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Abstract

Species distribution models (SDMs) have been developed

and extensively validated for diverse cetaceans within the

California Current Ecosystem off the West Coast of the

United States. These studies have recognized the challenges

associated with developing robust models for deep-diving

cetaceans—sperm whales and beaked whales—thus limiting

the accuracy of predictions for management and ecological

understanding. In this study, we explore whether additional

biologically relevant predictor variables can improve models

for deep-divers. These variables are related to the oxygen

minimum layer and phytoplankton and micronekton bio-

mass and could influence prey availability for cetacean top

predators. We found that the addition of these variables

improved the performance of SDMs for sperm whales, as

well as for some more common baleen whale and dolphin

species, but that the accuracy of deep-diver models was

nevertheless poor. The sightings data sets for deep-diving

cetaceans have small sample sizes compared to other ceta-

ceans, and sightings are distributed nearly randomly across

the study area and model domain. These factors hinder the

development of useful environmentally driven models of

spatial distribution.
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1 | INTRODUCTION

Species distribution models (SDMs) that predict abundance or presence of animals from environmental variables are

widely used to explain and predict both spatial and temporal variations of marine populations (Melo-Merino

et al., 2020; Redfern et al., 2006). These models are potentially useful in managing impacts to marine species due to cli-

mate change, natural variation in the environment, and human activities such as ship strikes, naval exercises, entangle-

ment in fishing gear, and noise (Becker et al., 2019; Bombosch et al., 2014; Eguchi et al., 2017; Hazen et al., 2017;

Redfern et al., 2013). SDMs have been developed and improved over many years for California Current cetaceans off

the West Coast of the United States (Becker et al., 2010, 2014, 2016, 2017, 2020; Forney et al., 2012).

While SDMs have been shown to accurately predict the distributions of many cetacean species in the California

Current, models for some species have been consistently unsatisfactory. These are primarily for the deep-diving whales—

sperm whales (Physeter macrocephalus) and beaked whales—species that tend to be sighted infrequently and have wide-

spread distributions within the study area. The performance of species distribution models is known to be affected by

sample size (Wisz et al., 2008) and by the prevalence of occupied samples (Santika, 2011; Sor et al., 2017). Even for

presence-only models, with no observed absences, prevalence as the fraction of the study area occupied affects model per-

formance (van Proosdij et al., 2016). Fiedler et al. (2018) found that models of more widespread whales in the eastern tropical

Pacific tend to be less informative about what determines patterns of distribution, irrespective of the number of sightings.

Another likely contributor to the poor model performance for these species is that the environmental variables avail-

able to the SDMs largely describe ocean surface and near-surface habitat. Deep-diving species are almost certainly

responding principally to habitat characteristics at depth, which are not accurately represented in the SDMs due to the chal-

lenges of sampling and accurately modeling the deeper ocean habitat. A recent paper by Virgili et al. (2022) found that pre-

dictor variables reflecting the deep-water habitat of beaked whales and sperm whales can help explain their distributions in

the Bay of Biscay. The objectives of this paper are (1) to investigate whether SDMs of cetaceans can be improved by identi-

fying potentially more relevant predictors and (2) to examine the characteristics of species and survey data that influence

the performance of SDMs for a diverse suite of cetaceans, including deep-diving species and more shallow-water feeders.

SDMs for the California Current were developed for the deep-diving Baird's beaked whale (Berardius bairdii),

Cuvier's beaked whale (Ziphius cavirostris), and sperm whale. For sperm whales, we constructed models for three cate-

gories of sightings, which could reflect potential differences in the distributions of males and females (Rice, 1989): all

sightings, sightings of single whales (likely mature males), and sightings of groups (mostly females and juvenile males).

For comparison, SDMs were also developed for species that feed at shallower depths: blue whale (Balaenoptera

musculus), fin whale (Balaenoptera physalus), humpback whale (Megaptera novaeangliae), Risso's dolphin (Grampus griseus),

striped dolphin (Stenella coeruleoalba), short-beaked common dolphin (Delphinus delphis delphis), long-beaked common

dolphin (Delphinus delphis bairdii), Dall's porpoise (Phocoenoides dalli), and northern right whale dolphin (Lissodelphis

borealis). SDMs previously built for these species have performed well based on cross-validation (Barlow et al., 2009;

Becker et al., 2010; Forney, 2000; Forney et al., 2012) and predictions on novel data sets (Barlow et al., 2009; Becker

et al., 2012, 2014, 2019; Calambokidis et al., 2015; Forney et al., 2012).

1.1 | Species overview

We summarize information on the distributions and diets of the species examined, from Würsig et al. (2018) and

sources therein and from the U.S Pacific Marine Mammal Stock Assessment Report (Carretta et al., 2020).

Beaked whales are rare, oceanic cetaceans about which little is known. They feed on deep water squid, fish, and

to a lesser extent, crustaceans. Baird's beaked whale is found in deep waters and along the continental slopes of the

North Pacific, primarily along the continental slope from late spring to early fall in our study area. Cuvier's beaked

whales are the most commonly seen beaked whale in our study area. They have the widest distribution of any of the

beaked whales and are found globally in tropical and temperate waters over the continental slope and beyond.

2 FIEDLER ET AL.



Sperm whales are cosmopolitan. Adult males are typically observed as single individuals and range to higher latitudes

than do the larger groups of females and juveniles. Both males and females are found year-round within the California

Current Ecosystem, during winter mostly south of 40�N, where they feed on mesopelagic and deep-sea squid, and

occasionally fish.

Blue whales are cosmopolitan; the eastern North Pacific population winters off southern Mexico and Central

America and migrates along the coast of California and north for summer feeding on aggregations of euphausiids. Fin

whales are cosmopolitan in subtropical and subarctic waters, with a hiatus in tropical waters. Humpback whales are

globally cosmopolitan. They migrate to coastal feeding grounds at mid- and high latitudes during summer.

Common dolphins are common in warm-temperate and coastal waters worldwide. In the eastern Pacific, they

range from the California Current and offshore south into eastern equatorial waters and along the coast of Peru and

northern Chile. Short-beaked common dolphins are the most abundant cetacean in our study area and are widely dis-

tributed in waters off California and Oregon. Long-beaked common dolphins are generally found in shallower,

warmer water closer to the coast from central California south along Baja California. Both subspecies feed on a vari-

ety of prey, including small mesopelagic fishes and squids and epipelagic schooling species such as small scombroids,

clupeoids, and market squids; foraging dives to 200 m have been recorded.

Risso's dolphins and striped dolphins are found in warm-temperate, subtropical, and tropical waters worldwide,

off the continental shelf. Risso's dolphins tend to dive deeply, feeding mainly on deep-water mesopelagic cephalo-

pods such as squid, octopus, and cuttlefish, presumably at night to exploit vertically migrating prey. Striped dolphins

consume pelagic and mesopelagic fish and squid. Dall's porpoise and northern right whale dolphins are both

cold-water species endemic to deeper waters of the North Pacific Ocean as far south as the latitude of southern

California and Japan. Both species move toward the southern end of our study area during colder winter months or

cool-water years. Prey items include schooling pelagic fishes, mesopelagic fishes, and squids.

2 | METHODS

2.1 | Survey data

Cetacean sighting data were collected within waters of the California Current Ecosystem (CCE) along the U.S. West

Coast from 1991 to 2018 (Table 1) using standardized line-transect distance sampling methods (Buckland

et al., 2001). The study area covers waters off the entire West Coast of the United States out to 300 nautical miles

(556 km) offshore, although not all surveys covered the entire area (Table 1). When combined across years, the sur-

veys provided comprehensive coverage of waters throughout the CCE study area (Figure 1). Only on-effort data col-

lected in Beaufort sea state conditions ≤5 within the study area were used in model development.

All surveys followed similar line-transect protocols (see Barlow, 2016; Barlow & Forney, 2007; Becker

et al., 2020; Henry et al., 2020) and are briefly summarized here. Cetacean sightings were made by skilled observers

on the flying bridge deck (�10 m height) of NOAA research vessels, using 25 � 100 big-eye binoculars (a data

recorder also contributed observations using naked eye or 7 � 50 handheld binoculars). Vessels moved at �10 kn.

Principal data recorded for each sighting included distance and direction from the vessel, from which perpendicular

sighting distance was calculated, and group size. If the group of animals was within 3 nautical miles (5.6 km) of the

trackline, the ship would typically divert from the transect line and go “off-effort” to approach the animals for accu-

rate group size estimation and species identification. All observers independently provided best, high, and low group

size estimates, as well as the proportional makeup of species in the case of multispecies groups.

To prepare data for modeling, continuous portions of on-effort survey tracklines were divided into approximate

5-km segments using methods described by Becker et al. (2010). The total number of species-specific sightings and

associated average group size estimates were assigned to each segment. In distance sampling, “effective strip wid-

ths” are estimated from the perpendicular sighting distance data to calculate animal density. We used methods of
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Barlow et al. (2011) to find effective strip width for each species in this study. For this purpose, sighting data were

truncated (Buckland et al., 2001) at a distance of 5.5 km perpendicular to the trackline for the delphinids and large

whales, 4.0 km for small whales (Baird's and Cuvier's beaked whales), and at 3.0 km for Dall's porpoise.

2.2 | Environmental predictor variables

Two categories of predictor variables were considered (see Table 2 for list with data sources). The first category consisted

of physical variables, which included both fixed geographic and dynamic oceanographic variables. The fixed variables were

bottom depth (depth) and distance to shelf edge (dist2edge). Dynamic surface oceanographic variables included surface

temperature (temp), surface salinity (sal), sea surface height (ssh), wind speed (wspd), wind stress curl (wsc), and wind diver-

gence (wdiv). Dynamic subsurface oceanographic variables were derived from temperature and salinity profiles (Table 2)

and included isothermal layer depth (ild, depth of temp � 0.5�C), thermocline depth (td), and stratification (sdt). The thermo-

cline was defined as the depth interval that included the upper decile (the greatest 10%) of 1-m temperature gradients in a

0–300-m temperature profile. Thermocline depth was the weighted mean of the depths of this set, with each depth

weighted by the value of the 1-m temperature gradient at that depth. Stratification was indexed as the standard deviation

of temperature in the near-surface layer, 0–300 m (Fiedler, 2010). A temp-sal interaction term was also considered to rep-

resent differences among surface water masses in the California Current system: Pacific Subarctic Water, Eastern North

Pacific Central Water, Equatorial Pacific Water, and Coastal Upwelled Water (McClatchie, 2014).

The second category consisted of biological predictor variables and variables that are related to biological pro-

cesses. These variables should be more proximate determinants of predator distribution as they can directly repre-

sent or influence prey availability. We used hypoxic depth (dhypox, depth of dissolved oxygen <63 μmol/L),

TABLE 1 Cetacean and ecosystem assessment surveys and effort conducted within the California Current
Ecosystem study area during 1991–2018. Regions covered within the study area: CA/OR/WA = California/
Oregon/Washington, CenCA = central California, SoCA = southern California, Baja = Baja California, Mexico.
Samples are the number of approximate 5-km on-effort segments of the survey trackline.

Survey Dates Effort (km) Region Samples

CAMMS91a Jul–Nov 1991 10,353.6 California 2,250

PODS93b Jul–Nov 1993 6,437.4 California/Baja California 1,434

ORCAWALE96c Jul–Nov 1996 15,530.8 CA/OR/WA 3,179

ORCAWALE01d Jul–Dec 2001 10,343.4 CA/OR/WA 2,139

CSCAPE05e Jul–Dec 2005 10,221.9 CA/OR/WA 2,119

ORCAWALE08f Jul–Nov 2008 12,242.3 CA/OR/WA 2,537

DELPHINUS09g Sept–Dec 2009 4,389.1 CenCA/SoCA/Baja California 979

CalCurCEAS14h Aug–Dec 2014 10,205.4 CA/OR/WA 2,210

CCES18i June–Dec 2018 9,554.7 Canada/CA/OR/WA/Baja 2,050

Total 89,278.6 18,897

aHill & Barlow (1992)
bMangels & Gerrodette (1994)
cvon Saunder & Barlow (1999)
dAppler et al. (2004)
eForney (2007)
fBarlow et al. (2010)
gChivers et al. (2010)
hHenry et al. (2015)
iHenry et al. (2020).
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minimum dissolved oxygen concentration (mino2), integrated chlorophyll (chlint), epipelagic micronekton bio-

mass (epi_mnk), mesopelagic micronekton biomass (meso_mnk) and total plankton biomass (total_pk). Variations

in the deep oxygen minimum layer are known to affect the distribution of mesopelagic organisms (Gilly

et al., 2013; Koslow et al., 2014). Many marine SDMs use surface chlorophyll because it is readily available from

satellite data sets and represents a proxy metric for phytoplankton and phytoplankton production at the base

of the pelagic food web. However, for top predators, phytoplankton is at least two trophic levels removed from

prey. We used integrated chlorophyll from the same global ocean biogeochemistry hindcast model that pro-

vided water column dissolved oxygen data (CMEMS GLOBAL_REANALYSIS_BIO_001_029; Table 2). In our

study, we also considered model-based estimates of zooplankton and micronekton biomasses (Lehodey

et al., 2010) from a global ocean low- and mid-trophic level biomass content hindcast (SEAPODYM-LMTL,

available in CMEMS GLOBAL_REANALYSIS_BIO_001_033; Table 2). Micronekton includes forage organisms in

the epipelagic and mesopelagic layers, marked by nominal depths equal to 1.5 and 10.5 times the euphotic zone

depth (45 and 120 m near the coast to 315 and 840 m at the oceanic extreme of the study area). SEAPODYM

differentiates six categories of micronekton based on depth and diurnal migration. We found that the summed

micronekton biomasses in the epipelagic and mesopelagic depth layers at any time of day, epi_mnk and

F IGURE 1 Completed transects for the Southwest Fisheries Science Center systematic shipboard surveys
conducted between 1991 and 2018 in the California Current Ecosystem study area. The lines show on-effort
transect coverage in Beaufort sea states of 0–5. Surveys with limited coverage: DELPHINUS09 (red), CCES18 (blue).
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meso_mnk, were highly correlated (r = +0.67), but used mesopelagic micronekton biomass (meso_mnk) as a pre-

dictor variable for the deep-diving species and epipelagic micronekton biomass (epi_mnk) for the other species.

Predictor variable values were spline-interpolated for each effort segment's geographical midpoint and, for

dynamic variables, day of observation. Monthly climatological data (monthly means for the available years) were used

for early years that were not covered by the biological variables data sets: 1991 for dhypox, mino2 and chlint; 1991,

1993, and 1996 for epi_ and meso_mnk. This may have compromised the performance of models that use these vari-

ables. However, preliminary modeling using only the post-2000 surveys that are covered by these data sets, with

35% less effort and 29% fewer sightings, resulted in less satisfactory model predictions, especially for species

with low numbers of sightings.

Cross-correlation values of predictor variables in the survey effort segment samples varied in absolute values

between 0.00 and 0.81 (Figure 2). Three of the potential predictor variables (dist2edge, sdt, and total_pk) were not

offered in the models because they were highly correlated (jrj > 0.6) with several other variables. Two of the biologi-

cal variables that were retained as potential predictors (dhypox and chlint) show high correlations with physical

TABLE 2 Predictor variables considered for SDMs of CCE cetaceans. Spatial resolution for all predictors, either
as available or derived, was 0.25� � 0.25�. Temporal resolution for all dynamic variables was monthly (see
footnotes); periods of available data are listed under Years.

Name Description Source Years

Physical variables: fixed

depth bottom depth (m) ETOPO1a (Amante & Eakins, 2009) —

dist2edge* distance to shelf edge (km) Harris et al. (2014) —

Physical variables: dynamic

temp surface temperature (�C) ECMWF Ocean Reanalysis System 5b

https://www.cen.uni-hamburg.de/en/icdc/

1979–2018

sal surface salinity (psu)

ild* isothermal layer depth (m)

td thermocline depth (m)

sdt* stratification (�C)

ssh sea surface height (cm)

wspd wind speed (m/s)

wsc wind stress curl (N/m3)

wdiv wind divergence (s�1)

Biological variables

dhypox hypoxic depth (m) Copernicus Marine Service (CMEMS),

GLOBAL_REANALYSIS_BIO_001_029c

https://resources.marine.copernicus.eu/

1993–2019

mino2 minimum dissolved oxygen, log(μmol/L)

chlint integrated chlorophyll (mg/m2)

epi_mnk epipelagic micronekton

biomass (g/m2)

Copernicus Marine Service (CMEMS),

GLOBAL_MULTIYEAR_BGC_001_033d

https://resources.marine.copernicus.eu/

1998–2019

meso_mnk mesopelagic micronekton

biomass (g/m2)

total_pk* total plankton biomass

Note: Predictor variables marked with * were not included due to high cross-correlations with other predictors.
a1 arc-minute data smoothed by 2-D convolution (Matlab function conv2).
b0.25� , monthly mean data.
c0.25� , weekly data averaged monthly.
d0.25� , daily data averaged monthly.
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variables because of functional relationships between biological processes and the environment. Climatological

(mean) maps of the retained predictor variables are in Appendix S2 (Figures S1 and S2).

2.3 | Species distribution models

Generalized additive models (GAM; Wood, 2017) were developed in R (v. 4.0.5; R Core Team, 2020) using the pack-

age “mgcv” (v. 1.8–31; Wood, 2011). Methods largely followed those described in Becker et al. (2016, 2020) and are

summarized here. Model predictions were calculated by averaging the predictions for each year calculated from the

spatial fields of the static covariates and, for dynamic covariates, the August–November mean fields.

One of two modeling frameworks was used for each taxon. For whales and some dolphin species, a single-

response GAM was fit for the number of individuals per transect segment as the response variable. All transect

F IGURE 2 Matrix showing Spearman correlations (above diagonal) and scatterplots (below diagonal) among the
predictor variables in 5-km survey segments (N = 18,929). Green curves on the diagonal are frequency distributions
of segment values for each variable.
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segments were used, regardless of whether they included sightings. A Tweedie distribution was used to account for

overdispersion (Miller et al., 2013), as this distribution has been shown to be effective for modeling cetacean densi-

ties in numerous other studies, including several that used the same data set as in our study (Becker et al., 2019,

2020, 2022; Roberts et al., 2016; Sigourney et al., 2020; Warwick-Evans et al., 2022). As detailed below, the effec-

tive area searched on each segment was included as an offset in the encounter rate models. Therefore, the model

prediction is encounter rate of individuals, equivalent to density (individuals/km2).

For many species of dolphins that have large and variable group sizes, separate models for encounter rate of

sightings (sightings/km2) and group size (individuals per sighting) have been found to perform better than a single

model of individuals/km2. Encounter rate models for sightings/km2 were built as described above for the

single model of individuals/km2. Group size models were built using only those segments that included sightings,

with the natural log of group size as the response variable, and a Gaussian link function. A tensor product smooth of

latitude and longitude (Wood, 2003) was the only predictor variable included in the group size models. Density in a

model cell is the predicted encounter rate (sightings/km2) multiplied by the predicted group size. This model scheme

will be referred to as a “product model.” Based on comparisons of single-response and product model performances

(Table S1), single-response models were used for striped dolphin and northern right whale dolphin; product models

were used for long- and short-beaked common dolphin, Risso's dolphin, and Dall's porpoise.

In all models, restricted maximum likelihood (REML) was used to obtain parameter estimates (Marra &

Wood, 2011). The shrinkage approach of Marra & Wood (2011) was used to potentially remove terms from each

model by modifying the smoothing penalty, allowing the smooth effect to be shrunk to zero. Additionally, to avoid

overfitting, a backwards iterative selection process was used to remove covariates that had p-values > .05 (Redfern

et al., 2017; Roberts et al., 2016).

The natural log of the effective area searched (A) was included as an offset in the encounter rate models. The

value of A for segment i is:

Ai ¼2 �Li �ESWi �g 0ð Þi ð1Þ

where Li is the length of the effort segment i, ESWi is the effective strip half-width, and g(0)i is the probability of

detection on the transect line. Following the methods of Becker et al. (2020), species-specific and segment-specific

estimates of both ESW and g(0) were incorporated into the models based on the recorded detection conditions on

that segment. In Equation 1, the effective area searched is multiplied by two to account for observers searching

on both sides of the transect line. During the 2018 survey, coastal fog and other conditions occasionally prohibited

visual observations on one side of the ship, so that cetacean sighting data were collected on only one side of the

transect line. These portions of reduced effort were systematically recorded in the data set and the effective area

searched was reduced accordingly along these segments, i.e., the constant was changed to a “1” in Equation 1.

Model performance was evaluated using the true skill statistic (TSS). TSS measures the ability of the predictions

to discriminate between presence and absence (occupied and unoccupied sites). TSS is equal to sensitivity + speci-

ficity �1, where sensitivity is the true-positive rate and specificity is the true-negative rate (Allouche et al. 2006).

TSS can be calculated for density models using the sensitivity-specificity sum maximization approach to obtain

thresholds for species presence (Liu et al., 2005). We calculated TSS using the “evaluate” command in the R package

“dismo” (v.1.1.4). This evaluation was run 1,000 times with a random selection of absences (segments with no

sightings) equal to the number of sightings. TSS values range from �1 to 1, where a positive score indicates better

than random skill at discriminating presence and absence. Differences in mean TSS for model comparisons were

tested by an unpaired t-test of the two sets of 1,000 values.

We supplemented the statistical assessment of model performance by calculating the Model:LT ratio, a measure of

bias in the abundance estimate generated by the SDM. Model:LT compares the model's abundance estimate from

segment-predicted densities (Model) to a standard line-transect estimate (LT) derived from the same segment observations

used for modeling (Becker et al., 2017). Although there is no statistical threshold for significance, values departing from

8 FIEDLER ET AL.



1 indicate potential bias of model-based estimates compared to design-based (line-transect) estimates of density. We

assessed model predictions visually by the correspondence between maps of predicted density and observed sightings dur-

ing the 1991–2018 cetacean surveys. We also report deviance explained for the GAMs; for the dolphin species modeled

as the product of group encounter rate and group size, the sum of the deviances explained is reported.

The relative importance or contribution of predictor variables to a model prediction was estimated as in Thuiller

et al. (2009). For a given GAM, each of the selected variables was randomly permuted before being used to calculate

a prediction surface. The correlation of the original prediction with the prediction using a permuted variable is related

to the importance of the permuted variable; permuting an unimportant variable will change the prediction only

slightly and result in a high correlation, while permuting an important variable will result in more change in the pre-

diction and a lower correlation. This permutation was repeated 1,000 times. The scores of variable importance are

equal to 1 minus the mean correlation, rescaled to sum to 1 across all predictor variables.

Prevalence, the fraction of the study area or the fraction of samples that is occupied, is often used to quantify

the distribution of observations that might influence species distribution model performance. Our surveys were

designed for uniform coverage of the survey area, which was usually, but not always, the entire study area. 89.7% of

the 2,054 0.25� model cells in the study area were sampled at least once. However, cetaceans are not always

detected where they are present on a shipboard line-transect survey. The probability of detecting an animal that is

directly on the survey trackline (g(0) in Equation 1) ranges from 0.224 to 0.708 for our species (Barlow, 2015). There-

fore, we did not estimate prevalence to characterize species distributions. An alternative measure of the aggregation

or randomness of observations is the Clark-Evans aggregation index (R), a crude measure of clustering or ordering of

a point pattern (Clark & Evans, 1954). R is the ratio of the observed mean nearest-neighbor distance to the expected

nearest-neighbor distance for randomly distributed points. Thus, R < 1 indicates clustering or aggregation, R ≈ 1 indi-

cates randomness, while R > 1 indicates an even or dispersed distribution.

3 | RESULTS

3.1 | Does adding biological predictors improve model performance for deep-diving
cetaceans?

SDMs were built for the three deep-diving taxa (Figure 3). The models for sperm whale groups were very similar to

those for all sperm whales (singles and groups). The model for single sperm whales predicted a nearly flat density sur-

face throughout the study area. Therefore, we will report only the results for Baird's beaked whale, Cuvier's beaked

whale and sperm whale (sightings of both singles and groups).

Added biological predictors (Table 3) improved SDM performance for sperm whale, but not for Cuvier's or

Baird's beaked whale. The sperm whale model added dhypox and mino2 with a combined importance of 30%

(Table 4). A significant increase in TSS indicated better performance for the model with added biological predic-

tors. Visually, both models predicted the highest densities in some areas that do not correspond to the densest

aggregations of sightings, with the exception of the aggregation off the coast of northern California. The model

with added biological variables predicted a high density of sperm whales all along the continental slope off Cali-

fornia (Figure 3a).

The performance of the Cuvier's beaked whale model, with depth as the only predictor, was low as measured by

TSS; deviance explained was only 3.2%. Model:LT was close to one, indicating no model bias. Visually, the model

predicted very low densities on the continental shelf, consistent with the absence of sightings (Figure 3b). Higher

densities are predicted along the continental shelf off California and in deeper waters offshore.

Biological predictors were also not selected for the SDM of Baird's beaked whale, but this model had the best

accuracy of the deep-diving taxa, with the highest TSS value. The most important predictors were wsc and depth,

along with td, ssh, and temp-sal. The model prediction map shows a strong aggregation along the continental slope
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off California, even more pronounced than for sperm whale, with a broader distribution in deeper water to the north,

where there is complex bathymetry at water depths similar to the continental slope (2,000–3,000 m; see Figure S1),

consistent with the observed sightings (Figure 3b).

F IGURE 3 Predictions of density (animals/1,000 km2) for deep-diving cetaceans—(a) sperm whale, (b) Cuvier's
beaked whale, and (c) Baird's beaked whale—using only physical oceanographic variables (physical predictors) and with
added biological variables if any were selected (physical + biological predictors). Circles mark sightings, with circle size
proportional to group size.
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3.2 | Does adding biological predictor variables improve model performance for other
cetaceans?

The same two model types, with and without biological predictors, were fit to data for three baleen whale and six

dolphin species for which GAM SDMs have performed well in other studies (Barlow et al., 2009; Becker et al., 2010,

2012, 2014, 2019; Calambokidis et al., 2015; Forney, 2000; Forney et al., 2012). In general, these species have more

sightings than the deep-diving taxa. Models for all of these species retained biological predictors when they were

offered (Table 5). As expected, these models exhibited better performance (Table 6) than those for the deep-diving

taxa (Table 4).

The blue whale model was not improved by the addition of biological predictors, as measured by TSS, although

dhypox, chlint, and epi_mnk were selected as significant predictors with a combined relative importance of 40%.

TABLE 3 Significant predictor variables and their relative importance in GAMs predicting density of deep-diving
cetaceans using physical predictor variables only (phys) and using added biological predictor variables (phys + biol,
shaded).

Physical variables Biological variables

depth temp sal temp-sal td ssh wspd wsc wdiv dhypox mino2 chlint meso_mnk

Sperm whale

phys .33 .21 .06 .16 .24 — — — —

phys + biol .06 .65 .12 .18

Cuvier's beaked whale

phys 1.0 — — — —

phys + biol 1.0

Baird's beaked whale

phys .25 .05 .17 .09 .44 — — — —

phys + biol .25 .05 .17 .09 .44

TABLE 4 Performance of GAMs in predicting density of deep-diving cetaceans using physical predictor variables
only (phys) and using added biological predictor variables (phys + biol).

TSS Model:LT Dev.expl.

Sperm whale

phys .142 1.035 .151

phys + biol .190*** 1.027 .163

Cuvier's beaked whale

phys .172 1.054 .032

phys + biol

Baird's beaked whale

phys .599 1.085 .402

phys + biol

Note: TSS = true skill statistic, asterisks indicate significantly greater TSS; Model:LT = ratio of model abundance estimate to

standard line-transect estimate; Dev.expl. = deviance explained.

***p < .0001.

FIEDLER ET AL. 11



Visually, both models correctly predicted higher densities off southern and central California, and also at some loca-

tions along the coast of northern California and southern Oregon (Figure 4a). However, the model with added biolog-

ical variables seemed to better predict the high densities off southern and central California, while the model with

only physical variables tended to overpredict higher densities along the coast to the north. Despite these local pre-

diction biases, Model:LT values were close to one.

The fin whale model was improved by the addition of biological predictors, selecting mino2, chlint, and epi_mnk

with a combined relative importance of 23%. TSS increased significantly, indicating improved performance. Differ-

ences in the model prediction maps are subtle (Figure 4b). Both maps emphasize high density in a wide band adjacent

TABLE 5 Significant predictor variables and their relative importance in GAMs predicting density of other
cetacean species using physical predictor variables only (phys) and using added biological predictor variables (phys
+ biol, shaded).

Physical variables Biological variables

depth temp sal temp-sal td ssh wspd wsc wdiv dhypox mino2 chlint epi_mnk

Blue whale

phys .24 .04 .04 .24 .27 .11 .06 — — — —

phys + biol .11 .19 .04 .09 .04 .08 .05 .02 .16 .22

Fin whale

phys .19 .26 .15 .07 .23 .12 — — — —

phys + biol .12 .25 .01 .11 .04 .14 .08 .01 .03 .17 .03

Humpback whale

phys .21 .30 .06 .10 .04 .01 .28 — — — —

phys + biol .08 .29 .02 .04 .02 .26 .18 .12

Common dolphin,

short-beaked

phys .18 .19 .17 .31 .04 .04 .07 — — — —

phys + biol .09 .33 .10 .21 .02 .01 .10 .14

Common dolphin,

long-beaked

phys .25 .22 .30 .16 .01 .06 — — — —

phys + biol .24 .09 .11 .15 .08 .01 .21 .10

Risso's dolphin

phys .91 .01 .08 — — — —

phys + biol .80 .02 .03 .15

Striped dolphin

phys .37 .21 .03 .26 .10 .02 — — — —

phys + biol .20 .07 .30 .20 .09 .08 .06

Dall's porpoise

phys .14 .28 .28 .19 .04 .07 — — — —

phys + biol .09 .15 .36 .15 .02 .14 .01 .02 .07

Northern right

whale dolphin

phys .50 .48 .02 — — — —

phys + biol .15 .39 .05 .04 .10 .11 .15
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to the coast along southern and central California. From northern California north, density is lower in this band and

near zero close to the coast. With the addition of biological predictors, the prediction map is visually more consistent

with the distribution of sightings at the northern extreme of this higher-density band.

The humpback whale model was improved by the addition of the biological predictors chlint and epi_mnk with a

combined relative importance of 30%. TSS increased significantly, indicating improved performance. The resulting

prediction maps are similar; both show higher density near the coast, in agreement with observed sightings, but this

pattern includes high density along the coast of northern California where there are few sightings (Figure 4c). The

prediction with added biological variables appears less consistent with the sightings off central Oregon, but more

consistent with the sightings off northern California and at the northwestern end of the Southern California Bight.

TABLE 6 Performance of GAMs in predicting density of other cetacean species using physical predictor variables
only (phys) and using added biological predictor variables (phys + biol).

TSS Model:LT Dev.expl.

Blue whale

phys .444*** 1.053 .231

phys + biol .410 1.048 .250

Fin whale

phys .292 1.119 .214

phys + biol .308*** 1.119 .241

Humpback whale

phys .744 1.012 .570

phys + biol .761*** 1.018 .562

Common dolphin, short-beaked

phys .319 1.224 .139

phys + biol .336*** 1.218 .145

Common dolphin, long-beaked

phys .883* 0.236 .486

phys + biol .876 0.229 .518

Risso's dolphin

phys .472 0.998 .111

phys + biol .481** 0.998 .132

Striped dolphin

phys .488 1.412 .317

phys + biol .487 1.389 .369

Dall's porpoise

phys .588*** 0.971 .324

phys + biol .528 0.971 .327

Northern right whale dolphin

phys .405 0.888 .433

phys + biol .412 1.017 .422

Note: TSS = true skill statistic, asterisks indicate significantly greater TSS; Model:LT = ratio of model abundance estimate to

standard line-transect estimate; Dev.expl. = deviance explained for the GAMs of encounter rate of individuals or of groups

plus group size (short- and long-beaked common dolphin, Risso's dolphin, Dall's porpoise).

*p < .01.**p < .001.***p < .0001.
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Among dolphins, the short-beaked common dolphin model added the biological predictors dhypox and epi_mnk,

with a combined relative importance of 24%; TSS increased significantly, indicating improved performance. Both pre-

diction maps show highest densities in the Southern California Bight and high density offshore of central California;

F IGURE 4 Predictions of density (animals/1,000 km2) for baleen whales—(a) blue whale, (b) fin whale, and
(c) humpback whale—using only physical oceanographic variables (physical predictors) and with added biological
variables (physical + biological predictors). Circles mark sightings, with circle size proportional to group size.

14 FIEDLER ET AL.



F IGURE 5 Predictions of density (animals/1,000 km2) for two subspecies of common dolphin—(a) short-
beaked and (b) long-beaked—using only physical oceanographic variables (physical predictors) and with added
biological variables (physical + biological predictors). Circles mark sightings, with circle size proportional to

group size.
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F IGURE 6 Predictions of density (animals/1,000 km2) for other cetacean species—(a) Risso's dolphin, (b) striped
dolphin, (c) Dall's porpoise, and (d) northern right whale dolphin—using only physical oceanographic variables
(physical predictors) and with added biological variables (physical + biological predictors). Circles mark sightings, with
circle size proportional to group size.
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only slight differences in minor details can be seen between the maps (Figure 5a). Model:LT values are slightly

greater than one, using the product model scheme, but would be even greater using the single model scheme

(Table S1).

F IGURE 6 (Continued)
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The long-beaked common dolphin model added the biological predictors dhypox and epi_mnk with a combined rela-

tive importance of 31%; TSS decreased significantly, suggesting impaired performance. Both models correctly predict

high densities along the coast of southern and central California; the model with added biological predictors was more

consistent with the sightings in this area (Figure 5b). Both models erroneously predicted higher densities farther north

along the coast, but this error was less extensive for the model with only physical predictors. Model:LT was not close to

1 for either model, perhaps because only a small part of the study area was occupied by this species.

The Risso's dolphin model added the biological predictor chlint with a relative importance of 15%; TSS increased

significantly, indicating improved performance. Both models correctly predict high densities in two coastal regions—

(1) the Southern California Bight and along the coast of central California, and (2) the coast of Washington and north-

ern Oregon—as well as moderate densities offshore of the California coast (Figure 6a). The model with only physical

predictors erroneously predicted higher densities along the coast of northern California and southern Oregon,

between the two high-density regions. Both models erroneously predict a local extension of the higher densities in

the Southern California Bight into offshore waters towards the south.

The striped dolphin model added the biological predictors dhypox, chlint, and epi_mnk, with a combined relative impor-

tance of 23%. TSS did not change significantly, indicating no improvement in performance, although improvement was

suggested by a Model:LT closer to one and an increase in deviance explained. Prediction maps for both models show an

overall higher density in the southern offshore quarter of the study area (Figure 6b). Predicted densities are slightly higher

in this region with the addition of biological variables, but both prediction maps are consistent with sightings.

The Dall's porpoise model added the biological predictors dhypox and epi_mnk, with a combined relative importance

of 9%. TSS decreased significantly, indicating impaired performance. The pattern of the prediction map changed only

slightly with the addition of biological variables, although predicted densities were considerably higher. Both prediction

maps show highest densities off northern California and southern Oregon, with lower densities next to the coast

(Figure 6c). Moderate predicted densities extend to the south along the central California coast and to the north off

F IGURE 7 Model performance metric TSS (true skill statistic) versus (a) number of sightings, and (b) aggregation
index (R) of sightings.
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Washington. Another high-density center is predicted at the northernmost corner of the study area; predicted densities

here are much higher with the addition of biological predictors, perhaps the decrease in TSS.

The northern right whale dolphin model added the biological predictors dypox and chlint, with a combined rela-

tive importance of 26%. TSS increased significantly, indicating improved model performance. Both prediction maps

correctly show high density along the continental shelf off northern California, but neither one predicts higher densi-

ties corresponding to the sightings offshore of southern California (Figure 6d). The prediction of the model with

added biological variables is more consistent with the sightings at the northern corner of the study area off

Washington and northern Oregon.

3.3 | What other factors affect cetacean SDM performance?

The deep-diving taxa have the lowest number of sightings (Figure 7a). The model performance metric TSS is not sig-

nificantly related to the number of sightings (Pearson r = 0.055). In contrast (Figure 7b), TSS declines markedly

(r = �0.864) as the aggregation index R increases from <1 (clustered) towards 1 (random). The lowest-performing

SDMs are for the deep-diving sperm whale and Cuvier's beaked whale, which are both distributed nearly randomly.

The SDM for Baird's beaked whale performs relatively well, even compared to models for the other cetacean species

at intermediate levels of R between 0.4 and 0.65.

4 | DISCUSSION

Selection of appropriate predictor variables is an important part of building SDMs to explain or predict distributions

of animals in space and time. A variable with explanatory power is not appropriate or useful if it is not relevant to

the life processes of the species under study. Fourcade et al. (2017) showed that models using pseudo-predictors,

derived from the graphic patterns of paintings that are in no way relevant to the environment, can be as effective at

predicting species distributions as models using real predictors. Of course, such predictions are neither informative

about causation nor useful in predicting changes driven by dynamic variables.

We offered biological predictors that could either represent or influence, more proximately than do physical var-

iables alone, the availability of prey in the foraging environment of deep-diving cetaceans. This addition slightly

improved the performance of SDMs for sperm whales, but not beaked whales, although model performance was still

lower compared to the other cetacean species for which previous models exhibit strong explanatory and predictive

performance. Biological predictors did not improve the performance of the SDM for Baird's beaked whale, which

performed relatively well with only physical variables. For the nine other cetacean species, biological predictors

improved performance for five, impaired performance for one, and had mixed or no effects on performance for

three. We also developed models using only biological predictors, but their performance was considerably worse

than models using physical variables as well.

The model prediction maps presented here (Figures 3–6) are very similar to those in Becker et al. (2020) for spe-

cies in which biological predictors did not improve model performance (beaked whales, blue whale, striped dolphin).

Most of the models that retained added biological variables gave predictions that were generally consistent with

observed sightings (the deep-diving sperm whale, and most of the other whale and dolphin species). The exception

was long-beaked common dolphin; our model predicted high densities along the coast far north of the Southern Cali-

fornia Bight and outside of this species' normal range (Carretta et al., 2011; Gerrodette & Eguchi, 2011). Becker et al.

(2020) used a spatial term (bivariate spline of longitude and latitude) that constrained the predicted distribution to

this species' normal range off central and southern California.

We used predictor variables, both physical and biological, that have plausible effects on feeding or other life pro-

cesses. Forage availability is difficult to assess at spatial scales relevant to cetaceans by in situ sampling, and
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predictive models rarely go beyond zooplankton. This is a limitation that pervades SDMs of marine predators. Some

previous studies have used biological predictors related to prey availability in cetacean species distribution models,

but results have been inconsistent. In a recent paper, Virgili et al. (2021) investigated the use of SEAPODYM micro-

nekton estimates in SDMs of ziphiid beaked whales and sperm whales in the North Atlantic basin. The authors found

that these predictors were not selected for the beaked whale model and only marginally improved performance for

the sperm whale model. They suggest that the epipelagic and mesopelagic micronekton might not represent prey uti-

lized by these deep-diving predators. Similarly, our results likewise show that SEAPODYM mesopelagic micronekton

estimates are not useful in models for deep-diving sperm whales and beaked whales; however, epipelagic micro-

nekton estimates are at least a useful proxy for SDMs of many other cetaceans (Table 5). Pérez-Jorge et al. (2019)

found that SEAPODYM estimates of meso-zooplankton biomass, but not micronekton, were useful predictors for

distributions of surface-feeding baleen whales tracked in the North Atlantic. We did not use this variable because it

was highly correlated with chlint, which represents primary producer biomass.

Multifrequency acoustic backscatter data offer another way to estimate the distribution of prey organisms.

Such data have been used in studies of foraging by cetacean predators at fine spatial scales (Benoit-Bird &

Au, 2003; Cade et al., 2021; Hazen et al., 2009), but are not extensive enough to be used for predicting distribu-

tions over larger scales.

The question remains why does predicting the distribution of deep-diving cetaceans remain more difficult than

predicting that of the other species? Undoubtedly, it would help to have direct observations or accurate and detailed

model estimates of the environment at the depths where these predators are feeding. For the present, however,

does sample size or spatial distribution influence modeling success?

SDMs of species that are less widely distributed within the model domain, and thus have lower prevalence in

sampled sites, are known to have higher TSS values (Allouche et al., 2006). A higher model performance (TSS) for

species that are more aggregated (lower R), or less widespread throughout the study area, means that the model is

better able to discriminate between presence and absence in geographical space, essentially because there are more

observed zeros in a portion of the niche space that is distinct from the portion that is occupied. As a result, there is a

pattern in geographic space that can be statistically explained by niche variables. An abundant species can be cryptic

or hard to detect, like beaked whales, and thus have relatively few sightings in surveys. For a species that is either

truly rare, or more abundant but rarely detected, if the few sightings are widespread over a study area, as for beaked

whales or sperm whales, the aggregation index will indicate a near random distribution. On the other hand, an abun-

dant and easily detectable species, like the humpback whale, can have a low prevalence if it has a strong preference

for a small part of the study area. Humpbacks migrate to the U.S. West Coast during summer to feed on krill and

small fish over the continental shelf (Calambokidis et al., 2015).

Model performance in our study is not dependent on the number of sightings (Figure 7a). Cuvier's beaked

whales and sperm whales have very few sightings in our data and the lowest SDM performance. In contrast, Baird's

beaked whale has the smallest number of sightings but a SDM performance better than most species. The poor per-

formance of SDMs for Cuvier's beaked whales and sperm whales is not fully explained by the low number of

sightings in the study area. The distribution of those few sightings throughout the study area also impairs model

performance.

We argue that the widespread distribution of these species impairs model performance (Figure 7b). For all

species, model performance declines as the distribution of sightings becomes less aggregated. Cuvier's beaked

whales and sperm whales have the least aggregated sightings and the worst model performance. Random spa-

tial patterns can be parsimoniously predicted without any covariates (e.g., with a homogeneous distribution

over the study area), thereby limiting the scope for inferring the importance of these covariates. A species with

a small number of sightings can have an aggregated spatial pattern: Baird's beaked whale had the smallest num-

ber of sightings (40), yet they were aggregated similarly to several dolphin species and the SDM accurately

predicted their aggregation along the continental slope off California and near the seamounts associated with

the Juan de Fuca Ridge off Oregon.

20 FIEDLER ET AL.



4.1 | Caveats and limitations

As with all modeling studies, there are caveats and limitations, particularly relating to spatial and temporal scales of

the data and to species distribution patterns.

The CCE study area is dominated by onshore-offshore gradients (Figures S1 and S2). At the large scale of the

study area as a whole, cetaceans tend to be distributed either offshore or along the coast, with some showing latitu-

dinal tendencies in addition to the onshore-offshore preferences. We used monthly 0.25� fields of predictor vari-

ables. This coarse scale is not appropriate for studying responses to small-scale environmental features such as

fronts, mesoscale eddies or forage patches (Benoit-Bird & Lawson, 2016; Palacios et al., 2013). The surveys were not

designed for this kind of study; tracklines within a survey year were separated by �100 km and weeks to months.

Therefore, the distribution patterns resolved by the sampling were on scales of at least 0.25� in space and about

1 month in time.

On the other hand, our California Current study area covers a small part of the geographic ranges of the resident

or migratory cetaceans sighted during our summer–fall surveys. Some species are distributed widely and the study

area is only a small area within a global range. For others, the study area is at a latitudinal edge of a smaller range that

extends well beyond either to the north or south. Thus, as for nearly all studies and applications using SDMs, the

models based on our California Current survey data do not encompass the entire range of these species in either

geographical or environmental space. With our data, we cannot address questions such as why seasonal migrators

visit the region or what factors determine global range limits.

A spatial term (bivariate spline of longitude and latitude) was not included in our models, although it has

improved the performance of SDMs for certain purposes (Becker et al., 2019; Cañadas & Hammond, 2008; Forney

et al., 2012; Hedley & Buckland, 2004; Tynan et al., 2005; Williams et al., 2006). As discussed above, our predicted

distributions are very similar to those in Becker et al. (2020) for most species. They used a fixed spatial term in their

models, which can be useful for some purposes, such as avoiding potential interactions of fishery operations or ship

traffic with cetaceans. However, the inclusion of a spatial term is not useful for explaining the ecological factors

influencing the distribution of animals or for predicting responses to a changing environment.

4.2 | Conclusions

Species distribution models are used for a variety of science and management objectives, including abundance esti-

mation, mitigation of bycatch and vessel strike threats, elucidation of community and ecosystem structure, and pre-

diction of effects of climate change. The selection of predictor variables depends on the purpose of the prediction. If

understanding or future projection are an objective, predictor variables should be selected with some ecological rele-

vance. However, data availability constrains choices of predictor variables. Modelers of top predator distributions

commonly bemoan the lack of data on prey abundance. We were able to improve the performance of models of

deep-diving cetaceans by including variables related to prey availability, but these models still did not perform as well

as we had hoped. For models of other whale and dolphin species that feed at or near the surface, some of these vari-

ables were always selected as predictors along with physical variables, but did not always improve model perfor-

mance. Useful spatial–temporal data on near-surface and deeper prey will hopefully become available in the future

through higher-resolution modeling of biogeochemical processes and trophic interactions.

The deep-diving cetaceans that have been challenging to model successfully have other characteristics that hin-

der model performance. Fewer sightings that are nearly randomly distributed will not result in a useful

environmentally-driven model of spatial distribution. Models that combine observations from multiple data sources—

visual sightings, acoustic detections, and tag records—may offer additional inference for such cryptic species. Other

tools can help us understand how these species use their environment and to manage anthropogenic and climate-

related threats to their welfare, for example monitoring of abundance, bycatch, or life history parameters.
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