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Bycatch, the non-intentional capture or killing of non-target species in commercial or

recreational fisheries, is a world wide threat to protected, endangered or threatened

species (PETS) of marine megafauna. Obtaining accurate bycatch estimates of PETS

is challenging: the only data available may come from non-dedicated schemes, and may

not be representative of the whole fisheries effort. We investigated, with simulated data, a

model-based approach for estimating PETS bycatch from non-representative samples.

We leveraged recent development in the statistical analysis of surveys, namely regularized

multilevel regression with post-stratification, to infer total bycatch under realistic scenarios

of data sampling such as under-sampling or over-sampling when PETS bycatch risk is

high. Post-stratification is a survey technique to re-align the sample with the population

and addresses the problem of non-representative samples. Post-stratification requires to

sub-divide a population of interest into potentially hundreds of cells corresponding to the

cross-classification of important attributes. Multilevel regression accommodate this data

structure, and the statistical technique of regularization can be used to predict for each of

these hundreds of cells. We illustrated these statistical ideas by modeling bycatch risk for

each week within a year with as few as a handful of observed PETS bycatch events. The

model-based approach led to improvements, under mild assumptions, both in terms of

accuracy and precision of estimates and was more robust to non-representative samples

compared to more design-based methods currently in use. In our simulations, there was

no detrimental effects of using the model-based even when sampling was representative.

Estimating PETS bycatch ideally requires dedicated observer schemes and adequate

coverage of fisheries effort. We showed how amodel-based approach combining sparse

data typical of PETS bycatch and recent methodological developments can help when

both dedicated observer schemes and adequate coverage are challenging to implement.
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1. INTRODUCTION

Bycatch, the non-intentional capture or killing of non-target
species in commercial or recreational fisheries, is a world wide
threat to protected, endangered or threatened species (PETS) of
marine megafauna (Gray and Kennelly, 2018), including seabirds
(Martin et al., 2019), elasmobranchs (Pacoureau et al., 2021)
and cetaceans (Avila et al., 2018). Bycatch in fishing gears, such
as gillnets, is currently driving some small cetacean species
to extinction (Brownell et al., 2019; Jaramillo-Legorreta et al.,
2019). The European Commission recently issued infringement
procedures against several Members States for failing to correctly
transpose some provisions of European environmental law
(the Habitats Directive, Council Directive 92/43/EEC), in
particular the obligations related to the establishment of a
coherent monitoring scheme of cetacean bycatch1. The Data
Collection Framework (DCF) provides a common framework
in the European Union (EU) to collect, manage, and share
data within the fisheries sector (Anonymous, 2019a). The
Framework indicates that the Commission shall establish a
Multi-Annual Union Programme (EU-MAP) for the collection
and management of fisheries data which should be inclusive of
data that allows the assessment of fisheries’ impact on marine
ecosystems. With respect to PETS (including cetaceans), the
collection of high quality data usually requires a dedicated
sampling scheme and methodology, and is generally different
from those applied under the DCF (Stransky and Sala, 2019):
“EU MAP remains not well-suited for the dedicated monitoring
of rare and protected bycatch in high-risk fisheries since its
main focus is the statistically-sound random sampling of all
commercial fisheries (Ulrich and Doerner, 2021, p. 126).” In
practice, the introduction of any programme on PETS bycatch
under the DCF may be met with caution because of its perceived
potential to disrupt data collection for fisheries management
(Stransky and Sala, 2019). This perception implicitly relegates
PETS bycatch as a side issue for fishery management rather than
an integral part of it. It may explain the usually poor quality of
bycatch data on PETS (ICES, 2020a).

Recent EU legislation (Regulation 2019/1241), referred to as
the Technical Measures Regulation (TMR), requires Members
States to collect scientific data on cetacean bycatch for the
following métiers: pelagic trawls (single and pair), bottom-
set gillnets and entangling nets; and high-opening trawls
(Anonymous, 2019b). Unlike its predecessor (Council Regulation
EC No. 812/2004), this Regulation does not require the
establishment of dedicated observer schemes for cetacean
bycatch data collection (Dolman et al., 2020). Furthermore,
only vessels of an overall length of 15 m or more are to be
monitored, but these represent a small fraction of the European
fleet (less than 10% in 2019)2. This vessel length criterion
introduces bias in the bycatch monitoring data as the sample of
vessels larger than 15 m is almost certainly dissimilar to smaller

1https://ec.europa.eu/info/news/july-infringements-package-commission-

moves-against-member-states-not-respecting-eu-energy-rules-2019-jul-26_en
2https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=fish_fleet_alt&

lang=en

vessels. Even within the sample of vessels that are monitored,
pragmatic considerations can complicate sampling. For example,
in the United States, observer sampling trips are allocated
first by region, port, and month, then randomly to vessels of
particular categories within those monthly and spatial strata
(ICES, 2009). Random allocation of observers to vessels follows
sound statistical methodology and increases the likelihood of
collecting unbiased data (Babcock and Pikitch, 2003). In France,
observer days are allocated by port and by month for each
fishery, but the exact vessel allocation is then negotiated and
left at the discretion of skippers (ICES, 2009). Allocation is no
longer random as skippers may only accept observers when
cetacean bycatch risk is low (Benoît and Allard, 2009). Non-
random allocation means potential bias in the collected data for
monitoring bycatch as the sub-sample of skippers accepting an
observer may be very different from skippers refusing to do so
(Babcock and Pikitch, 2003).

One pragmatic solution bypassing observers is to mandate
skippers to self-declare the non-intentional capture or killing
of any PETS, as already required under the DCF (Anonymous,
2019a). In France, a national law from 2011 mandate fisheries to
declare (without fear of prosecution) the bycatch of any cetacean
species, but this law remained largely unknown to French
fishermen until late 2019 (Cloâtre, 2020). In general, self-reported
PETS bycatch data are sub-optimal as they may be heavily biased,
non-representative (ICES, 2009) and typically provide poor
information on which to base management decisions (National
Marine Fisheries Service, 2004). Once again, the set of skippers
who choose to declare bycatch may differ markedly from those
who do not: for example the former take the extra time required
to fill logbooks and thus provide accurate data while the latter do
not. If this behavior is correlated to other attributes, e.g., a more
acute awareness of threats to PETS resulting in practices that
tend to minimize impact on PETS, data collected from skippers
reporting bycatch would not be representative. There may also
be an element of skippers genuinely forgetting to log PETS
bycatch in the bustle of the fishing operation but this is random
and unlikely to introduce bias. In addition, ground-truthing, for
example with remote-electronic monitoring (REM; Course et al.,
2020), would be required in order to ensure the quality and
accuracy of self-reported data before their statistical analyses.

Another hurdle, of the statistical kind, with cetacean bycatch
is the low frequency of these events. Assuming that implementing
a representative sampling program were feasible, if bycatch is
a rare event (Komoroske and Lewison, 2015), then few events
would be observed for realistic sampling effort (Babcock and
Pikitch, 2003; ICES, 2009). This paucity of observed event means
a large uncertainty in statistical estimates: with a bycatch rate of
the order of 0.01 event per fishing operation, a sample size of
1,100 observed operations would be required to obtain, in the
best case scenario (no bias, statistical independence, etc.), the US
recommended coefficient of variation of 30% (National Marine
Fisheries Service, 2005, 2016; ICES, 2009; Carretta and Moore,
2014). The amount of observer coverage needed to reach this
precision depends on fishery size and trip duration (Babcock
and Pikitch, 2003). In practice, the sampling error depends
on the overall design of the survey, of which the sample size
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is only one factor: for example a larger sample size could be
needed if there are large “skipper-effects” as the same vessels
would contribute fishing operations, and these would not be
statistically independent. With a small sample size, uncertainty
may be so large as to prevent using estimates altogether, even if
one were to assume no bias in the data (Babcock and Pikitch,
2003). Given this challenge and the lack of uptake of dedicated
monitoring programmes of cetacean bycatch in Europe over the
last decade or more (Sala et al., 2019), it would appear prudent
to seek methods of analysis that can handle the few and non-
representative data available to robustly estimate bycatch rates.

The problem of having non-representative samples to carry
out statistical analyses is ancient (Hansen and Hurwitz, 1946)
and widespread: it pops up inmany applied disciplines, including
election forecasting (Wang et al., 2015; Kiewiet De Jonge et al.,
2018), political sciences (Lax and Phillips, 2009; Zahorski, 2020),
social sciences (Halsny, 2020), addiction studies (Rhem et al.,
2020) or epidemiology (Zhang et al., 2014; Downes et al., 2018).
In these disciplines, there are also intrinsic limits on improving
the representativeness of sampling. For example, in polling, non-
response rates can be above 90% (Forsberg, 2020). In other
cases, some populations of interest may be hard to reach (Rhem
et al., 2020), or answers may not be honest (St. John et al.,
2014). Challenges lie in the accurate estimation of quantities
of scientific interest (e.g., the true magnitude of bycatch in
a fishery; Babcock and Pikitch, 2003) with the construction
of statistical weights that can calibrate a non-representative
survey sample to the population targets. Such weights are
implicit with simple random sampling where each unit in a
population has the same, non-nil, probability of being included
in the sample. When inclusion probabilities differ between units,
weights inversely proportional to the former can be used to adjust
the sample. However, constructing survey weights is in general
more elaborate than using inverse probabilities of selection in the
sample (Gelman, 2007). Model-based approaches, and multilevel
regression modeling with post-stratification in particular, has
become an attractive alternative to weighting to adjust non-
representative samples (Gelman, 2007).

Multilevel regression modeling allows researchers to
summarize how predictions of an outcome of scientific interest
vary across statistical units defined by a set of attributes or
covariates (Gelman et al., 2021, p. 4): for example bycatch events
are a binary outcome at the fishing operation level (a unit)
associated with attributes, such as date-time, location, gears and
vessels (e.g., Palka and Rossman, 2001). Post-stratification is a
standard technique to generalize inferences from a sample to the
population by adjusting for known discrepancies between the
former and the latter. Post-stratification is a form of adjustment
whereby statistical units are sorted out according to an auxiliary
variable (hereafter a stratum) after completion of data collection;
stratum-level effects (i.e., effects within each stratum or cell) are
then estimated, and finally averaged with weights proportional
to stratum size to obtain the population-level estimate. Post-
stratification differs from blocking as the latter is done before
data collection to ensure balance and representativeness at the
design stage. Post-stratification is a post hoc statistical adjustment
done at the analysis stage: it can remove bias, but at the price

of an increased variance of estimates. Lennert et al. (1994)
provided an early example of model-based estimates of bycatch
with post-stratification.

In small samples post-stratification can degrade estimate
precision, especially if the number of strata is large as each
stratum will typically include very few data, or even not a single
datum (the so-called “small-area” problem). In practice, adequate
post-stratification may require handling hundreds of cells (the
crossing of several attributes; e.g., week by statistical area by
gears). Some predictions for each cell may be too noisy, especially
if there are sparse or no data for that particular combination
of attributes. Multilevel regression can offer a solution as it
borrows strength from similar units to improve and stabilize
(i.e., regularize) these predictions (Cam, 2012). In other words,
multilevel regression allows an efficient use of a sparse sample
to estimate the outcome of interest within each cell, even if
these cells are very numerous (e.g., several hundreds). The key
insight of combining multilevel regression modeling with post-
stratification is thus: even if observations are not a representative
sample of the population of interest, it may be possible to
construct a regression model to first predict unobserved cases,
and then post-stratify to average the fitted regression model’s
predictions over the population of interest (Gelman et al., 2021,
p. 313). Good predictions may be obtained with regularization
by means of multilevel models with structured priors (including
so called “random-effects” models). The latter can increase
precision by inducing shrinkage of parameter estimates across
similar post-stratification cells, where similarity is encoded in the
model specification (e.g., by using random effects that assume
exchangeability). The amount of shrinkage, or partial-pooling
across cells, is model-based and thus data-driven. However,
in order to be able to leverage the information in the data,
some model structure on the parameters of interest is necessary
hence the need for structured priors. Relying on a model rather
than just empirical means of the response variable addresses
the bias-variance problem intrinsic to having a large number
of cells in post-stratification, and leverages the large toolbox of
regression-based models.

Technically, when data arise as signal plus noise, overfitting
occurs when a regression model captures too much of the
noise compared to the signal; that is in using an ill-conditioned
(unstable) model that will provide an excellent in-sample fit
but make poor out-of-sample predictions (Authier et al., 2017b;
George and Ročková, 2021). Overfitting may result when using
richly parametrized models without using adequate estimation
methods such as regularization to stabilize parameter estimates
and buffer them against noise (Gelman et al., 2021, p. 459–460).
Weakly-informative priors in a Bayesian framework regularize
the estimation of the large number of parameters that may be
present in a multilevel model. Multilevel modeling takes into
account complex data structures with structured prior models
for batches of parameters; the simplest example are so-called
“random effects” whereby a common (Gaussian) distribution
centered on zero and with an unknown variance to be estimated
for data is assumed for a group of parameters; for example
years or sites (Cam, 2012). This common distribution for the
parameters is a priormodel, and thismodel for parametersmeans
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that the latter are not independently estimated but in tandem
according to the postulated prior model. For example, Sims et al.
(2008) used amodel-based approach to obtain spatially smoothed
estimates of bycatch in a gillnet fishery. Spatial-smoothing (also
known as “small-area estimation”; Fay and Herriot, 1979) was
used to stabilize estimated bycatch rates by using a Conditional
Autoregressive prior model that leverages information from
spatial neighbors to improve the prediction at a specific location.
Prior models add some soft constraints to the overall model
and these constraints are very useful in data sparse settings to
mitigate variance and bias in predictions. In other words, these
prior models represent additional assumptions about the data,
assumptions, which if approximately correct, add information in
the analyses and increase the precision and stability of predictions
at the cost of a usually small estimation bias. Introducing bias
to reduce variance is a common statistical technique known as
shrinkage or regularization (George and Ročková, 2021).

Regularized multilevel regression with post-stratification is
thus the combination of several important ideas to obtain
accurate predictions (Gao et al., 2019). First, post-stratification
is a survey technique to re-align the sample with the population
and addresses the problem of non-representative samples. In
practice, post-stratification requires to sub-divide the population
of interest into many cells corresponding to the combination
of important attributes. Multilevel regression can be used to
accommodate all these cells in a single model, but the problem
has now moved to how to obtain useful estimates for all these
cells, which can number in the several hundreds. Regularization
solves this estimation problem: it introduces model-driven bias
in statistical estimates in order to stabilize them. These new
developments in the statistical analysis of non-representative
samples may help in obtaining a better quantification of bycatch
rates and numbers. Our aim is to assess with simulations,
the potential of regularized multilevel regression with post-
stratification for analyzing already collected bycatch data, with
the full knowledge that these data are non-representative and
biased in several respects. These biases in sampling are manifold
(see above): bias may be due to regulation exempting certain
vessels (e.g., no monitoring for vessels smaller than 15 m);
to non-dedicated observers or because sampling is driven for
other purposes than bycatch monitoring of PETS (commercial
discards, stock assessment); or in the case of dedicated schemes,
to over-sampling a few “cooperative” skippers or focusing
sampling in métiers with the highest or lowest bycatch risk. Our
focus will be narrower, honing in on specific sampling scenarios
whereby observer coverage is correlated to bycatch risk. In other
words, we will assess the potential of regularized multilevel
regression with post-stratification to estimate accurately bycatch
numbers with samples preferentially collected either during low-
or high-bycatch risk periods. Our investigation is largely framed
from our knowledge on small cetacean bycatch in European
waters, such as short-beaked common dolphin (Delphinus
delphis, lower observer coverage when bycatch risk is higher)
in the Bay of Biscay (Peltier et al., 2021) or harbor porpoises
(Phocoena phocoena, higher observer coverage when bycatch
risk is higher) in the Celtic Seas (Tregenza et al., 1997). In
the remainder, we first introduce methods and notations to

detail the proposed model to perform multilevel regression
with post-stratification with bycatch data, using dolphins as
an example. Next, we explain our data simulation scenarios
and how we emulate non-representative sampling. We then
compare the results (i.e., estimates of bycatch) from the proposed
modeling approach with those from the method currently used
by the working group on bycatch of protected species from
the International Council for the Exploration of the Sea (ICES
WGBYC) before concluding on some recommendations for
future investigations.

2. MATERIALS AND METHODS

We carried out Monte Carlo simulations to assess the ability
of regularized multilevel regression with post-stratification to
estimate bycatch risk and bycatch numbers from representative
and non-representative samples. ICES WGBYC collate data
through an annual call from dedicated and DCF surveys
collecting data on the bycatch of PETS through onboard
observers or REM. These surveys may be qualified as “design-
based” in the sense that, ideally, a representative coverage of
fisheries would be sought in order to scale up the observed sample
to the whole population using ratio-estimators. There are many
caveats around the use of these ratio-estimators as EUMAP is not
well-suited for monitoring PETS bycatch (Ulrich and Doerner,
2021). Given these shortcomings in the collection of bycatch data
under EU MAP, the data available to ICES WGBYC are unlikely
to be representative of fisheries of interest but nevertheless, ratio-
estimators are used as part of a Bycatch Risk Approach (BRA)
to identify relative risk of bycatch across species and metiers
(ICES, 2018). Cetacean bycatch observer programmes may aim
at achieving a pre-specified precision for bycatch rates (with a
coefficient of variations less than 30%; National Marine Fisheries
Service, 2005, 2016; ICES, 2009; Carretta and Moore, 2014).
Achieving this is very difficult in practice, and a given coverage
of effort deployed by the total fleet is, instead, aimed at: for
example 10% (5%) for pair-trawlers (level-3 métier PTM) larger
(smaller) than 15 m in France. Data from onboard observer
programmes are then used to estimate total bycatch using ratio
estimators (Lennert et al., 1994; Julian and Beeson, 1998; Amandè
et al., 2012) and the bootstrap or a classical approach (Clopper-
Pearson) for uncertainty quantification (ICES, 2018, p. 57). We
used an approach similar to that of WGBYC (hereafter referred
to as a “design-based” approach) as a benchmark to compare
against results from regularized multilevel regression with post-
stratification. We honed in on the accurate estimation of the
number of bycatch events for a complete fleet. We assume that
information on the total effort deployed by a fleet operating
in a spatial domain are available and measured without error.
This assumption is necessary to scale estimates from the sample
to the population. We also assumed that there are no false-
negatives in the sample, that is no bycatch event went unrecorded
by onboard observers (assuming thereby a dedicated observer
programme). These two assumptions are customary with ratio
estimators, whether design- or model-based, and do not deviate
from current norms. We assume however that these population
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data on total effort can be disaggregated at a finer temporal scale
in order to post-stratify on calendar weeks. This assumption
of accurate measurement of effort at the week-level is crucial
for post-stratification.

2.1. Notations
The logit transform maps a quantity p ∈]0, 1[ to the real line:

logit(p) = log
(

p
1−p

)

. Its inverse is denoted by logit−1(x) =
1

1+e−x (sometimes called the “expit” transform). Let yijkl denote
the ith fishing operation of vessel j in week k of year l, with
yijkl = 1 if a bycatch event occurs and 0 otherwise:

yijkl ∼ Bernoulli
(

pjkl = logit−1 (µ + βkl + αj
)

)

(1)

where pjkl is the product of the probability of a bycatch
event occurring and the probability of dolphin presence. This
unconditional probability pjkl, or “bycatch risk” hereafter, is not
indexed by i: although there may be several fishing operations
of vessel j in week k of year l, the risk is assumed constant over
these. Bycatch risk is a function of several parameters (on a logit
scale): µ is the intercept (overall risk), αj ∼ N(0, σvessel) are
(unstructured, normal random effects) vessel-effects accounting
for heterogeneity (e.g., “fishing style” of skippers); and βkl are
time effects, modeled with a Gaussian Process. A Gaussian
process is written as GP(m, c) where m and c are the mean and
covariance functions respectively (Gelman et al., 2014, p. 501).
The Gaussian Process prior on the vector of week effects in year l,
β l, defines this vector as a random function for which the values
at any week 1, . . . , k, . . . ,w are drawn form a w-multivariate
normal distribution:

β1l, . . . ,βwl ∼ N
((

m(1), . . . ,m(w)
)

,�
)

(2)

with mean m and covariance �. The function c specifies the
covariance between any 2 weeks k and k′, with � an w × w
covariance matrix with element �

(

k, k′
)

= c(k, k′). A Matérn

covariance function of order 3
2 and range parameter fixed

to 3
2 was assumed: c

(

k, k′
)

= σ 2
year ×

(

1+ 2
√
3×d(k−k′)

3

)

×

exp− 2
√
3×d(k−k′)

2 , where d(k − k′) is the temporal distance (in
weeks) between weeks k and k′. The distance function was the
absolute difference between calendar weeks within the same year:
d(k−k′) = |k−k′|. The choice of theMatérn covariance function
translate an assumption of smoothness in the temporal profile of
bycatch risk: bycatch risk is assumed to change gradually across
weeks, with no abrupt increase or decrease. The range parameter
is fixed and not estimated from data. This choice represents an
additional assumption whereby the temporal correlation is 0.05
after 4 weeks corresponding to temporal independence after a
month. This choice is to some extent arbitrary and represents an
additional assumption. In theory, the range parameter could also
be estimated from data but we assumed a data sparse setting with
limited information (more so with Bernoulli data) to estimate
this parameter.

The mean function m of the Gaussian process was modeled
(on a logit scale) with a first order random walk, which was

evaluated at specific values k∈[1,...,w] corresponding to week
number within a year:











(

m(1), . . . ,m(w)
)

= (ε1, . . . , εw)

εk = 0 k = 1

εk+1 ∼ N (εk, σweek) k > 1

(3)

The order of the random walk prior was assumed fixed at
1 and not estimated from data. This prior choice smooths
the first order differences between adjacent elements of ε and
represents an additional assumption, mainly to limit the number
of parameters to estimate from the typically sparse data on
bycatch. A random walk was chosen as an effective way to reveal
the shape of the average risk profile without specifying a family of
parametric curves.

The model in Equation (1) is a decomposition of bycatch
risk into a time-varying component (at the week-scale, Equation
3; and with an interaction with year, Equation 2) and time-
invariant component which can be interpreted as fishing-style
effects whereby some skippers may have consistent practices that
increase or decrease bycatch risk. Importantly, bycatch risk is
modeled here with no attempt tomodel dolphin presence directly
as relevant data to do so may be missing in the general case.
Bycatch risk is thus to be estimated for each week of a year, and
each of these weeks represent de facto a stratum. In any applied
case, additional factors, such as statistical area, may need to be
included in Equation (1) for improved realism. For simplicity,
we did not consider space in simulations, and solely focused
on time.

2.2. Data Simulation
To test the ability of model 1 to estimate bycatch risk, data were
simulated (Figure 1).

1. Bycatch probability conditional on dolphin presence was
constant and set to 0.3, that is roughly one fishing operation
out of 3 generates a bycatch event when dolphins are present
(corresponding to a high risk fishery, e.g., the trawl fishery in
the Bay of Biscay).

2. Dolphin presence is seasonal (loosely inspired from the
observed pattern of common dolphin in the Bay of Biscay
where abundance is higher closer to the coasts in winter; Laran
et al., 2017): it peaks at the beginning and end of the year, but
quickly drops to 0 for roughly 2 thirds of a year.

3. A fishery of 20 vessels is operating all year round, with an
overall activity rate of 80% each week (that is, for any week,
20× 80

100 = 16 vessels are fishing). Each fishing day (5 days per
week), on average 2.3 fishing operations are carried out. The
expected total number of fishing operations for a year is 5 ×
52× 2.3× 16 ≈ 10,000. These values were loosely taken from
an exploratory analysis of onboard observer data collected on
PTM flying the French flag. During each of these operations,
a bycatch event may occur depending on dolphin presence at
the time and on a skipper-specific risk factor (drawn randomly

from a normal distribution with scale parameter set to
log(2)
3 to

induce moderate heterogeneity on a logit scale; Authier et al.,
2017a).
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FIGURE 1 | Inputs for data simulation. Top: bycatch probability if dolphins are present during a fishing operation. Middle: dolphin presence during a year. Bottom:

Probability for a skipper to accept an observer onboard. Left: sampling is unbiased; Middle column: sampling is biased downwards (under-sampling). Right:

sampling is biased upwards (over-sampling). Each line corresponds to one of the 100 data simulations that were carried out. The y-axis is on a square-root scale to

better visualize small values.

4. Observers are accepted onboard vessels either with a constant

probability of 0.05 corresponding to a coverage of 5% of
all fishing operations (unbiased sampling scenario) or with

a probability that covaries with dolphin presence (biased

sampling scenarios). In the latter case, realized coverage is
a random variable. With under-sampling, the bulk of the

observer data is collected when bycatch risk (the product of

dolphin presence and bycatch probability) is nil (Figure 1).
With over-sampling, the bulk of the observer data is collected

when bycatch risk is high but no data are collected when the

risk is nil (Figure 1).
5. In a year, the number of fishing operations is ≈ 10,000,

and the number of bycatch events ≈ 300, which yields a
rate of ≈ 3%. This rate is not large, but is not extremely
rare either.

Bycatch events were simulated for each fishing operations during
a day when an observer was present from a Bernoulli distribution
according to the product of bycatch probability given dolphin
presence and dolphin presence probability for that day. If
no observer was present, no data were recorded. The data-
generating mechanism used a parametric function for dolphin
presence probability and was different from the statistical model
used to analyzed the data (see https://gitlab.univ-lr.fr/mauthier/
regularized_bycatch). For each sampling scenario, 100 datasets
were generated for 1, 5, 10, or 15 years. All data simulations
were carried out in R v.4.0.1 (R Core Team, 2020). When
simulating only 1 year of data, Equation (2) is not necessary as
there is no between-year variation to estimate: the model can be
simplified with the omission of β l. Our Monte Carlo study had
a comprehensive factorial design crossing (a) sampling regime
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(either unbiased or not) and (b) sample size as controlled with the
number of years for which the observer programme was assumed
to have been in operation.

2.3. Estimation
Estimation of the parameters of model 1 from simulated data
was carried out in a Bayesian framework using programming
language Stan (Carpenter et al., 2017) called from R v.4.0.1
(R Core Team, 2020) with library Rstan (Stan Development
Team, 2020). Stan uses Hamiltonian dynamics in Markov chain
Monte Carlo (MCMC) to sample values from the joint posterior
distribution (Carpenter et al., 2017). Weakly-informative priors

were used for regularization:
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where D() denotes the Dirichlet distribution for modeling
proportions (such that

∑3
i=1 propi = 1) and GG() the Gamma-

Gamma distribution for scale parameters (Griffin and Brown,
2017; Pérez et al., 2017). With this simplex parametrization,
chosen to improve mixing and ease estimation with Monte Carlo
methods (He et al., 2007), the several variance components of

the model were:
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These priors are weakly-informative (Gabry et al., 2019): the prior
for the intercept covers the whole interval between 0 and 1 on
the probability scale but is informative on the logit scale. The
prior for the scale (square-root of the variance) is heavy tailed and

has a median set to
log 10
2 (Griffin and Brown, 2017; Pérez et al.,

2017), which translate an assumption about the plausible range
of variations in bycatch risk spanning a priori two full order of
magnitude from one tenth to a ten-fold increase compared to the
mean bycatch rate. Thirty random realizations from our choice of
priors are depicted on Figure 2: the whole interval between 0 and
1 is covered, and between-week variations can be large or small.

For each simulated dataset, four chains were initialized from
diffuse random starting points (Carpenter et al., 2017, p. 20)
and run for a total of 1,000 iterations, discarding the first
500 as warm-up. Default settings for the No-U-Turn Sampler
(NUTS) were changed to 0.99 for adapt delta and 15
for max treedepth (Hoffman and Gelman, 2014). NUTS
uses Hamiltonian Dynamics in MCMC and typically requires
shorter runs than other MCMC algorithms both to reach
convergence and to obtain an equivalent Effective Sample Size
from the posterior (Hoffman and Gelman, 2014; Monnahan
et al., 2017). Parameter convergence was assessed using the R̂
statistics (Vehtari et al., 2019) and assumed if R̂ < 1.025. Upon
diagnosing convergence of all parameters, a combined sample of
4×500 = 2, 000MCMC values were obtained to approximate the

joint posterior distribution. Let µ̂[m], β̂
[m]
kl , σ̂

[m]
vessel

denote the mth
MCMC sample for parametersµ,βkl and σvessel. Bycatch risk p̂j∗kl
for a randomly chosen vessel j∗ operating in week k of year l was
computed from the mth MCMC draw from the joint posterior

distribution as:

p̂
[m]
j∗kl = logit−1

(

µ̂[m] + β̂
[m]
kl + α̂

[m]
j∗

)

(4)

where α̂
[m]
j∗ ∼ N(0, σ̂

[m]
vessel

). This predicted bycatch risk

incorporates between-vessel variability, that is it takes into
account the fishing style of skippers. The predicted risk (on a

logit scale) for a random chosen skipper is α̂
[m]
j∗ and was drawn

from the posterior predictive distribution: not all skippers may be
observed in the sample, and but the subset of skippers that accept
an observer can be used to estimate a between-skipper variance
in bycatch risk. In practice, the number of fishing operations
carried out in the course of a week in a year by individual
skippers is unknown, although the aggregated number of fishing
operationsmay be known. If totals by skippers were available, and
all skippers had been sampled, it would be more efficient to use
skipper-specific estimated risk, but we did not assume that this
would necessarily be the case.

The total number of bycatch events, Tbycatch was estimated as
the average over the 2,000 MCMC draws from the posterior:

T̂model−based bycatch = 1

2000

2000
∑

m=1

(nyear
∑

l=1

nweek
∑

k=1

p̂
[m]
j∗kl × Nkl

)

(5)

where Nkl is the total number of fishing operations that
took place is week k of year l. The total number of strata
for post-stratification was nyear × nweek, with a maximum of
15 × 52 = 780 cells. Highest Posterior Density credible
intervals at the 80% level were computed with function
HPDinterval from package coda (Plummer et al., 2006) for
uncertainty evaluation. Equation (5) is an instance of a ratio-
estimator with post-stratification, except that it uses model-
based estimates of bycatch risk. This model-based approach
regularizes estimates with partial pooling (Gelman and Shalizi,
2013): the variance of estimates is greatly reduced by introducing
some bias with structured priors (Gao et al., 2019). Our results
were benchmarked against an approach similar to that of
ICES WGBYC whereby total number of bycatch events was
estimated1 as:

T̂design−based bycatch =
nyear
∑

l=1

(

p̄l ×
nweek
∑

k=1

Nkl

)

(6)

where p̄l is the average bycatch risk estimated as the mean
from the observed sample in year l. Confidence intervals at
the 95% level were computed using either the bootstrap or the
Clopper-Pearson approach as customary in ICES WGBYC. Both
were considered as the Clopper-Pearson approach is known
for being more conservative: it produces confidence intervals
that above the nominal level (i.e., wider than necessary) but
generates non-nil confidence intervals even if no bycatch has
been observed (Northridge et al., 2019). In practice, ICES
WGBYC often pooled several years to stabilize the estimate
of p̄ (e.g., ICES 2018, p. 57–58; Carretta and Moore, 2014):
Equation (6) translate an ideal case that is rarely met in practice.
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FIGURE 2 | Prior predictive checks sensu (Gabry et al., 2019). Bycatch risk (pijkl in Equation 1) is depicted: 30 random realizations from the priors are depicted.

ICES WGBYC usually works on bycatch rates (in number of
PETS per unit effort), not bycatch risk. We focused on risk for
simplicity, but scaling bycatch risk to a rate is straightforward
by multiplying with the average number of PETS bycaught in
a bycatch event. Dolphin presence was seasonal in the data-
generating mechanism for simulations: pitching a method that
can explicitly accommodate such seasonality against one that
does not may be viewed as knocking down a strawman. However,
current estimates of PETS bycatch in Europe are stratified by
flag, ICES statistical areas, and métiers but not by season (e.g.,
Table 2 p. 17 in ICES 2019; Northridge et al., 2019, p. 27).
The comparison remains relevant and topical as it matches
current practices.

3. RESULTS

Convergence across all simulations and scenarios was assumed
to be reached, with all R̂ < 1.025, for all parameters. For each
simulation, chains were combined in a single sample of 2,000

values to approximate the joint posterior distribution of the
model defined by Equations (1), (2), and (3).

3.1. Design- vs. Model-Based Approach
Comparing the design- and model-based approach was done
with simulating 1 year of data. When data sampling was
unbiased, both the design- and model-based approach were able
to recover the true number of bycatch events (Figure 3; Table 1).
Estimates of bycatch events were statistically unbiased but their
precision low with a (frequentist 95%) confidence or (Bayesian
80%) credible interval (CI) as large as 100% of the point estimate
(Table 1), as could be expected with only 15 bycatch events were
recorded on average by onboard observers (Table 1).With under-
sampling, design-based estimates were negatively biased (that
is, they were under-estimates) whereas model-based estimates
were still unbiased on average (Figure 3; Table 1). With over-
sampling, design-based estimates were positively biased (that is,
they were over-estimates) but so were model-based estimates,
although bias was 5 times smaller (Figure 3; Table 1). In all
cases, coverage was 100% but largely as a result of low precision:
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FIGURE 3 | Violin plot of bias in point estimates of total bycatch events. Left: data sampling was unbiased and all methods yielded statistically unbiased estimates.

Middle: Under-sampling scenario: only the model-based approach was accurate. Right: Over-sampling scenario: both the design- and model-based approaches

were biased upwards. Violin plots are based on 100 simulations.

TABLE 1 | Statistical properties of estimates from the design- and model-based approach.

Method Uncertainty Data nyears Bias Coverage Width of CI nobs

sampling (%) (%) (%)

Design-based Bootstrap Unbiased 1 3.5 100.0 102.5 15

Design-based Clopper-Pearson Unbiased 1 3.5 100.0 115.0 15

Model-based Bayesian Unbiased 1 3.6 100.0 120.4 15

Design-based Bootstrap Under- 1 −83.5 100.0 195.0 5

Design-based Clopper-Pearson Under- 1 −83.5 100.0 259.6 5

Model-based Bayesian Under- 1 3.0 100.0 204.3 5

Design-based Bootstrap Over- 1 121.0 100.0 46.1 63

Design-based Clopper-Pearson Over- 1 121.0 100.0 50.1 63

Model-based Bayesian Over- 1 22.1 100.0 78.6 63

One year of data was simulated a 100 times. Bias of point estimate, coverage of (frequentist 95%) confidence or (Bayesian 80%) credible interval (CI) and precision (as CI width relative to
the point estimate) are reported. The last column indicates the average number of bycatch events (nobs = E

[

∑

ijk yijk
]

) that were recorded by onboard observers during data sampling.
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precision was very low with CI spanning some 200% of the
point estimate for the unbiased and under-sampling scenarios.
This low precision was the result of having to work with as
few as 5 observed bycatch events on average (Table 1). Precision
improved with over-sampling, but was still as high as 50% of
the point (over-)estimate. The model-based approach was well-
calibrated in both the unbiased and under-sampling scenarios
(Figure 4): model-based estimates were on average equal to the
truth whereas this was only the case with design-based estimates
when sampling was unbiased. In addition, the model-based
approach was able to recover the temporal profile of bycatch risk
(Figure 5) in these two scenarios, but with an increased accuracy
and precision if sampling was unbiased. In the over-sampling
scenario, both the design- and model-based approaches were not
well -calibrated (Figure 4) and the model-based approach over-
estimated bycatch risk when no data were collected (Figures 1, 5).

3.2. Model-Based Approach With Several
Years of Data
With several years of data, the model-based approach was able
to yield nearly unbiased estimates: the bias was smaller than
3 bycatch events when sampling was unbiased, but as large
as 10 (on average) with biased sampling and 3 years of data.
The precision of estimates improved with several years of data,
as expected with larger sample size. Precision of model-based
estimates with over-sampling were already acceptable with 3
years of data: an 80% credible interval width of 50% corresponds

to a coefficient of variation of
50

2.5
≈ 20% assuming a normal

distribution for the posterior. Themodel-based approach allowed
to obtain estimates at the weekly scale (Figure 6): these estimates
were approximately unbiased in the unbiased and over-sampling
scenarios, but were biased for the under-sampling scenario. In
that latter case, the bias was correlated with the temporal pattern
used to simulate dolphin presence (Figure 1): it was the largest
when dolphin presence was at its highest but positive at the
beginning of a year and negative at the end of the same year. Both
biases were greatly attenuated with increased sample size.

4. DISCUSSION

Using Monte-Carlo simulations, we investigated the statistical
properties of a model-based approach, regularized multilevel
regression with post-stratification, to estimate the total number
of bycatch events in a fishery operating year-round. Simulations
were broadly informed from the case of common dolphins and
pair-trawlers in the Bay of Biscay and from harbor porpoises
and set-gillnets in Celtic Seas. A salient feature of simulations
was biased sampling with observers being preferentially accepted
onboard when bycatch risk was either high or low. Data
simulations in that latter case, which is the most realistic one
in the Bay of Biscay (Peltier et al., 2016), resulted in as few
as 5 observed bycatch events per year on average (Tables 1, 2).
This aligns with the ubiquitous description of small cetacean
bycatch being a rarely observed event. It was nevertheless possible
to fit a regularized multilevel regression model on these data.
Importantly, estimates from this model-based approach were

statistically less biased than the design-based estimates when
sampling was biased. Model-based estimates were, however,
imprecise but this is largely to be expected (Amandè et al.,
2012), especially with as few as 5 observed bycatch events per
year. The design-based approach was also imprecise, even in
the unbiased data sampling scenario of 5% coverage of the
fleet, which is not reached in practice (Anonymous, 2016; ICES,
2020b). The design-based approach was very sensitive to how
data were collected: this approach severely under- or over-
estimated bycatch when sampling was biased, whereas themodel-
based approachwas still well-calibrated with under-sampling, but
not with over-sampling (Figure 4).

Biases in onboard observer data are pervasive and widely
acknowledged (Babcock and Pikitch, 2003; Benoît and Allard,
2009; Peltier et al., 2016). Enforcing coverage as required to
achieve a pre-specified precision in estimates can be challenging
in practice. For example, in 2016, France only achieved a
coverage rate less than 2% for most métiers and concluded on
the impossibility of scaling-up observed bycatch rates to the
whole fleet (Anonymous, 2016, p. 24). There were, however, 9
bycatch events of common dolphins in pair-trawlers targeting
European hake (Merluccius merluccius). From these numbers,
bycatch was described a “rare” event (Anonymous 2016, p.
23). Such a conclusion would be warranted if sampling were
representative, in which case the design-based estimate could be
used, even though its precision would still be very low. On the
other hand, with under-sampling, this conclusion is misleading
as our simulations further illustrated: although only 5 bycatch
events were observed on average (Figure 4), the true number
of bycatch events was on average 60 times larger (Figure 4). In
our simulations, the true bycatch rate was on average ≈ 3% over
a year, which is not rare, but not frequent either. Moreover,
interviews with French skippers deploying trawls or gillnets in
the Bay of Biscay revealed that more than 80% of respondents
declared to having experienced at least one small cetacean
bycatch event in a year (Cloâtre, 2020). Such a large proportion
contradicts the idea of common dolphin bycatch being a rare
event in the Bay of Biscay, but rather suggest severe biases
in onboard observer data that result in the rare reporting of
bycatch events, rather than a rarity of events per se. The common
dolphin in the Bay of Biscay illustrates how under-sampling
may distort the perception of bycatch as a very rare event
when it can, in fact, be widespread. This is a catch-22 situation
whereby cetacean bycatch is described as a rare event because
it is rarely reported, and this perceived rarity may serve to
argue against ambitious dedicated monitoring programmes out
of cost-effective considerations, thereby preventing to dispel the
initial misconception.

Finding an optimal sampling plan for fisheries with rare
bycatch events is a long standing problem (ICES, 2009). Several
strategies have been attempted: for example in the United
States, one strategy is “pulsed sampling” whereby a particular
fishery or métier is very heavily sampled for a short period
of time in order to maximize the chance for observers to
record any bycatch that might occur (ICES, 2009). This pulsed
sampling strategy corresponds to our over-sampling scenario
wherein monitoring effort is positively correlated with bycatch
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FIGURE 4 | Regression lines of point estimates against the true number of bycatch events, showing the calibration of the design- and model-based approach. The

x-axis shows the true number of bycatch events across 100 simulations, spanning between 150 and 400 events. The red dotted line shows the identity line, i.e., no

bias. Left: data sampling was unbiased and all methods yielded statistically unbiased estimates. Middle: Under-sampling scenario: only the model-based approach

was well-calibrated. Right: Over-sampling scenario: both the design- and model-based approaches were not calibrated to the truth.

risk. Under this scenario, the absence of any sampling at all
when bycatch risk was low was detrimental to the accurate
estimation of bycatch events with our model. Model-based
estimates were, however, less biased than design-based estimates.
Arguably, this comparison is somewhat artificial as a correct
comparison would use all the available information and uses
estimators that are season-specific to account for under-sampling
when bycatch risk is low if such a period is known to the
investigator. Notwithstanding this shortcoming, model-based
estimates represented an improvement and allowed to infer
the bycatch risk profile accurately, especially with several years
of data.

We showed with our Monte-Carlo simulations that
regularized multilevel regression with post-stratification can
nevertheless be used to analyze bycatch data despite concerns
about non-representative sampling. Model-based approaches
(Palka and Rossman, 2001), with post-stratification (Lennert

et al., 1994), or machine learning (Carretta et al., 2017), or
multilevel regression (Sims et al., 2008; Martin et al., 2015) have
previously been used to estimate bycatch rates. Traditional,
design-based, ratio estimates are biased if sampling is biased;
imprecise if observer coverage is low (as is the usual case in
the North East Atlantic; see for example Figure 14, p. 114 in
ICES, 2020b); and volatile if bycatch events are only observed
occasionally (Carretta et al., 2017). The traditional remedy to
stabilize estimates and improve precision is to bypass year-
specific estimation and pool several years together (Carretta and
Moore, 2014; ICES, 2018). This pragmatic solution improves
precision but does not address the problem of biased sampling.
It also introduces estimation bias for any year-specific estimates
by pooling completely several years in order to stabilize the
variance of estimates (ICES, 2009, p. 36): any between-year
differences are thus ignored in order to obtain a better precision
of estimates. It is a reasonable approach in practice, but one
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FIGURE 5 | Estimated temporal pattern in mean bycatch risk from the model-based approach. Left: data sampling was unbiased. Middle: Under-sampling. Right:

Over-sampling. The model-based approach recovered the correct pattern overall, but overestimated risk in the over-sampling scenarios when risk was, in fact, nil but

no data were collected.

that can be improved. Model-based approaches offer a trade-off
between no-pooling (keeping all years separate) and complete-
pooling with a third option: partial pooling or regularization
(Gelman and Shalizi, 2013). Regularization is a general term
for statistical procedures that give more stable estimates. Our
model-based approach achieves regularization by leveraging,
via a structured prior model (Equations 2 and 3, see section 2),
the within-year information at the weekly scale. The result were
more stable and accurate annual bycatch estimates at the cost
of some modeling assumptions and weakly-informative priors.
Importantly, weekly estimates could also be obtained with our
model-based approach.

Our model-based approach is semi-parametric as it uses a
random walk prior to learn from the data the weekly pattern
in bycatch risk. This prior is also ensuring some smoothness
in the temporal risk profile as it translates an assumption on
the correlation between 2 consecutive weeks. This random walk

model remains simple as the order is fixed to 1. We further
expanded this model to allow for between-years variation in the
weekly risk profile with a Gaussian Process prior (Neal, 1998;
Goldin and Purse, 2016). Importantly, these two prior choices
(a random walk and a Gaussian Process prior) add structure
to the model and help in leveraging the information present in
the sparse data typical of onboard observer programmes. Even
when with over-sampling, these choices were not detrimental
as model-based estimates were statistically unbiased and precise
with 3 years of data (Table 2). The explicit consideration
of time effects is key to mitigate bias in sampling. In our
simulations, dolphin presence was caricaturally seasonal, and
observers could be preferentially allowed on fishing vessels when
dolphins were less or more likely to be present (Figure 1). Our
model was still able to provide statistically unbiased estimates
of bycatch in those scenarios, although these estimates were
very imprecise with under-sampling. However, they were not
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FIGURE 6 | Box plots of bias (in number of estimated bycatch events compared to the truth) in the weekly model-based estimates of bycatch events. Left: data

sampling was unbiased. Middle: Under-sampling. Right: Over-sampling. Each row corresponds to data simulated for a different number of years.

more imprecise than the traditional (but biased) design-based
estimates (Table 1) if 80% credible interval were used. In addition
to being unbiased, these estimates could also reveal with accuracy
the temporal risk profile (Figure 5). It is important to keep in
mind here that our model is different from the data-generating
model used in simulating data: our results were not simply
an instance of using a true model, which is impossible in
practice as a model is by definition a simplification used to
capture the salient features of a phenomenon. Our model had
some shortcomings: for example, bias increased with 3 years
of data compared to 1 year for the under-sampling scenario
(contrast Tables 1, 2). This increased bias (toward the prior
model) was the result of partial pooling but came with a gain
in precision as evidenced in the width of credible intervals. The
bias progressively wore off with more years of data, illustrating
thereby the attractiveness of partial pooling and structured
priors to regularize estimates (Gelman and Shalizi, 2013; Gao
et al., 2019). The gain in reducing bias in estimates and

increasing their precision was most evident with over-sampling
(Tables 1, 2).

Our model could also provide weekly bycatch estimates which
were largely unbiased except in the under-sampling scenario
where a positive and negative bias remained at the beginning
and end of a year respectively, even with 15 years of data
(Figure 6). With under-sampling, few observed bycatch events
can be collected by design because observers are very unlikely
to be accepted on board by skippers. Weekly estimates were
too high at the beginning of a year but too low at the end,
but this somewhat canceled out at the year-level. There was
still a slight overestimation bias resulting from our choice of a
non-symmetric pattern for dolphin presence and a symmetric
pattern for biased coverage: observing bycatch events at the end
of a year was comparatively more difficult than at the beginning
of a year because overlap between a non-nil coverage and
dolphin presence was smaller at the end of year (Figure 1). These
shortcomings illustrate that a model-based approach should
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TABLE 2 | Statistical properties of estimates from the model-based approach.

Method Uncertainty Data nyears Bias Coverage Width of CI nobs

sampling (bycatch events) (%) (%)

Model-based Bayesian Unbiased 3 3.0 100.0 91.1 45

Model-based Bayesian Unbiased 5 2.1 100.0 76.3 75

Model-based Bayesian Unbiased 10 1.1 100.0 59.1 150

Model-based Bayesian Unbiased 15 1.9 100.0 50.9 225

Model-based Bayesian Under- 3 10.0 100.0 164.6 15

Model-based Bayesian Under- 5 6.4 100.0 142.0 25

Model-based Bayesian Under- 10 8.3 100.0 112.9 50

Model-based Bayesian Under- 15 5.3 100.0 97.8 75

Model-based Bayesian Over- 3 7.4 100.0 53.2 63

Model-based Bayesian Over- 5 4.8 100.0 42.6 126

Model-based Bayesian Over- 10 3.5 100.0 32.6 630

Model-based Bayesian Over- 15 3.3 100.0 27.7 756

Several years of data were simulated a 100 times. Bias of point estimate (in number of bycatch events), coverage of (Bayesian 80%) credible interval (CI) and precision (as CI width
relative to the point estimate) are reported. The last column indicates the average number of bycatch events (nobs = E

[

∑

ijkl yijkl
]

) that were recorded by onboard observers during data
sampling.

be tailored to the context of the study, and we designed our
simulations largely from our knowledge on the common dolphin
in the Bay of Biscay. However, the framework of regularized
multilevel regression with post-stratification is very flexible and
we believe our proposed model has large potential for generality
as it simply translates a decomposition of bycatch risk into a
smooth time-varying and (unstructured) time-invariant effects.
The model can easily be made more complex, data permitting, to
accommodate spatial effects with, for example, a Besag-type prior
(Sims et al., 2008; Morris et al., 2019).

Several important assumptions are structurally built into
our model: in particular, a first order random was assumed
for the mean function of the Gaussian Process prior, with no
attempt to estimate from data the correlation parameter (e.g.,
using an AR(1) prior instead). The choice of a first order
random walk was not aiming at uncovering the true data-
mechanism: our aim were to reveal a temporal pattern in
bycatch risk from sparse data using a flexible, yet parsimonious
approach. This was particularly true in the under-sampling
scenario where few bycatch events could be observed in any
given year of simulated data. In the other scenarios, other
choices than the first order random walk could be considered
as more data are collected. We also assumed that the range
parameter of the covariance function in the Gaussian Process
prior for week effects was known and such that bycatch risk
was temporally uncorrelated after 4 weeks. Fixing the range
parameter is usually not recommended but was motivated by
consideration of the data-to-parameter ratio, and computation
convenience. Bycatch data are binary and can be sparse:
these two features underscore how little information may be
available. In this context, limiting the number of parameters
to estimate can be justified on pragmatic consideration. The
model we are proposing is parameter-rich, but some structure
are assumed on these parameters in the form of the prior
used. These priors represent choices from the analyst and

may be reconsidered and tested, data permitting. There was
some evidence that bycatch risk was under-smoothed in the
over-sampling scenario which resulted in an over-estimation
of bycatch risk (Figure 5, rightmost panel). Model expansion
is seamless with Stan (Gabry et al., 2019), and the above
mentioned parameters could be estimated, rather than fixed,
with adequate data. Despite somewhat arbitrary prior and
modeling choices, our model provided more accurate estimates
of bycatch numbers and bycatch risk in under- and over-
sampling scenarios. This satisfactory predictive ability points to
another important limitation.

Our model is phenomenological, i.e., it is agnostic of
the causes behind the temporal variations in bycatch risk.
Bycatch risk is the product of dolphin presence and bycatch
probability given presence (the latter was constant in our
simulations). The model only estimates this product of
two probabilities and thus cannot disentangle them without
other sources of data. This limitation seems inconsequential
in our simulations for the aim of accurate estimation of
the total number of bycatch events as interest lies in the
effects of causes (how much bycatch?) rather than in the
causes of effects (why bycatch occurred?). A straightforward
model expansion (as pointed out by a reviewer) would be
the consideration of p vessel-level covariates (z1j, . . . , zpj) in
Equation (1):

αj ∼ N

( p
∑

b=1

(

ξb × zjb
)

, σvessel

)

(7)

Candidate covariates such as vessel length or gear-attributes (e.g.,
mesh size) could be incorporated in the analysis to improve
the exchangeability assumption on vessel-effects. An obvious
covariate to consider for detecting self-selection of skippers into
observer programme participation is to include whether a skipper
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has ever accepted an observer, or the number of times it did so in
the past: a negative regression coefficient could be interpreted as
voluntary skippers having an intrinsically lower risk of bycatch.
Including skipper-level covariates could reduce the between-
skipper variance σ 2

vessel
, and improve ultimately precision of

bycatch estimates. Consideration of other distributions than the
normal (e.g., a skew-normal, or a Student-t distribution with a
fixed degree of freedom) would be straightforward with Stan
but is probably worthwhile only with large enough amount of
data for all practical purposes (McCulloch and Neuhaus, 2011).

An important assumption underlying accurate estimation is
that the information on the total effort must also be accurate
and available at the scale of weeks for post-stratification. This
assumption is crucial to scale-up estimates from the (potentially
biased) sample to the population, but it does not necessarily
hold with fisheries effort as the latter is more often estimated
rather than measured directly (Julian and Beeson, 1998; ICES,
2018, 2020b). Here we assumed that the total number of fishing
operations (e.g., number of tows for trawls; Tremblay-Boyer
and Berkenbusch, 2020) are available as auxiliary information
for post-stratification. This assumption about the availability of
disaggregated data stems from the explicit consideration of time
as an important predictor of variations in bycatch risk. This
assumption is necessary for using post-stratification to align
the sample with the population targets but may be difficult to
meet in practice. Currently, ICES WGBYC uses in its BRA a
coarse, but admittedly comparable proxy across fisheries and
countries to quantify fishing effort, namely days at sea (ICES,
2019). A day at sea is any continuous period of 24 h (or
part thereof) during which a vessel is present within an area
and absent from port (Anonymous, 2019a). Importantly, this
definition is not at the level of a fishing operation, and effort
thus quantified is already aggregated at a level above that at
which bycatch data are collected. This coarsening of fisheries
effort data is fundamentally a measurement problem, and one
that modeling should not be expected to remedy easily. BRA uses
an estimate of total fishing effort for the fisheries of concern in a
specific region, together with some estimate of likely or possible
bycatch rates that might apply for the species of concern, in
order to evaluate whether or not the total bycatch in that area
might be a conservation issue. A regularizedmultilevel regression
model could be used to obtain estimates of bycatch rates to
be used in BRA. Post-stratification could also be attempted
using the coarse days at sea proxy for effort, and thus our
framework could be adapted to match the requirements of
ICES WGBYC.

Assuming that our framework were to be adopted to
produce bycatch estimates, how would both fisheries and Non-
Governmental Organizations (NGOs) react given the salience
of bycatch as a policy issue in Europe? Such a prospective
question inevitably entails some speculations (as with all “what-
if ” questions), but may nevertheless bring some insights as
highlighted by a reviewer. Within Europe, the conservation
reference currently available for assessing bycatch is that
established under the Agreement on the Conservation of Small
Cetaceans of the Baltic, North East Atlantic, Irish and North
Seas. The agreement has the conservation objective to minimize

anthropogenic removals of harbor porpoises (and other small-
sized cetaceans), and to restore and/or maintain population
depletion to/at 80% or more of the carrying capacity in each
assessment unit (ASCOBANS, 2000; ICES, 2020c). Methods for
setting conservation reference points were agreed in March 2021
at the meeting of the Biodiversity Committee of the Olso-Paris
Regional Sea Convention. This committee adopted the use of
the Removals Limit Algorithm for harbor porpoises in the North
Sea assessment unit and a modified Potential Biological Removal
(Wade, 1998) for common dolphins in the North-East Atlantic
(Genu et al.)3. Accurate bycatch estimates will be needed for
assessment against these reference points. However, fisheries may
challenge the accuracy of estimates precisely because they will
result from a new statistical model. While a healthy skepticism
is warranted, and model improvements are certainly possible,
it must be kept in mind that our model only addresses the
issue of having a correlation between observer coverage and
bycatch risk, and does so with some assumptions. There would
remain many biases to be addressed in bycatch data (Babcock
and Pikitch, 2003), and many of them would be best addressed
with a proper random allocation of professional observers to
vessels (that is better design and better measurement). A purely
model-based solution can be brittle (Sarewitz, 1999), and may
lead to displacement of the problem of bycatch assessment to a
never-ending problem of model improvement that would delay
any corrective measures or decision (Rayner, 2012). Model-based
estimates offer a pragmatic approach to the analysis of already
collected data, but should not deflect from improving survey
design where possible. Assuming that model-based estimates
would be endorsed by a fishery industry, NGOs could challenge
in court any reference point that is not zero for PETS, since by
definition, it ought to be zero. The Habitats Directive requires
strict protection and prohibits “all forms of deliberate capture
or killing” (emphasis added) of all species listed on its Annex
IV which includes all cetacean species. The Court of Justice of
the European Union has consistently ruled that the adjective
“deliberate” is to be understood in the sense of “conscious
acceptance of consequences” (Trouwborst and Somsen, 2019): in
other words, using knowingly a gear that may potentially catch
a protected species contravenes the Habitat Directives. What will
eventually play out remains to be seen, but strongly hinges on
how polarized the bycatch issue is. As scientists, our duty remains
to provide the best available evidence on bycatch and to outline
all management actions and their consequences in light of this
evidence (Pielke, 2007). Our model is unlikely to change bycatch
management in France in the near term: both fisheries and NGOs
are at loggerheads, vying for public and official support. They
are building constituencies and advertising unyielding positions
in diverse medias: we content that a legal confrontation at a
national or supra-national level is extremely likely and probably
being prepared. We nevertheless think our model, by making
use of data already collected within the DCF framework and by
encouraging further, ideally dedicated, monitoring; can be part of

3Genu, M., Gilles, A., Hammond, P., Macleod, K., Paillé, J., Paradinas, I. A., et al.

(in preparation). Evaluating strategies for managing anthropogenic mortality on

marine mammals: an R Implementation with the Package RLA.
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a messy solution to the wicked problem (Frame, 2008) of dolphin
bycatch in the medium to long term, once the gavel hits and the
dust settles.

5. CONCLUSION

We investigated with simulations the ability of multilevel
regularized regression with post-stratification to estimate
cetacean bycatch for observer programmes when coverage is
correlated to bycatch risk. Our aims were to provide a first
investigation on model-based estimates obtained from samples
preferentially collected either during low- or high-bycatch risk
periods. The unbiased sampling case is unrealistic (Babcock and
Pikitch, 2003): biased sampling, either under-sampling or over-
sampling (ICES, 2009), may be the general case. We considered
both of these cases, under quite extreme scenarios whereby data
collection was highly correlated with bycatch risk, resulting in
either very few observed events with under-sampling, and a large
number of observed events with over-sampling. In both cases,
multilevel regularized regression with post-stratification was able
to produce nearly unbiased bycatch estimates with as few as 5
observed events data. With only 1 year of data, precision was low,
especially with under-sampling, and there was some estimation
bias with over-sampling one. These results stemmed from the
extreme scenarios we considered but illustrate nevertheless
that a model cannot be expected to solve all the deficiencies of
data collection and measurement. Good measurement is key
for accurate estimation and our results actually re-emphasize
the importance of design. However, they also show that a good
data collection design and an adequate modeling framework
are synergistic and allow to extract a lot of information for
sparse data. Assuming a normal distribution for the bycatch
estimates (which is not necessary as the posterior is available,
but the following are back-of-the-envelope calculations to be
used for deriving heuristics), a 80% Bayesian CI width divided
by 2.5 gives an idea of the associated coefficient of variation:
the model-based approach can yield a coefficient of variation of
50% with as few as 15 observed events if sampling is unbiased.
With under-sampling, one would need 10 years of data (under
our data simulation schemes) to obtain the same precision. This
re-iterates the need to (i) have dedicated observer schemes, (ii)
ensure adequate observer coverage and (iii) use a model-based
approach tailored to extract as much information as possible
from sparse data, as the first two points are very difficult to live
up to in practice.

The key assumptions behind regularized multilevel regression
with post-stratification in our simulations are that bycatch risk
changes smoothly through time and that accurate data on the
number of fishing operations at the same temporal scale are
available (e.g., number of tows for trawls; Tremblay-Boyer and
Berkenbusch, 2020). When both assumptions can be reasonably
entertained, we showed how a model-based approach using
recent methodological developments is attractive, irrespective
of how data were collected. A further asset of the explicit
consideration of a temporal scale is that it may help in
pinpointing more precisely windows of heightened risk in order

to target adequate mitigation measures (e.g., spatio-temporal
closures). The framework of multilevel modeling is very flexible
and can accommodate spatial effects, etc., data permitting.
Regularization will, in general, be needed to mitigate data
sparsity and leverage partial pooling in order to obtain stable
estimates of bycatch. Given the satisfactory performance of
regularized multilevel regression with post-stratification in our
simulations, we recommend further investigations using this
technique to estimate bycatch rate and numbers from both
representative or non-representative samples. The modeling
choices we made (e.g., a first order random walk for the mean
function, or fixing the range parameter in the covariance function
of the Gaussian Process prior) are not prescriptive, and other
choices of prior models for parameters should be investigated.
Investigations should be tailored to the context, and modeling
choices motivated by the latter: given the complexity of PETS
bycatch, a one-size-fits-all solution is unlikely. A re-analysis of
> 15 years of observer data on common dolphin bycatch in pair
trawlers flying the French flag is currently underway (Rouby et
al.)4 in order to obtain better bycatch estimates that could be
further used to estimate conservation reference points in order
to better manage this fishery in the long run (Cooke, 1999; Punt
et al., 2021).
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George, E. I., and Ročková, V. (2021). Comment: regularization

via Bayesian penalty mixing. Technometrics 62, 438–442.

doi: 10.1080/00401706.2020.1801258

Goldin, N., and Purse, B. V. (2016). Fast and flexible Bayesian species

distribution modelling using gaussian processes. Methods Ecol. Evol. 7,

598–608. doi: 10.1111/2041-210X.12523

Gray, C. A., and Kennelly, S. J. (2018). Bycatches of endangered, threatened

and protected species in marine fisheries. Rev. Fish Biol. Fish. 28, 521–541.
doi: 10.1007/s11160-018-9520-7

Griffin, J., and Brown, P. (2017). Hierarchical shrinkage priors for regression

models. Bayesian Anal. 12, 135–159. doi: 10.1214/15-BA990
Halsny, V. (2020). Nonresponse bias in inequality measurement: cross-country

analysis using luxembourg income study surveys. Soc. Sci. Q. 101, 712–731.
doi: 10.1111/ssqu.12762

Hansen, M. H., and Hurwitz, W. N. (1946). The problem of non-

response in sample surveys. J. Am. Stat. Assoc. 41, 517–529.

doi: 10.1080/01621459.1946.10501894

He, Y., Hodges, J., and Carlin, B. (2007). Re-considering the variance

parametrization in multiple precision models. Bayesian Anal. 2, 529–556.
doi: 10.1214/07-BA221

Hoffman, M. D., and Gelman, A. (2014). The no-U-turn sampler: adaptively

setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15,
1593–1623.

ICES (2009). Report of the Study Group for Bycatch of Protected Species (SGBYC).
Technical report, Copenhagen. doi: 10.1093/ppar/19.1.22

ICES (2018). Report from the Working Group on Bycatch of Protected Species,
(WGBYC). Technical report, International Council for the Exploration of the

Sea, Reykjavik.

ICES (2019).Working Group on Bycatch of Protected Species (WGBYC). Technical
report, International Council for the Exploration of the Sea, Faro.

ICES (2020a). Bycatch of Protected and Potentially Vulnerable Marine Vertebrates
- Review of National Reports under Council Regulation (EC) No. 812/2004 and
Other Information. Technical report.

ICES (2020b). Report from the Working Group on Bycatch of Protected Species,
(WGBYC). Technical report. International Council for the Exploration of the

Sea.

ICES (2020c).Workshop on Fisheries Emergency Measures to minimize BYCatch of
Short-Beaked Common Dolphins in the Bay of Biscay and Harbour Porpoise in
the Baltic Sea (WKEMBYC). International Council for the Exploration of the

Sea.

Jaramillo-Legorreta, A. M., Cardenas-Hinojosa, G., Nieto-Garcia, E., Rojas-

Bracho, L., Thomas, L., Ver Hoef, J. M., et al. (2019). Decline towards extinction

Frontiers in Marine Science | www.frontiersin.org 17 October 2021 | Volume 8 | Article 719956

https://doi.org/10.1093/icesjms/fss106
https://doi.org/10.1002/ece3.2874
https://doi.org/10.1111/ecog.01633
https://doi.org/10.1016/j.biocon.2018.02.021
https://doi.org/10.1139/F09-116
https://doi.org/10.3354/esr00994
https://doi.org/10.1111/j.1469-1795.2012.00533.x
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1006/jmsc.1999.0552
https://doi.org/10.1016/j.marpol.2020.104320
https://doi.org/10.1093/aje/kwy070
https://doi.org/10.1080/01621459.1979.10482505
https://doi.org/10.1111/1740-9713.01437
https://doi.org/10.1068/c0790s
https://doi.org/10.1111/rssa.12378
https://doi.org/10.1214/088342307000000203
https://doi.org/10.1201/b16018
https://doi.org/10.1017/9781139161879
https://doi.org/10.1111/j.2044-8317.2011.02037.x
https://doi.org/10.1080/00401706.2020.1801258
https://doi.org/10.1111/2041-210X.12523
https://doi.org/10.1007/s11160-018-9520-7
https://doi.org/10.1214/15-BA990
https://doi.org/10.1111/ssqu.12762
https://doi.org/10.1080/01621459.1946.10501894
https://doi.org/10.1214/07-BA221
https://doi.org/10.1093/ppar/19.1.22
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Authier et al. Bycatch Estimation From Biased Samples

of Mexico’s Vaquita Porpoise (Phocoena sinus). R. Soc. Open Sci. 6:190598.
doi: 10.1098/rsos.190598

Julian, F., and Beeson, M. (1998). Estimates of marine mammal, turtle, and

seabird mortality for two California Gillnet Fisheries: 1990-1995. Fish. Bull. 96,
271–284.

Kiewiet De Jonge, C. D., Langer, G., and Sinozich, S. (2018). Predicting state

presidential election results using national tracking polls and multilevel

regression with poststratification (MRP). Public Opin. Q. 82, 419–446.

doi: 10.1093/poq/nfy023

Komoroske, L. M., and Lewison, R. L. (2015). Addressing fisheries bycatch in a

changing world. Front. Mar. Sci. 2:83. doi: 10.3389/fmars.2015.00083

Laran, S., Authier, M., Blanck, A., Dorémus, G., Falchetto, H., Monestiez, P., et

al. (2017). Seasonal distribution and abundance of cetaceans within French

waters-part II: the Bay of Biscay and the English channel. Deep Sea Res. II 141,
31–40. doi: 10.1016/j.dsr2.2016.12.012

Lax, J., and Phillips, J. (2009). How should we estimate public opinion in the states?

Am. J. Polit. Sci. 53, 107–121. doi: 10.1111/j.1540-5907.2008.00360.x
Lennert, C., Kruse, S., Beeson, M., and Barlow, J. (1994). Estimates of incidental

marine Mammal Bycatch in California Gillnet Fisheries for July Through
December, 1990. Report of the International Whaling Commission.

Martin, R., Pearmain, E. J., Burfield, I. J., Small, C., Phillips, R. A., Yates, O., et al.

(2019). Threats to seabirds: a global assessment. Biol. Conserv. 237, 525–537.
doi: 10.1016/j.biocon.2019.06.033

Martin, S. L., Stohs, S. M., and Moore, J. E. (2015). Bayesian inference and

assessment for rare-event bycatch in marine fisheries: a drift gillnett fishery case

study. Ecol. Appl. 25, 416–429. doi: 10.1890/14-0059.1
McCulloch, C. E., and Neuhaus, J. M. (2011). Misspecifying the shape of a random

effects distribution: why getting it wrong may not matter. Stat. Sci. 26, 388–402.
doi: 10.1214/11-STS361

Monnahan, C. C., Thorson, J. T., and Branch, T. A. (2017). Faster estimation of

bayesian models in ecology using Hamiltonian Monte Carlo. Methods Ecol.
Evol. 8, 339–348. doi: 10.1111/2041-210X.12681

Morris, M., Wheeler-Martin, K., Simpson, D., Mooney, S. J., Gelman, A., and

DiMaggio, C. (2019). Bayesian hierarchical spatial models: implementing the

Besag York Mollié model in Stan. Spat Spatio Temp Epidemiol. 31:100301.
doi: 10.1016/j.sste.2019.100301

National Marine Fisheries Service (2004). Evaluating Bycatch: a National
Approach to Standardized BycatchMonitoring Programs. Technical Report. U.S.
Department of Commerce, NOAA.

National Marine Fisheries Service (2005). Revisions to Guidelines for Assessing
Marine Mammal Stocks. Technical report, NOAA.

National Marine Fisheries Service (2016). Guidelines for Preparing Stock
Assessment Reports Pursuant to the 1994 Amendments to the MMPA. Technical
report, NOAA.

Neal, R. (1998). “Regression and classification using Gaussian process priors,” in

Bayesian Statistics, eds J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M.

Smith (Oxford: Oxford University Press), 475–501.

Northridge, S., Kingston, A., and Thomas, L. (2019). Annual Report on the
Implementation of Council Regulation (EC) No 812/2004 During 2018.
Technical report, University of St Andrews.

Pacoureau, N., Rigby, C. L., Kyne, P. M., Sherley, R. B., Winker, H., Carlson, J. K.,

et al. (2021). Half a century of global decline in oceanic sharks and rays. Nature
589, 567–571. doi: 10.1038/s41586-020-03173-9

Palka, D. L., and Rossman, M. C. (2001). Bycatch Estimates of Coastal Bottlenose
Dolphin (Tursiops truncatus) in US Mid-Atlantic Gillnet Fisheries for 1996 to

2000. Technical Report. Northeast Fisheries Science Center.

Peltier, H., Authier, M., Caurant, F., Dabin, W., Daniel, P., Dars, C., et al. (2021).

In the wrong place at the wrong time: identifying spatiotemporal co-occurrence

of bycaught common dolphins and fisheries in the Bay of Biscay (NE Atlantic)

from 2010 to 2019. Front. Mar. Sci. 8:617342. doi: 10.3389/fmars.2021.617342

Peltier, H., Authier, M., Deaville, R., Dabin, W., Jepson, P., van Canneyt, O., et

al. (2016). Small cetacean bycatch as estimated from stranding schemes: the

common dolphin case in the Northeast Atlantic. Environ. Sci. Policy 63, 7–18.
doi: 10.1016/j.envsci.2016.05.004

Pérez, M., Perrichi, L. R., and Ramírez, I. (2017). The scaled beta2 distribution as a

robust prior for scales. Bayesian Anal. 12, 615–637. doi: 10.1214/16-BA1015

Pielke, R. A. Jr. (2007). The Honest Broker - Making Sense of Science in Policy and
Politics, 1st Edn. Cambridge, MA: Cambridge University Press.

Plummer, M., Best, N., Cowles, K., and Vines, K. (2006). CODA: convergence

diagnosis and output analysis for MCMC. R News 6, 7–11.
Punt, A. E., Siple, M., Francis, T. B., Hammond, P. S., Heinemann, D., Long, K. J.,

et al. (2021). Can we manage marine mammal bycatch effectively in low-data

environments? J. Appl. Ecol. 58, 596–607. doi: 10.1111/1365-2664.13816
R Core Team (2020). R: A Language and Environment for Statistical Computing.

Vienna: R Foundation for Statistical Computing.

Rayner, S. (2012). Uncomfortable knowledge: the social construction of ignorance

in science and environmental policy discourses. Econ. Soc. 41, 107–125.

doi: 10.1080/03085147.2011.637335

Rhem, J., Kilian, C., Rovira, P., Shield, K. D., and Manthey, J. (2020). The

elusiveness of representativeness in general population surveys for alcohol.

Drug Alcohol 40, 161–165. doi: 10.1111/dar.13148
Sala, A., Konrad, C., and Doerner, H. (eds.). (2019). Review of the Implementation

of the EU Regulation on the Incidental Catches of Cetaceans (STECF-19-07).
Publications Office of the European Union, Luxembourg.

Sarewitz, D. (1999). How science makes environmental controversies worse.

Environ. Sci. Policy 7, 385–403. doi: 10.1016/j.envsci.2004.06.001
Sims, M., Cox, T., and Lewison, R. (2008). Modeling spatial patterns in fisheries

bycatch: improving bycatch maps to aid fisheries management. Ecol. Appl. 18,
649–661. doi: 10.1890/07-0685.1

Stan Development Team (2020). RStan: the R interface to Stan. R package version

2.21.22. New York, NY.

St. John, F., Keane, A., Jones, J., and Milner-Guiland, E. (2014). Robust study

design is as important on the social as it is on the ecological side of applied

ecological research. J. Appl. Ecol. 51, 1479–1485. doi: 10.1111/1365-2664.

12352

Stransky, C., and Sala, A. (2019). Scientific, Technical and Economic Committee
for Fisheries (STECF) - Revision of the EU-MAP and Work Plan Template
(STECF-19-12). Technical report, Publications Office of the European Union,

Luxembourg.

Tregenza, N. J. C., Berrow, S. D., Hammond, P. S., and Leaper, R. (1997). Harbour

porpoise (Phocoena phocoena L.) by-catch in set gillnets in the Celtic Sea. ICES
J. Mar. Sci. 54, 896–904. doi: 10.1006/jmsc.1996.0212

Tremblay-Boyer, L., and Berkenbusch, K. (2020). Characterisation of Marine
Mammal Interactions with Fisheries & Bycatch Mitigation. Report for project
INT2019-03 prepared for Department of Conservation. Technical report,

Dragonfly Data Science.

Trouwborst, A., and Somsen, H. (2019). Domestic cats (Felis catus) and European

nature conservation law–applying the EU birds and habitats directives to

a significant but neglected threat to wildlife. J. Environ. Law 32, 391–415.

doi: 10.1093/jel/eqz035

Ulrich, C., and Doerner, H. (eds.). (2021). Scientific, Technical and Economic
Committee for Fisheries (STECF) - 66th Plenary Report (PLEN-21-01).
Publications Office of the European Union, Luxembourg.

Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., and Bürkner, P. (2019).

Rank-Normalization, Folding, and Localization: an Improved R̂ for Assessing
Convergence of McMC. Technical report, Helsinki Institute for Information

Technology, Department of Computer Science, Aalto University.

Wade, P. R. (1998). Calculating limits to the total allowable human-caused

mortality of cetaceans and pinnipeds. Mar. Mammal Sci. 14, 1–37.

doi: 10.1111/j.1748-7692.1998.tb00688.x

Wang, W., Rothschild, D., Goel, S., and Gelman, A. (2015). Forecasting

elections with non-representative polls. Int. J. Forecast. 31, 980–991.

doi: 10.1016/j.ijforecast.2014.06.001

Zahorski, A. (2020). Multilevel Regression With Post-Stratification for the National
Level VIBER/Street Poll on the 2020 Presidential Election in Belarus. Technical
report. Uladzimir Karatkevich National University of Belarus.

Zhang, X., Holt, J. B., Lu, H., Wheaton, A. G., Ford, E. S., Greenlund,

K. J., et al. (2014). Multilevel regression and poststratification for small-

area estimation of population health outcomes: a case study of chronic

obstructive pulmonary disease prevalence using the behavioural risk factor

surveillance system. Am. J. Epidemiol. 179, 1025–1033. doi: 10.1093/aje/

kwu018

Frontiers in Marine Science | www.frontiersin.org 18 October 2021 | Volume 8 | Article 719956

https://doi.org/10.1098/rsos.190598
https://doi.org/10.1093/poq/nfy023
https://doi.org/10.3389/fmars.2015.00083
https://doi.org/10.1016/j.dsr2.2016.12.012
https://doi.org/10.1111/j.1540-5907.2008.00360.x
https://doi.org/10.1016/j.biocon.2019.06.033
https://doi.org/10.1890/14-0059.1
https://doi.org/10.1214/11-STS361
https://doi.org/10.1111/2041-210X.12681
https://doi.org/10.1016/j.sste.2019.100301
https://doi.org/10.1038/s41586-020-03173-9
https://doi.org/10.3389/fmars.2021.617342
https://doi.org/10.1016/j.envsci.2016.05.004
https://doi.org/10.1214/16-BA1015
https://doi.org/10.1111/1365-2664.13816
https://doi.org/10.1080/03085147.2011.637335
https://doi.org/10.1111/dar.13148
https://doi.org/10.1016/j.envsci.2004.06.001
https://doi.org/10.1890/07-0685.1
https://doi.org/10.1111/1365-2664.12352
https://doi.org/10.1006/jmsc.1996.0212
https://doi.org/10.1093/jel/eqz035
https://doi.org/10.1111/j.1748-7692.1998.tb00688.x
https://doi.org/10.1016/j.ijforecast.2014.06.001
https://doi.org/10.1093/aje/kwu018
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Authier et al. Bycatch Estimation From Biased Samples

Conflict of Interest:MA is employed by the commercial company ADERA which

did not play any role in this study beyond that of employer.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Authier, Rouby and Macleod. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Marine Science | www.frontiersin.org 19 October 2021 | Volume 8 | Article 719956

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles

	Estimating Cetacean Bycatch From Non-representative Samples (I): A Simulation Study With Regularized Multilevel Regression and Post-stratification
	1. Introduction
	2. Materials and Methods
	2.1. Notations
	2.2. Data Simulation
	2.3. Estimation

	3. Results
	3.1. Design- vs. Model-Based Approach
	3.2. Model-Based Approach With Several Years of Data

	4. Discussion
	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


