

          -999          -999          -999             0             0             0         

-2          0          0          0          0        0.5          0          0  #  

SizeSel_P5_F7_TWN_LL(7) 

          -999          -999          -999             0             5             0         

-2          0          0          0          0        0.5          0          0  #  

SizeSel_P6_F7_TWN_LL(7) 

           -20           200             0           125            50             0         

-4          0          0          0          0          0          0          0  #  

SzSel_Fem_Peak_F7_TWN_LL(7) 

           -15            15             0             4            50             0         

-4          0          0          0          0          0          0          0  #  

SzSel_Fem_Ascend_F7_TWN_LL(7) 

           -15            15             0             4            50             0         

-4          0          0          0          0          0          0          0  #  

SzSel_Fem_Descend_F7_TWN_LL(7) 
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           -15            15             0             4            50             0         

-4          0          0          0          0          0          0          0  #  

SzSel_Fem_Final_F7_TWN_LL(7) 

           -15            15          0.75             4            50             0         

-5          0          0          0          0          0          0          0  #  

SzSel_Fem_Scale_F7_TWN_LL(7) 

# 8   F8_ESP_LL LenSelex 

           200           225       215.472           215             0             0          

1          0          0          0          0        0.5          0          0  #  

SizeSel_P1_F8_ESP_LL(8) 

            -5             1      -3.57447            -3             1             6          

2          0          0          0          0        0.5          0          0  #  

SizeSel_P2_F8_ESP_LL(8) 

           -15            15             8             0             0             0         

-4          0          0          0          0        0.5          0          0  #  

SizeSel_P3_F8_ESP_LL(8) 

           -15            15             8             0             0             0         

-5          0          0          0          0        0.5          0          0  #  

SizeSel_P4_F8_ESP_LL(8) 

          -999          -999          -999             0             0             0         

-2          0          0          0          0        0.5          0          0  #  

SizeSel_P5_F8_ESP_LL(8) 

          -999          -999          -999             0             5             0         

-2          0          0          0          0        0.5          0          0  #  

SizeSel_P6_F8_ESP_LL(8) 

# 9   S1_JPN_EARLY LenSelex 

             1           200             1            50            99             6         

-2          0          0          0          0        0.5          0          0  #  

SizeSel_P1_S1_JPN_EARLY(9) 

             1           239            76            50            99             6         

-3          0          0          0          0        0.5          0          0  #  

SizeSel_P2_S1_JPN_EARLY(9) 

# 10   S2_JPN_LATE LenSelex 

             1           200             1            50            99             6         

-2          0          0          0          0        0.5          0          0  #  

SizeSel_P1_S2_JPN_LATE(10) 

             1           239            76            50            99             6         

-3          0          0          0          0        0.5          0          0  #  

SizeSel_P2_S2_JPN_LATE(10) 

# 11   S3_EU_POR LenSelex 

             1           200             1            50            99             6         

-2          0          0          0          0        0.5          0          0  #  

SizeSel_P1_S3_EU_POR(11) 

             1           239            76            50            99             6         

-3          0          0          0          0        0.5          0          0  #  

SizeSel_P2_S3_EU_POR(11) 

# 12   S4_EU_ESP LenSelex 
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             1           200             1            50            99             6         

-2          0          0          0          0        0.5          0          0  #  

SizeSel_P1_S4_EU_ESP(12) 

             1           239            76            50            99             6         

-3          0          0          0          0        0.5          0          0  #  

SizeSel_P2_S4_EU_ESP(12) 

# 13   S5_TAI LenSelex 

             1           200             1            50            99             6         

-2          0          0          0          0        0.5          0          0  #  

SizeSel_P1_S5_TAI(13) 

             1           239            76            50            99             6         

-3          0          0          0          0        0.5          0          0  #  

SizeSel_P2_S5_TAI(13) 

# 14   S6_IND LenSelex 

             1           200             1            50            99             6         

-2          0          0          0          0        0.5          0          0  #  

SizeSel_P1_S6_IND(14) 

             1           239            76            50            99             6         

-3          0          0          0          0        0.5          0          0  #  

SizeSel_P2_S6_IND(14) 

# 15   S7_REUNION LenSelex 

             1           200             1            50            99             6         

-2          0          0          0          0        0.5          0          0  #  

SizeSel_P1_S7_REUNION(15) 

             1           239            76            50            99             6         

-3          0          0          0          0        0.5          0          0  #  

SizeSel_P2_S7_REUNION(15) 

# 16   S8_ZAF LenSelex 

             1           200             1            50            99             6         

-2          0          0          0          0        0.5          0          0  #  

SizeSel_P1_S8_ZAF(16) 

             1           239            76            50            99             6         

-3          0          0          0          0        0.5          0          0  #  

SizeSel_P2_S8_ZAF(16) 

# 1   F1_MISC AgeSelex 

             1            40             0             1            99             6         

-1          0          0          0          0        0.5          0          0  #  

AgeSel_P1_F1_MISC(1) 

             1            40            30             3            99             6         

-1          0          0          0          0        0.5          0          0  #  

AgeSel_P2_F1_MISC(1) 

# 2   F2_GL AgeSelex 

             1            40             0             1            99             6         

-1          0          0          0          0        0.5          0          0  #  

AgeSel_P1_F2_GL(2) 

             1            40            30             3            99             6         

-1          0          0          0          0        0.5          0          0  #  

AgeSel_P2_F2_GL(2) 
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# 3   F3_OTHER_LL AgeSelex 

             1            40             0             1            99             6         

-1          0          0          0          0        0.5          0          0  #  

AgeSel_P1_F3_OTHER_LL(3) 

             1            40            30             3            99             6         

-1          0          0          0          0        0.5          0          0  #  

AgeSel_P2_F3_OTHER_LL(3) 

# 4   F4_JPN_LL AgeSelex 

             1            40             0             1            99             6         

-1          0          0          0          0        0.5          0          0  #  

AgeSel_P1_F4_JPN_LL(4) 

             1            40            30             3            99             6         

-1          0          0          0          0        0.5          0          0  #  

AgeSel_P2_F4_JPN_LL(4) 

# 5   F5_KOR_LL AgeSelex 

             1            40             0             1            99             6         

-1          0          0          0          0        0.5          0          0  #  

AgeSel_P1_F5_KOR_LL(5) 

             1            40            30             3            99             6         

-1          0          0          0          0        0.5          0          0  #  

AgeSel_P2_F5_KOR_LL(5) 

# 6   F6_PRT_LL AgeSelex 

             1            40             0             1            99             6         

-1          0          0          0          0        0.5          0          0  #  

AgeSel_P1_F6_PRT_LL(6) 

             1            40            30             3            99             6         

-1          0          0          0          0        0.5          0          0  #  

AgeSel_P2_F6_PRT_LL(6) 

# 7   F7_TWN_LL AgeSelex 

             1            40             0             1            99             6         

-1          0          0          0          0        0.5          0          0  #  

AgeSel_P1_F7_TWN_LL(7) 

             1            40            30             3            99             6         

-1          0          0          0          0        0.5          0          0  #  

AgeSel_P2_F7_TWN_LL(7) 

# 8   F8_ESP_LL AgeSelex 

             1            40             0             1            99             6         

-1          0          0          0          0        0.5          0          0  #  

AgeSel_P1_F8_ESP_LL(8) 

             1            40            30             3            99             6         

-1          0          0          0          0        0.5          0          0  #  

AgeSel_P2_F8_ESP_LL(8) 

# 9   S1_JPN_EARLY AgeSelex 

             1            40             0             1            99             6         

-1          0          0          0          0        0.5          0          0  #  

AgeSel_P1_S1_JPN_EARLY(9) 
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             1            40            30             3            99             6         

-1          0          0          0          0        0.5          0          0  #  

AgeSel_P2_S1_JPN_EARLY(9) 

# 10   S2_JPN_LATE AgeSelex 

             1            40             0             1            99             6         

-1          0          0          0          0        0.5          0          0  #  

AgeSel_P1_S2_JPN_LATE(10) 

             1            40            30             3            99             6         

-1          0          0          0          0        0.5          0          0  #  

AgeSel_P2_S2_JPN_LATE(10) 

# 11   S3_EU_POR AgeSelex 

             1            40             0             1            99             6         

-1          0          0          0          0        0.5          0          0  #  

AgeSel_P1_S3_EU_POR(11) 

             1            40            30             3            99             6         

-1          0          0          0          0        0.5          0          0  #  

AgeSel_P2_S3_EU_POR(11) 

# 12   S4_EU_ESP AgeSelex 

             1            40             0             1            99             6         

-1          0          0          0          0        0.5          0          0  #  

AgeSel_P1_S4_EU_ESP(12) 

             1            40            30             3            99             6         

-1          0          0          0          0        0.5          0          0  #  

AgeSel_P2_S4_EU_ESP(12) 

# 13   S5_TAI AgeSelex 

# 14   S6_IND AgeSelex 

# 15   S7_REUNION AgeSelex 

#_no timevary selex parameters 

# 

0   #  use 2D_AR1 selectivity(0/1) 

#_no 2D_AR1 selex offset used 

# 

# Tag loss and Tag reporting parameters go next 

0  # TG_custom:  0=no read and autogen if tag data exist; 1=read 

#_Cond -6 6 1 1 2 0.01 -4 0 0 0 0 0 0 0  #_placeholder if no parameters 

# 

# no timevary parameters 

# 

# 

# Input variance adjustments factors:  

 #_1=add_to_survey_CV 

 #_2=add_to_discard_stddev 

 #_3=add_to_bodywt_CV 

 #_4=mult_by_lencomp_N 

 #_5=mult_by_agecomp_N 

 #_6=mult_by_size-at-age_N 

 #_7=mult_by_generalized_sizecomp 

#_Factor  Fleet  Value 
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      4      2   1.468 

      4      3   0.483 

      4      4   3.056 

      4      5   2.257 

      4      6   4.667 

      4      7   3.178 

      4      8   9.448 

 -9999   1    0  # terminator 

# 

1 #_maxlambdaphase 

1 #_sd_offset; must be 1 if any growthCV, sigmaR, or survey extraSD is an estimated 

parameter 

# read 26 changes to default Lambdas (default value is 1.0) 

# Like_comp codes:  1=surv; 2=disc; 3=mnwt; 4=length; 5=age; 6=SizeFreq; 7=sizeage; 

8=catch; 9=init_equ_catch;  

# 10=recrdev; 11=parm_prior; 12=parm_dev; 13=CrashPen; 14=Morphcomp; 15=Tag-comp; 

16=Tag-negbin; 17=F_ballpark; 18=initEQregime 

#like_comp fleet  phase  value  sizefreq_method 

 1 1 1 0 1 

 1 2 1 0 1 

 1 3 1 0 1 

 1 4 1 0 1 

 1 5 1 0 1 

 1 6 1 0 1 

 1 7 1 0 1 

 1 8 1 0 1 

 1 9 1 0 1 # StartCPUE_LAMBDAS 

 1 10 1 1 1 # 10 S2_JPN_LATE  

 1 11 1 1 1 # 11 S3_EU_POR 

 1 12 1 0 1 # 12 S4_EU_ESP 

 1 13 1 0 1 # 13 S5_TAI 

 1 14 1 0 1 # 14 S6_IND 

 1 15 1 1 1 # 15 S7_REUNION 

 1 16 1 0 1 # 16 S8_ZAF 

 4 1 1 0 0 

 4 2 1 1 0 

 4 3 1 1 0 

 4 4 1 1 0 

 4 5 1 1 0 

 4 6 1 1 0 

 4 7 1 1 0 

 4 8 1 1 0 

 4 9 1 0 0 

 4 10 1 0 0 

 9 1 1 1 0 

-9999  1  1  1  1  #  terminator 

# 
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0 # (0/1/2) read specs for more stddev reporting: 0 = skip, 1 = read specs for 

reporting stdev for selectivity, size, and numbers, 2 = add options for M and Dyn 

Bzero 

999 
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Stock assessment of blue shark (Prionace glauca) in the Indian Ocean using Just Another 
Bayesian Biomass Assessment (JABBA). 
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Abstract  
This paper  presents an application of the generalized Bayesian State-Space Surplus  
Production Model framework JABBA (Just Another Bayesian Biomass Assessment) to the 2021 
IOTC assessment input data for Indian Ocean blue shark (Prionace glauca). JABBA has been 
previously applied and tested in assessments of Indian Ocean swordfish, South Atlantic blue 
shark, North Pacific blue shark, Mediterranean albacore tuna, North Atlantic shortfin mako shark, 
and South Atlantic swordfish. This paper shows the results of fits to multiple standardized CPUE 
time series with varying trends to the available catch time series. Five alternative scenarios were 
considered, with the groupings chosen to reflect the groupings outlined in the stock synthesis 
(SS3) assessment. Results indicate that the stock was not overfished nor subject to overfishing. 
All F/FMSY trajectories indicate that sustainable fishing mortality has never been exceeded for blue 
shark in the Indian Ocean, and that the probability of the stock being in the “green” quadrant of 
the kobe plot is >99% in four out of five scenarios.  
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1  Introduction  

The stock assessment software ‘Just Another Bayesian Biomass Assessment’ JABBA was applied 
to explore five alternative scenarios, groupings of CPUE, during the 2021 the blue shark (Prionace 
glauca) stock assessment. JABBA is generalized Bayesian State-Space Surplus Production Model 
framework that has previously been applied and tested in multiple RFMO assessments including 
the 2015 ICCAT South Atlantic blue shark, the 2017 Mediterranean albacore assessment, the 
2017 North and South Atlantic shortfin mako shark assessments and the 2017 ICCAT South 
Atlantic swordfish assessment. JABBA is coded within a user-friendly R to JAGS interface to 
provide a means to generate reproducible stock status estimates and diagnostics. JABBA is open 
access and can be found on the global open-source platform GitHub 
(https://github.com/jabbamodel) with the associated publication (Winker et al. 2018). 
 

2 Material and Methods  

2.1 Model formulation  
Winker et al. (2018) note that JABBA is generalized in the sense that the production function can 
take on various forms, including conventional Fox and Schaefer production functions, which can 
be fit based on a range of alternative error assumptions. The surplus production function is 
formulated in the form of generalized three parameter Pella and Tomlinson Surplus Production 
Model (SPM) (1969), with where r is the intrinsic rate of population increase at time t, K is the 
unfished biomass and m is a shape parameter that determines at which B/K ratio maximum 
surplus production is attained. For model details and formulation see Winker et al 2018. 
 

2.2 Prior formulations 
The prior formulation was kept constant across all scenarios. A weakly informative lognormal 
prior for K of 600,000 metric tons with a CV of 200% was used along with a lognormal prior for r 
(mean= log(0.28), CV=0.38) which matched that used in the 2017 sensitivity runs using JABBA for 
the  blue shark in the Indian Ocean. A prior for the initial biomass depletion (φ=B1950/K) was set 
to reflect the fact that the stock was unexploited (or lightly exploited) in 1950, with a CV of 0.25. 
The catchability parameters were formulated as uninformative uniform priors, with process 
variance and observation variance priors were implemented by assuming the inverse-gamma 
distributions (Winker et al 2018) which amounted to a mean process error of approximately 0.16. 
As recommended in other JABBA assessments the prior for the estimable observation variance 
component assumes an uninformative inverse-gamma distribution with both gamma scaling 
parameters set to 0.001. The indices provided were considered over-precise with CV’s < 0.1, 
therefore the average observation standard error was re-scaled to 0.30, by index. The rational 
behind this is that year to year variation in catchability, or lack of independence in fisheries 
dependent data may lead to overly precise standard errors from model based (standardized) 
indices of abundance (Francis 2011, Winker et al 2013).  
 

https://github.com/jabbamodel
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2.3 Scenarios 
The 2017 blue shark assessment (Rice 2017) used a combination of the CPUE series from Japan, 
Reunion, and Portugal along with estimates of catch estimated via a GAM model fit to the 
reported data to estimate the unreported catch. The 2021 (Rice 2021) assessment using SS3 used 
the same CPUE series and method of catch estimates (Figure 1) as a diagnostic case. Additional 
scenarios considered groupings of CPUE identified by a hierarchical cluster analysis, as well as 
exploratory runs, and alternative values for key parameters (i.e. steepness). Due to the 
differences in the formulation of JABBA and SS3 the scenarios with alternative parameter values 
are not considered here, the combinations of CPUE series considered here are listed in Table 1.  
 

3 Results and Discussion 

3.1 Convergence 
Of the scenarios that were considered all showed robust convergence diagnostics (Figures 2 and 
3). The chains appeared stationary (Figure 3) and the process error deviations trajectories did not 
show severe distortion in the process error deviance.  
 
3.2 CPUE Fits 
By looking at the overall RMSE (Table 2) you can see that the model fits best under scenario 2, 
with the worst fit being scenario 4. Scenarios 1, 3 and 5 all have similar RMSE values. Graphical 
residual diagnostics are presented in Figure 4. All models that included the Japanese CPUE series 
showed departures from the zero line at the beginning of the time series. Scenario 2 appeared 
to stabilize the residual pattern compared to the other models.  
 
A comparison of model  biomass trajectory,  fishing mortality, B/BMSY, F/FMSY,  B/B0 and surplus 
production for the five scenarios considered is shown in Figure 5. This plot shows that the trends 
from the various scenarios are highly comparable, and that the surplus production is estimated 
at a lower value for Scenarios 3 and 5. 
 
3.3 Reference points and stock status    
Model parameter, stock depletion (B/K) and current status estimates (B/BMSY and F/FMSY) for 
Indian Ocean blue shark are provided for the five Schaefer models scenarios in Table 3. For the 
final assessment year, 2019, all runs produced results indicating that the stock was not overfished 
(B2019/BMSY estimates range: approximately 1.4 – 1.6) nor subject to overfishing (F2019/FMSY 
estimates range: 0.38 – 0.51). Furthermore, biomass depletion (B/K) estimates suggest a 
relatively healthy population (0.71 – 0.79). Scenario 1 and 2 are marginally more pessimistic, with 
higher estimates for fishing mortality and lower estimates for biomass. 
 
All F/FMSY trajectories indicate that sustainable fishing mortality has never been exceeded for blue 
shark in the Indian Ocean and that biomass levels are tending towards BMSY (Figure 5). The 
simultaneous development of the B/BMSY and F/FMSY is further illustrated in the form of Kobe 
phase plots for all four scenarios (Figure 6). The probability of the stock being in the sustainable 
or “green” quadrant is >99% in four of the scenarios – scenario 2 is the exception at 91.4%.  



IOTC–2021–WPEB17(AS)-15 

 Page 100 of 108 

 

4 References 

Carvalho, F., Ahrens, R., Murie, D., Ponciano, J.M., Aires-da-silva, A., Maunder, M.N., Hazin, F., 
2014. Incorporating specific change points in catchability in fisheries stock assessment models : 
An alternative approach applied to the blue shark (Prionace glauca) stock in the south Atlantic 
Ocean. Fish. Res. 154, 135–146. doi:10.1016/j.fishres.2014.01.022  
 
Francis, R.I.C.C., 2011. Data weighting in statistical fisheries stock assessment models. Can. J. Fish. 
Aquat. Sci. 68, 1124–1138. doi:10.1139/f2011-025  
 
Meyer, R., Millar, C.P., 1999. BUGS in Bayesian stock assessments. Can. J. Fish. Aquat. Sci. 56, 
1078–1086.  
 
Pella, J.J., Tomlinson, P.K., 1969. A generalized stock production model. Inter-American Trop. 
Tuna Comm. Bull. 13, 421–458. 
 
Winker, H., Carvalho, F., Kapur, M., 2018. JABBA: Just Another Bayesian Biomass 
Assessment. Fish. Res. 204, 275–288. https://doi.org/10.1016/j. 
fishres.2018.03.010. 
 
  



IOTC–2021–WPEB17(AS)-15 

 Page 101 of 108 

 

 

5 Tables 

Table 1. Scenarios considered in the JABBA sensitivities.  
 

Scenario CPUE data included 

1 PRT, REU, JPN 
2 ESP, REU 
3 PRT, ESP, REU, JPN, ZAF 
4 TWN, REU, JPN 
5 JPN, TWN, REU, ESP, PRT, ZAF 

 
 
Table 2. Summary of JABBA fit statistics for Indian Ocean blue shark. Nobs: Number CPUE 
observations, Np: Number of model parameters, Res.df: Residual degree of freedom, Root-mean-
squared-error (RSME), Deviance Information Criterion (DIC). 
 
 
 

Statistic 
Scenario 
1 

Scenario 
2 

Scenario 
3 

Scenario 
4 

Scenario 
5 

Nobs 109 32 93 57 109 

Np  17 9 15 11 17 

Res.df 92 23 78 46 92 

RMSE 26.3 17.3 27.7 33.7 26.4 

DIC -565.1 -569.6 -557.2 -547.1 -564.8 
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Table 3. Summary of posterior estimates (medians) and 95% Bayesian Credibility Intervals (C.I.s) 
of parameters from the four JABBA scenario fits to Indian Ocean blue shark catch and CPUE series, 
assuming a Schaefer production function.  
 

Parameter 
Scenario 

1 
Scenario 

2 
Scenario 

3 
Scenario 

4 
Scenario 

5 

K 426,274 713,303 529,379 712,070 437,038 

r 0.58 0.35 0.48 0.42 0.56 

psi 0.98 0.98 0.92 0.95 0.9 

Sigma 0.05 0.05 0.05 0.05 0.05 

FMSY 0.29 0.17 0.24 0.21 0.28 

BMSY 213,137 356,652 264,690 356,035 218,519 

MSY 59,949 60,069 62,287 72,236 60,060 

B1950/K 0.98 0.98 0.92 0.96 0.9 

B2019/K 0.73 0.71 0.75 0.79 0.73 

B2019/BMSY 1.46 1.42 1.5 1.58 1.47 

F2019/FMSY 0.49 0.51 0.46 0.38 0.49 
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6 Figures 

 

 
Figure 1. Total estimated catch of Indian Ocean blue shark from 1950-2019. 
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Figure 2. Process error deviations trajectories for the 5 scenarios considered.  
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Figure 3. Example of MCMC estimate chains from the model with all CPUE series (Scenario 5). 
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Figure 4 JABBA Residual diagnostic plots for the model scenarios (S1-S5) for Indian Ocean blue 
shark, showing the log- residuals for CPUE series, loess smothers fitted across all CPUE residuals 
and the width of the boxplots illustrating the relative extend of conflicts among CPUE residuals. 
The Residual-Mean-Error (RMSE%) is provided as good-of-the-fit. 
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Figure 5. Comparison plots of the biomass trajectory (upper left) fishing mortality (upper right), 
B/BMSY (middle left), F/FMSY (middle right),  B/B0 (lower left) and surplus production (lower right) 
for the five scenarios considered.  
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Fig. 6. Kobe plots for the for JABBA scenarios (S1-S5), showing the estimated trajectories (1950-
2019) of B/BMSY and F/FMSY considered for the Indian Ocean blue shark stock assessment. 
Different grey shaded areas denote the 50%, 80% and 95% credibility interval for the final 
assessment years. The proportion of points falling within each quadrant is indicated in the figure 
legend. 
 


