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Subseasonal forecasts provide a powerful tool for 
dynamic marine mammal management
Julia EF Stepanuk1*, Hyemi Kim2, Janet A Nye2, Jason J Roberts3, Pat N Halpin3, Debra L Palka4, D Ann Pabst5,  
William A McLellan5, Susan G Barco6, and Lesley H Thorne1,2

Adaptive approaches are needed to effectively manage dynamic marine systems, and ecological forecasts can help managers antic-
ipate when and where conservation issues are likely to arise in the future. The recent development of subseasonal global environ-
mental forecasts provides an opportunity to inform management by forecasting species distributions in advance over operational 
timeframes. We demonstrate the utility of environmental forecasts for managing marine mammals by integrating species distri-
bution models with subseasonal forecasts to predict the arrival of migratory humpback whales (Megaptera novaeangliae) at forag-
ing grounds in the Northeast US. Environmental forecasts showed high model skill at lead times of up to 2 weeks and resulting 
humpback whale models performed well in predicting humpback arrival. Forecasts of whale distribution can shape management 
efforts to minimize both impacts on whales and economic costs. Applying subseasonal forecasts to anticipate future risk presents 
a powerful tool for the dynamic management of marine mammals.

Front Ecol Environ 2022; doi:10.1002/fee.2506

Effective management of populations threatened by 
anthropogenic impacts is particularly challenging in 

marine environments, which are highly dynamic and difficult 
to observe (Maxwell et al. 2015; Hobday et al. 2016). In both 
marine and terrestrial systems, spatial management targets 
regions of high risk for anthropogenic impacts (Maxwell 
et al. 2015). Static management approaches have proven prob-
lematic or ineffective in marine environments, particularly for 
highly migratory species (Lascelles et al. 2014; Dunn et al. 2016) 
or for species undergoing distributional shifts due to climate 
change (Lascelles et al.  2014). Dynamic management can 
improve management outcomes by adjusting the spatial and/
or temporal extent of an area of concern (Dunn et al. 2016). 
However, implementation of dynamic management where 
managers make decisions about the future requires anticipat-
ing when and where conservation risks are likely to arise 
(Clark et al.  2001; Lascelles et al.  2014; Dietze et al.  2018). 
Ecological forecasting tools that use environmental data are 
one way to anticipate future conservation risks.

Environmental data have been previously used to inform 
dynamic management by integrating recent environmental 
conditions into distributional models of marine species 
(Becker et al.  2016; Dunn et al.  2016; Hazen et al.  2016). In 

these applications, the most recent available satellite-derived 
measurements of environmental conditions, also known as 
“near real-time data”, are used to predict distributions of spe-
cies of concern in the immediate future (Hazen et al.  2016). 
Although this approach is useful for making predictions over 
short time scales, it cannot inform future conditions, which 
would allow managers to better anticipate conservation risks. 
However, an alternative approach, commonly referred to as 
“ecological forecasting”, can inform future risk by incorporat-
ing species distribution models into forecasts that predict 
future environmental variables (Clark et al.  2001; Dietze 
et al. 2018).

To date, ecological forecasts using environmental data have 
primarily focused on seasonal time scales (Kaplan et al. 2016). 
While this work is key to understanding trends on the order of 
weeks to months, subseasonal forecasts – those that generate 
predictions over one to several weeks – may be needed to 
inform certain management decisions (Hobday et al.  2016; 
Dietze et al. 2018; Jacox et al. 2020). Accurate subseasonal fore-
casts have been historically difficult to produce, but recent 
developments have bridged the gap between short-term 
weather forecasts and monthly (or longer) climate projections 
(Mariotti et al. 2020). The Subseasonal Experiment (SubX) is a 
National Oceanic and Atmospheric Administration (NOAA) 
Climate Test Bed project that provides novel subseasonal 
global forecasting products for multiple global models by fore-
casting atmospheric and ocean variables at weekly-to-monthly 
time scales, which are typically difficult to resolve. SubX is 
unique compared to traditional weather forecasting models 
because it combines (1) more frequent model initialization, 
defined as how often a new model is generated; and (2) longer 
forecast lead times, which describes the amount of time fore-
casted into the future from the model initialization date 
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(Pegion et al. 2019). SubX models are publicly available and the 
forecast is provided in near real-time, which allows for imme-
diate integration with ecological models, and could yield a 
powerful forecasting tool for dynamic management by antici-
pating times and places of conservation concern over a weekly 
timeframe.

Here, we assess the potential for subseasonal forecasts to 
inform and improve the management of marine mammal pop-
ulations. Marine mammals are highly mobile and many are 
impacted by anthropogenic activities such as fisheries bycatch, 
vessel strikes, and entanglement in fishing gear (Avila 
et al. 2018). Dynamic factors such as temperature and variabil-
ity in prey distribution can drive changes in the distribution of 
marine mammal species (Davies et al. 2019), which can render 
static management approaches ineffective (Lascelles 
et al. 2014). Using ecological forecasting to predict future spa-
tial distributions of marine mammals over subseasonal time-
frames could improve management efforts.

We use humpback whales (Megaptera novaeangliae) in the 
Northeast US (NEUS) as a case study to assess the utility of 
subseasonal forecasts for dynamic management of marine 
mammal populations. The NEUS is heavily impacted by com-
mercial and recreational fishing, major shipping ports, and 
recent offshore wind developments. Humpback whales typi-
cally undergo seasonal migrations between low-latitude winter 
breeding grounds and high-latitude foraging grounds includ-
ing the NEUS (Stevick et al.  2006). Currently, management 
concerns are focused on anthropogenic mortality of multiple 
populations of large whales that forage in the NEUS, such as 
minke whales (Balaenoptera acutorostrata), North Atlantic 
right whales (Eubalaena glacialis), and humpback whales 
(Avila et al.  2018). Current mitigation efforts include fishing 
gear modifications or restrictions and vessel slowdown zones: 
large vessels are required to reduce speed in seasonal static 
management areas (SMAs) or are recommended to reduce 
speed in triggered-closure dynamic management areas 
(DMAs) when North Atlantic right whales are present 
(NOAA 2014). We assess the potential for forecasting hump-
back whale arrival into NEUS foraging grounds by (1) 
modeling historical variability in the timing of arrival in the 
NEUS and SMAs using a distribution model; (2) forecasting 
arrival by integrating the distribution model with SubX fore-
casts; and (3) assessing the performance of humpback whale 
density forecasts relative to the performance of density pre-
dicted using traditional satellite-derived sea-surface tempera-
ture (SST) measurements to assess if forecasts can maintain a 
high level of model performance.

Methods

Creation of the humpback whale density model

To create a humpback whale density model that could be 
integrated with the SubX forecast data, we first prepared 
estimated abundances of humpback whales from line transect 

survey data following distance sampling protocols (Hedley 
and Buckland  2004). Line transect surveys were conducted 
in the NEUS from aerial and shipboard platforms by the 
University of North Carolina Wilmington, the Northeast 
Fisheries Science Center, the New Jersey Department of 
Environmental Protection, and the Virginia Aquarium and 
Marine Science Center from 1995 to 2016, under appropriate 
federal permits. The data were prepared for density surface 
modeling by Roberts et al.  (2016) by splitting vessel and 
aerial survey tracklines into approximately 10 km segments, 
fitting detection functions, and correcting availability and 
perception bias to estimate per-segment abundances of 
humpback whales (see Roberts et al.  [2016] for details).

To build density models, we fit generalized additive mod-
els (GAM) to the segment abundances using relevant envi-
ronmental covariates with a log-link and the segment area as 
an offset (WebTable 1; Figure  1). We assessed collinearity 
using the variance inflation factor (VIF), with covariates 
removed from the analysis if their VIF was below 3.0 (Zuur 
et al. 2009). In addition, any paired covariates that displayed 
a detectable nonlinear relationship or a Pearson correlation 
coefficient ≥ 0.6 or ≤ –0.6 were not included in the same 
model (Mannocci et al.  2017). To eventually integrate the 
humpback density model with SubX data, we were restricted 
to using environmental covariates in the model that were 
either static (for example, distance to the coastline) or 
dynamic covariates that can be predicted by SubX (SST and 
variables derived from SST; WebTable 1). We fit models using 
the mgcv package in R (R Core Team 2019) using thin plate 
regression splines with shrinkage (Marra and Wood 2011), a 
maximum of 5 knots (Hazen et al. 2016), a Tweedie distribu-
tion (Shono  2008), and restricted maximum likelihood 
(REML). To capture species–environment relationships that 
were indicative of the northward migration into foraging 
grounds, we used data from weeks 10 (starting on March 4) 
to weeks 34 (starting on August 25) of each year when hump-
back whales are migrating into the NEUS (875,116 km of 
survey effort, 2964 sightings of humpbacks, and 4870 indi-
vidual whales during years 1995–2016; WebFigure 1). We 
conducted backward model selection, and assessed GAM 
outputs by selecting the GAM with the lowest Akaike’s infor-
mation criterion (AIC; Hazen et al.  2016; Palka  2020). All 
candidate covariates are defined in WebTable 1. The final 
model included satellite SST, spring onset (6°C threshold), 
the natural log of depth, and distance to shore (Figure  1; 
WebPanel 1). To evaluate whether model performance varied 
seasonally, we used 6-fold cross-validation, where each 
month of the study period was a fold. Each fold was assessed 
using deviance explained (Becker et al. 2010, 2016).

This density model of humpback whales was then inte-
grated with either satellite SST or SubX forecasted SST. We first 
predicted weekly mean humpback density (abundance per 100 
km2) in the US and Canadian Exclusive Economic Zones using 
grids of satellite SST as well as the static variables that were 
used to initially build the model (Becker et al. 2010; Roberts 
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et al. 2016). We then examined the spatial and temporal varia-
bility of this prediction, which we termed the “standard hump-
back prediction”, to assess whether our model could detect 
humpback whale arrival on the foraging grounds at a weekly 
scale from March to August of each year from 1995 to 2016 in 
the Massachusetts SMA, and in each of the five SMAs in the 
NEUS. We then created a “humpback forecast” for the same 
time period by integrating the density model with weekly 
SubX SST forecasts that were developed 1- to 2- weeks in 
advance (described below), rather than satellite SST, to create 
weekly spatial forecasts of humpback whale density.

Assessment of SubX models in the NEUS

The SubX project (Pegion et al.  2019) produces subseasonal 
forecasts of environmental and atmospheric variables from 
seven global models with a minimum lead time of 32 days 
and a minimum of weekly initialization (WebPanel 2; Pegion 
et al.  2019). The global SubX models have been initialized 
in historical conditions (1999–2015) to create a hindcast 
that can be used for model validation and bias correction, 
as well as in recent years (since 2017) to create a forecast 
that is updated in real time, where the model used in the 
hindcasts and forecasts is the same. Before integrating the 
SubX SST data and the humpback whale density model to 

create a humpback forecast, we evaluated SubX forecast skill 
(ie accuracy) using a temporal anomaly correlation coefficient 
between SubX hindcasts and corresponding satellite SST 
observations over the 17-year hindcast period (1999–2015) 
to identify the most accurate SubX SST product for our 
study region. We assessed skill for three SubX models: 
NCEP-GEFS, NASA-GEOS5, and NCAR-CESM1 (WebPanel 
2). We then downscaled the model with the highest skill 
from 1.0 to 0.2 decimal degrees using the delta method 
(Hare et al.  2012) to match the satellite SST resolution used 
to build the initial density model. Finally, we averaged daily 
forecasts by week, resulting in 5 weeks of forecast lead days 
(eg week 1 representing the average of 1- to 7-day forecast 
leads and week 2 representing 8- to 14-day leads).

Humpback forecast creation and assessment

We integrated our humpback whale density model with 
the downscaled SubX SST data to create ecological forecasts 
of humpback whale distributions at 1- and 2-week lead 
times, hereafter referred to as the “humpback forecast”. We 
assessed the performance of both the humpback forecast 
and the standard humpback prediction for the same time 
period using ratios of observed-to-modeled density (Becker 
et al.  2010, 2016). We first built humpback forecasts using 

Figure 1. Workflow of the distribution model and sea-surface temperature (SST) forecast integration. (a) Daily SST forecasts from one of the seven SubX 
global models (namely, the NCEP-GEFS [National Centers for Environmental Prediction–Global Ensemble Forecast System] global model) are selected for 
the Northeast US. (b) Species–environment relationships for humpback whales (Megaptera novaeangliae): the natural log of depth, distance to shore, sat-
ellite SST, and spring onset (6°C threshold). (c) The SST forecast is then integrated with the species–environment relationships to forecast species density. 
Here we demonstrate a forecast of humpback whale density with a 2-week lead time and highlight the location of five static seasonal management areas 
(Massachusetts, Block Island Sound, New York Harbor, Delaware Bay, and Chesapeake), where vessel speed reductions are implemented in migratory 
months of North Atlantic right whales (Eubalaena glacialis).

(a) (c)

(b)
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hindcasted SST data (where the SubX product is initiated 
on a historical date) from 1999 to 2015 to permit com-
parison between the line transect data, the standard hump-
back model, and the humpback forecast. To do this, we 
calculated ratios of observed monthly densities from line 
transect data between 1999 and 2015 (the majority of years 
covered by the line transect surveys) and the monthly den-
sities from both the standard humpback prediction and the 
humpback forecast for this same time period. We examined 
whether ratios deviated more from 1 when humpback whale 
density surfaces were developed with SubX forecasts (the 
humpback forecast) rather than satellite-derived SST meas-
urements (the standard humpback prediction) for each 
month forecasted.

Results

SubX surface temperature models in the NEUS

The SubX SST model skill decreased substantially after week 
2 in the NEUS for the three SubX models we analyzed, espe-
cially in the highly dynamic Gulf Stream region (WebPanel 2). 
Because the NCEP-GEFS model showed the highest forecast 
skill on the continental shelf (WebPanel 2), we integrated 
the NCEP-GEFS SST product with the humpback whale dis-
tribution model to create the ecological forecast.

Performance of humpback whale models

The standard humpback whale predictions (Figure  2, a 
and b) reflected migration into the NEUS, with density 
progressively increasing from south to north between April 
and June (Figure  2, a and b), consistent with previous 
studies and models (Stevick et al. 2006; Roberts et al. 2016). 
Model validation indicated that both the humpback stand-
ard prediction and the humpback forecast performed better 
in April and May than in later months (June through 
mid-August), which suggests a strong ability to predict 
arrival at foraging grounds (Table  1). The ecological fore-
cast performed relatively well when compared to the stand-
ard prediction (Table  1); however, ratios of 
observed-to-predicted density overpredicted in March for 
both the standard prediction and ecological forecast, which 
could be due to the relatively low number of humpback 
whale sightings (Table 1). Overall, ratios were slightly closer 
to 1 for the standard prediction, reflecting a better fit with 
the data when the humpback whale density model was 
applied to SST observations rather than forecasts of future 
SST conditions (Table 1). However, ratios for the ecological 
forecast were generally close to 1 (1.11 and 1.07 for the 
forecasts with lead times of 1- and 2-weeks, respectively), 
suggesting that humpback whale forecasts produced using 
the SubX product maintained an overall high level of model 
performance.

The weekly standard humpback prediction highlighted con-
siderable interannual variability in the timing of arrival 

(Figure 2, a and b). For example, the predicted peak humpback 
density in the Massachusetts SMA varied by 5 weeks between 
years, from the week starting on May 28 (observed in 2010 and 
2012) to June 25 (in 2005), indicating that interannual variabil-
ity is detectable at a weekly temporal scale (Figure  2a). The 
week of peak density shifted earlier throughout the study 
period, although this relationship was not statistically signifi-
cant (Pearson’s correlation –0.416; P  =  0.068). The predicted 
peak humpback whale density in the five NEUS SMAs varied in 
both timing and density, suggesting that weekly forecasts built 
using this model could discern timing of potential risks to 
whales between SMAs in the NEUS at a weekly scale (Figure 2b).

A spatial output of the 2-week humpback forecast for a 
3-week period of 2019 and 2020 demonstrated both inter- and 
intra-annual variation in forecasted humpback whale distribu-
tion. The density of humpback whales in 2019 was forecasted 
to be higher than in 2020 in the southern Gulf of Maine, but 
both years showed an increase in forecasted density between 
weeks (Figure 2c), demonstrating that model output could be 
used to inform timing of arrival.

Discussion

We developed habitat models that effectively captured the 
spatial and temporal variability in humpback whale dis-
tributions in NEUS foraging grounds and demonstrated 
that SubX forecast products could skillfully predict arrival 
time of humpbacks 1–2 weeks in advance. To our knowl-
edge, this is the first application of subseasonal forecast 
products to predictive modeling efforts for marine mam-
mals. Forecasts of future species density could allow man-
agers to anticipate future risks and pursue dynamic 
management strategies. The within- and between-year 
variability observed in humpback whale spatial predictions 
combined with the high model skill of SubX SST forecasts 
indicate that developing subseasonal forecasts of marine 
mammal distributions presents a powerful tool for dynamic 
management. In the future, the humpback forecasts can 
be iteratively verified against real-time data in an adap-
tively managed approach to improve predictions and fore-
casting skill (Dietze et al.  2018).

Our humpback whale density forecast directly integrates spe-
cies distribution models with environmental covariate forecasts 
to predict future density over time scales relevant to managers. 
We developed GAMs to elucidate species–environment rela-
tionships, but our forecasting methodology can also be applied 
to other statistical frameworks used to develop ecological mod-
els. This approach is advantageous because it could provide 
managers with predictions about the risk of threats to marine 
mammals (such as fisheries bycatch, vessel strikes, or entangle-
ment) in the future, rather than relying on current environmen-
tal conditions to anticipate future distributions. Creating spatial 
predictions of future risk to marine mammal populations pro-
vides the opportunity to address threats before they occur 
(Dietze et al.  2018; Jacox et al.  2020). Presently, closures, 
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management, and threats are typically determined through 
monitoring, and management changes are triggered by previous 
detections of concerning events. For example, triggered closures 
rely on reaching a threshold of acoustic, aerial, or visual detec-
tions (NOAA 2014; Dunn et al. 2016). By integrating ecological 
forecasts into this framework, managers could determine when 
to begin survey efforts to detect marine mammals, or whether 
dynamic closures need to be enacted, triggered early, or extended. 
In addition, the adoption of ecological forecasts into the dynamic 
management framework could allow for management flexibility 
under climate-change scenarios. For instance, if humpback 
whales arrive earlier in the NEUS in conjunction with changes 

in SST, this could be detected with the ecologi-
cal forecast and could be integrated into a 
dynamic management framework. Ultimately, 
forecasts provide time for stakeholders to adapt 
and plan for closures and avoid harmful inter-
actions with marine mammals.

In the future, forecasts of marine mammal 
distributions could be used to inform manage-
ment decisions, plan management interven-
tions, or improve currently existing dynamic 
management efforts to minimize impacts on 
marine mammals as well as fishers or manag-
ers. For example, SMAs are implemented 
between November 1 and April 1 and DMAs 
are triggered by acoustic or visual detections of 
North Atlantic right whales, but the timing of 
migration has shifted over the past decade 
(Davies et al. 2019). For humpback whales, the 
historical peak densities in the Massachusetts, 
Block Island Sound, and New York Harbor 
SMAs are substantially later than the last day of 
the current SMA period and the timing of peak 
density is highly variable between years. The 
timing of SMA or DMA implementation could 
be tailored based on forecasted migration to 
ensure vessel speed reductions are in place dur-
ing migratory periods, ensuring protection for 
the at-risk species while preventing unneces-
sary slowdowns and financial burdens on the 
shipping industry during non-migratory times. 
Furthermore, considerable offshore wind 
development is underway or planned through-
out the NEUS, and risks to marine mammals 
stemming from construction and operation of 
these facilities include increased vessel traffic 
and acoustic impacts. Forecasts could inform 
high-risk times and locations for wind farms to 
avoid construction and reduce vessel traffic, 
which would minimize risk to marine mam-
mals while preventing costly shutdowns. 
Finally, the location and timing of fishing effort 
could be shifted slightly to avoid areas of high 
forecasted overlap with high marine mammal 

density. For example, the Maine American lobster (Homarus 
americanus) fishery is highly seasonal, with low landings in off-
shore waters in winter months and high landings inshore in the 
summer, which can be forecasted (Mills et al. 2017). A forecast-
ing system to adjust the timing of gear shifts to inshore waters 
based on forecasted large whale migration into offshore waters 
could minimize gear–whale overlap and reduce entanglement 
risks and costs to fishers (Hobday et al. 2019).

Due to recent advances in forecasting weather, climate, and 
associated socioeconomic impacts, effort is now being 
directed to improve skill in the intermediate range between 
short-term weather forecasts and long-range seasonal 

Figure 2. Spatial and temporal variability in weekly mean humpback whale densities in the 
Northeast US within and between years using (a, b) satellite SST and (c) SubX temperature fore-
casts. Panels (a) and (b) display modeled density outputs based on data collected in 1995 and 
from 1998 through 2016. (a) Between-year variability in the Massachusetts SMA. Peak abun-
dance, depicted by vertical black lines, varied from May 28 to June 25. (b) Spatial variability 
averaged for all years was consistently lower and peaked earlier in three SMAs (namely, New 
York Harbor, Delaware Bay, and Chesapeake) located farther south than the Massachusetts 
SMA. (c) Example of humpback whale density forecast in the Gulf of Maine and southern New 
England at a 2-week lead time. Earlier warming in 2019 leads to earlier predictions of hump-
back arrival in comparison to 2020.

(a)

(c)

(b)
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forecasts. The forecast products used in our analysis will 
therefore likely improve further over time (Pegion et al. 2019; 
Mariotti et al.  2020). Moreover, the SubX product that we 
used is a global product, and we evaluated forecast skill within 
the NEUS, which is strongly influenced by Gulf Stream 
dynamics. The skill of the SubX product may be higher over 
longer lead times in more oceanographically stable regions 
such as gyre systems. As reliable forecasting products become 
available, aspirations for ecological forecasting discussed in 
the past two decades (Clark et al.  2001; Dietze et al.  2018) 
now become a reality.

Future improvements to forecasting products could help 
to address several of the limitations of the integrated mode-
ling framework presented here. For example, our humpback 
model is constrained by available forecastable covariates, 
and as a result the explanatory power of the model was 
lower than that described for similar humpback whale mod-
els in studies that used multiple dynamic covariates (Roberts 
et al. 2016; Palka 2020). This could explain the overpredic-
tion of humpback whales in cooler months when abundance 
is low, as SST was the sole dynamic covariate in our model. 
Improvements to forecasts that include additional dynamic 
variables that can be calculated or derived could enhance 
the predictive capacity of forecasts of marine mammal dis-
tributions, while combining multi-models of forecasts could 
increase the overall skill both spatially and temporally 
(Pegion et al. 2019).

Conclusion

Dynamic management is critical to effective conservation in 
marine systems, particularly for long-lived marine mammals with 
slow population growth whose recovery is threatened by 

anthropogenic impacts. Here, we demonstrate the utility of inte-
grating a species distribution model with a subseasonal forecast 
to predict migratory arrival and density. Using environmental 
forecasts rather than near real-time conditions is advantageous, 
as future impacts can be anticipated and used to guide man-
agement efforts and allow stakeholder adaptation, such as time-
area closures, fishery gear shifts, and vessel speed regulations.
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Office (award number 78874) to LHT, JAN, and HK.

Data Availability Statement

Raw sightings of humpback whales and associated survey effort 
are available from the Ocean Biodiversity Information System–
Spatial Ecological Analysis of Megavertebrate Populations 
(OBIS-SEAMAP) repository, which includes contact 

Table 1. Input and performance of the density model, the standard humpback prediction (satellite-derived SST), and the humpback forecast 
(SubX surface temperature) at lead times of 1 and 2 weeks

Segment information
Model 
output

Predictions of humpback whale density  
(animals per 100 km2)

Standard prediction 
(satellite SST)

Forecast wk 1  
(SubX temp)

Forecast wk 2  
(SubX temp)

Month # seg Area (km2) # sight Obs dens Dev exp Pred Ratio Pred Ratio Pred Ratio

Mar 10,020 472,843 53 5.94 19.3% 23.17 0.25 21.83 0.27 22.23 0.27

Apr 14,219 747,312 391 36.81 22.0% 35.63 1.03 39.48 0.93 39.21 0.94

May 13,624 717,243 572 59.18 20.0% 59.98 0.99 61.86 0.96 61.93 0.95

Jun 14,623 798,654 835 78.68 23.3% 63.92 1.23 55.89 1.41 55.29 1.42

Jul 10,149 532,471 474 38.85 19.6% 24.95 1.56 12.02 3.23 12.66 3.07

Aug 9120 334,990 185 24.67 20.2% 26.74 0.92 19.10 1.29 19.22 1.28

All months 71,755 3,603,513 2510 4.36 20.6% 4.25 1.03 3.94 1.11 3.95 1.07

Notes: Each month represents one fold of the 6-fold cross-validation. Observed and predicted values were calculated across the test dataset for each month by comparing 
the sum of total humpback whale density from line transect sightings (assumed observed value) to the predicted humpback whale density estimated by the model for each 
cross-validation and each month. The standard humpback prediction model, run for all months combined, is described in the bottom row. Ratios refer to the ratio of observed 
to predicted values of humpback whale density (animals per 100 km2). Wk = week; # seg = number of segments; # sight = number of sightings; Obs dens = observed density; 
Dev exp = deviance explained; Pred = predicted density.
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information and data-sharing permissions for data used in 
this study: https://seamap.env.duke.edu. Derived estimated 
abundance and detection functions were fitted according to 
the methods detailed in Roberts et al.  (2016). Additional 
information is available at https://seamap.env.duke.edu/model​
s/Duke/EC. SubX forecast and hindcast data are publicly avail-
able at http://cola.gmu.edu/subx. Sources for static and dynamic 
environmental covariates are provided in WebTable 1. Novel 
code for covariate extraction, forecast download, forecast and 
ecological model integration, and figure and table creation is 
available at https://doi.org/10.5281/zenodo.5587211.
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