ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/360725420

Developing innovative approaches to improve CPUE standardisation for
Australia's multispecies pelagic longline fisheries

Technical Report - May 2017

CITATIONS READS

0 19

6 authors, including:

% Robert Alan Campbell Shijie Zhou
' The Commonwealth Scientific and Industrial Research Organisation The Commonwealth Scientific and Industrial Research Organisation
36 PUBLICATIONS 1,030 CITATIONS 116 PUBLICATIONS 3,292 CITATIONS
SEE PROFILE SEE PROFILE
\,. Malcolm Haddon Simon David Hoyle
4 CSIRO Oceans and Atmosphere National Institute of Water and Atmospheric Research
133 PUBLICATIONS 5,171 CITATIONS 172 PUBLICATIONS 2,752 CITATIONS
SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

et SOUthern hemisphere porbeagle shark stock assessment View project

poject  LONgline CPUE View project

All content following this page was uploaded by Simon David Hoyle on 20 May 2022.

The user has requested enhancement of the downloaded file.


https://www.researchgate.net/publication/360725420_Developing_innovative_approaches_to_improve_CPUE_standardisation_for_Australia%27s_multispecies_pelagic_longline_fisheries?enrichId=rgreq-4049d70f756adbe53276fd861e2d5056-XXX&enrichSource=Y292ZXJQYWdlOzM2MDcyNTQyMDtBUzoxMTU3Njg1NTI1MzgxMTM0QDE2NTMwMjUxNDY4MjA%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/360725420_Developing_innovative_approaches_to_improve_CPUE_standardisation_for_Australia%27s_multispecies_pelagic_longline_fisheries?enrichId=rgreq-4049d70f756adbe53276fd861e2d5056-XXX&enrichSource=Y292ZXJQYWdlOzM2MDcyNTQyMDtBUzoxMTU3Njg1NTI1MzgxMTM0QDE2NTMwMjUxNDY4MjA%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Southern-hemisphere-porbeagle-shark-stock-assessment?enrichId=rgreq-4049d70f756adbe53276fd861e2d5056-XXX&enrichSource=Y292ZXJQYWdlOzM2MDcyNTQyMDtBUzoxMTU3Njg1NTI1MzgxMTM0QDE2NTMwMjUxNDY4MjA%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Longline-CPUE?enrichId=rgreq-4049d70f756adbe53276fd861e2d5056-XXX&enrichSource=Y292ZXJQYWdlOzM2MDcyNTQyMDtBUzoxMTU3Njg1NTI1MzgxMTM0QDE2NTMwMjUxNDY4MjA%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-4049d70f756adbe53276fd861e2d5056-XXX&enrichSource=Y292ZXJQYWdlOzM2MDcyNTQyMDtBUzoxMTU3Njg1NTI1MzgxMTM0QDE2NTMwMjUxNDY4MjA%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert-Campbell-18?enrichId=rgreq-4049d70f756adbe53276fd861e2d5056-XXX&enrichSource=Y292ZXJQYWdlOzM2MDcyNTQyMDtBUzoxMTU3Njg1NTI1MzgxMTM0QDE2NTMwMjUxNDY4MjA%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert-Campbell-18?enrichId=rgreq-4049d70f756adbe53276fd861e2d5056-XXX&enrichSource=Y292ZXJQYWdlOzM2MDcyNTQyMDtBUzoxMTU3Njg1NTI1MzgxMTM0QDE2NTMwMjUxNDY4MjA%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_Commonwealth_Scientific_and_Industrial_Research_Organisation?enrichId=rgreq-4049d70f756adbe53276fd861e2d5056-XXX&enrichSource=Y292ZXJQYWdlOzM2MDcyNTQyMDtBUzoxMTU3Njg1NTI1MzgxMTM0QDE2NTMwMjUxNDY4MjA%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert-Campbell-18?enrichId=rgreq-4049d70f756adbe53276fd861e2d5056-XXX&enrichSource=Y292ZXJQYWdlOzM2MDcyNTQyMDtBUzoxMTU3Njg1NTI1MzgxMTM0QDE2NTMwMjUxNDY4MjA%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shijie-Zhou-2?enrichId=rgreq-4049d70f756adbe53276fd861e2d5056-XXX&enrichSource=Y292ZXJQYWdlOzM2MDcyNTQyMDtBUzoxMTU3Njg1NTI1MzgxMTM0QDE2NTMwMjUxNDY4MjA%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shijie-Zhou-2?enrichId=rgreq-4049d70f756adbe53276fd861e2d5056-XXX&enrichSource=Y292ZXJQYWdlOzM2MDcyNTQyMDtBUzoxMTU3Njg1NTI1MzgxMTM0QDE2NTMwMjUxNDY4MjA%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_Commonwealth_Scientific_and_Industrial_Research_Organisation?enrichId=rgreq-4049d70f756adbe53276fd861e2d5056-XXX&enrichSource=Y292ZXJQYWdlOzM2MDcyNTQyMDtBUzoxMTU3Njg1NTI1MzgxMTM0QDE2NTMwMjUxNDY4MjA%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shijie-Zhou-2?enrichId=rgreq-4049d70f756adbe53276fd861e2d5056-XXX&enrichSource=Y292ZXJQYWdlOzM2MDcyNTQyMDtBUzoxMTU3Njg1NTI1MzgxMTM0QDE2NTMwMjUxNDY4MjA%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Malcolm-Haddon?enrichId=rgreq-4049d70f756adbe53276fd861e2d5056-XXX&enrichSource=Y292ZXJQYWdlOzM2MDcyNTQyMDtBUzoxMTU3Njg1NTI1MzgxMTM0QDE2NTMwMjUxNDY4MjA%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Malcolm-Haddon?enrichId=rgreq-4049d70f756adbe53276fd861e2d5056-XXX&enrichSource=Y292ZXJQYWdlOzM2MDcyNTQyMDtBUzoxMTU3Njg1NTI1MzgxMTM0QDE2NTMwMjUxNDY4MjA%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Malcolm-Haddon?enrichId=rgreq-4049d70f756adbe53276fd861e2d5056-XXX&enrichSource=Y292ZXJQYWdlOzM2MDcyNTQyMDtBUzoxMTU3Njg1NTI1MzgxMTM0QDE2NTMwMjUxNDY4MjA%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Simon-Hoyle?enrichId=rgreq-4049d70f756adbe53276fd861e2d5056-XXX&enrichSource=Y292ZXJQYWdlOzM2MDcyNTQyMDtBUzoxMTU3Njg1NTI1MzgxMTM0QDE2NTMwMjUxNDY4MjA%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Simon-Hoyle?enrichId=rgreq-4049d70f756adbe53276fd861e2d5056-XXX&enrichSource=Y292ZXJQYWdlOzM2MDcyNTQyMDtBUzoxMTU3Njg1NTI1MzgxMTM0QDE2NTMwMjUxNDY4MjA%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National-Institute-of-Water-and-Atmospheric-Research?enrichId=rgreq-4049d70f756adbe53276fd861e2d5056-XXX&enrichSource=Y292ZXJQYWdlOzM2MDcyNTQyMDtBUzoxMTU3Njg1NTI1MzgxMTM0QDE2NTMwMjUxNDY4MjA%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Simon-Hoyle?enrichId=rgreq-4049d70f756adbe53276fd861e2d5056-XXX&enrichSource=Y292ZXJQYWdlOzM2MDcyNTQyMDtBUzoxMTU3Njg1NTI1MzgxMTM0QDE2NTMwMjUxNDY4MjA%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Simon-Hoyle?enrichId=rgreq-4049d70f756adbe53276fd861e2d5056-XXX&enrichSource=Y292ZXJQYWdlOzM2MDcyNTQyMDtBUzoxMTU3Njg1NTI1MzgxMTM0QDE2NTMwMjUxNDY4MjA%3D&el=1_x_10&_esc=publicationCoverPdf

OCEANS AND ATMOSPHERE

Developing innovative approaches to
improve CPUE standardisation for
Australia's multispecies pelagic
longline fisheries

Robert Campbell, Shijie Zhou, Simon Hoyle, Rich Hillary, Malcolm
Haddon and Steve Auld

May 2017
FRDC Project No. 2014-021

e e e Wyt |

©) FrDC

DEVE I.OPMEN‘I’ COHPUHATION



Developing approaches to improve CPUE standardisédioAustralia’s multispecies longline fisheries




Developing approaches to improve CPUE standardisédioAustralia’s multispecies longline fisheries

Developing innovative approaches to improve CPUE
standardisation for Australia's multispecies pelagi C
longline fisheries

Robert Campbell
Shijie Zhod
Simon Hoylé
Rich Hillary*

Malcolm Haddoh
Steve Auld

1. CSIRO Oceans and Atmosphere, Private Bag No. lerdgde, VIC 3195, Australia
2. CSIRO Oceans and Atmosphere, GPO Box 2583, Brisltgine 4001, Australia

3. Hoyle Consulting, 14 Champion Terrace, Nelson, 70w Zealand

4. CSIRO Oceans and Atmosphere, GPO Box 1538, Hobag,7001, Australia

5. Department of Agriculture and Water Resources, @®® 858, Canberra ACT,
Australia.

May 2017

FRDC Project No 2014-021

@©) FRDC

FISHERIES RESEARCH &
DEVELOPMENT CORPORATION




Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

© 2017 Fisheries Research and Development Corporati  on.

All rights reserved.

National Library of Australia Cataloguing-in-Publica tion entry:

Creator: Campbell, Robert Alan, 1957- author.

Title: Developing innovative approaches to improve CPUE standardisation for Australia's multispecies
pelagic longline fisheries

ISBN: 9781486308521 (ebook)

Subjects: Fisheries--Australia.

Fisheries--Equipment and supplies--Australia.
Fisheries--Catch effort--Australia.

Fishery resources--Management--Australia.
Fishery management--Australia.

Other Creators  Zhou, Shijie, author.

/Contributors: Hoyle, Simon D., author
Hillary, Rich, author.
Haddon, Malcolm, author.
Auld, Steve, author.

Issuing body: Fisheries Research and Development Corporation (Australia).

Ownership of Intellectual property rights

Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the
Fisheries Research and Development Corporation and CSIRO Oceans and Atmosphere.

This publication (and any information sourced from it) should be attributed to:

Campbell, R.A., S, Zhou, S.D. Hoyle, R. Hillary, M. Haddon and S. Hall. (2017) Developing innovative approaches to
improve CPUE standardisation for Australia's multispecies pelagic longline fisheries. Final report for project
2014-021 to the Fisheries Research Development Corporation, Canberra, Australia.

Creative Commons licence

All material in this publication is licensed under a Creative Commons Attribution 3.0 Australia Licence, save for content
supplied by third parties, logos and the Commonwealth Coat of Arms.

that allows you to copy, distribute, transmit and adapt this publication provided you attribute

the work. A summary of the licence terms is available from

creativecommons.org/licenses/by/3.0/au/deed.en. The full licence terms are available from
creativecommons.org/licenses/by/3.0/au/legalcode.

@ ® Creative Commons Attribution 3.0 Australia Licence is a standard form licence agreement

Inquiries regarding the licence and any use of this document should be sent to: frdc@frdc.com.au

Disclaimer

The authors do not warrant that the information in this document is free from errors or omissions. The authors do not
accept any form of liability, be it contractual, tortious, or otherwise, for the contents of this document or for any
consequences arising from its use or any reliance placed upon it. The information, opinions and advice contained in this
document may not relate, or be relevant, to a readers particular circumstances. Opinions expressed by the authors are
the individual opinions expressed by those persons and are not necessarily those of the publisher, research provider or
the FRDC.

The Fisheries Research and Development Corporation plans, invests in and manages fisheries research and
development throughout Australia. It is a statutory authority within the portfolio of the federal Minister for Agriculture,
Fisheries and Forestry, jointly funded by the Australian Government and the fishing industry.

Researcher Contact Details FRDC Contact Details

Name: Dr Robert Campbell Address: 25 Geils Court

Address: CSIRO, Private Bag No. 1 Deakin ACT 2600
Aspendale VIC 3195 Phone: 02 6285 0400

Phone: 03 9239 4681 Fax: 02 6285 0499

Fax: 03 9239 4444 Email: frdc@frdc.com.au

Email: Robert.Campbell@csiro.au Web: www.frdc.com.au

In submitting this report, the researcher has agreed to FRDC publishing this material in its edited form.



Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

CONTENTS

List of Tables Vi
List of Figures viii
List of Acronyms Xiv
Acknowledgements
2.  Executive Summary 2
Introduction 7
3.1 The Eastern Tuna and Billfish Fishery 8
3.2 The Multispecies problem 11
Objectives 16
Methods 17
5.1 Overview (and Report Structure) 17
5.2 Review of current methods to standardise CPUE 18
5.3 Current method used for standardising CPUE in fheFE 23
5.4 Clustering catch as a proxy for targeting 30
5.5 Bayesian spatial and spatial-temporal models udibé 39
5.6 Development of multispecies catch and effort sirauta 47
5.7 Models selected for comparative analysis 69
6. Results 78
6.1 Review of factors influencing CPUE 78
6.2 Targeting and gear setting practices in thBEET 79
6.3 Species coexistence 96
6.4 Comparativeperformance of standardisation models 106
6.5 Further analyses 119
6.6 Implications for the ETBF harvest strategy 129
6.7 Further implications for the ETBF harvest giggtin a stock assessment context 137
Discussion and Conclusions 148
Implications 158
Recommendations 159
10. Extension and Adoption 161
11. References and Further Reading 163
Appendix A: Annual longline catch by species i tTBF 170
Appendix B: Spatial and temporal distributionsGHUE in the ETBF 187
Appendix C: Clustering by deployed fishing gear 206
Appendix D: Spatial Dynamics Factor Analysis Model 212
Appendix E: List of project staff 219



Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

List of Tables

Table 3.1:

Table 5.1;

Table 5.2:

Table 5.3:

Table 5.4:

Table 5.5:

Table 5.6:

Table 5.7:

Table 6.1;

Table 6.2:

Table 6.3:

Table 6.4:
Table 6.5:

Table 6.6:

Table 6.7:

Table 6.8:

Table 6.9:

Table A.1:

The time-series of effort, catch, CPUWH &alue of catch for a hypothetical fishery
described in the text. 13

Listing of explanatory variables, andegary definitions, fitted to GLM used to
standardise CPUE in the ETBF. The number of obsensawithin each category for
the swordfish analysis undertaken in 2016 is atsove. 26-27

Catch composition of the four clustexsda on the cluster analysis for each month. The
last column titled Target indicates the final tangyg type (1-7) based on the final cluster
analysis of the 48 clusters shown in the Table.RSG Number of fishing operations.)

34

Composition of cluster types based dmm@nthly analyses combined into 7 clusters,
and (b) single analysis of all data into 7 clustBiste, the clusters in each sub-table are
ordered by decreasing percentage of Yellowfin TUMNDPS = Number of fishing

operations.) 38
Comparison of relative error betweenlioted abundance index and true index across

6 models and 5 species. 45
Comparison of absolute relative errawben predicted abundance index and true

index across 6 models and 5 species. 46
Comparison of absolute relative errewben predicted abundance index and observed

index across 6 models and 5 species. 47

Mean Annual ErroMAE) for each GLM fitted to the four versions of thHenslated
data sets. For each data-set and species, the Gibvhe smallesMAE is highlighted

in light grey. 61
Pearson correlation coefficient betwtbeMAE for each error type for the (a) 1D-Trial
and (b) 1R-Trial analyses. 106

Species Ranked Scor8R$ for each species and model and the total Modak&a
Score MRS for the 1D-Trial analyses. All results are ordefeom lowest to highest
rank. Shading indicates models with the sS&RS 110

Species Ranked Scof8RS for each species and model and the total Modak&a
Score MRS for the 1R-Trial analyses. All results are ordefiemm lowest to highest
rank. Shading indicates models with the SRS 112

Pearson correlatidd,between the model ranks (1-24) for the 1-D amidnalyses. 114

Species Ranked Scor8R$ for each species and model and the total Modak&a
Score MRS for the 2R-Trial analyses. All results are ordefiemm lowest to highest
rank. Shading indicates models with the S&RS 115

Species Ranked Scor8R$ for each species and model and the total Modak&a
Score MRS for the 3D-Trial analyses. All results are ordefeom lowest to highest

rank. Shading indicates models with the sS&RS 118
Species Ranked Scoi®R$ for each model for the D9-Trial analyses. Modelsing
equal rank scores are shaded. 125

Mean rank (1=Best, 6=Worst) of the penfance of the A-1 model fitted to the 100
simulated ETBF data-sets using the R-catches aedsith types ofArea effects

described in the text. 128
Over-all ranking and Model Rank ScdviR§ for each model based on ranking the
mean RBCC-Error across all species for the twoidél Ginalyses. Best=1, Worst=24. 134

Complete listing of the logbook reportadich of all species reported by longline vessels
operating in the ETBF. (Note, the last column iatks whether the species is reported
in main document.) 181-183

Vi



Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

Table A.2: Listing by logbook of the reported catdtall species by longline vessels operating in
the ETBF. (Note, the last column indicates whetiher species is reported in main
document.) 184-186

Vil



Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

List of Figures

Figure 3.1: Area of the Eastern Tuna and BillfistshEry (source: Australian Fisheries
Management Authority)

Figure 3.2: (a) Number of longline vessels opegatinthe ETBF each year and the associated
effort (number of hooks deployed), and (b) Disttibn of number of sets per trip
(2007 to 2013).

Figure 3.3: Example of completed ALO6 logbook ugsedhe ETBF indicating the catch and
effort information collected for each longline skefployed.

Figure 3.4: The time-series of fishery indicatiansa hypothetical fishery described in the text.

Figure 5.1: Total number of 1l-degree squares diskach year in the ETBF and the
corresponding number of squares in which each efntlin target species were
caught.

Figure 5.2: Pseudo-F criteria for identifying nueniof clusters. Results shown for each month.

Figure 5.3: Pictorial representation of monthlystérs based on plots of the first two canonical
variables. (NB, the lines of points are assumedbdarepresentative of the zero
catches in the data.)

Figure 5.4: Dendograms of cluster associationsule are shown for the following four
months: (a) January, (b) February, (c) November(dh®ecember.

Figure 5.5: Clustering criteria used to identtig appropriate final number of clusters based on
clustering the 48 monthly cluster types identifiedhe first stage of the analysis.

Figure 5.6: (a) Dendogram of cluster associatimased on analysis of the 48 monthly clusters,
and (b) representation of the seven cluster typeed on plots of the first two
canonical variables for the 48 monthly clusters.

Figure 5.7: Distribution of the 48 monthly clustgpes identified in stage 1 of the analysis
across the seven cluster types identified in stageof the analysis.

Figure 5.8: Distribution of cluster types (percage of sets) across each (a) year and (b) month

Figure 5.9: Distribution of gear-settings acrdss $even cluster type identified in the 2-stage
monthly analysis.

Figure 5.10: Catch composition by seven clustaset on (a) the analysis by month, and (b) the
single analysis of all sets.

Figure 5.11: Building mesh for Gaussian Markovd@n field model in ETBF. The mesh is
based on unique coordinates in the simulated aatalff year (between 2000 and
2014). The numbers in red are areas used in GLM.

Figure 5.12: Comparison between GLM Model (1), fine spatio-temporal Model (5) and the
simple spatio-temporal Model (6).

Figure 5.13: Hypothetical result of a GLM illudirey the relationship between the number of
hooks-per-float and relative CPUE of both yellowdimd Bigeye Tuna.

Figure 5.14: Observed hook-depth profiles for eigtifferent hooks-per-float longline
configurations. Fitted LOWESS curves are also shfmawwo different smoothing
parameters.

Figure 5.15: Hook-depth profiles used in the nspkicies data simulator.

Figure 5.16: Mean observed depth profiles by méotliY FT, BET, SBT and SWO based on data
collected from archival tags. A fifth hybrid prddilused in the multispecies data
simulator is also shown.

Figure 5.17: Hourly mean observed depth profiles Yellowfin Tuna during January and
August.

Figure 5.18: An example of the density surfaceSordfish during June 2014 across the 139
1x1-degree squares incorporated into the multisgetata simulator.

viii

10
14

29
31

32-33

33

35

35

36
36

37

38

43

46

48

51

52

52

53

54



Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

Figure 5.19: Distribution of sets used in the datian across (a) Year, b) Month, (c) Start-time,
(d) Hooks-per-float, and (e) 1x1-degree squares. 54

Figure 5.20: Comparison of the distribution of glated catches, both with (Random) and
without (Determin.) the random component added tie distribution of observed
catches. 56

Figure 5.21: Comparison of the modelled annuahdhoce and the nominal CPUE based on the
simulated catch and effort data (where both haes sealed so that the mean is one

over the time-series). 56
Figure 5.22: Percentage of sets deployed eachsyesified by (a) Start-time, (b) Hooks-per-

float, (c) Longitude, (d) Latitude and (e) Month. 57
Figure 5.23: Distribution of the 139 one-degregasqs included in the simulated data sets across

the severireaeffects used in the associated GLM analyses. 58

Figure 5.24: The distribution of the data recoasl fishing effort across these seven areas
together with the distribution of the D-catches @sdociated catch rates for one

realization of the simulated data sets. 59
Figure 5.25: Annual time-series of (a) the logtieke error and (b) the relative abundance index

for each species for the NEG-3 model fitted to ezfdihe four data-sets 62
Figure 5.26: Annual time-series of (a) the logtiglaerror and (b) the relative abundance index

for each species for each of the four GLMs fittede M-M data-set. 64

Figure 5.27: (a) Distribution of the annual abumtaindex for each year based on 100 random
analyses with the mean indicated by the solid blamk (and assumed triedex
shown by the red line). The mean of the nominal ERf each simulated data set
is shown by the dashed grey line. (b) Distributbdhe error for each year with the

mean indicated by the solid black line. 65
Figure 5.28: Relative catchability by species dslifig tactic (Qtagecies tact}, @S assumed in the

simulation model. 68
Figure 6.1: Index of availability of the five prary target species in the ETBF as measured by

nominal CPUE. 80

Figure 6.2: Percent of longline sets deployechenETBF each year using different categories
of gear-settings. Information based on ETBF logisodkiR denotes Not Recorded,
Mack=mackerel, Pilch=pilchard, D=dead bait, A=llvait, M=mixed dead and live

bait). 82
Figure 6.3: Percent of longline sets deployechenETBF each year using different categories
of gear-settings. Information based on ETBF loglsogkNK denotes Unknown). 83

Figure 6.4: Average setting (and standard deviatod individual gear-types during each year
based on observer data collected from longlineelesgperating in the ETBF (solid
blue line). The number of observer voyages fromcliidata was available is also
shown (green columns). 84

Figure 6.5: Time-series of branch-line lengthsalggd on five different vessels operating in the
ETBF. Each dot represents an individual fishingg@and the length recorded by an

observer for that trip. 85
Figure 6.6: Annual distribution of hook-types depd on observed longline vessel operating

in the ETBF. 86
Figure 6.7: Histogram of the number of sets peeoled trip. 88

Figure 6.8: Percentage of trips where the seftingeach gear type was similar for all FOPS
during a trip. The solid line displays the totahrher of trips for which data on the
given gear type was available for all sets whikedlashed line displays the number
of trips for which the gear-settings were similar &ll sets within a trip. Trips are
stratified by the number of sets deployed per trip. 89

Figure 6.9: Percentage of trips where the seftingeach gear type was similar (i.e. the same
category level was used) for all FOPS during a fige solid line displays the total
number of trips for which data on the given geaetywas available for all sets while

iX



Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

the dashed line displays the number of trips foictvthe gear-settings were similar
for all sets within a trip. Trips are stratified the number of sets deployed per trip.
For those trips deploying the same gear type faet$ the percentage of trips using

each gear-type category is also displayed. 90
Figure 6.10: Distribution of various gear-settstatified by primary target species recorded by

observer— ordinal variables. 92
Figure 6.11: Distribution of various gear-settstatified by primary target species recorded by

observer — categorical variables. 93
Figure 6.12: Percent of observed fishing operatioyn primary target species (a) by month and

(b) aggregated by month across years. 94

Figure 6.13: Catch composition of all observed &gt(a) month and (b) primary target species.
(YFT=Yellowfin Tuna, BET=Bigeye Tuna, ALB=Albacofeuna, SWO=Broadbill
Swordfish, STM=Striped Marlin, SBT=Southern Bluefin Tuna,
LEC=Escolar/Qilfish, ALX=Long-nosed Lancetfish, DeDolphinfish,
POA=Ray's Bream/Promfrets, BSH=Blue Shark, SKJ=fakilp Tuna,
WAH=Wahoo, MAK=Mako Shark, GES=Snake Mackerel, ALGhort-nosed
Lancetfish, MOP=Sunfish, SBS=Short-bill SpearfisBAM=Black Marlin,
BUM=BIlue Marlin, OPA=0Opah, RAY=Stingrays, TIG=Tig&hark, BRO=Bronze
Whaler, DSK=Dusky Shark, OCS=0ceanic Whitetip Sh&&H=Crocodile Shark,

SKS=Silky Shark and SPN=Hammerhead Sharks). 95
Figure 6.14: Cumulative percent of sets catchisg than or equal to the indicated number of fish

stratified by primary target species. 96
Figure 6.15: Pearson correlation between quadtietise spatial distributions of CPUE for each

species. 97
Figure 6.16: Pearson correlation, by quarter, betwthe spatial distributions of CPUE for a given

specie and all other species. 98-101
Figure 6.17: Comparison of results of cluster asialfor summer and winter data. 103

Figure. 6.18:(a) Composition of the mean monttdick recorded in ETBF logbooks, and (b)

Percentage of each species recorded in the ETBfodbgcomprising the mean

monthly catch. 104
Figure 6.19: Catch comparison of clusters basednmatyses using different number of species

(B) comprising the total catch and a subset okediffit species (A) upon which the

clusters were defined. Individual results are lue{AXB). 105
Figure 6.20: (a) Error-1 results for the Groupral®8 models fitted to the ETBF simulated data-

set. Results are shown for each species and e gets of Trials described in the

text. 107
Figure 6.20: (b) Error-2 results for the Grouprdd@ models fitted to the ETBF simulated data-

set. Results are shown for each species and fee gets of Trials described in the

text. 108
Figure 6.21: Minimum and maximuRMAEs for each the four Error-types and species follie
Trials and 1R-Trials. 109

Figure 6.22: Comparison of the Species RankedeS@BRS for each species and model for the
1D-Trial analyses. The mean and standard deviafitteSRSacross all five species
is also shown. 110

Figure 6.23: Comparison of the rank of models Whiwlude the two gear effects in the fitted
GLM with those models which do not include theste@s. The comparison is
shown for both the 1-D and 1-R analyses for (a¥@dicies and (b) the four species

other than ALB. 111
Figure 6.24: Comparison of the Species RankedeS@BRS for each species and model for the
1R-Trial analyses. The me&RSacross all five species is also shown. 112

Figure 6.25: Comparison of the model ranks (1k&tjveen the 1-D and 1-R analyses by species.
113



Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

Figure 6.26: Comparison of the mean Error-1 anore2 results across all species for models
fitted to the D-catches and the R-catches. The aoisyn is also shown for both sets
of analyses which include the two gear effecthanfitted GLM with those models

which do not include these effects. 114
Figure 6.27: Comparison of the Species RankedeS@®R$ for each species and model for the

2R-Trial analyses. The me&RSacross all ten species is also shown. 151
Figure 6.28: Comparison of the overall rank of #leven models used in both the 1R-Trial

(ETBF) and 2R-Trial (DIST) analyses. 116

Figure 6.29: Error-1 and Error-2 results for the@ A (blue) and C models (green) fitted to the
streamlined (N3) ETBF simulated data-set. Resuodtslaown for each species. Note,

y-axis values differ between panels. 117
Figure 6.30: Comparison of the Species RankedeS@BRS for each species and model for the
3D-Trial analyses. The me&RSacross all five species is also shown. 118

Figure 6.31: Comparison of the four index-basedrsrafter fitting the following four variates of
the A-1 GLM to the 100 sets of R-catches for th&EBimulated data set: (i) a two-
stage delta-(Bin-NegBin) model with either the tMear*Qtr andQtr*Area 2-way
interactions (Delta-2) or the single 3-w#gar*Qtr*Areainteraction (Delta-3) and
(ii) a single-stage-NegBin-only model with eithbettwoYear*Qtr andQtr*Area
2-way interactions (NoDelta-2) or the single 3-wdgar*Qtr*Area interaction

(NoDelta-3). 119
Figure 6.32: Gear types associated with fishingrations included in the summer and winter
YFT and ALB clusters identified in Section 6.3 (d&fgure 6.17.) 121

Figure 6.33: (a) Comparison of tMAE associated with the fitting the A-3 model to thEBE

data-set where the linear predictor includes; ¢i)gear effects, i.e. cluster effects

only, (ii) both gear and cluster effects, or (i gear-by-cluster interactions. 121
Figure 6.33: (b) Comparison of tMAE associated with the fitting the A-5 model to tHEBE

data-set where the linear predictor includes; di)gear effects, i.e. cluster effects

only, (ii) both gear and cluster effects, or (iip gear-by-cluster interactions. 121
Figure 6.34: Pearson correlation between the dndigaibutions of nominal CPUE between
years at: (a) the 1x1-degree level, and (b) the &lréh level. 123

Figure 6.35: Annual distributions of nominal ALB?OE for the simulation ETBF data-set. The
colours indicate the following range of CPU: (iJlgav, <2.0, (ii) orange, <4.0, (iii)
green, <6.0, (iv) light blue, <8.0, (v) dark blu€l0.0, (vi) red, <12.0, and (vii)
purple, >12. 124
Figure 6.36: Comparison of (a) the standardisedEdices and (b) the index errors based on

the A-la model for all years and the A-3 modeltfar last 9 years. The nominal
CPUE and assumed abundance indices are also shown. 125

Figure 6.37: Comparison of the overall model rimkhe five Group-A models based in the D9-
Trial analyses with and without the two gear ef@ntluded in the linear predictor.

126

Figure 6.38: The Mean Annual ErrddAE) for the A-1 model fitted to the 100 simulated BB

data-sets using the R-catches and the six typAseafeffects described in the text.

Note: NB-2 refers to the NEG-2 model, NB-3 referthie NEG-3 model while ERR-

1 refers to Type-1 Error and ERR_2 refers to thpefg Error. 128
Figure 6.39: Conceptual example of how the slapextget parameter used in the primary control

rule is derived. 130
Figure 6.40: For the four simulation trials und&en based on the ETBF data, comparison of the

Mean Annual Error in the RBCC by species and model. 131
Figure 6.41: For each species and model, compangohe Mean Annual Error in the RBCC

across the three simulation trials undertaken basdtie ETBF data. 132

Xi



Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

Figure 6.42: Distribution of the mean RBCC-Ermmunded to the nearest percent) across the 24
models for the two 1D-Trial and 1R-Trial analysBesults are shown for both the

mean across all five species and across the fewiespexcluding DOL. 133
Figure 6.43: For each species, comparison of #@nnand standard deviation of the distribution
of the nominal values of the RBCC-error acrosslib@ simulations. 134

Figure 6.44: For each species (a) example congarisd the assumed abundance index,
standardised CPUE index and three LOWESS smootitiszks for a single analysis
and (b) the distribution of the errors in the RBCe¢dculated using either the
standardised CPUE or the LOWESS smoothed indicessd00 simulations. 135

Figure 6.45: For each species plot of the standavihtion of the mean of the four RBCC-errors
shown in Figure 6.44a versus the CV of the lasata ¢ghoints of the standardised

CPUE. 136
Figure 6.46: Comparison of the mean and standevdxtion of the distribution of the RBCC-
error across the 100 simulations discussed inetkte t 137

Figure 6.47: Boxplot summary of the Swordfish CPIdEall size classes (small, prime, large)
and for each of the six series (true, nominal,tthe Gamma and two Negative-
Binomial models). 138

Figure 6.48: Relative errors (median and 80% ERlhie TACC predicted using the whole data
series (15 years) for each of the 100 simulati®hs. percentage error is expressed

relative to the true TACC for each of the otherdidate series. 139
Figure 6.49: Boxplot summaries of the AAV statistfor each of the six CPUE series, for a five

year quasi-retrospective, and across all 100 siiounka 140
Figure 6.50: CPUE indices (mean standardised) i®87 to 2014 for each of the five main target

species in the ETBF. 144

Figure 6.51: Predicted log-scale CPUE (left) fug Bigeye and Yellowfin Tuna data (magenta
circles) in terms of the MLE (thick blue line) aadproximate 95% CI (dashed blue
lines). On the right the predicted relative abure@amgain in terms of the MLE and
approximate 95% CI. 145

Figure 6.52: Predicted log-scale CPUE (top left) the Swordfish and Striped Marlin data
(magenta circles) in terms of the MLE (thick blue) and approximate 95% CI
(dashed blue lines). On the top right is the prtedicelative abundance, again in
terms of the MLE and approximate 95% CI. On thedootleft is the MLE and
approximate 95% CI of the inferrdg terms, given the effort time-series and the
species-shared catchability term. 146

Figure 6.53: Predicted log-scale CPUE (left) fog Albacore data (magenta circles) in terms of
the MLE (thick blue line) and approximate 95% Cagted blue lines). On the right
is the predicted relative abundance, again in t@frttee MLE and approximate 95%
Cl. 147

Figure 7.1: Comparison of the overall rank achielg each model (1=Best, 24=Worst) when
used to estimate either the abundance index oweraals or the RBCC. The analyses
are based on the average errors calculated aco@s&TBF data-sets where the

catches were sampled from a random negative binalisiaibution. 156
Figure A.1: Annual logbook coverage (as a peraggntd sets) in the ETBF. Note: ELINE refers

to an electronic logbook. 170
Figure A.2: Logbook recorded annual catch (numifefish retained and discarded) of tuna

species in the ETBF. 173
Figure A.3: Logbook recorded annual catch (nundfdish retained and discarded) of billfish

species in the ETBF. 174
Figure A.4: Logbook recorded annual catch (numidefish retained and discarded) of shark

species in the ETBF. 175-177
Figure A.5: Logbook recorded annual catch (numibéisb retained and discarded) of byproduct

species in the ETBF. 178

Xii



Figure A.6:
Figure A.7:
Figure B.1:
Figure B.2:

Figure C.1:

Figure C.2:
Figure C.3:
Figure C.4:
Figure C.5:
Figure C.6:

Figure D.1:

Figure D.2:

Figure D.3:

Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

Logbook recorded annual catch (nundfdish retained and discarded) of bycatch
species in the ETBF. 179
Logbook recorded annual catch (nunabdish retained and discarded) of skate and

ray species in the ETBF. 180
Spatial distribution (1x1-degree) gheegate longline effort in the ETBF over the

years 2000-2013 for each quarter of the year. 188
(a-q): Spatial distribution (1x1-degreé nominal CPUE by species in the ETBF

over the years 2000-2013 for each quarter of tlae. ye 189-205

Clustering criteria used to identtig tappropriate final number of clusters based on
clustering the 84 monthly cluster types identifiedhe first stage of the gear-based

analysis. 207
Pictorial representation of the nimgster types based on plots of the first two

canonical variables for the 84 monthly gear-badesters. 207
Distribution of the 84 monthly clustgpes identified in stage 1 of the gear-based

analysis across the nine cluster types identifieithié second cluster analysis. 208
Distribution of nine cluster typesrgentage of sets) based on the gear-based cluster

analysis across (a) month, and (b) year. 209
Distribution of gear-settings acrdssnine gear-based cluster types identified in the

2-stage monthly analysis. 210
Catch composition of the nine clustased on (a) the analysis by month, and (b)

the single analysis of all sets. 211

Comparisons by species of annual irdietween true, nominal, and SDFA model
results. The SDFA-R10 model indices are the me#&nken10 model runs using

random data, while the SDFA-D model indicates tiaek for the single run using

the deterministic catches. 214

Comparisons among the Group-A and Shiedlels by species, for the four error
types. All results based on fitting each modelhe 10 realisations of the ETBF
dataset using the random catches. 215

Comparison of the Species Ranked S¢8fe$ for the Group-A and SDFA models
by species, when fitted to the 10 realisationdhefETBF dataset using the random
catches. 215

Xiii



Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

List of Acronyms

AAV
ABARES
AIC
AFMA
ALB
ARE
BAM
BBL
BET
BIC
BSH
BUM
CCC
CCSBT
CPUE
CVv
DPC
DOF
DOL
ETBF
FOP
FRDC
GMRF
HBS
HPF
HS
GAM
GAM -2
GAM -3
GLM
GLMM
ICES
INLA

Average Annual Variation
Australian Bureau of Resource Economic Smen
Akaike Information Criterion
Australian Fisheries Management Authority
Albacore Tuna
Absolute Relative Error
Black Marlin
Broadbill Swordfish
Bigeye Tuna
Bayesian Information Criterion or Schwarz €ribn
Blue Shark
Blue Marlin
Cubic Cluster Criterion
Committee for the Conservation of SouthewreBh Tuna
Catch-per-Unit-Effort
Coefficient of Variation
Direct Principal Component
Degrees of Freedom
Dolphin Fish
Eastern Tuna and Billfish Fishery
Fishing Operation
Fisheries Research and Development Corparatio
Gaussian Markov Random Fields
Habitat-Based Standardisation
Hooks-per-Float
Harvest Strategy
Generalised Additive Model
GLM with Gamma error with two-way interacti®
GLM with Gamma error with three-way interact
Generalised Linear Model
Generalised Linear Mixed Model
International Council for the Explorationtbé Sea
Integrated Nested Laplace Approximation

Xiv



Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

IOTC Indian Ocean Tuna Commission

ITQ Individual Transferrable Quota
LOWESS Locally Weighted Scatterplot Smoother
LOOCV Leave-One-Out Cross-Validation

MAE Mean Annual Error

MAK Mako Shark

MARE Mean Absolute Relative Error

MCMC Markov Chain Monte Carlo

MEY Maximum Economic Yield

MRS Model Ranked Score

MSE Management Strategy Evaluation

MSY Maximum Sustainable Yield

MS-MSY Multispecies Maximum Sustainable Yield

NBT Northern Bluefin Tuna

NEG-2 GLM with Negative Binomial error with two-wanteractions
NEG-3 GLM with Negative Binomial error with threeay interaction
NOAA National Oceans and Atmospheric Administratio
OIL Oilfish

OPA Opah (Moonfish)

PCA Principal Components Analysis

POA Promfrets / Ray’s Bream

RAG Resource Assessment Group

RBCC Recommended Biological Commercial Catch
RFMO Regional Fishery Management Organisation
RMSE Root Mean Squared Error

SAF Sailfish

SBS Short-Billed Spearfish

SBT Southern Bluefin Tuna

SDFA Spatial Dynamics Factor Analysis

SESSF South-east Scalefish and Shark Fishery

SKJ Skipjack Tuna

SPC Secretariat of the Pacific Community

SPDE Stochastic Partial Differential Equation

SRS Species Ranked Score

XV



Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

STIME Start-Time of set

STM Striped Marlin

SWO Broadbill Swordfish

TACC Total Allowable Commercial Catch

TDR Temperature-Depth Recorder

TMB Template Model Builder

TTRAG Tropical Tuna Resource Assessment Group
WAH Wahoo

WCPFC Western and Central Pacific Fisheries Comamiss
WCPO Western Central Pacific Ocean

WTBF Western Tuna and Billfish Fishery

YFT Yellowfin Tuna

XVi



Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

1. Acknowledgments

This work was supported by funding from the FiseeiResearch Development Corporation.
The authors would like to acknowledge the suppbidames Thorson (Northwest Fisheries
Science Center, National Marine Fisheries Serhe&@AA, Seattle, USA) for the provision of
the source code for the Spatial Dynamic Factor ysial(SDFA) model developed by Thorson
et al. (2016) and his assistance in running this cotlanks are also extended to Ross Marriott
(University of Western Australia, Perth) for hiotilghtful and constructive comments on an
earlier draft of this report and Christopher [zZERDC) for additional editorial comments, both
of which helped improve the content and claritylo$ final report.



Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

2. Executive Summary

This project was undertaken by a collaborationemiiar fishery scientists at CSIRO and from
New Zealand, together with a former fisheries managow with the Commonwealth
Department of Agriculture and Water Resources inb@ara, on the development of methods
to construct indices of stock abundance trends ftommercial catch-per-unit-effort (CPUE)
in multispecies pelagic longline fisheries. Suditiges are crucial inputs into stock assessments
undertaken around the world and play a vital rolaghieving the sustainable management of
global fisheries. The project work was undertakamindy 2015 and 2016, using the
multispecies longline fishery for tuna and billfish the east coast of Australia (the Eastern
Tuna and Billfish Fishery) as the example case ystuts indices of stock abundance
constructed from CPUE data are the central inmiitsthe harvest strategy used in this fishery
to inform the determination of annual Total Alloekcommercial Catch (TACC) limits, there
was a need to identify the accuracy of current owthand develop nhew methods to construct
more reliable indices of stock abundance. In thgard, the analyses undertaken during the
project and presented here were designed to addpessfic issues related to this fishery.
However, it is also hoped that the general resilthis project will have broader applicability
to other multispecies species, both domesticaltyiaternationally.

Background

Australia's two tropical tuna fisheries (the Eastéuna and Billfish Fishery, ETBF, and the
Western Tuna and Billfish Fishery, WTBF) are bothltispecies fisheries which target a range
of large pelagic fish. However, it is often citbat a major constraint for assessing multispecies
fisheries is a lack of reliable abundance indited are a pre-requisite for the accompanying
stock assessments, and this has flow-on impactgl@mtifying appropriate management
measures (e.g. such as TACCs obtained from hatragtgies). Unlike single species fisheries
where all effort is directed at the target spediesnultispecies fisheries the effort is directed
at a range of species. Consequently, the fishifaytefieeds to be standardised so that the
‘effective’ effort directed at any single speciefsimterest can be ascertained. If this is not
undertaken correctly then the resulting index sbrece abundance is likely to be biased and
unreliable. Although there are methods availalde #ine currently used to standardise effort in
multispecies fisheries, these methods need todde&ed and where necessary new techniques
need to be developed so that the resulting inditessource abundance based on standardising
CPUE can be made more reliable.

Objectives

The project had the following five objectives:

(1) to identify the factors likely to influence OE in multispecies pelagic longline
fisheries,

(2) review methods which may be used for standargiCPUE in multispecies fisheries,

(3) develop and compare the most appropriate rdetior standardising CPUE for
multispecies pelagic longline fisheries, (

4) use simulated catch and effort data to tesptitential of each method to adequately
account for the influence of factors influencing WEP and accurately reflect the
underlying resource abundance, and

(5) investigate the sensitivity of the outcomethefETBF harvest strategy on the adoption
of the candidate methods for standardising CPURiwthe ETBF.
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Methods
Targeting Practices in the ETBF

To adequately standardise CPUE one needs an usuaidirgy of the relationship between how
the fishing gear is deployed and the subsequenhc&@actors influencing this relationship
include both the availability of fish to the fislgigear and the catchability of the fishing gear.
Availability will be influenced by the environmem&nd oceanographic conditions prevailing
at the time of the fishing operation, while catahgbwill be influenced by the types of fishing
gear used and the manner in which it is deploye@. multispecies fishery there is particular
interest in understanding the differences in fighiactics utilised when targeting different
species, as this information can be used to idetitd ‘effective’ effort directed at any single
species. For the ETBF the relationships betwednnfispractices and catch, together with
changes in the seasonal availability and distrisubf co-related species (i.e. species caught
within the same set) in the fishery, was undertak&ng the catch and effort data recorded in
logbooks and by on-vessel observers.

Development of Standardisation Models

After a review of existing methods proposed andlusestandardising multispecies CPUE, a
number of methods were selected for further devetyp. While most models are based on
the Generalised Linear Model (GLM) framework deyeld for single species analyses, they
included a number of extensions aimed at standagdibe fishing effort to account for the
differential targeting of species within a multisps fishery. One set of extensions utilises a
cluster analysis approach to group the fishing aipans for a fishery into groups of different
targeting or fishing strategies based on the spemdnposition of the catch. The utility of
clustering across different levels of data aggliegati.e.at the set or trip level), as well as
undertaking separate analyses at different tempgmeabds (e.g. monthly) to account for
seasonal changes in species availability and adage®h are also investigated. A second set
of models uses a Principal Components Analysisaggbr to group fishing operations, while
a third, and new, set of Bayesian spatial-temporadiels utilising the relatively new tool
Integrated Nested Laplace Approximation (INLA) weleveloped. In total, the performance
of twenty-four different model variations were istgated.

Development of the Simulation Framework

Two simulators, which are useful for comparing trexformances of different methods at
estimating known quantities, were developed fotingsghe comparative performance of the
standardising models. The first simulator utilizedempirical approach, based on a framework
generally known as the habitat-based-standardisati@thod, and made direct use of
observations of longline hook depths and fish dgptbfiles obtained from archival tags
deployed on fish caught and tagged within the ETBfie spatial-temporal distribution of
fishing effort across the fishery was taken tolgame as that observed in the ETBF during
the years 2000 to 2014, while the spatial-tempaeakity surfaces for each of the five species
included in the simulator were modelled on the rhigndistributions of nominal CPUE
observed in the ETBF over this period. Finallypider to simulate the stochastic characteristic
of any catch, the simulated catch was selected &aragative binomial distribution and the
probability of success for each species selecteldagdahe distribution of simulated catches for
each species was similar to that in the distributidd observed catches. For the second
simulator, catch and effort data was modelled usimgore generic, flexible and individual-
based approach and was designed to generate ateatata that reflected species abundance,
targeting practises, and (unlike the ETBF simubatadividual vessel efficiency, to capture the
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fact that different vessels have their own charatte catchability and fishing behaviour.
There is also spatial and seasonal variation ichaattes, independently among species.

Results
Targeting Practices in the ETBF

The information recorded in the ETBF logbooks, Bgdbservers, indicated that there can be
considerable variability in the manner that longlgears are deployed, both among years and
within years (and trips) on individual vessels. ubstantive change was noted in 2006 when
vessels began deploying more than 25 hooks-petr{ftfaF). Commensurate with this change
were shifts in the bait usage (more Australian Baréd-commonly called as pilchard), light-
stick usage (fewer) and set start-time (earlighanday). The introduction of this new ‘deep-
longline’ technique was due to a significant chaimgigshing strategy to incorporate the direct
targeting of Albacore Tuna in this fishery. Forttelg, each of these gear settings are recorded
in the ETBF logbook, and so these changes canKan tato account when standardising
CPUE for changes in targeting and associated fis$iirategies. On the other hand, there have
also been changes in other gear settings whicharescorded in the logbook and therefore
cannot be accounted for in the CPUE standardisatioough the results of previously
published research can provide some guidance.

Analysis of the gear setting practices within ahifig trip indicate variable degrees of
consistency in the deployment of each gear typeekample, similar hooks-per-float settings
are used for 60-80% of all sets during a trip, @igenerally similar start-times are used for
less than 20% of sets. Observer data also inditiaé¢she recorded primary target species is
not always the same for all sets deployed duritigpaand suggests that multiple targeting
strategies can be utilised within individual trifgsxamination of the particular gear settings
associated with the target species recorded bghlibervers, also indicated that while a range
of gear settings are utilised when targeting paldicspecies, there are some combinations of
gears that are more commonly used. Observer dadaralicates that the proportion of fishing
operations targeting particular species changeasgltine year, and suggests that the seasonal
availability of the principal target species chamg@oughout the year, and the fishers are able
to change their targeting practices to avail théweseof these changes in relative abundance.
Changes in the temporal availability of specietikisly linked with the movement of fish,
associated with changes in the oceanographic ¢ongliwithin the ETBF. Catch data was used
to investigate the seasonal persistence of spasmsciations and the results suggest that if
associations between species do exist, due podsildg-habitation within defined habitats,
then these associations show generally weak pemsisthroughout the year (or across years).

Finally, the catch composition of observed sete aidicates that the proportional catch of a
given species is generally highest when that spesiecorded as the primary targeted species.
This suggests that the vessel (skipper) has soitity &b target and catch a desired species.
Nevertheless, it is also clear that each of therogiincipal species are also usually caught,
indicating that it is not possible to just targedacatch a single species. Indeed, the target
species sometimes is not the dominant catch. Clasiglyses of the ETBF catch data also
indicates strong seasonal changes in species cdiopas the major clusters identified, which

is likely to be related to seasonal differencethim co-occurrence of species reported above.
Furthermore, while the fishing operations assodiateth some clusters display distinct
differences in the gear configurations, most chssteere characterised by a broad mix of gear
configurations, indicating that the relationshigvizeen the composition of the catch and the
configuration of the gear is not strong. This suwgedhat ‘targeting’, and the consequent

4
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composition of the catch, is likely to depend orrenfactors than just the configuration of the
fishing gear, and exploring the nature of the refehip between the catch and these other
factors (e.g. availability effects associated wité spatial location such as water temperatures,
sea-mounts, eddy features) is encouraged.

Comparative Performance of Standardisation Models

The main results from these trials were as follows:

» The relative performance of each model varied amrably between the analyses
conducted on the different species included in tine simulated data-sets. As a
consequence, there was no one best performing raoctes all species.

* The overall best performing model fitted to theedetinistic catches of the ETBF-
simulated data-set was the model where the clagtevas undertaken at the set level,
while the overall best performing model fitted he tcatches randomly sampled from a
negative-binominal distribution was the model whidre clustering was undertaken at
the trip level. The higher variability in speciesngposition at the set level with the use
of the randomly sampled catches may be leadinghigteer misallocation of sets using
different fishing strategies and aggregating thia daross trips may help to reduce this
variability, and therefore the misallocation ofsset

* Models which included a two-stage delta-GLM apploperformed considerably better
than models which only used a single staged approac

* Models which included the two gear-effects includethe simulated data also generally
out-performed models which did not include theskeaté. This indicates that the
inclusion of gear effects in the standardizing medas greater explanatory power than
the inclusion of derived effects, such as thoseetbasn catch-composition derived
clusters.

* The current GLM used in the ETBF to standardise ER performing reasonably well,
no doubt due to the fact that this model incorpgaeveral of the features (e.g. two-
stage analysis, inclusion of gear effects) thatewkund to perform well in the
simulations undertaken.

Despite the above results, a consistent observéton all the analyses conducted was the
variability in the performance of each model acribesspecies included in the simulated data-
sets. The reasons for variability remain uncertair,further investigations found that taking
account of substantive changes in the spatialiloigion of catch rates can improve the
performance of models used to standardise CPUE.ttWhesuch patterns explain the
variability in the performance of the models acrasspecies remains unclear, though this
result does demonstrate that there may be a widgeraf factors specific to each species that
influence the fit of any model to the data, andash the estimation of the annual abundance
index. No doubt further research is required taidig and improve our understanding of the
factors used by fishers to ‘target’ the deployddréfand which control the composition of the
catch for individual fishing operations.

Implications for the ETBF Harvest Strategy

The performance of the harvest strategy used inBWBF in determining a ‘correct’

Recommended Biological Commercial Catch (RBCC) tea$ed using the same simulation
framework as that used for testing the standarglisindels. As with the previous Index-based
results, the size of the error in the RBCC was fbotovary across the different species and
models, such that no single model performed bestsacall species. The mean error was
generally less than 4% (and often less than 2%)fdowone of the species analysed the error

5
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was higher at around 6-7%. Results also indica# tie direction of the error was not
consistent, being conservative and under-estimahagrue RBCC for some species, while
over-estimating the true RBCC for other species bbst performing model was the delta-
GLM cluster-by-trip model closely followed by thede delta-GLM model currently being
used in the ETBF.

In some situations the performance of models todstadlise CPUE was also found to be
dependent on the time-series of data being analy®ad implies that analysts should give
some consideration to the question of over whae4g®riod of data should an analysis be
conducted taking into consideration the end-purgosghich the results are to be used (e.g.
abundance index for use in a stock assessmentimaésn of abundance trend over last five
years for use in a harvest control rule). This sieai should be guided by investigation of both
temporal changes in the characteristics of the wal@ analysed that may influence (or bias)
subsequent results, and the sensitivity of thetootied abundance index to changes in the
time-series of data included in the analyses.

Implications for relevant stakeholders

Within Australia the standardised CPUE is a cenimplt to the assessments and harvest
strategies for the ETBF as well as other fisheriesluding the multispecies South-East
Scalefish and Shark Fishery (SESSF). The outcorm#ssoproject will provide guidance on
improving the methods used to standardise CPUReset fisheries which should have follow
on benefits to ensuring (i) more reliable and aatstock abundance indices, (ii) improved
inputs and to the harvest control rules dependestandardised CPUE, (iii) improved outputs
of harvest strategies, in particular the appropniass of identified TACCs, and (iv)
improvements to our ability to assess the resostateis of non-target species as required to
achieve the management objective of ecologicaléyesnable fisheries.

The outcomes of this project will also benefit figbck assessments associated with the pelagic
fisheries within the Western Central Pacific Oceanal Indian Ocean, to which Australia's
domestic tuna fisheries are connected.

Recommendations

Based on the outcomes of this project, a numbezocaimmendations have been made including
(i) that the results of this project should be taketo consideration by fisheries scientists
undertaking analyses of catch and effort data amdsélecting appropriate methods for
standardizing CPUE for stock assessment purposdgjiathat the recording in logbooks of
information on the characteristics of the fishimgugps deployed by fishers at the set level should
be encouraged, and where this information is abigla should be incorporated into the
models used to standardise CPUE. Some recommenslatie also made for further research.

Keywords

Catch-per-unit-effort, standardised CPUE, Genezdlitinear Models, INLA, abundance
indices, harvest strategies, pelagic longline, suaad billfish, Eastern Tuna and Billfish
Fishery
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3. Introduction

For most of the past century fisheries scientiaigettried to use catch and effort data collected
from a fishery to infer trends in population abumcka (Beverton and Holt 1957; Kimura 1981,
1988; Smith 2007) and the construction of relaitieices of stock abundance from commercial
catch-per-unit-effort (CPUE) data continues to bewdine and important aspect of many stock
assessments worldwide. In particular, CPUE is Iguassumed to be proportional to
abundance and therefore changes in CPUE betweenharesassumed to be informative about
changes in population abundance. To this end, CPased-indices are often included in the
stock assessment as a relative index of abundamer, many jurisdictions do not analyse
fishery catch rates due to concerns that the oglshiip between nominal CPUE and abundance
may be weak because CPUE may also reflect charfgestahability as well as population
abundance, i.e. these data confound changes imdigkehaviour (adjustments in fishing
location or fishing gear operation) with trends ahundance (Harlegt al 2006). As a
consequence, many methods have been developedhevgears to help “standardise” catch
rates so that such changes in fisher behavioutigéiact from changes in fish populations) that
influence CPUE are removed from the index, so¢hanges in the standardised CPUE better
represents changes in fish populations (see MawardePunt 2004 for a review; Maunasr

al. 2006b; Bishoget al. 2008).

The usefulness of CPUE as an index of resourcedamee depends on many assumptions.
Central to these assumptions is that a unit ofeBainiformly effective across all areas, seasons
and in all environmental conditions. For single@ee fisheries, like that for Southern Bluefin
Tuna, where fishers do not generally change thshirfg strategies this assumption will
generally hold. However, within a multispecies éshfishers may alter their fishing strategy in
order to target different species. Such change$, as changes in gear configuration, allow the
fisher to switch the effectiveness of the fishingemtion from one species to another.
Consequently, the effectiveness with which the oreasure of effort catches different species
is altered by the choice of fishing strategy.

The need to standardise catch rates is therefotieyarly apparent in multispecies fisheries
as research suggests that fishers can affect sloetiaent of species caught in a multispecies
fishery by modifying the location, timing, and geararacteristics of their fishing activity
(Sanchiricoet al 2006; Abbottet al 2015). Furthermore, these operational choicasllys
driven by commercial considerations such as prdfipta availability and market demand,
influence how the catch is distributed across sp@oe, and species. So unlike single species
fisheries where all effort is directed at the taggecies, in multispecies fisheries the effort is
directed at a range of species. Consequentlyjghm§ effort needs to be adjusted so that the
"effective” effort directed at any specific specasnterest can be ascertained. If this is not
undertaken appropriately then the resulting indesesource abundance is likely to be biased
and unreliable. An example illustrating this prables provided in the next Section. A major
constraint for assessing multispecies fisheriesgfiore, is a lack of reliable abundance indices
that are in many instances a pre-requisite foratmmpanying stock assessments and any
applicable harvest strategy and has flow-on impéztthe results obtained (such as the.
determination of TACCs.

Although there are methods available that are otlgreused to standardise effort in
multispecies fisheries (see Section 5.2 for a m)iehe precision and reliability of these
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methods currently remains uncertain and it is gahebelieved that new techniques need to
be developed to overcome these problems.

Australia's two tropical tuna fisheries (the Eastéuna and Billfish Fishery, ETBF, and the
Western Tuna and Billfish Fishery, WTBF) are bothltispecies fisheries that target a range
of large pelagic fish. A fuller description of tBd BF is provided in Section 3.1. Currently the
assessment of the resource status for these tWeriBs, together with the related harvest
strategy used to provide advice on TACCs for thaeggpal target species, is based on the
standardisation of catch and effort (CPUE) datdectdd from these fisheries. As effective
fisheries management is dependent on good scieatifiice having the least bias, improved
management of these fisheries would be achieved twit identification and/or development
of better methods to analyse the related CPUE aladaconstruct more reliable indices of
abundance. This would also help improve the manageonf other multispecies fisheries that
rely on the use of CPUE-based abundance indicgstfe South Eastern Scalefish and Shark
Fishery, SESSF).

In achieving the above outcome this project diyeatldresses the following FRDC strategic
theme: (4) Ecologically sustainable developmentjctvhs concerned with the use and
management of aquatic resources. In particular,dbyeloping improved methods to
standardise CPUE and construct more reliable isdd€@bundance, this project addresses the
Theme 4 priority by assisting end-usersdevelop practical tools that implement ecosystem-
based fisheries management and incorporate undwisigs of the cumulative impacts of
fishing into fisheries management plans

The project developed from discussions with thepica Tuna Resource Assessment Group
(TTRAG) to construct more reliable indices of res@uabundance as these indices are used in
the harvest strategy used to manage the relateerigs. It also builds on the initial review
undertaken of changes in fishing and targetingtpm@s in the ETBF after the introduction of
Individual Transferrable Quotas (ITQs) in 2011 (Peeeceet al 2013).

3.1 The Eastern Tuna and Billfish Fishery

The Eastern Tuna and Billfish Fishery (ETBF) tasgbighly migratory tuna and billfish
species in Australian waters and on the high si#dlseeast coast of Australia. The area of the
ETBF (Figure 3.1) includes:
. waters within the Australian Fishing Zone (thatfiem the outer limit of state waters
to the edge of the Australian exclusive economitezpextending from Cape York
around the eastern and southern coast of Austaatlee South Australian/Victorian
border;
. Commonwealth waters around Norfolk Island, exclgdiraters adjacent to Norfolk
Island within the ‘Norfolk Island box’ (see Figugel)
. the High Seas area of the Pacific Ocean.
The species caught in the ETBF are considered pmheof larger stocks extending across all
or sub-regions of the Western Central Pacific Oq®46PO) and which are managed by the
Western and Central Pacific Fisheries Commissio@RPRC). The stock status of these species
is based on regional stock assessments which ageicted for the WCPFC.

There are two sectors in the ETBF, the pelagiclioagector and the minor line sector (hand
lining, trolling and rod and reel fishing). The fgime sector makes up the majority of the
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Figure 3.1 Area of the Eastern Tuna and Billfish Fshery (source: Australian Fisheries
Management Authority).
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Figure 3.3: Example of completed ALO6 logbook useid the ETBF indicating the catch and effort

information collected for each longline set deployk

Australian Fisheries

Australian Pelagic Longline Daily Fishing Log — AL06

Management Authority.
Cantoaria Mail Gentre AGT 2610 NOTE: DO NOT USE A SINGLE PAGE FOR MORE THAN ONE TRIP Original Gopy — Sand to AFMA
Boat Name Dist. Symbol Log No. Page No.
Cormorant LFB963
Port Departed Date Departed ng’g‘;:)ltsv:lcl:?k(;bgtsvgs?an 19 / 6 / 07 ard ‘ 24 / 6 / 07
| SYDNEY | [257 6 /07|
Non-Fishing Codes (PLease ciacLe)
Port Returned Date Returned @ Bad Weather 2 —In Port 3 — Broken Down
4 — Steaming 6 — Searching 5 — Other Fishery (spPeciFy)
| ULLADALLA | [27/6 /07 | |3 s
SHOT INFORMATION Shot1 Date 26/6/07 Shot2 Date 27/6/07 Shot3 Date
Target species Yellowfin, Bigeye Yellowfin, Bigeye
Start set time (24h) 0300 0230
Startset | Lat. (dd mm) 33 35 36:. 31
Position ‘ Long. (ddd mm) 151 42 151 55
End set time (24h) 0610 0515
Endset | Lat (dd mm) 35 19 3625
Position ‘ Long. (ddd mm) 151 40 151 40
Start Haul time (24h) 1500 1300
Start Haul | Lat. (dd mm) 35 20 36 20
Position ‘ Long. (ddd mm) 151 41 151 42
End Haul time (24h) 2200 1900
End Haul | Lat. (dd mm) 33 36 36 30
Position ‘ Long. (ddd mm) 151 40 151 56
Vessel shooting speed (kn) 7 Fd
Mainline length/Hooks 30 nmim | 1000 hooks 25 nmikm) 700  hooks nmvkm | hooks
Line shooter used (CiRCLE] (Yes ) No (Yes) No Yes No
Seabird mitigation measures CTORD: (THAWD> PSBL CNSET» (LWED CJORD) (QHAW> PSBL (NSEL) C(LWED TORI THAW PSBL NSET  LWEl
used (CIRCLE) (see templatz) CHUTE CAPS DYED OTHER NAPP CHUTE _CAPS _DYED OTHER  NAPP CHUTE _CAPS DYED COTHER  NAPP
_ Targeted depth (in metres) 30 min | 100 max 30 min ‘ 100  max min ‘ max
= No. hooks between bubbles 6 6
£ |No. of lightsticks used 500 300
o o sQo|®s [t @[50 «|sqo[®s [t @ [35 wE | LB -
= e MAY| e ® @0 |80 w|PIL (@ | L@ [45 B s |t o "
CATCH DETAILS M| Wikt g | Code Do "ABMED | "Yopt | W ept i | Cod [Desaried "AARED | "ot | Wi ket | ot |Dcarond| MAAMED
Yellowfin Tuna 11 350 66| 3 US| 14 | 480 |66| 1 DM
Bigeye Tuna < 150 |GG 6 160 (66| 4 Tl
Albacore Tuna T 50 wW 4 40 w
Southern Bluefin Tuna
Broadbill Swordfish 2 90 TR
Striped Marlin 1 35 TR
Shortbilled Spearfish
Ray's Bream 3 10 GG
Moonfish
Rudderfish
Oiifish/Escolar
Dolphinfish
Wahoo
Lancetfish 4 UM
1 80 [TR 1 |Us
Dusky W
Blue Shark 4 UM
Oceanic Whitetip Shark
Thresher shark 1 UM
2 | Yellowfin 4 60 |66 sD
2 |Bigeye 1 20 |GG sb
= |Bigeye 3 25 | W
(=]
o | Species . Number Released _ Number Released _ Number Released
2 ive Dead Alive D Alive Dead
EE_;_ Blue Marlin 1 |
Black Marlin

Did you have an Observer

on Board (circle) / Yes

Observer Trip ID

Please provide an

Concesslon holder or authorised agent - / cess#y that the
information provided on s form /s a frue and accurale ecord.

¥ " Did you have an interaction with a Listed " Printed Name:
aetimats.of mgﬁ Hime t?ken Marine or Threatened Species? (oic/e) Yes / @ %
to complate this form: T G d
. Further details of all Listed Marine and Threatened Species intsractions must be recorded Im ardener
mins on the Listed Marine and Threatened Species Form at the back of the logbaok
Comments: 5 : < 2 g Signature: Date
5 fish damaged by sharks in first shot but fish still o 7
e Gardener 27/ 6 |07

NOTE e If tagged fish / animals or banded birds are captured, please complete tag form at back of book and return to AFMA.
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fishery, with 39 longline vessels and 7 minor Messels active in 2015 though both the number
of longline vessels and associated effort has damieer time (c.f. Figure 3.2a). During this
year 5,324 longline sets were deployed settinga tf 8.25 million hooks. The number of
hooks per set generally ranges between 300 and &dd®@he mean during 2015 was 1550.
Catch by species (both number of fish and processgght of retained fish together with the
number of discarded fish) and effort are reported @er set basis. A number of other details
related to how the longline gear is deployed (®etrtime, location, bait-type, number of hooks
between floats, number of light-sticks used) ase aécorded on the logbook (c.f. Figure 3.3).
In general, a single longline set is deployed ey during a fishing trip, though within a
region off northern Queensland several short se&00 hooks) can sometimes be deployed.
Trips vary in length, with the number of sets pgv generally varying between one and 20
(c.f. Figure 3.2Db).

The ETBF is managed by the Australian Fisheriesadament Authority (AFMA) under the
2011 Management Plan. The five primary target ggedellowfin TunaThunnus albacargs
Bigeye Tuna Thunnus obesisAlbacore Tuna Thunnus alalungg Broadbill Swordfish
(Xiphias gladiu} and Striped MarlinKajikia auday, are each managed under output controls
in the form of individual transferable quotas bitisg a Total Allowable Commercial Catch
(TACC) for each quota year (which starts on 1 Marabh year). TACCs were first introduced
in the 2011/12 quota year and the ETBF harvestegiyaDavieset al. 2008) was utilised to
determine a Recommended Biological Commercial CERBICC) for each species to help
inform the AFMA Commission in determining the resiie TACCs. Since the 2014/15 quota
year, however, the ETBF harvest strategy has bsed only for the two billfish species
(Campbell 2016b), while the TACCs for the threenpipal tuna species are set after taking
into consideration current fishery indicators afcht status both within the WCPO and the
ETBF (Campbell 2016c¢). This change was introdudecksthe majority of the catch taken for
the three tropical tunas within the principal ‘r@giof interest’ to the ETBF is taken by fleets
other than the ETBF (Campbell 2016d). This has ¢basequence that the successful
management of these resources cannot be underbgk@nstralia alone but will require a
regional management approach.

While the majority of effort in the fishery is doted at the five primary species, a wide range
of other secondary species (species of fish thatlmeataken in the fishery and retained) are
reported in the fishery, including Mahi Mahi (Dolpfish, Coryphaena hippurys Wahoo
(Acanthocybium solandti Opah (Moonfish,Lamprdae guttatysand various Oilfishes.
However, apart from the catch of Southern Bluefimd Thunnus maccoyiwhich is caught

in the southern part of the ETBF and is managethbyCommission for the Conservation of
Southern Bluefish Tuna) the catch of species dtiaar the five quota species generally makes
up less than 10% of the annual retained catch.

3.2 The Multispecies Problem

3.2.1 Basic Equations

The relation between catch rates (CPUE) and stbakd@ance is based on the catch equation
which, as a first order approximation, relatesrtheber of fish in the catclg, fishing effort,
E, and average fish population densidy,on the fishing grounds:

C = qED (3.2.1)

11



Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

whereq is a fixed constant of proportionality known ag ttatchability coefficient and is
related to the efficiency of the fishing gear. Frtns equation:

cpuE=S=qp=N
E A

whereN is the number of fish on the fishing grounds &nid the spatial area of the fishing
grounds. It follows that changes in CPUE are dtieeeito changes in the stock density (or
number of fish on the fishing grounds) or to changethe catchability coefficient. If the
changes i can be accounted for, then the remaining chamgé®UE can be related to those
in stock density. This is the basic idea underlyiriat is known as the standardisation of catch
rates.

(3.2.2)

However, the concept of abundance needs some ataborOf particular importance is the
related concept of availability. The following ddfions were proposed by Marr (1951):

Abundance is the absolute number of individuala population. Availability
is the degree (a percentage) to which a populaigsoaccessible to the efforts
of a fishery. Apparent abundance is the abundaiscaffected by availability,
or the absolute number of fish accessible to thieefiy.

From these definitions, iB represents the true abundance &hdneasures the apparent
abundance, then
N=aB (3.2.3)

wherea represents the availability or proportion of tle¢at stock available to the fishery.
Substituting into Egn. (3.2.2) and rearranging give

=N _ ACPUE (3.2.4a)
a aq
and
CPUIzz%3 (3.2.4b)

From this equation it is seen that the relationsieifpveen CPUE and the true abundance of fish
within a given spatial region is influenced by bttk availability of the fish to the fishing gear
(a) and the efficiency of the fishing geay).(

3.2.2 Example

The discussion above concerning the need to acoutite factors which influence both the
availability of fish to the fishing gear and thedwability of the fishing gear is just as relevant
for standardizing CPUE in a single species fislarjor standardizing CPUE in a multispecies
fishery. However, an additional problem arises imaltispecies fishery when amongst the
suite of principle species caught there is a chamgjee specific species targeted.

For example, in the EBTF there are five principdéct species, though on many individual
fishing operations only one of these species mathbemain target species with the others
considered by-product species. Furthermore, thezeuaually distinct differences in the
manner in which the longline is deployed when tangethese different species. When there
is a change in target between any suites of spdtiee is also an associated change in the
‘effective’ effort directed at these species. Saahift in species targeting has been described
by Carruther®t al. (2011) who noted how the blast freezer technokgaopted in the 1950s
and 1960s improved the viability of long distanapahese sashimi fisheries. Consequently,

12
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Table 3.1: The time-series of effort, catch ,CPUEm value of catch for a hypothetical fishery deschied in the text.

| Density Units | Effort Units | catch=g*Effort*Density |  CPUE=catch/Effort | Price/Unit of Catch | Value of Catch |
q=1
year | Bio(SpA) Bio(SpB) | Effort %SpA %SPB | cat(SpA) cat(SpB) cat(tot)) [ cpe(SpA) cpe(SpB) cpe(tot) | S(SpA)  S(SpB) | Val(SpA) Val(SpB) Val(tot)
1 100 75 100 75 25 7500 1875 9375 75 18.75 93.75 1.5 1 11250 1875 13125
2 100 75 100 75 25 7500 1875 9375 75 18.75 93.75 1.5 1 11250 1875 13125
3 100 75 100 75 25 7500 1875 9375 75 18.75 93.75 1.5 1 11250 1875 13125
4 100 75 100 75 25 7500 1875 9375 75 18.75 93.75 1.5 1 11250 1875 13125
5 100 75 100 75 25 7500 1875 9375 75 18.75 93.75 1.5 1 11250 1875 13125
6 100 75 100 65 35 6500 2625 9125 65 26.25 91.25 1.5 1.2 9750 3150 12900
7 100 75 100 55 45 5500 3375 8875 55 33.75 88.75 1.5 14 8250 4725 12975
8 100 75 100 45 55 4500 4125 8625 45 41.25 86.25 1.5 1.6 6750 6600 13350
9 100 75 100 35 65 3500 4875 8375 35 48.75 83.75 1.5 1.8 5250 8775 14025
10 100 75 100 25 75 2500 5625 8125 25 56.25 81.25 1.5 2 3750 11250 15000
11 100 75 100 25 75 2500 5625 8125 25 56.25 81.25 1.5 2 3750 11250 15000
12 100 75 100 25 75 2500 5625 8125 25 56.25 81.25 1.5 2 3750 11250 15000
13 100 75 100 25 75 2500 5625 8125 25 56.25 81.25 1.5 2 3750 11250 15000
14 100 75 100 25 75 2500 5625 8125 25 56.25 81.25 1.5 2 3750 11250 15000
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Figure 3.4: The time-series of fishery indicatorsdr a hypothetical fishery described in the text.
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the Japanese longline tuna fleets of the Atlantid Racific expanded to higher latitudes to
target species of higher market price (such asy@igad Bluefin Tuna) and away from tropical
waters inhabited by species such as Yellowfin akigj&k Tuna.

A simple example helps illustrate this situatioon€ider the case where there are two species
being fished by a fishery. The abundance of eaelisp remains constant over time and the
total effort deployed in the fishery is also const#t the start of the fishery the price paid per
kilogram is greater for species A but at some pkti@ price per kilogram paid for species B
increases to be greater than species A. This chasgéis in a decrease in the percentage of
effort targeted on species A and an increase impéneentage of effort targeted on species B
(in this instance due to changes in the mannetthiegiishing gear is deployed).

Using the equations described in the previous &ech time-series of effort, catch, CPUE and

value of the catch in such a hypothetical fisheqyrovided in Table 3.1 and displayed in Figure
3.4. While the total catch decreases during thisogeof change the total value of the catch
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increases, resulting in a more profitable fishagiydn that total effort remains unchanged).
However, if one uses nominal CPUE as a proxy feouece abundance over time, then one
would conclude that the abundance of species Alaalined and the abundance of species B
has increased. This is an incorrect inference dubé fact that the changes in the relative
catchability of the fishing gear for the two spadmave not being taken into account.

To analyse this situation further, IEk be the effort targeted at speciesi, be the effort
targeted at species By A be the catchability of species A when targetinecsgs A and leda s
be the catchability of species A when targetingcg®seB. Then from Eqn. (3.2.1) the total
catch of species A is given by:

Cy = (qA,AEA + QA,BEB)DA (3.2.5)
from which we obtain:
. Cyg 1
D, = T EA'(1+M) (3.2.6)
a4,4AEa

In general, the estimate of the density of spe&i@sll be biased by the second factor shown
in Egn. (3.2.6), however, there will be situatiomsere this does not pose a problem. For
example, whergag~ O (i.e. species A is not caught to any extent wiaegeting species B)
then the estimate of the density of species A ballrelatively unbiased. Also, when the ratio
Eg/ Eais constant over time then there is no bias irrétetive measure dba over this period
as the bias will be constant. However it is unlk#lat this ratio will be invariant over long
periods of time because many of the factors inftuemn the behaviour and preferences of
fishers may change.

In the above example, it is assumed that the fishgsome ability to target the different species
in the fishery as the need or desire arises,drget fishing on a species is a deliberate act that
can be predicted by fishers in advance and coattolNevertheless, in many multispecies
fisheries there are technological interactions whishing effort directed towards one species
will normally result in a mixed catch of fish thaiay include many other species, i.e. it is not
possible to target and catch only one speciesdoetiusion of others. While fishers can
usually ‘target’ effort to some degree through ifighdifferent areas and depths, seasons, times
of day and by modifying gear, it is the degree toal fishers can target that is the issue. In
such situations, the allocation of effort to parkés species in a multispecies fishery (i.e.
targeting) is not trivial (Klaer and Smith 2012).
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Obijectives

The project had the following five objectives:

1.

Identify the factors likely to influence CPUE in ttspecies pelagic longline fisheries
and review the data requirements and data availabd that these factors can be used
for standardising CPUE in these fisheries.

Review all methods (both those currently used andaher novel methods) which
may be used for standardising CPUE in multispetséeries.

Based on experiences in other relevant researdith@noutcomes of objectives 1 and
2 identify, develop and compare the most appropriathods for standardising CPUE
for pelagic longline fisheries.

Use simulated catch and effort data to test thentiatl of each method to adequately
account for the influence of factors influencing WEP and accurately reflect the
underlying resource abundance.

Investigate the sensitivity of the outcomes ofEA@F harvest strategy on the adoption
of the candidate methods for standardising CPURiwihe ETBF.
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5. Methods

5.1 Overview (and Report Structure)

An overview of the main approaches used to addeash of the five project objectives is
outline here. Where indicated additional detaits@utlined in the remainder of this chapter.

1) To adequately standardise CPUE one needs amstaciéing of the relationship between
how the fishing gear is deployed and the subseqatal. Factors influencing this relationship
include both the availability of fish to the fislgigear and the catchability of the fishing gear.
Availability will be influenced by the environmemtand oceanographic conditions prevailing
at the time of the fishing operation, while cataligbwill be influenced by the types of fishing
gear used and the manner in which it is deploye@ multispecies fishery there is particular
interest in understanding the differences in fighiactics utilised when targeting different
species, as this information can be used to idetitd ‘effective’ effort directed at any single
species. For the ETBF the relationships betwednnfjspractices and catch, together with
changes in the seasonal availability and distrdsubf co-related species (i.e. species caught
within the same set) in the fishery, was undertak&ng the catch and effort data recorded in
logbooks and by on-vessel observers. Results sktinvestigations are outlined in Sections
6.1 to 6.4.

2) A literature review was conducted of the meofscurrently available methods for
standardising CPUE appropriate for multispecieagiellongline fisheries, with an emphasis
on those methods not currently used within the EEBBessments. The data requirements,
statistical assumptions, and pros and cons foramphting each were identified. For example,
habitat-based methods require specific informatanspecies habitat preferences and the
depths of the fishing gears for which direct infatran within the ETBF is limited in both
space and time. Results of these review are odtim&ection 5.2.

3) Taking account of both the review of methods @radinvestigations into the relationships
between fishing practices and catch in the ETBHRred in (1) and (2) above, a number of
novel methods for standardising CPUE in the ETBFRewdeveloped. These included
refinements to existing methods, and where posdiidée development of new methods.
Refinements of existing methods included the inomapon of additional explanatory factors
in GLMs to better model the range of targeting tsfgees used in the ETBF, and the
identification of more appropriate temporal andtspastratification of the data (i.éArea
effects). Consideration was also given to segmgritie analyses on a seasonal basis (i.e.
monthly or b-monthly) to take account of seasor@nges in the availability of co-related
species. Finally, a novel geo-statistical model alas developed. Following a summary of the
current method used to standardise CPUE in the HpRivided in Section 5.3), details of the
alternative methods developed are outlined in 8estb.4 and 5.5.

4) To evaluate the performance of the methods iitisshin (3) above, two simulation models
were developed for generating set-by-set catcle#iod data within a longline fishery context.
These models were developed to incorporate a rainiggpotheses for simulating how CPUE
can be influenced by the operational factors inetléh the simulation, and were used to
generate candidate catch and effort data to testcampare the outcomes and utility of
candidate methods for standardising CPUE. In pddicto ascertain potential biases inherent
in the use of each method, the resulting time-saiestandardised CPUE were compared with
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the known stock trends used to generate the sietuldata. The details of the simulation
models developed are outlined in Section 5.6, wdniisting of the standardising models used
in the comparative analyses is provided in SecBon The results of comparing the

performance of each candidate method for standagd@PUE are provided in Section 6.4 and
some additional comparison are outlined in Sedién

5) Using both the historically available catch affbrt data for the ETBF and the simulated
data for this fishery, annual indices of abundafizeeach of the main target species were
calculated using candidate methods for standagliGIRUE. The results were then input into
the ETBF harvest strategy to determine the seitgit¥ the calculated RBCCs to the range of
standardising methods used. Results are provid&gdation 6.6. Further implications for the

ETBF harvest strategy in a stock assessment castprbvided in Section 6.7.

5.2 Review of methods to standardise CPUE in multis  pecies fisheries

Due to the importance of CPUE in many stock assestrand the assumption that CPUE is
proportional to abundance, it is important that ather factors that may influence CPUE are
accounted for and removed from the index. The m®a# reducing the influence of these
factors on CPUE is commonly referred to as standiagithe CPUE. While a short review of
methods used to standardise CPUE is provided g $leiction, the emphasis is on those
methods particularly suited to multispecies fiségri

In an attempt to standardize CPUE time series th@sdeen a steady publication of papers on
statistical techniques which may be considered@pjate for such purposes (see review by
Maunder and Punt 2004; Taschetial 2010; Lynchet al. 2012). Early approaches adjusted
nominal effort to account for the differences ilatiwe vessel efficiency (Beverton and Parrish
1956; Gulland 1956; Robson 1966), while more rdgahe advent of high speed computing
and the use of more advanced statistical methaglall@ved the inclusion of more factors in
the standardisation process and has helped toamwersome of the more obvious limitations
of the earlier methods. These techniques covemgeraf methods including Generalised
Linear Model (GLMs), Generalised Additive ModelsARs) and Generalised Linear Mixed
Models (GLMMs) and Regression Trees. There hasmea considerable discussion on which
of the many error distributions to choose from (Ngrmal, Gamma, Poisson, Negative
Binomial and Tweedie distributions) may be the naggiropriate to use with these methods.

Generalised Linear Models (GLM; e.g. Allen and Ryii®84; McCullagh and Nelder 1989)
are the most common method used to standardize CPR#ECPUE is predicted as a linear
combination of explanatory variables. Variables barither categorical or continuous. Often,
continuous variables are grouped into intervals iasbihded as categorical variables. This is
done, for example, to provide indicators for ingigally nonlinear relationships, to reduce
problems encountered with large numbers of zeremwhsion strata (see also delta lognormal
method below), or to create strata which refleahlbmations of continuous variables with
certain characteristics, that taken together sasvelassifications that have no meaning on an
ordinal scale. Higher order terms and intrinsicéiligar terms can be included as continuous
variables in GLM models. For example, if the reaship is assumed to be domed shaped, the
CPUE could be related to the square of the expdayatariable. Interaction terms can also be
added to the model to allow for interactions amerplanatory variables when appropriate.
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The main objective of the analysis is to estimayear effect. The year effect (included in the
GLM as a categorical variable) is used to repregenannual relative levels of abundance and
is used as the relative index of abundance to diecio the stock assessment. Interactions with
the year effect invalidates this interpretatiortted year effect as an index of abundance and
for this reason, most analyses do not consideraatien terms for the year effect. However,
when there is high inter-annual variability in t@atial or temporal distribution of a resource
between years the inclusion of year-interactiomgemay be appropriate and in such situations
the annual index of abundance needs to be constifrcim the parameter estimates from the
GLM (see Campbell 2015).

Many fishery data sets (especially when the analigsindertaken at the operational level, i.e.
not aggregated) have a large number of unsuccessiid of effort (i.e. sets or strata with
positive effort and zero catch), and this can cduias in the analysis. Historically, standard
GLM analyses based on a log-transformation of #ta dequired a non-zero CPUE and it was
common practice to combine strata to eliminate zatoh observations or to add a constant to
the data, so that CPUE is always greater than zBoth of these approaches have
disadvantages. When strata are combined, it islgedbat important information contained
in explanatory variables on levels not relatechiodombined strata may be compromised. This
may reduce the performance of the GLM or requiee davelopment of alternate strata for
certain explanatory variables in order to condbetdnalysis. In the second approach, adding
a constant may cause some bias in the estimatedeffeat. The delta-lognormal method
(Pennington 1983, 1996; lat al. 1992) was developed to overcome these problem$ibM
framework. This method models the zero catchesraggg and then models the positive
catches using a GLM. The model for the zeros aeadzhM are then combined to generate an
index of abundance.

GLMs are convenient because they have a long kistoey are well understood, and they
have accepted methods to choose factors, or vasiall a model. Unfortunately, they are
limited in their functional form to linear relatiships. While these relationships can be made
more complex, such as by adding higher order tennisy adding interaction terms, in many
situations nonlinear relationships may better dbsecthe relationships between CPUE and
explanatory variables. A number of techniques Hsaen explored in this regard including:

* General Additive Models (GAMS) - see Bigel@wal (1999) for an example of use of
GAMs in the Pacific to standardize CPUE of BroadBilvordfish Kiphias gladiu¥
and Blue SharkPrionace glauc

* Neural Networks, which uses the data to estimage stinucture of the non-linear
relationship between CPUE and the explanatory bksa— see Maunder and Hinton
(2006), and

* Regression Trees, which like neural networks aited to detecting and extracting
important and complex interactions of the explanatariables - see Watters and
Deriso (2000).

While nonlinear models are more general in thaicfional forms when compared to GLMs,
they do not in general use analytical reasonirdefme the functional form of the relationship
between the explanatory variables and CPUE. Fampbeg parameter estimates from fitted
GAMs are less readily interpretable than those ffgtad GLMs. An alternative to these
statistical approaches to standardising CPUE uséoour knowledge of the distribution of the
target species and the fishing gears more direthg.approach, known as the Habitat-Based-
Standardisation (HBS) developed by Hinton and Nakél©96), presents a method of
standardising CPUE which combines information angpatial and depth distributions of the
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target species (using information on habitat pesfee and mapping of this habitat provided
by oceanographic models) with information on thptlds fished by longline hooks. The basic
premise is that if a hook is fished in an environbtlat is preferred by the species, then it has
a higher probability of capturing that species.slikiparticularly important, for example, when
standardizing effort of longline gear targetingdpbecause the depth of the gear has increased
over time as fishermen targeted Bigeye Tuna, whiehgenerally found at deeper depths in
the water column.

This method was first applied to Pacific Blue MarfViakaira nigricang before being applied
to Bigeye Tuna in the Western Central Pacific Oq@e@PO) by Hamptoet al (1998). The
method has subsequently been further developedwatktatistical framework (and is known
as the stat-HBS method, Maund¢ral 2006a) and for a period following 2000 was roeityn
applied to both Bigeye Tuna and Yellowfin Tuna witkhe context of the stock assessments
undertaken for these species within the WCPO (segjleyet al 2005). The HBS methods
require detailed information on the depths fishgdhdoks together with the distribution of the
habitat of the target species, and poor performahtiee habitat model has been attributed to
(i) problems in estimating hook depth, (ii) fineage variations in environmental conditions,
and (iii) incomplete knowledge of habitat prefereni¢Ward and Meyers 2006; Lynehal
2012).

While most of these methods have been developesdirigie-species analyses, a number of
papers have attempted to develop approaches wakehrito account features of multispecies
targeting. These methods can be broadly dividexdthre following two categories:

1) Sub-setting;

2) Covariates for other species.

3) Spatial-temporal models.

An important consideration for the standardizabbmultispecies CPUE data is that the choice
of fishing tactic allocates effort toward a partaoutarget species or species complex and away
from other species. The term ‘fishing tactic’ ifided as a sequence of choices of fine-scale
fishing strategies (e.g., gear, time of day, begsmall-scale movements) made by the skipper
during a fishing trip. A short review of each caiggis given here.

5.2.1 Sub-setting

The main idea associated with these methods isléctsfrom amongst all the catch and effort
records for a fishery a sub-set of records whiehd@emed informative about the species under
consideration.

Several variations on this approach have beertrifitesl in the fisheries literature:

1. Categorising and allocating shots / trips basedpmties compositions, (e.g. Biseau
1998; Klaer and Smith 2012). In the latter, theerused assumed that fishers target
according to the value of the species in the cadtier than weight, and that targeting
is informed by prior knowledge of where and whertaia species may be caught. In
particular, in order to assign a target to all wndlial trawls with a catch the following
rule was used: The target species was deemedhe Ispecies with the greatest portion
of the total catch value in a 0.51 subdivision 5@8epth stratum month during the same
time of the day.

2. ldentifying ‘indicative’ vessels based on vessearelateristics and catch history. For
example, Pungt al. (2000) applied this to School and Gummy Sharecseg vessels
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for inclusion in the analyses based on the numbgears with a catch, median annual
total catch, and median annual catch for the speffienterest.

3. When fishing location is included in the catch afidrt records, it should be possible
to restrict the analysis to those data for onlyséhdocations known to be habitat
associated with the species of interest. Howevheenawtocation is not included it may
be possible to allocate shots based on the spegrapositions from fishing trips, to
infer whether the fishing occurred in habitat apprate for use in CPUE calculations
for the species of interest. The idea is that fhecies composition (excluding the
species under assessment) from a fishing trip gesvinformation that can be used to
make predictions as to whether the fishing triguded at least some effort expended
in the target species’ habitat. Stephens and Maqea04) applied this method to
groundfish caught by recreational fishermen onwiest coast of the United States.
They used a logistic regression that uses the peceser absence of other common
species to estimate the probability that the tagpecies would be encountered.
Selection of a critical value allows the catch affibrt data to be divided into the
records in target and non-target habitat.

4. Using auxiliary survey data to determine the petage of a species within the logbook
recorded catch using GLMs from which one can deéirmut-off for identifying the
appropriate sets for use in any subsequent sipgidess CPUE analyses. Venables and
Dichmont (2004) developed this approach for twacggseof tiger prawns in the fishery
off northern Australia.

While these methods are relatively easy to useeaptiin, and appear to work well when there
are very different and well-defined metrics foregirising the data, there is oftenadhhoc
element (e.g. in the choice of cut-offs) in mannevhich the data is subsetted. Those methods
which make use of physical variables would appedret preferred, as these can be used to
infer distinct physical habitats. On the other ham@&thods which are based on the use of
species compositions means that the results maydxeptible to bias due to trends in other
species and possibly due to changes in the spedesded over time.

5.2.2 Covariate Methods

The main idea associated with these methods iategorise the catch and effort data using a
number of covariates recorded on logbooks. Agaeral variations on this approach have
been proposed in the fisheries literature:

1. Use of the catch rates of alternative target omtpt species as covariates to correct
for the effort directed away from the target spgaie species under consideration
(Glazer and Butterworth 2002; Maunder and Punt 2604t al. 2008). Although the
catch rates of alternative species does not ho&tdinformation about the magnitude
of the catch, it is arguably of concern that thi@rimation contained in the predictor
variables derived from these covariates is notegtindependent from the response
CPUE and may have unpredictable impacts on thedatdized CPUE trends. The
following example illustrates this problem.

Let Ct andC, be the catch of the target and another specisgdctively) and IeE: and
Eo be the effort directed at each species such otalt éffortE= Er+Eo. The catch rate
of the target species can be then be expresseti@sd:

CPUE G _ G i i ( 1 E") ifE «E
= — = — % ~ * —_ —
‘= F " E E+E, g,) U <k
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wherel; = C{/E: is the abundance index of the target species.|&imi

CPUE Co_ Lo Eo ( Eo) if E, K E
- — = — % ~ % J—
0 E E, E.+E, ° E, i Eo ¢

Therefore, solving foEo./E: and substituting into the first expression gives:

CPUE,
CPUEtzQ*<1—— )

(o]

As CPUR/I, = Eo/lE << 1 and using the approximation In(1+xx when X is
small, then:

CPUE
In(CPUE,) =~ In(l,) — 2

o
So, if we use a linear model for log catch ratéhefspecies of interest with the
catch rate of other species, as an explanatorgharithe associated implicit
assumptions are: (i) the true abundance of the sgiexies (as measured by the
related indexlo) has no temporal trend, and (ii) the proportiotheftotal effort
targeted at the other species is very small.

For this reason, it is important that the alteneaspecies should not co-occur with the
target species. For example, if two species wemmioccur in the catches and would
be fished down simultaneously, the use of the cattshof the one species as a negative
predictor of the CPUE of the other may result iremoneous removal of the underlying
year-effect for the species of interest. An addaiochallenge in situations where a
large number of species are caught by the fisteetlya objective selection of species-
specific catch rates to be included as covariatéisa standardization model.

. Applying the assumption that distinct fishing stgies will result in distinctive suites
of species in the catch, one can use well-knowsteting techniques to categorise
catch records into groups with similar catch conitpmss to identify those records
which pertain to supposedly distinct targeting pcas. The identified clusters are
assumed to be representative of fishing tacticsctwimay be treated as categorical
variables in the standardization model to adjustlifiberences in catchability associated
with each cluster. This method was applied byeHal (1997) to the Hawaii-longline
fishery. Cluster analysis is useful in segregatiigsimilar types of fishing effort
particularly when aspects of fishing strategies aenunknown. After applying the
cluster analysis, any CPUE index could be furth@proved using GLM techniques
which incorporate additional sources of variabi(#yg. gear configuration, area, time,
and environment). Heet al (1997) recommended including data from several
categories of set types if the CPUE trends for spatcies are similar when calculated
for each type. When the CPUE time series patteundsrrelated among set types, it is
not recommended that a combined data set be usgestwibe the dynamics of that
resource unless a GLM analysis accounts for thdeehces. Clustering sets based
on species proportions in the catch could potdptizduse biases in cluster-based
CPUE indices if, for example, fishing intensifieddathe abundance of a particular
target species declined as the number of setsitraggbat species increased but with a
low catch might not be included in the clustertfaat species. As a result a real decline
in CPUE for sets targeting that species might megianed or obscured. However, some
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preliminary simulation testing by Het al (1997) did not find this to be a major
problem.

3. The ‘Direct Principal Component’ (DPC) procedureartly proposed by Winket al
(2013, 2014) uses continuous principal componeotesc (PCs), derived from a
Principal Component Analysis (PCA) of the catch position data, as nonlinear
predictor variables in a General Additive Modelatdjust for the effect of temporal
variations in fishing tactics. The DPC procedurbased on the common assumption
that information on the direction and extent ofjted effort can be found in the species
composition of the catch. PCA represents one ofitbet commonly used approaches
to describe patterns of variations in multivaridé¢a-sets. The idea is that meaningful
sources of variation are retained in the first fé@-axes (nontrivial PCs). One of the
difficulties is to select the relevant number ofmtrivial PCs, which in this case
represent meaningful separations of fishing tachies/ertheless, on initial testing and
application the DPC standardization procedure lashHown to be a reliable method
for removing the effects of targeting on multisgsciCPUE. An obstacle to its
immediate widespread application could be the aredata requirement, in the form
of detailed records of catches for all or the mgjayf species at the trip or shot level.

5.2.3 Spatial-temporal Methods

Recently Thorsoret al (2016) have suggested a new statistical appré@chonstructing
abundance indices in a multispecies fisheries.ngatnat fishers can affect the assortment of
species caught in a multispecies fishery by mongyithe location, timing and gear
characteristics of their fishery activity, they laproposed a method for simultaneously
estimating fishing tactics and relative fish aburmawhen standardizing fishery dependent
catch rate data. The proposed ‘spatial dynamiofastalysis’ (SDFA) model estimates spatial
and temporal variation in abundance for multiplecsps caught in a multispecies fishery by
decomposing covariation in multispecies catch ratés components representing spatial
variation and fishing behaviour. This is achievgaibcomposing the catch equati@w gED,

for each fishing operation into components repriisgnspatiotemporal variation in fish
density D), small-scale tactics that allocate fishing eff(i), and measurement variables
affecting catchabilityd ), as well as residual variation. This decompositimplies that a
spatiotemporal model of fish density can accounsfmtial variation in density (and therefore
control for changes in the spatial allocation ehing effort) while filtering out covariation in
model residuals (as caused by fine-scale fishdictae.g. daily timing of fishing activity).
Despite the promise of this new method at presgatially stratified models remain more
common than spatiotemporal models when analysgigfy CPUE data.

The above summarises the main methods publishethdnliterature for standardising
multispecies CPUE data. In the following Sectioresautline the main methods which were
selected for further investigation and developmieut first we outline the current method used
to standardise CPUE within the ETBF.

5.3 Current method used for standardising CPUE int  he ETBF
Standardised CPUEs are principal inputs to the ETBfvest strategy (used to determine
RBCCs) and the set of fishery indicators (includiagtputs from the regional stock

assessments, catch levels in the south-west Paaificcatch, CPUE and size-based indicators
for the ETBF) used for the three tropical tunaghhbaf which are used to determine TACCs.
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The method used for standardising CPUE is fullycdbed in Campbell (2016a) and is
summarised here. This method will be used as alb@s@against which the outcomes of
alternative methods for standardising CPUE wilbbsessed.

5.3.1 Standardisation Method

The current method used to standard the catchireties ETBF is based on Generalised Linear
Models (GLM) and is similar to approaches used amyfisheries around the world (Campbell
2004, 2015). Due to the inflated number of zeraltatbservations it is also considered best
practice to standardise the CPUE data followingadtage process: one stage being concerned
with the pattern of occurrence of positive catclaes] the other stage with the mean size of the
positive catch rates. The GLM approach assumedtithtthe probability of a positive catch
and the size of a positive catch rate can be medial linear combinations of the factors. Once
this is done, the means from the two distributioas be combined to give an overall mean
abundance index.

A small example helps illustrate this approach. <ider a season for which there areatch
rate observation;i. The average catch rate can be expressed as $ollow

19 1 & ng 1&
== .= C = S~ M(C =
n; i ns + n|: ; i ns + n|: ns ; i pS:uS

wherens is the number of positive or successful catchsratgained €i>0), nr is the number

of zero or failed catche€{=0), psis the proportion of positive catches anrds the average

of the positive catch rates. This result shows tifatoverall mean catch rate can be expressed
as the combination of the parameters from theibigtons used to model the probability of a
successful catch, and that used to model the nanezgch rates. This approach was used in
the estimation of egg production based on planktoweys (Pennington 1983; Pennington and
Berrien 1984) and for estimating indices of fisluatbance based on aerial spotter surveys (Lo
et al 1992) and has since become widely adopted (semdiéa and Punt 2004).

Stage 1: Prob(positive catch)

The Binominal distribution is used to model the hability of a non-zero catch where we
model each observation as either a sucdg@ss() or a failure Ci =0), with the probability of
either expressed as follows:

PrCi >0) =ps and PI1Ci =0) = 1-ps

Associated with each observation is a vector ofcates or explanatory variabl¥sthought
likely to influence the probability of a positivatch. For the ETBF analysis this includes a
combination of both gear effects (e.g. start-timhead, bait-type, number of hooks-per-float,
mainline—length) and environmental effects (e.ga-teenperature, mixed-layer-depth,
southern-oscillation index); a full list is given Campbell (2016). Furthermore, we assume

that the dependence pf occurs through a linear combinatigrF Z,BJ X, of the explanatory

variables. In order to ensure that|®<1 we use the logit link function that takes thédwaing
form:

The inverse of this relation gives the probabitifya positive sighting as a function of the
explanatory variables:
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be = e __expl+ BX +BXy +..)
Sl 1+expB+ BX +BX,+...)

The following model is then fitted to the data:

MODEL ps = intercept+ f(year, qtr, area) +Y 3, X + Logitf

/ dist=binomial link=logit
where the following forms of the functid() are fitted as two separate models:
Model 1: f(year, gtr, ared = year*qtr + gtr*area

Model 2 f(year, gtr, area) = year*qtrxarea

and * represents an interaction between the vasagihown. As the probability of catching a
fish is likely to be related to the number of ho@¥ deployed, the variable Logit= log(h/(1-

h)) whereh=H/M andM>maximum@) was also fitted as an additional fitted effecaipbell
2015). After fitting the above model to the data $skandardised probability for a positive catch,
ps, was then calculated for each spatio-temporakastfgear, quarter and area) against a
standard set of model factors.

Stage 2: Mean Size of Positive Catch Rate

A separate model is fitted to the distribution oEpive catch rategs. For this purpose a log-
Gamma model is adopted, such that/theas assumed to have a gamma distribution with a
log link to the vector of covariates or explanateayiablesX;. The data fitted to the model are
limited to those observations having a positiveltafs before, the following model is fitted
to the data:

MODEL us = intercept+ f(year,qgtr,area) +Z ,BJ- X, I dist=gamma link=log

where again the two functional formsfQf are as described previously. A standardised mean
positive catch ratess, is then calculated for each spatio-temporal sipgtar, quarter and area)
against a standard set of model factors.

An alternative model using the discrete negativeotmial distribution, a log link and a
log(effort) offset can be fitted to the catch. Tdistribution also provides a more general form

of the assumed variance functioff t k,uz).

Fitted Variables

A range of variables collected from the ETBF aredus the GLMs as explanatory variables.
These variables, listed in Table 5.1, are diviadd the following four groups:

1) Statistical effects — these attempt to accountiiberences in availability of the fish due
to differences in the spatial and temporal distidouof the resource and changes in the
size of the resource each year. Variables incluelar YQuarter and Area.

2) Fishing Practice Effects — these attempt to acctaurdifferences in the effectiveness of
the set due to differences in the manner thattti@iongline was deployed. Variables
include Start-Time, Bait-Type, Use of Light-stickength of Mainline, Distance between
Floats, Number of Hooks-between-Floats, and NumifetHooks-per-Kilometer of
deployed mainline.
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Table 5.1. Listing of explanatory variables, and dsgory definitions, fitted to GLM used to
standardise CPUE in the ETBF. The number of obseri#gons within each category for the

Swordfish analysis undertaken in 2016 is also shown

No. [Standardising Category Category Number of
Variable Level Definition Dbservations
1. Statistical Effects
1 |Year 1to 19 1997 to 2015 3,519 to 11,815
2 |Quarter of Year 1 Jan-Mar 30,119
2 Apr-Jun 36,209
3 Jul-Sep 38,634
4 Oct-Dec 32,407
3 |Region fished, Area 1 17,334
2 45,022
3 Species specific 11,347
4 Example: Refer to Figure 5.22 24,150
5 20,715
6 11,081
7 7,720
2. Fishing Strategy Effects
4 |Start Time of Set 1 before 4am 14,318
2 4am to 8am 17,028
3 8am to noon 18,191
4 noon to 4pm 18,141
5 4pm to 8pm 51,031
6 8pm to midnight 18,660
5 [Bait Type Used 1 squid, dead 70,594
2 yellowftail scad, alive 12,478
3 pilchard, dead 14,000
4 other, dead 2,309
5 other, alive 1,324
6 mixed species, dead 19,107
7 mixed species, alive 1,594
8 mixed species, mixed life-status 13,648
9 all other categories 2,315
6 [Hooks-per-Float 1 HPB <=5 4,579
2 HPB=6 13,233
3 HPB=7 8,848
4 HPB=8 37,511
5 HPB=9 6,311
6 HPB between 10 and 11 39,300
7 HPB between 12 and 14 13,186
8 HPB between 15 and 19 5,883
9 HPB between 20 and 29 3,324
10 HPB between 30 and 40 5,194
7 |Percentage of Hooks with Light- 1 0% 34,931
sticks 2 1to 19 % 10,640
3 20 to 39 % 17,327
4 40 to 59 % 37,997
5 60 to 79 % 6,275
6 80 to 99 % 7,898
7 100% 22,301
8 |Length of Mainline 1 <20km 4,730
2 between 20km and 30km 13,436
3 between 30km and 40km 20,746
4 between 40km and 50km 28,248
5 between 50km and 60km 35,577
6 between 60km and 70km 21,038
7 >70km 13,594
9 |Distance between Floats 1 <300m 19,628
2 between 300m and 400m 36,999
3 between 400m and 500m 36,895
4 between 500m and 600m 24,913
5 between 600m and 750m 10,159
6 >750m 8,775
10 |Number of Hooks per 1 <15 8,584
Kilometer of Deployed 2 between 15 and 20 43,829
Mainline 3 between 20 and 25 40,849
4 between 25 and 30 19,778
5 between 30 and 35 15,317
6 >35 9,012
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Table 5.1 (cont'd). Listing of explanatory variables, and category definitions, fitted to GLM used
to standardise CPUE in the ETBF. The number of obseations within each category for the
Swordfish analysis undertaken in 2016 is also shown

3. Environmental/Oceanographic Effects
11 |Sea-Surface 1 Normalised SST<-1.0 20,953
Temperature 2 Normalised SST between -1.0 and -0.43 25,774
- Weekly mean 3 Normalised SST between -0.43 and 0.0 24,109
4 Normalised SST between 0.0 and 0.43 23,445
5 Normalised SST between 0.43 and 1 22,226
6 Normalised SST >1.0 20,862
12 |Southern-Oscillation 1to6 As for Sea-Surface Temperature 20,325 to 25,908
Index
13 |Mixed-Layer Depth 1to6 As for Sea-Surface Temperature 13,148 to 32,991
14 |Wind Speed 1to6 As for Sea-Surface Temperature 19,326 to 28,325
15 |Bathymetry 1 <1000m 6,832
2 between 1000 and 1500m 16,500
3 between 1500 and 2000m 21,929
4 between 2000 and 3000m 29,486
5 between 3000 and 4000m 27,357
6 >4000m 35,265
16 |Moon Phase Continuous Fraction of visible moon
4. Cooperative/Competitive Effects
17 |Number of other Vessels 1 >6 other vessels 4,317
in same 1-Degree Square 2 6 other vessels 2,590
and Day 3 5 other vessels 4,126
4 4 other vessels 6,743
5 3 other vessels 10,958
6 2 other vessels 18,157
7 1 other vessel 32,293
8 no other vessels 58,185
18 |Number of other Vessels 1 more than 20 other vessels 7,422
in same 1-Degree Square 2 18-20 other vessels 4,365
and Month 3 15-17 other vessels 7,470
4 12-14 other vessels 10,711
5 9-11 other vessels 15,738
6 6-8 other vessels 25,600
7 3-5 other vessels 31,363
8 less than 3 other vessels 34,700

3) Environmental/Oceanographic Effects — like theistiadl effects listed above, these
effects attempt to account for differences in thailability of the fish due to behavioral
responses to local changes in ocean conditionschadges in their diurnal behavior.
Variables include daily moon phase (expressedeaBdltion of the whole moon visible),
weekly mean sea-surface temperature, monthly meath&n-Oscillation Index, mixed-
layer-depth, wind-speed, and current strength, Vaitth east-west and north-south
components, current speed and current direction.

4) Vessel Cooperative/Competitive Effects — these cedfeattempt to account for the
influence of vessels cooperating or competing withi similar area of the fishery.
Variables include the number of vessels within sdrdegree square/day) and the number
of vessels within the same 1-degree square/month.

To allow flexibility in the nature of the fitted legionship and to avoid spurious results which
can be associated with a lack of data at the tdifitted splines (for example, if one uses
GAMs), most variables were fitted as categoricalaldes with a given range of values for
each variable being associated with a discretegoagge.g. the start times were categorized
into six 4-hourly intervals of time, c.f. Table %.Dnly moon-phase was fitted as a continuous
variable. Some of the environmental / oceanograpdriables were normalized using the mean
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and standard deviation of the values across &l oleluded in the analysis [i.e. z=(x-pl)/
then categorized into one of the six categoriesedédipg on whether the value of the
normalized variable |z| was less than or greatar #+-1.0, -0.43, 0, 0.43 or 1.0. (Note, for the
two current variables the transformation used wagdd to z=x6 in order to preserve the
directional relationship between z and the corradpa current component.)

5.3.2 Abundance Index

The results from fitting the above two models aseduto calculate the standardized indgx,
in each year, quarter and area strata:

Syearqtr,area =S, ,, = ps(yeamqtrarea) 1 (yeamtr,area

The expected value of the standardised valuestbfiaandug in each year, quarter and area
can be found by selecting a standardising referéaad for each of the fitted explanatory
effects. In practice that categorical level for efhthe related paramet@ris zero is selected
(for SAS this corresponds to the last level of datdd effect). An annual index of abundance
I(year), is then determined by first calculating the aneaghted sum of the standardized index
across alNA areas and then taking the average acro$$@#4 quarters as follows:

A | Sizee.

I (year) = Z ——ea Z ps (year,qtr, area)* 1 (year,qtr, area)
area=1 NQ gtr=1

whereSizereais the spatial size of the individual areas (aasuesd by the number of 1-degree

squares in each area).

Given the above equation there is a need to betaloiglculate a standardized CPUE for each
combination of the year, quarter and area strataded in the standardizing model. While this

is usually achieved for models without interactterms, when interactions are included the
model may not provide an estimate of the standaddPUE for all strata. In those instances
where strata remain unobserved, then there wil beed to impute a value of the standardized
CPUE for these strata. While various methods haen Isuggested for imputing such values
(Walters 2003; Campbell 2004; Carruthetsal. 2011; Campbell 2015), where this occurred

the standardised CPUE value for each missing stratas taken from the value estimated for

this stratum based on fitting the simpler standzndi Model 1.

Finally, the annual index for all years is scaledtsat the mean of the annual index over the
entire time-series was equal to 1.

5.3.3 Selection of Core-Catch Area for each species

Ideally, one would like to construct an annual atance index based on the total size of the
resource available to the fishery. This can bengefias the resource to be found within the
total area fished by the fishery. However, the dgiag spatial extent of the ETBF (c.f. Figure
5.1) creates a number of problems for the calaratf annual abundance indices. For
example, since 1997 the spatial extent of the fishas ranged between 126 (in 2011 and
2013) and 264 (in 2003) one-degree squares. Alffereht sets of squares are fished each
year, and of the total of 387 distinct squareseiisim the ETBF since 1997, less than one-fifth
(68) have been fished in all years between 19972848. Furthermore, in the past some of the
highest catch rates of Swordfish have been achievie off-shore areas of the ETBF east of
16C°E. However, in recent years there has been littlodishing in this region. As such, it is
not possible to estimate the valuepetindus in these areas and include them in the annual
abundance index defined above.
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Figure 5.1: Total number of 1-degree squares fishegach year in the ETBF and the corresponding
number of squares in which each of the main targetpecies were caught.
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So that changes in the index are due to changés iabundance of available fish and not due
to changes in the spatial extent, there is a neeédfine some core spatial region of the ETBF

that remains constant over the assessment pertbdwan which an abundance index for each

species can be calculated each year and compafederices about changes in abundance
based on changes in the standardised CPUE widftirer be limited to the size of the resource

available within this core region (and not the vehpbpulation of stock).

In order to identify a core region for each spe@wsr which the abundance index can be
calculated, and taking into account the need feahsuregion to generally coincide with the
areas of the fishery with continuous history ofrgefished, the following approach was

followed:

1) The number of years that each 1-degree squahe & TBF had been fished over the
period of interest (N-years) was calculated.

2)  The percentage of the total catch in each ydé@chwvas caught in those squares that
had been fished in all N-years was calculatechif percentage exceeded 90% in all
years then the core area for this species was takamthe union of all these 1-degree
squares.

3) If the percentages calculated in the previoap stere not all greater than 90% then
the percentage of the total catch in each yearhtangll squares fished for N-1 or
more years was calculated. Again, if these pergestaxceeded 90% in all years then
the core area for this species was taken to bertioa of all these 1-degree squares.

4)  This step-by-step analysis was continued umélgercentage of the total catch taken

in all 1-degee squares which has been fished st (@gears (where<N) exceeded
90% in each year. The core area was then takea thebunion of all these 1-degree
squares.

The application of this approach to identifying ttuee area for each of the five principal target
species in the ETBF is described in Campbell (2012)
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5.3.4 Determination of GLM Areas

Having selected a core region for each species région is then sub-divided into a number
of sub-regions, or areas, (usually 6 or 7) to sas/@and test for) Area-effects within the GLM.
For each species these areas were selected agsollo

1) The nominal CPUE (defined as the sum of catchdadetivby the sum of effort) within
each 1-degree square within the core region waslled¢d for each year (but only
where the number of fishing operations was 5 orendrhe mean of these nominal
CPUEs was there calculated over all years and igtghaition of these mean CPUEs
for each 1-degree square was mapped.

2) The core region was then subdivided into 6 or Tialhacoherent and cohesive areas
by grouping together 1-degree squares having SirGIRUE. These areas, which are
used as categoricélrea effects in the GLM, are taken as being represemetdand
therefore explanatory) of differences in the dgnsitthe species of interest across the
core fishery, possibly due to differences in habpeeferences. While alternative
approaches can be adopted for identifyitrga effects, such as using the distribution
of structural habitat features across the fishing, approach makes more direct use of
the spatial distribution of observed CPUE to irdatterns in the spatial distribution of
the resource. It also overcomes the limitationgigh constructingirea effects simply
based on blocks of latitude and longitude, astsnoflone.

Again, the application of this approach to identifythese sub-regions for each of the five
principal target species in the ETBF is descrite@ampbell (2012).

5.4 Clustering catch as a proxy for targeting

It is often assumed that in a multispecies fishiigt fishes have some ability to target
individual species (or mix of species) through gpdand temporal) targeting and by changing
the manner in which the fishing gear is deployeat. &xample, there is some evidence based
on archival tagging that different pelagic spe¢sgsch as tunas and billfish) inhabit different
depth strata, which may vary both diurnally andsseally (Gunret al. 2005; Evans 2010;
Evanset al. 2011). As such, in a pelagic longline fishery iiedent mix of species can
potentially be targeted by deploying the fishingigat different specified depths. Evidence for
such targeting in the ETBF will be explored in datathe next chapter.

Unlike single species fisheries where all effordii®cted at the target species, in multispecies
fisheries the effort can potentially be targeteddédfierent species (or a difference mix of
species), i.e. the main species targeted by thanfggear may change. Where this occurs, the
fishing effort needs to be adjusted so that thietéive" effort directed at any specific species
of interest can be ascertained. If this is not wadten correctly then the resulting index of
resource abundance is likely to be biased andiabtel When there is a relationship between
the targeting of different species and the mannexhich the fishing gear is deployed, and
where information is available for each fishing @®n on the how the fishing gear is
deployed, then it is desirable to include this infation in the methods used to standardise the
related CPUE. However, where such information isawailable, other methods need to be
used to segregate dissimilar types of fishing dpmra. it is possible that the composition of
the catch will act as a proxy for targeting behavid-or example, with multispecies trawl
fisheries operations are often segregated accotditige most abundant species in the catch.
Alternately, cluster analysis can be used to caisgdishing operations by the similarity in

30



Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

catch composition (Rogers and Pikitch 1992). Imalar manner, cluster analysis can be used
to classify longline sets in relation to the spsa@emposition of the catches.

We follow the method of Het al (1997), who used cluster analysis to group thieeeset of
fishing operations for the Hawaiian longline fispanto groups of different fishing strategies
based on the species composition of the catch.IM&rate this approach using the data set
consisting of catch and effort data for 111,600vimial longline sets in the ETBF between
2000 and 2013. Although information on up to tweimglividual species is included in the
catch for each set, in this initial exploratory lgses we limit the catch to the following five
species: Yellowfin Tuna (YFT), Bigeye Tuna (BET)pAcore Tuna (ALB), Southern Bluefin
Tuna (SBT) and Broadbill Swordfish (SWO). (Noteg ttatch was taken as a sum of retained
and discarded catches for each of these species.).

Records were deleted if the total catch of these $pecies was zero leaving 108,650 records
to be included in the analysis. Catch compositiondach set was then calculated as the
proportion of each species to the total catch & #et. Data were arcsin-square-root

transformed before analysis to normalise theiritistion (Snedecor and Cochran 1980). A

hierarchical cluster analysis (known as Ydard method, Ward 1963) was then applied to the
108,650 records. The choice of the number of aastas guided by the number of clusters

identified using various statistical metrics (CuBliltistering Criterion CCC, Pseudo-F), but to

some extent was largely subjective. All analysesewmdertaken using the SAS CLUSTER

Procedure (SAS 1999).

Two sets of analyses were undertaken: (a) for eachth separately, and (b) for all data
combined. The monthly analyses explore the podyililat, due to changes in the prevailing
oceanographic conditions, the associations betwpeaies available to the longline gear can
change seasonally. The evidence for this is mdhg éxplored in Section 6.3. Based on an
inspection of the Pseudo-F clustering criteriondach month (c.frigure 5.2) the number of
clusters for each month was set to be four.

Figure 5.2: Pseudo-F criteria for identifying numbe of clusters. Results shown for each month.

Pseudo-F Clusting Criterion (Scaled)

Scaled Pseufo_F

Number of Clusters

Feb Mar Apr =——May Jun =——jul =——Aug =——Sep ==—=—=Oct ====Nov ====Dec

Pictorial representation of the four clusters faclke month based on plots of the first two
canonical variables are shown in Figure 5.3a-l,leviilustrative dendograms of cluster
associations for the four months (January, Febrddoyember and December) are shown in
Figure 5.4a-d. For most months these results glegplay a partitioning of the data in four
semi-distinct clusters, indicating clear structimréhe species composition of the catches. This
structure may, or may not, be related to partictaegeting strategies adopted by fishers.
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Figure 5.3: Pictorial representation of monthly clisters based on plots of the first two canonical
variables. (NB, the lines of points are assumed b® representative of the zero catches in the data.)
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Figure 5.3: (cont'd). Pictorial representation of nonthly clusters based on first two canonical axes.
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Figure 5.4: Dendograms of cluster associations. Réts are shown for the following four months:
(a) January, (b) February, (c) November and (d) Demmber.

‘a) January

}

33

c) February




Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

Table 5.2: Catch compaosition of the four clusters &ised on the cluster analysis for each month.
The last column titled Target indicates the final &rgeting type (1-7) based on the final cluster
analysis of the 48 clusters shown in the Table. (N&5 = Number of fishing operations.)

OBS MONTH [ CLUSTER| NOPS YFT BET ALB SBT SWO TARGET
1 1 1 557 0.00 0.00 0.00 0.00 100.00 2
2 1 2 3390 19.78 15.50 7.25 0.00 57.47 4
3 1 3 2917 82.09 6.21 6.73 0.00 4.97 1
4 1 4 924 16.21 6.63 72.23 0.43 4.50 3
5 2 1 2327 7.32 11.21 3.22 0.00 78.25 2
6 2 2 3159 83.22 3.22 5.66 0.00 7.90 1
7 2 3 2079 27.78 29.38 13.70 0.03 29.11 6
8 2 4 613 17.06 12.40 70.00 0.00 0.54 3
9 3 1 2036 11.20 7.85 7.19 0.01 73.75 2
10 3 2 3057 82.28 6.58 6.76 0.00 4.38 1
11 3 3 2790 23.02 36.72 12.90 0.15 27.21 6
12 3 4 1129 24.04 8.18 61.62 0.00 6.16 3
13 4 1 1910 88.41 1.69 6.81 0.02 3.07 1
14 4 2 1825 16.18 15.89 8.36 0.00 59.56 4
15 4 3 1846 16.92 8.67 65.33 0.03 9.05 3
16 4 4 4121 31.37 39.59 17.22 0.10 11.71 6
17 5 1 1401 7.90 8.72 80.96 0.20 2.22 3
18 5 2 2407 75.69 6.25 14.29 0.04 3.72 1
19 5 3 1843 24.29 42.13 0.93 0.03 32.62 6
20 5 4 4581 16.31 30.52 37.41 0.18 15.58 7
21 6 1 1044 30.24 53.01 2.36 0.21 14.18 6
22 6 2 2572 60.39 8.65 27.50 0.36 3.11 5
23 6 3 3483 10.58 24.03 38.90 3.62 22.87 7
24 6 4 2497 7.34 8.04 79.65 1.21 3.76 3
25 7 1 2445 72.00 4.15 20.64 0.38 2.82 1
26 7 2 976 16.40 12.27 18.29 1.09 51.96 4
27 7 3 4910 10.26 10.01 68.53 4.16 7.04 3
28 7 4 1737 23.81 44.92 24.58 0.11 6.58 6
29 8 1 1540 95.87 0.18 3.06 0.01 0.87 1
30 8 2 1407 14.23 33.43 27.86 0.13 24.34 7
31 8 3 2745 57.33 12.04 22.30 0.15 8.17 5
32 8 4 4347 13.14 6.92 64.94 2.62 12.38 3
33 9 1 3799 18.87 9.10 56.79 0.92 14.32 3
34 9 2 1503 97.84 0.77 0.72 0.00 0.67 1
35 9 3 1418 11.63 11.04 18.71 0.02 58.61 4
36 9 4 2923 60.43 13.27 16.94 0.03 9.33 5
37 10 1 4003 35.01 12.48 28.38 0.28 23.85 5
38 10 2 2219 91.14 5.88 2.59 0.01 0.38 1
39 10 3 1993 9.89 6.26 7.60 0.01 76.23 2
40 10 4 765 8.81 2.17 88.04 0.24 0.74 3
41 11 1 1599 98.43 0.88 0.69 0.00 0.00 1
42 11 2 3500 48.59 14.52 14.50 0.56 21.83 5
43 11 3 2294 9.25 5.69 7.60 0.00 77.46 2
44 11 4 938 19.07 2.18 75.71 0.60 2.44 3
45 12 1 1930 9.47 9.67 4.11 0.01 76.74 2
46 12 2 2850 81.78 5.81 3.71 0.03 8.68 1
47 12 3 1331 26.02 23.90 15.22 3.68 31.18 6
48 12 4 970 23.85 6.90 68.21 0.18 0.86 3

34



Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

The catch composition of the four clusters basettherluster analysis for each month is shown
in Table 5.2. As it is likely that similar clustigppes may occur across the different months (e.g.
cluster-type 4 is similar for January and Februaay3econd cluster analysis was undertaken
where the 48 clusters shown in the Table 5.2 wiertered based on the species composition
of each cluster. Again, th&ard method was used. Based on the clustering criséoa/n in
Figure 5.5, the final number of cluster types selédor this second stage of the analysis was
taken to be seven. The dendogram of cluster asgo@aased on analysis of the 48 monthly
clusters is shown in Figure 5.6a while the assediatpresentation of the seven cluster types
based on plots of the first two canonical varialdeshown in Figure 5.6b. Again, these results
appear to indicate structuring of the data intauatbseven cluster-types across all months.

Figure 5.5: Clustering criteria used to identify the appropriate final number of clusters based on
clustering the 48 monthly cluster types identifiedn the first stage of the analysis.
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Figure 5.6: (a) Dendogram of cluster associationsased on analysis of the 48 monthly clusters,
and (b) representation of the seven cluster typesibed on plots of the first two canonical variables
for the 48 monthly clusters.
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Figure 5.7: Distribution of the 48 monthly clustertypes identified in stage 1 of the analysis across

the seven cluster types identified in stage two tfe analysis.
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Figure 5.9: Distribution of gear-settings across th seven cluster type identified in the 2-stage mdny analysis.
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The distribution of the 48 monthly cluster typesentfied in stage 1 of the analysis across the
seven cluster types identified in stage two ofdhalysis are shown in Figure 5.7. Based on
the catch composition shown for each cluster typis iseen that Cluster-type 1 can be
associated with targeting Yellowfin Tuna, Clustea be associated with targeting Swordfish,
Cluster 3 can be associated with targeting Albadoea and Cluster 6 can be associated with
targeting Bigeye Tuna. The other three clustershgbeids of these initial four. Interestingly,
the months that the Swordfish cluster-type occarsesponds to the months when this species
is most available (c.f. Figure A.1, Appendix A), ¥a similar result is also seen for the Bigeye
Tuna cluster-type.

Finally, the catch composition of the seven clusgpes identified in the 48 monthly clusters
(shown in Table 5.3a, Figure 5.10a) can be compartdthe catch composition of the seven
cluster-types identified directly by a single arsayof all 108,650 records (shown in Table
5.3b, Figure 5.10b). A number of differences casden between these two results. First, while

Table 5.3: Composition of cluster types based on)Yaonthly analyses combined into 7 clusters,
and (b) single analysis of all data into 7 clusterdNote, the clusters in each sub-table are ordered
by decreasing percentage of Yellowfin Tuna. (NOPS Number of fishing operations.)

(a) CLUSTER | NOPS YFT BET ALB SBT SwWo Total
1 25,606 84.68 4.27 7.00 0.05 400 | 100
5 15,743 50.79 12.38 21.97 0.29 1458 | 100
6 14,945 27.00 38.11 13.56 0.42 2091 [ 100
4 7,609 16.96 14.35 11.07 0.14 57.48 [ 100
3 24,139 14.09 8.10 68.40 1.66 7.75 t 100
7 9,471 13.90 28.57 36.54 1.44 19.56 | 100
2 11,137 8.89 7.75 5.63 0.01 7773 [ 100
108,650
(b) CLUSTER| NOPS YFT BET ALB SBT SwWo Total
7 10,670 100.00 0.00 0.00 0.00 0.00 100
6 17,913 74.91 13.06 3.13 0.05 8.91 100
2 13,458 51.45 4.99 40.70 0.01 2.89 100
1 11,802 23.29 11.14 22.50 4.16 38.96 100
4 13,969 17.00 50.99 12.91 0.03 19.08 100
3 25,636 11.34 12.26 67.34 0.63 8.49 100
5 15,202 11.07 5.06 6.37 0.00 77.55 100
108,650

Figure 5.10: Catch composition by seven clusters bad on (a) the analysis by month, and (b) the
single analysis of all sets.

(a) Catch by Cluster Type - Monthly Analysis (b) Catch by Cluster Type - Single Analysis
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the catch compositions of certain cluster-typessarelar for each result (e.g. cluster-type 2
for the monthly analysis and cluster-type 5 for sivggle analysis can both be associated with
Swordfish dominated catches), there are substadiff@rences in the composition of other
cluster-types. For example, for the dominant Yeflovcluster-type based on the monthly
analysis the average composition of the catch % 8®llowfin Tuna, while for the dominant
Yellowfin cluster-type based on the combined analyse catch is 100% Yellowfin Tuna.
Second, the distribution of fishing operations asreach of the seven cluster-types is also
substantially different. While this difference ibviously associated with the dissimilarity in
the associated catch compositions, even for tHosgec-types that are similar between the two
results (e.g. the two dominant Swordfish clustémg)number of sets associated with each is
quite different (11,137 versus 15,202). As expldiearlier, the monthly-based analysis was
undertaken to take into account possible changepeanies associations between months that
may not be adequately accounted for by a singlysisacross all months. While differences
in the results of the two approaches have beerdpateto which of the two approaches may
be better in identifying targeting behaviour wi# bxplored in the simulation testing reported
later in this report.

5.5 Bayesian spatial and spatial-temporal models wi  th INLA

Pelagic longline fishing is a multispecies fishesyere many species can be caught in one gear
deployment. However, catch rate for each specievagy over time and space. Some species
are very common in the catch, while other specshe rarely caught and the catch rate may
be very low. Traditionally, catch-per-unit-effo@PUE) standardisation is carried out species
by species (Campbell 2004, 2015; Maunder and Ra6%)Xo0 the level of uncertainty can vary
significantly across species due to varying qugatitd quality of data.

We believe that if several species are capturéieisame gear deployments (shots), there must
be some similarities among these species, e.gibdison, behaviour, abundance. This raises
the question as to whether there are advantagestiel multispecies together in a single
model? For example, it is well know that modellimyltiple groups of subjects under a
Bayesian hierarchical structure allows sharing Bodowing of information across these
groups (Gelman and Pardoe 2006; Zbbal.2008).

Recently, Bayesian modelling has been used inesisigécies CPUE standardisat{@ao et

al. 2011; Zhang and Holmes 2009) and such an applwsckeveral advantages. Through the
specification of prior distributions, the Bayesiamethod allows the formal inclusion of
information from previous studies, expert opinionsimilar studies in other occasions. From
the Bayesian posterior distribution we can easbyam the probability of a parameter in
relation to a certain threshold. Furthermore, thgd®ian approach allows easy construction of
a hierarchical structure on the data and parametedsenables borrowing strength and sharing
information across multiple groups of subjects.h8ligh the Bayesian approach is very
flexible, it has a major drawback -- slow computspged because it generally uses the Markov
Chain Monte Carlo (MCMC) technique. With typicathany thousands of data points, MCMC
can be extremely slow and has been rarely use®WEstandardisation. For example, in this
project we tested Bayesian multispecies modellsiggaWinBUGS. It took several hours to
reach convergence for a fraction of the ETBF date time for whole data-set could be
impracticable.
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Fishery catch data are often characterised by @atpad temporal structure that should be
taken into account in the modelling process. Olslydish abundance and availability change
continuously over space and time. It is ideal wonporate temporal-spatial information into
the model as continuously connected covariates. édew existing CPUE standardisation
methods rarely incorporate spatial and temporacefas continuous covariates, but merely
include them as discrete categorical variables.

Recently, a new tool, Integrated Nested Laplaceréyimation (INLA), has been developed
for Bayesian inference (Ruwet al. 2009). This powerful tool substitutes MCMC simubais
with accurate, deterministic approximations to post marginal distributions. INLA
possesses some main advantages over MCMC technithesnost outstanding benefit is its
computational strength. INLA can produce resultsiyitanes faster than MCMC. The second
advantage is that INLA allows greater automatiothefinference process, particularly useful
for spatial or temporal models (Beguwinal. 2012; Blangiardet al 2013; Mufiozt al 2013).

In this Section we investigate the feasibility gling INLA for CPUE standardisation. We
compared single species and multispecies CPUE mhmgkelusing two approaches: (i) a
generalized linear model using maximum likelihoatireation (MLE), and (ii) a Bayesian
estimation technique using INLA.

5.5.1 Model Descriptions
Base GLM model

We tested and compared alternative models to explotential effect of covariate selections,
model structure, and spatial and temporal confiuma. For each species, the base model is a
negative binomial generalized linear model (GLM}he following form:

n=9() =5 +Z:3mxmi

where meary; is the expected catch on sednd is linked to the linear predictgr, & is
intercept,Gm is coefficient for the explanatory variablg, which is considered a fixed effect.
Specifically, we included the following explanatasgriables:

n =5 +:&(QYiQ| +IBAQAQ +B.peHPE+ ST + 4 logh) (Model 1)

WhereY is year,Q is quarterA is area (region}iPF is hook per floatT is the start-time of
the set, andh is the number of hooks. All predictors, excéptare treated as categorical
variables. Catclti is modelled with a negative-binomial distributiddote that the spatial
predictorA is simply a categorical variable without any sglatontinuity and relationship
among them, whether between neighbouring areastand areas.

Geostatistical models

Logbook records from a pelagic longline fishery arade up of data measured at known
locations, either at defined areas (regions) auld and longitude coordinates. The observed
catch depends on a range of unobserved spatiaieamabral variables such as fish density,
movement, availability, schooling behaviour, fighgear efficiency, etc. Geostatistical models
are ideal approaches for modelling fisheries da (Thorsoret al 2015). In spatial statistics,
geostatistical models can incorporate spatial dégecy by using spatially-structured random-
effect models.
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There are two major types of spatial data. The ére is the area data, where shot-by-shot
catch is a random aggregate value over an areadefthed boundaries within a management
jurisdiction (e.g. ETBF). The area can be eitheagular or regular shapes. The second type of
data is point-referenced geostatistical data, whatitude and longitude coordinates are
random locations and the spatial index of the looatcan vary continuously in the fixed
management jurisdiction. We focus on the point d&tzause they are real locations, whereas
dividing a management jurisdiction into areas carsiibjective.

We explored four geostatistical models. The fingi models (referred to as Model 2 and Model
3 hereafter as Model 1 is the GLM model descriliEava) are spatial models that only consider
spatial effects, but not continuous spatial-temiporteractions. In contrast, the other two

models, referred to as Model 4 and Model 5 hereadte spatio-temporal models.

In the spatial models, spatial catch dats) are the realizations of a spatial process
characterized by a spatial indeywhich varies continuously in the fixed dom&n(= ETBF
jurisdiction). The vector of catches is assumetlow a multivariate normal distribution with
meanu = [(S1),..., 4S)] and spatially structured covariance ma¥iSuch a multidimensional
spatial process is called Gaussian Markov Randahl$-(GMRF) (Blangiardo and Cameletti
2015). The GMRF model can be expressed as:

n =5 +Z:8mxmi +Z fi(y) + f(9) +¢

The first two terms are similar to a GLM, whete&an be variables such as gear types and
environmental variables. Th&{)}'s are nonlinear smooth effects of the furtbevariatesy.
These can take many different forms, including im@dr effects of continuous covariates, time
trends, seasonal effects, random intercepts oes|apoup specific random effects, és) is
spatially structured effects. These two terms heerhajor difference between a GLM and
Gaussian random field models. The finas unstructured random effects.

To compare with the base GLM Model (1), we usefttiewing two GMRF spatial models
11 =5+ L Q +BpeHPE+ BT + 4 10g6) + f,(9) + & (Model 2)

7= B+ BoXQ + BiAQ + BupeHPF+ BT, +5,1090) + £,(9+£ (Model 3)

Model 2 treats spatial effects as a GMRF. The difiee between Models 2 and 3 is the fixed
effect termBagAiQi, which is the same as in GLM Model 1. We consitiet the latent fields
represent fish distribution in the real-world, wiatthey are caught in a given fishing location
or uncaught (unobserved). Thus, we are not buildmglels solely for discretely observed
data, but for approximations of entire processdme@ on continuous spatial domains. The
GMRF models are implemented in INLA. INLA handlemtinuous Gaussian random fields
by stochastic partial differential equations (SPREsd writes down explicit links between
the parameters of each SPDE and the elements @iore matrices for weights in a discrete
basis function representation (Lindgren and Rue420The commonly used SPDE for
Gaussian Markov random field model is the statipmdatern function:

(k? = N)¥?(tx) = W

where X is the latent spatial locatiah,is the Laplaciank is the spatial scale parameter,
controls the smoothness of the realisatiartgntrols the variance, and W is a Gaussian spatial
white noise process. The Matern covariance is:
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0.2
T(v)2v—1

wherel is the gamma function,KMs the modified Bessel function of the second kanttlv is
the smoothness parameterQ).

Cov[xl-,xj] = (e lhxj —x; VK, x — x; DY

Spatio-temporal models

The second geostatistical model is a spatial-teatipoodel that takes into account of both
continuous dependency of spatial pattern and teahp@nd. The base GLM (Model 1) and

spatial Models (2, 3) treat temporal predictorsafyand quarter) as discrete categorical
variables. It is likely that the latent field osh distribution and movement exhibits temporal
correlation from one time step to the next. Modejlthe spatial pattern of fish distribution

alone cannot explain their temporal variation, Whig equally important for marine animals.

The number of fish or biomass in a given locatisrcontingent on the number of fish or

biomass in previous time steps at that location amdounding locations. Hence, the spatial
models are extended to the spatio-temporal motialsinclude a time dimension, with the

catch data(s, t) = {c(s, t), (s, t) € D}, wheret is a time point. The spatio-temporal covariance
function is given by Cov|(s, tm), ¢(S;, tn)] = C(Cim, Cn). Similar to the spatial model, the general
representation of spatio-temporal model is:

,7i = :30 +Zﬁmxmi +Z fl (yh ) + fst(S’t) +gi

To build temporal process into a GMRF model, weaisentinuous time measurement at year-
guarter scale. There are alternative presentatibsizace-time interactions. As an example, we
adopt Kronecker product models where both spacetiamel are treated continuously. The
Matern model above is used in space and a firgradtoregressive model AR(1) is used in
time (i.e., the current state is assumed to betafieby the state one time step earlier).

7= B+ BNQ +BupcHPE+ BT + 4 logh) + f.(sD) +& (Model 4

N =6+ Bio¥Q + BuoAQ + BipeHPE + BT + S logh ) + T (S1) +¢& (Model 5)

Compared to Models 2 and 3, the difference herthesGMRF termfy(s, t). Model 5 is
considered a “full model” as it uses both discratel continuous spatial and temporal
covariates.

The Bayesian Models 2 to 5 all involve a discreteaciate Q (quarter) as fixed effect. Since
Models 4 and 5 treat year-quarter as a continuaagdam variable, a simple spatio-temporal
model can be

n =5+ LBY +BpHPE+ BT + 4 logh) + f.(st) +¢ (Model 6)

This model treats all spatial and temporal varisitzde random effects except year which is
needed to derive annual abundance index.

5.5.2 Implementing Gaussian Markov random field mod| with INLA
Spatial model

Preparing this GMRF model requires much more effaah a GLM. The first step to model a
latent GMRF is to build a spatial “mesh” basedatitude and longitude coordination from all
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Figure 5.11: Building mesh for Gaussian Markov ran@m field model in ETBF. The mesh is based
on unique coordinates in the simulated data for alyear (between 2000 and 2014). The numbers
in red are areas used in GLM.
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shots in the data (c.f. Figure 5.11). The triangadlanesh will provide a base for the GMRF
models to build spatial representations. For examplR codes (Version R 3.3.2) we define
the ETBF boundary as:

>prdomain <- inla.nonconvex.hull(cbind(coord.unig®l, coord.unig$lat), -0.03, -0.05,
resolution = ¢(100,100))

where coord.unig$lon and coord.unig$lat are unique longitude and latitude locations
(respectively) where gear deployments have beererebd in all years included in the
assessment. The mesh is produced by:

>prmesh <- inla.mesh.2d(boundary=prdomain, max.edt)e

We then compute the sparse weight matrices needudj between the internal representation
of weights for basis functions and the values efrsulting functions and fields by:

>Al <- inla.spde.make.A(prmesh, loc=coord1l)
>spdel <- inla.spde2.matern(prmesh, alpha=2)

>mesh.index <- inla.spde.make.index(name="fieldpae=spdel$n.spde)
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The input data are prepared as:

> stk.dat <- inla.stack(data = list(catch = catchp = list(Al,1), tag = "est", effects =
list(c(mesh.index1, list(Intercept = 0)), list(yeardat$year, area = dat[,col.area]i]], gtr =
dat$qtr, settime = dat$settime, hpdat$hpf, hooks = dat$hooks)))

For the purpose of CPUE standardisation, we neegstimate expected catch not only in
actually fished locations but also in locationst tvare not fished in a particular year. Hence,
prediction of expected catch in all locations iastoucted:

>stk.pred = inla.stack(data = list(catch = NA), A kst(A.pred, 1), tag = 'pred’, Effects =
list(c(mesh.index1, list(Intercept = 0)), list(yeax pred.dat$year, qtr = 1, area =
pred.dat$area, settime = rep(1, npred), hpf = reptpred), hooks = rep(mean(dat$hooks),
npred)

Both input data and prediction are combined for elade:
>stk.all = inla.stack(stk.dat, stk.pred)
The GMRF Model (2) is specified as

> catch ~ factor(year) * factor(qtr) + factor(settie) + factor(hpf) + log(hooks) + f(field,
model=spdel)

Spatiol-temporal interaction model
To implement the spatio-temporal models in INLAg tbrmulation of Model 4 is coded as:

>catch ~
1+Intercept+factor(year)*factor(qtr)+factor(settimefactor(hpf)+log(hooks)+f(field,
model=spdel, group=field.group, control.group=listodel="ar1"))

The model includes an explicit intercept, as far fipatial Models 2 and 3. The interaction
between spatial field (hamedield” here) and the temporal trend is represented bytehm
“group = field.group and “control.group=list(model="ar1"). The variable field.groug is
composed of temporal covariate at year-quarteeqecal. 60 continuous time steps for a time
series of 15 years). The last ternf(@findicates that at each time step the spatial ilmeatare
linked by thespdemodel object, while the temporal pattern is mazteths an AR(1) process.

For all these alternative models (GLM, spatial, apdtio-temporal models), we assume the
catch per gear set (CPUE) follows a negative biabdistribution.

INLA is a full Bayesian approach and requires sfyewy priors for all parameters. For
intercept and fixed effect variables, priors aratogled by functionscontrol.fixed()and we
use default vague prior Normal(0,%1@or all parameters. For the random effect compoire
the GMRF model, prior is specified for the two paeders in the Matern functior,and «,
with the default Normal(0, 1) set in functiorla.spde2.matern()

5.5.3 lllustrative model evaluation and comparison

Data

The ETBF database contains a large number of shehbt data. There are more than 100
thousand records for each species for the fouryeans 2000 to 2013. Multiplying by the
number of species results in over a million recotdsaddition, the database has a range of
covariates associated with each record. Even thdddiA is deemed fast, running a
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multispecies model that involves random effect temith only a few covariates may take
several hours. For the testing and exploring puepowe used five species selected from the
ETBF data-set with a wide range of catch recoras, (YFT, BET, ALB, SWO, and STM) and
randomly selected 10,000 records from 2000 to 20X8duce the computing time. Finally, as
the severfreaeffects used in the ETBF standardisation are walagsize (c.f. Section 5.3.4),
to derive an overall abundance index we used ahiegignean of the estimated catch in each
location by the area size.

Results from Models 1 to 5 are compared with tloendance indices used to generate the
simulated data (see next Section). Two measuremaeisn relative erroMREv) and mean
absolute relative erroMARBv) for model M, are used

1 U,ya—U
MR — MYA YA
EM nYnA ;ZA UYA
MARE, = 1 ZZUMYA_UYA
N, TR Uya

whereny andna are number of years and areh]s,YAis estimated CPUE by model M in year
Y areaA, andUva is the true known CPUE in ye#rareaA.

5.5.4 Results

INLA produces a range of posterior estimates andseethe mean, including fixed and random
effects. Spatial models that treat spatial infoiomatas random Gaussian fields do not
outperform the generalized linear model that alyeadudes spatial and temporal interactions
(Year*QuarterandQuarter*Areg. However, treating both spatial and temporalalggs as
continuous random effects in the spatio-temporatiet® (Model 4-6) clearly outperforms
GLM and spatial models.

Table 5.4: Comparison of relative error between prdicted abundance index and true index across
6 models and 5 species.

Model ALB BET DOL SWO YFT Abs Mean
0.003 -0.009 -0.027 -0.007 -0.007 0.011
0.007 -0.009 -0.032 -0.010 -0.008 0.013
0.000 -0.010 -0.031 -0.009 -0.008 0.012
0.011 -0.010 0.003 -0.001 -0.005 0.006
0.003 -0.011 0.002 -0.007 -0.004 0.005
0.012 -0.006 -0.004 0.003 -0.008 0.007

OOk WN P

Compared with the true abundance index and basettheomean relative error MRE, the
standardized indices from the spatio-temporal n®@gl5, 6) are less biased than GLM model
(1) and spatial models (2, 3) (Table 5.4). On ayer#he full model 5 is least biased.

Compared with the assumed true abundance indexbaset on the mean absolute relative
error MARE the standardized indices from the spatio-tempbtadlels (4, 5, 6) are more
accurate than the GLM Model (1) and spatial Modéls3) (Figure 5.12, Table 5.5). On
average, the full Model 5 is most accurate (thé foe$ out of 5 species), but the simple spatio-
temporal Model 6 is similar (best for 2 out of fess). Overall, the simple spatio-temporal
Model reduces GLM'$MAREby 20%.
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Figure 5.12: Comparison between GLM Model (1), thdull spatio-temporal Model (5) and the
simple spatio-temporal Model (6).
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Table 5.5: Comparison of absolute relative error bieveen predicted abundance index and true
index across 6 models and 5 species.

Model ALB BET DOL SWO YFT mean
0.303 0.070 0.118 0.079 0.083 0.130
0.277 0.075 0.141 0.104 0.082 0.136
0.305 0.075 0.128 0.097 0.095 0.140
0.236 0.075 0.068 0.132 0.117 0.126
0.267 0.075 0.049 0.072 0.053 0.103
0.194 0.056 0.056 0.112 0.105 0.104

OO0 WNPRE
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Table 5.6: Comparison of absolute relative error beveen predicted abundance index and
observed index across 6 models and 5 species.

Model ALB BET DOL SWO YFT mean

1 0.630 0.184 0.182 0.317 0.159 0.295
2 0.601 0.191 0.192 0.278 0.159 0.284
3 0.615 0.186 0.202 0.282 0.172 0.291
4 0.563 0.195 0.181 0.485 0.066 0.298
5 0.577 0.192 0.164 0.300 0.155 0.278
6 0.531 0.181 0.117 0.480 0.064 0.275

Compared with the observed abundance index andl lmaséhe mean absolute relative error
MARE, the standardized indices from the simple spa&togtoral Model 6 is most accurate (the
best for 4 out of 5 species) (Table 5.6). Modellatigobserved point locations at continuous
temporal scales is one of the advantage of Moddli€o, by treating spatial and temporal
variables as random another advantage is its sigenkstimator, which push extreme values
from sub-groups (e.g. at finer scales of sub-amd month) towards the annual mean.
However, this shrinkage does not reduce inter-dnaagation for the index as Year is
modelled as a fixed effect in Model 6.

5.6 Development of Multispecies Catch and Effort Si  mulators

Simulators are useful for comparing the performanet different methods at estimating
known quantities. However, in complex multispediskeries it can be difficult to understand
the factors that drive the observed dynamics, dholy catch rates. Different methods for
analysing the data may be affected by differertufes of the real world, so simulators should
be flexible to allow investigators to explore anddual the effects of a range of real-world
features. We have therefore developed severatdiftsimulators that address different issues.

Developing a data simulator for testing analytivathods which attempt to recover trends in
the abundance of the species used when generaéirdata is a highly non-trivial task. This is
because any simulator developed for this purposequate easily show bias if the data
structures incorporated into the simulator matehahalytical framework of one (or more) of
the methods to be tested. For example, if one gégrbdata on a spatio-temporal framework
which was the same as the spatio—temporal frameuwlfottke analyser, with additional linear
terms to account for the influence of differentigsettings, then one would be surprised if that
analyser (such as a GLMSs) could not recover the@ddmce trends. In order to help overcome
this problem we have attempted to develop a gedatasimulator which is based on observed
data inputs instead of model-based assumptions.

5.6.1 Empirical-Data Approach
Outline of Approach

Catch rates are known to be influenced by sevabfs other than general abundance and
knowledge of those factors which influence CPUEarheés the statistical analysis known as
effort standardisation. Most analyses make use a@fe@lised Linear Models (GLMs) or
Generalised Additive Models (GAMs) which are welbkvn statistical methods for estimating
the relationship between a dependent variable (GRD& a number of independent variables.
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For standardising longline CPUE a number of vaeaaldre known to influence CPUE and,
where the information is available, the followingriables can be included in such analyses:

* Time stratum (e.g. Year-quarter)

» Spatial stratum (e.g. Area effect)

* Hooks-per-float (HPF)

* Bait-type

* Time of day

» Use of fish attracting devices (e.g.)

» Adoption of alternative fishing gears (e.g. hookdyline material)

» Use of fish finding technologies (e.g. use of aceanperature plots to identify fronts)

In fitting these variables within a GLM (or GAM)amework, the data is used to estimate the
nature of the relationship between each indepengsidble and the dependent variable after
controlling for the effects of the other fitted \ables. This is a generally a purely statistical
exercise as no process model is invoked to corthedivo variables. However, one may use
the results of such analyses to infer the natutkeotinderlying processes that contribute to the
observed relationship.

For example, consider the illustrative GLM restibwn in Figure 5.13, which displays the
relative influence of the number of hooks-per-float CPUE. From this result it is seen that
the CPUE of Yellowfin Tuna is highest when 6 HPE deployed and that CPUE decreases
when a higher HPF is deployed. On the other hdr@dCPUE of Bigeye Tuna is highest when
10 HPF are deployed. In order to understand tlassital result, we need to combine this
result with the knowledge that (all other featuwresstant) the number of hooks-per-float (HPF)
is an indicator of the depths fished by the longlgear, with these depths generally increasing
with the number of HPF (Suzukt al 1977). Hence, the GLM result can be used to ithfatr
the number of Yellowfin Tuna available to the ldnglgear is highest at the depths fished by
those gears set with 6 HPF, whilst the greatestbeunof Bigeye Tuna are found at the
relatively greater depths fished with 10 HPF. Thaatusion that gear fishing deeper in the
water column is more effective in targeting Bigdyea has been confirmed by a number of
studies (Hanamoto 1987; Boggs 1992) and is thaioghe due to a preference by Bigeye Tuna
for cooler 10 to 1%C water (Hollancet al. 1990; Brill 1994). In this manner, one can congbin
the knowledge about the depth distributions of libthhooks deployed by a longline and the
target species to interpret, and understand, thaypstatistical results of the GLM.

Figure 5.13: Hypothetical result of a GLM illustrating the relationship between the number of
hooks-per-float and relative CPUE of both Yellowfinand Bigeye Tuna.
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An alternative to the above statistical approacktémdardising CPUE is to instead use our
knowledge of the distribution of the target speeied the fishing gears more directly. Indeed,
this was the approach developed by Hinton and Nak&f96), who presented a method of
standardising CPUE which combined information angpatial and depth distributions of the
target species (using information on habitat pesfee and mapping of this habitat provided
by oceanographic models) with information on thetds fished by longline hooks. This
method was first applied to Pacific Blue Marlinfdre being applied to Bigeye Tuna in the
WCPO by Hamptort al. (1998). The method was further developed in #réye000’s and
was applied to both Bigeye Tuna and Yellowfin Tumdhin the context of the stock
assessments undertaken for these species withiW@RO (see Langlegt al 2005). The
approach is generally known as the habitat-basswiatdisation (HBS) method.

Basic Equations

A form of the basic equation for applying the habinodel was presented by Hampédral.
(1998). However, as the actual derivation of tlgjgagion was poorly described in that paper,
here we present a more complete description ofdtienale behind the development of the
required equations.

Consider the volume of water fished by the longlpear during a single set. From the catch
equation the number of fish in the cat€h,is related to the total fishing effolE, and the
average fish population density in this volume atev,D as follows:

C=qED (5.6.1)

whereq is a fixed constant of proportionality known ag ttatchability coefficient and is
related to the efficiency of the fishing gear. Frtns equation:

_C__p_aV
CPUE=%=qD="% (5.6.2)

whereN is the number of fish and is the volume of water fished. Without loss of geaity,
we assume this volume is divisible img@depth stratum each of depdhand cross-sectional
areaA and volumeV. LetNk be the number of fish within the depth stratuso that the average
density of fish within this stratum Bk=NW/V. If Ex is the effort (number of hooks) within
stratumk, andgx is the corresponding catchability, then from E&n6.1) the catchCy, within
stratumk is:

N
C, =dE.D, = q,E, —*

\%
If g« is considered to be a constant across all stréttemthe total catch over all stratum is:
Ng C‘ Ng
C=>C, =Y EN, (5.6.3)
k=1 \/ k=1

Finally, if Ex=h«E whereE is the total effort (number of hooks) deployed dmds the
proportion of these hooks within stratimandN«=p«xN whereN is the total number of fish in
all depth stratum angk is the proportion of these fish in stratlmnthen Eqgn. (5.6.3) can be
expressed as follows:

_V~ _9ENS

C —ch _Tzhk Py«
k=1 k=1

When there are multiple species in the catch, #tehdCs of any single species can be
expressed as follows:
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Ny EN M
Cs = chk = qSV > thpsk
k=1 k=1

whereNs is the total number of fish of specem all depth stratum angkis the proportion of
these fish in straturk.

Finally, where the density of fisD{=Ns/V) varies both spatially and temporally, and assgmin
that the depth profiles of fish can vary hourly émcount for diurnal behaviour) but does not
vary spatially (possibly unrealistic but simplifieke data required for the multispecies
simulator), the last expression can be generafiedtat the catclCgi) of species by longline
seti within spatial area, monthmand deployed at time-of day (houigan be expressed as:

Csi = qs Ei Dsamz hik psmtk (564)
k=1

where:E;is the total number of hooks deployed by longliet,s

Dsamis the density of specieswithin areaa during monthm,

hik is the proportion of hooks for longline setithin depth straturk, and

psmikiS the proportion of the fish of speceduring monthm and hout within in depth

stratumk.
Note, Eqn. (5.6.4) assumes that the depth profitaefish (and the hooks) does not change
during the duration of the longline set. In praetithe catch will be dependent upon an
integration of these two profiles over the duratdithe set, which could be as long as 6 to 12
hours, but again this assumption simplifies the daulator. Indeed, the simulator assumes
that the catch is dependent on the depth profiteefish at the start time of the longline set.

Data Inputs

In order to use the above equations, informatiore@ch of the inputs required in the above
equation was ascertained as follows:

a) Hook depth profileshik. Direct observations of hook depths using timptdeecorders
(TDRs) were used to estimate the proportion of tspent within pre-specified depth
stratum by all hooks within various hooks-per-flodPF) configurations. These
observations were based on the 2050 individual TrB€brdings obtained between
August 2004 and May 2007 from vessels deployinglioes in the ETBF during a
previous FRDC funded research projdaetermination of effective longline effort in the
Eastern Tuna and Billfish FisheryCampbell and Young 2010). Time-at-depth profiles
for each HPF configuration observed were binneal 2@m depth strata and the profiles
for the following eight HPF configurations usedi® data simulation were collated:

) HPF=6 (combination of observed HPF=6 and HPF=7)

i) HPF=8 (combination of observed HPF=8 and HPF=9)

i) HPF=10 (combination of observed HPF=10 and HPF=11)
Iv) HPF=12 (combination of observed HPF=12 and HPF=13)
V) HPF=15 (combination of observed HPF=14 and HPF=15)
vi) HPF=20

Vii) HPF=25

viii) HPF=30

The observed profiles for each of these HPF corditions are shown in Figure 5.14. A
LOWESS (O cally WEightedScatterplotSmoothing) function was fitted to each profile
to help smooth the observed profiles (again showirigure 5.14 for two different

smoothing parameters). Finally, the profiles sel@dor use in the multispecies data
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simulator were the observed profiles for HPF=6n8 &0 and the LOWESS curves for

HPF=12, 15, 20, 25 and 30 and are shown in Figure. 5
b) Fish depth profilespsmi Direct observations of hourly depth profiles four species
(YFT, BET, SBT and SWO) were obtained from architeas deployed on fish caught
and tagged within the ETBF. These observations Wwased on tag deployments made
during several projects (Gumt al 2005; Evans 2010; Evaes al 2011, Bassoet al
2012). A hybrid profile, based on re-configuratiohthe profile for Yellowfin Tuna
towards deeper depths, was also constructed im togwovide a fifth profile for use in
the data simulator. A comparison of indicator dgpiofiles for each of the five species
used in the multispecies data simulator is showFigare 5.16 while an example of the
mean observed hourly depth profile (binned by 2@mta) for Yellowfin Tuna during
both January and August is shown in Figure 5.17.

Figure 5.14: Observed hook-depth profiles for eightdifferent hooks-per-float longline

configurations. Fitted LOWESS curves are also showfor two different smoothing parameters.
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Figure 5.15: Hook-depth profiles used in the multigecies data simulator.
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Figure 5.16: Mean observed depth profiles by montfor YFT, BET, SBT and SWO based on data
collected from archival tags. A fifth hybrid profil e used in the multispecies data simulator is also
shown.
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Figure 5.17: Hourly mean observed depth profiles foYellowfin Tuna during (a) January and (b)
August.

40%

35%

\
\
30%

25%
E 20%
g

15%
10%
5%

0%

c)

d)

(a) January

(b) August

@
3
®

&8
®

= as%
g

- - %m " -
<20 <40 <60 <80 <100 <120 <140 <160 <180 <200 <220 <240 <260 <280 <300 <320 >320 === 10pm <20 <40 <60 <80 <100 <120 <140 <160 <180 <200 <220 <240 <260 <280 <300 <320 >320 === 10pm
1

Depth === ltpm Depth

Fish density distribution®sam As with the depth profiles adopted above, eddhese
are based om-situ observations, the spatial-temporal density sugfdceeach species
were modelled on the monthly distributions of noahi@PUE observed in the ETBF.
The spatial scale used was a 1x1-degree squartharighery (for the purposes of the
simulator) was limited to the 139 squares thatlyeeh fished for a least 9 of the 15 years
between 2000 and 2014. The monthly distributionsnofminal CPUE were then
smoothed using the Excel based spatial smootheul&e&geData3D (setting the
smoother stiffness parameter to 3) found at:

https:// mathformeremortals.wordpress.com/2013/BR&Yyularizedata3d-the-excel-
spread sheet-function-to-regularize-3d-data-to-aseth-surface/.

An example of the density surface for SwordfishimyiJune 2014 across the 139 1x1-
degree squares incorporated into the multispeeigsgimulator is shown in Figure 5.18.
Finally, the parametddsamwas redefined as:

Dsam= Nsydsaym

whereNsy is the total number of fish of species s acroedidhery in yeay, anddsaymis

the proportion of fish within area within yeary and monthm. The distributionglsaym

were obtained by re-scaling the smoothed nominaJEEBuch that within each month
u=1dsaym = 1. The following five species were chosen for infauthe simulator:

i) Yellowfin Tuna (YFT) - matched with the YFT deptlofile,

i) Bigeye Tuna (BET) - matched with the BET depth peof

iii) Albacore Tuna (ALB) - matched with the HYBRID deptofile,

iv) Broadbill Swordfish (SWO) - matched with the SW(Qtteprofile, and
V) Dolphin fish (DOL) - matched with the SBT depth fil

Effort distribution,E;. Finally, the spatio-temporal distribution offfieg effort across
the fishery was taken to be the same as that add@mthe ETBF during the years 2000
to 2014. While the logbooks for the ETBF recordusmber of factors relating to the
manner in which the fishing gear is deployed (start-time, HPF, bait-type, use of light-
sticks), for the purposes of the simulator the fgaators’ were limited to just start-time
(hour of the day) and the number of HPF (groupethedlist of eight HPF levels listed
previously). Selected sets were restricted to tB® bne-degree squares chosen
previously and to those sets were the number didha@s greater than 200 and the HPF
between 4 and 40. In total 113,711 sets were seledtross the 139 one—degree squares
constituting the fishery, the mean number of yd@tsed per square was 14.0 and the
number of longline sets per square averaged 818.nlimber of one-degree squares
fished per month averaged 72 and ranged betwean@®710. This indicates that the
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Figure 5.18: An example of the density surface fdBwordfish during June 2014 across the 139
1x1-degree squares incorporated into the multispees data simulator.
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Figure 5.19: Distribution of sets used in the simaition across (a) Year, b) Month, (c) Start-time,
(d) Hooks-per-float, and (e) 1x1-degree squares.
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distribution of effort across the fishery was highkterogeneous with potential for the
spatial coverage to vary substantially between hwnthe distributions of the 113,711
longline sets used in the simulation across (a)r,y@g Month, (c) Start-time, (d)
Hooks-per-float, and (e) 1x1-degree squares anersimoFigure 5.19.

Simulated Catches

Inserting the reparametrized variablem= Nstsaminto Eqn. (5.6.4) gives the final form of the
catch equation:

Ng
Csi = qui Nsydsaymz hik psmtk (565)
k=1

With the four distributiongik, pxj, dsaym Ei characterised as described above, the final paeame
values needed for calculation of the catch for dacigline set is that of the catchability
parametergls and the assumed annual abundance of each spkgid®wards this end, the
values ofgs were chosen such that whidg=1 for all years, the mean simulated catch over all
sets was similar to the mean observed catch. ThesvafNsy for each species were then set
to equal the annual values of the standardised CRUEhat species calculated from the
logbook data (as described in Section 5.3) andaked so thaE},ileyﬂS = 1. (Note, the
approach described here means that the numbeahadailable to the fishery remains constant
throughout a year, but the spatial distributioniesaby month). Finally, in order to simulate
the stochastic characteristic of any catch, thel Bimulated catch was selected from a negative
binomial distribution, with the mean catch giventbyn. (5.6.5) and the probability of success
for each species selected so that the proportiaerafs in the distribution of simulated catches
for each species was similar to that in the distrdn of observed catches. Note, two sets of
catches were simulated, the first set based omdtezministic mean catch given by Eqgn. (5.6.5)
(and known as the D-catches) and the second set lmasthose randomly selected from a
negative binomial distribution described previouglgd known as the R-catches).

A comparison of the distribution of simulated caslfior the 113,711 sets with the distribution
of corresponding observed catches is shown in Ei§L20, while a comparison of the assumed
annual abundance and the nominal CPUE based a@mtluéated catch and effort data for each
species is shown in Figure 5.21. The percentagesf deployed each year stratified by (a)
start-time, (b) hooks-per-float, (c) longitude, f@jtude and (e) month is shown in Figure 5.22.

Despite basing many of the parameters in the sitmolanodel on a range ah situ
observations made in the fishery, neverthelessithelated catches generated are premised on
a number of assumptions and likely simplificati@mut the distribution of fish within the
fishery, the depths of the fishing gear, and thptwa process. For example, it has been
assumed that the depth profiles of the fish dovaoy spatially which is unlikely, as these
profiles will most likely vary according to changesoceanographic conditions (e.g. the depth
of the thermocline). The depth profiles fished bg various HPB settings of the longline is
also assumed to be constant, though again theldgewiifluenced by other factors such as how
the line is deployed (e.g. line-setting speed efwhssel) and oceanographic conditions (e.g.
current speed which will induce shoaling of therjeBhe increased stochasticity introduced
in the resulting catches by these and other factotraccounted for in the simulation model is
assumed to be taken account of by randomly samiiimgatches from the negative binomial
distribution. To this end, the comparison of thendated and observed catches shown in
Figure5.20 can provide some guidance as to whétkesimulator can be deemed reasonable.
Whether or not the simulated data passes the Tufest (i.e. is the simulated data
indistinguishable from the real data, Turing 19&finains unknown, but the fact that the
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Figure 5.20: Comparison of the distribution of simdated catches, both with (Random) and
without (Determin.) the random component added, wit the distribution of observed catches.
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Figure 5.22: Percentage of sets deployed each yesratified by: (a) Start-time, (b) Hooks-per-
float, (c) Longitude, (d) Latitude and (e) Month.
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distributions of the two sets of catches are sinplavides some reassurance.

Another feature of the simulated catch is thatNhgrends chosen for each species represent
only one hypothetical trend, with no underlying slated population dynamics processes that
they can be attributed to. While, these trends whosen to simulate a distribution of catches
and abundance trends that mimicked those obsernvétkifishery, nevertheless there is no
reason to believe that these trends represenuhalbundance trends of these species in reality.
As such, in the following we will refer to the mdieel abundance trends as the assumed
relative abundances in the ETBF. While we have omdgelled one assumed abundance trend
for each of the five species used in the simulatdboourse other trends could also be assumed,
and this would allow the models used to standar@BEE to be evaluated across a greater
range of hypothetical conditions (assumed plausible

Finally, to model the spatial distribution of cat@ies in the standardisation analyses, seven
Areaeffects were identified for each species. Thema-effects were determined according
to the method outlined in Section 5.3 and are shiowsigure 5.23. The spatial distribution of
the areas differ for each species and reflectsliffierences in the spatial distribution of the
associated species. The distribution of the datards and fishing effort across these seven
areas is shown in Figure 5.24, together with tls¢ridution of the D-catches and associated
catch rates for one realization of the simulated dats.
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Figure 5.23: Distribution of the 139 one-degree s@ues included in the simulated data sets across
the severArea effects used in the associated GLM analyses.
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Figure 5.24: The distribution of the data records ad fishing effort across these seven areas
together with the distribution of the D-catches andassociated catch rates for one realization of
the simulated data sets.
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lllustrative Analyses

The input parameter sets used in the above simmudaito quite variable (with the density
surfacesDsaym Varying by 1-degree square, year and month andighedepth profilesmi
varying by month, hour and depth) due to the natdrthe observed data upon which the
parameter sets are based. This variability intredw large degree of heterogeneity into the
simulated data, both on a spatial and temporalsphasid this variability is also likely to
introduce a challenge to any analyser chosen twveg¢he assumed annual abundance trends.
In lieu of this challenge, a series of alternatiata-sets were created where a number of aspects
in the input parameter sets were altered in oreeduce the degree of spatial and temporal
variability in the simulated data.

First, the density surfacelsaymwere altered such that the proportion of fishaclel-degree
square was set to the same value for all squategwtine larger areas (usually seven) adopted
as the spatial effects in the GLMs used to andlysedata. This value was the mean of the
proportions across the 1-degree squares within&aeh Furthermore, this value was also held
constant on a quarterly basis, instead of the nipiiksis in the original data. This change
means that the proportion of fish within each spatrea varies only quarterly (i.e. by year and
quarter).

Second, the fish depth profilpsnwwere altered such that the proportion of fish withach
depth strata was held constant during each 4-henwgof the day. The value of this constant
was set equal to the mean of the proportion achestur individual hours in the original data.
Furthermore, this value was again held constara quarterly basis. This change means that
the proportion of fish within each depth stratayordries each 4-hours and by quarter.
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Four simulated data sets were generated basedvbether or not the two alternatives above
were used or not. These four data sets are:

1. Q-Q data-set Density surface varies by quarteraaed.
Depth profile varies by quarter and 4-hourly.

2. Q-M data-set Density surface varies by quarteraed.
Depth profile varies by month and hour.

3. M-Q data-set Density surface varies by month areldegree square.
Depth profile varies by quarter and 4-hourly.

4. M-M data-set Density surface varies by month amel @egree square.

Depth profile varies by month and hour.

Each of these data sets was fitted to the GLM de=gin Section 5.3 with the following four
model variations fitted to the size of the positbatch:

Model GAM-2
CPUE= I+ Year*Qtr + Qtr*Area + Z,Bj Xj / dist=gamma link=log

Model GAM-3
CPUE= I+ Year*Qtr*Area + Z'Bi Xj / dist=gamma link=log

Model NEG-2
Catche I+ Year*Qtr + Qtr*Area + Z,BJ- X, / dist= negbin link=log offset=In(hooks)

Model NEG-3
Catch=1 + Year*Qtr*Area + Z ,Bj X, I dist=negbin link=log offset=In(hooks)

Wherel is thelntercept, distefers to the assumed distribution of errors aegbinrefers to
the Negative-Binomial distribution.

The performance of each analysing model in recagdhe assumed annual abundance index,
when fitted to each of the four simulated data;seés evaluated by calculating the following
log-relative error for each result:

1
Is,y/ @ Z;Zl Is,y

1 ny
Ts,y/@ y=1 Ts,y

abs(LREs,) = log

whereabs(LRE,) is the absolute value of the log-relative errordpecies in yeary, Isyand
Tsyare the estimated and assumed abundance, regbgdv that species and yeay=15is

the total number of years, such th@,t/%}j;ﬁl L, ande,t/ézzﬁlTs,y are the estimated

and assumed indices of abundance after rescaloigtedhave a mean of one (i.e. given their
treatment as relative indices of abundance). Tremmmaenual errodAE) for each species was

also calculated as follows:
1 ny
MAE. = — abs(LRE
S ny =1 ( S,t)

The MAE for each of GLM models fitted to the above det&istic catch data set for each of
the five species is provided in Table 5.7. ™&E for the nominal CPUE is also shown for
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Table 5.7: Mean Annual Error (MAE) for each GLM fitted to the four versions of the smulated
data sets. For each data-set and species, the GLMtlvthe smallestMAE is highlighted in light

grey.

Model GLM ALB BET DOL SWO YFT
M-M  INOMINAL| 5.84% 3.36% 5.35% 6.75% 4.05%
M-M GAM-2 | 6.44% 2.14% 2.94% 1.89% 3.20%
M-M GAM-3 | 3.82% 1.37% 2.14% 2.28% 1.96%
M-M NEG-2 6.39% 1.86% 2.21% 3.19% 2.29%
M-M NEG-3 3.23% 1.41% 2.25% 2.49% 1.93%
M-Q [NOMINAL| 5.68% 3.47% 5.32% 6.26% 4.03%
M-Q GAM-2 | 5.93% 2.61% 2.85% 1.54% 3.10%
M-Q GAM-3 | 3.20% 1.30% 2.23% 1.47% 1.88%
M-Q NEG-2 5.89% 1.83% 2.29% 2.53% 2.27%
M-Q NEG-3 2.77% 1.23% 2.31% 1.61% 1.84%
Q-M |[NOMINAL| 5.11% 3.93% 5.74% 5.60% 3.30%
a-M GAM-2 | 3.98% 1.71% 1.63% 1.20% 1.95%
Q-M GAM-3 | 0.80% 0.67% 0.93% 1.56% 0.20%
a-M NEG-2 4.37% 1.63% 1.38% 2.43% 1.92%
Qa-M NEG-3 0.58% 0.65% 0.88% 1.43% 0.25%
Q-Q |NOMINAL| 5.10% 3.97% 5.78% 5.31% 3.29%
Q-Q GAM-2 | 3.57% 2.25% 1.67% 0.77% 1.78%
Q-Q GAM-3 | 0.46% 0.54% 1.14% 0.36% 0.18%
Q-Q NEG-2 3.81% 2.09% 1.41% 2.09% 1.99%
Q-Q NEG-3 0.45% 0.34% 1.05% 0.38% 0.17%

comparison and is seen to be appreciably larger ttie correspondin§IAE for most of the
GLM results (with the ALB results being the excep)i. The two GLMs incorporating the
single 3-way interactiony(*Q*A) are found to perform better than the two GLMsnporating
the two 2-way interactionsY¢Q+Q*A) with the relative performance varying between the
different species. There is also some variationveeh species as to whether the best fit is
found with the Gamma or Negative-Binomial distribat However, for four of the species the
results when fitted to the Q-Q data set indicas tihhe NegBin3 model performs best, with the
MAE being less than 1.05% for all species (varyingnfth05% for DOL to 0.17% for YFT).
This result is not unexpected, as the structuteetiata (homogeneity within GLM areas and
guarters) closely matches the structure of the maae this result provides a check that the
simulator and analyzing models are working corgectl

The time-series of the annual log-relative errardach species for the NEG-3 model fitted to
each of the four data-sets are plotted in Figu2éd. The substantially smaller errors noted for
the models fitted to the two data-sets, where thdetied density surface varies by quarter and
area (instead of by month and 1-degree squareg)eady seen. This indicates that the spatial
structure of the data has a greater impact onttitieyaof the model to infer the assumed annual
abundance of a species than the depth profilekeofish. For the model with the smallest
degree of spatial and depth variation (the Q-Q Mdtere is still some residual error in the
annual time-series, indicating that the GLM modeinot capturing the full extent of the
variation in the data. For example, the GLM assuthasthe relative effect of the different
hooks-per-float (HPF) categories on the data anstemt across all spatial and temporal strata,
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Figure 5.25: Annual time-series of (a) the log-retive error and (b) the relative abundance index
for each species for the NEG-3 model fitted to eaddf the four data-sets.
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whereas there may in fact be some variation irethelsitive effects. This could be investigated
by fitting appropriate interaction terms but as thsidual errors are small this will not be
explored further here.

The resulting time-series of annual abundance @sdfor each species for the NEG-3 model
fitted to each of the four data-sets are plotteligure 5.25b. These indices are compared with
both the true modelled index and the nominal ceaté for each year. Again, the indices for
the Q-M and Q-Q models are seen to the closesteda@mssumed abundance index for each
species. Furthermore, and perhaps more reassthewggsulting indices for the GLM fitted to
the M-M data set also are seen to be substantikdBer to the true index than the nominal
index. This is seen especially for the results AaB and the SWO where there are large
temporal biases in nominal indices. These resol&ate that the current GLM used in the
ETBF to standardise CPUE is performing reasonalely, @nd as such, the model structure is
accounting for much of the structured variatiomhie CPUE within the data.

Finally, the annual time-series of the log-relatereor and the relative abundance index for
each species for each of the four GLMs fitted ® MM data-set in Figures 5.26a and 5.26b
respectively. For each species there are a nunfliesues to note:

ALB: While the GLMs have removed the large tempeaiation in the sign of the annual
error noted in the nominal index (negative at tiaet ©f the time-series, positive in the
middle years, then negative again at the end dfitie series), there remains a temporal
discontinuity in the errors between the GLM-basedides and the true index (positive
for first five years, then negative for the lasteniyears). While the size of the errors
remains similar within each of these periods, taeer the entire time-series there is
negative trend in the relative errors. This indésathat the GLM-based indices have a
higher-than-assumed relative abundance during diny @eriod and a lower-than-
assumed relative abundance during the latter period

BET: Each of the GLM-based indices performs reaslynaell and over-comes some of the
large biases noted in the nominal index (e.g. yg@rand 15). The GAM-3 and NEG-
3 indices are seen to be similar and lack the teahpeend noted in the ALB indices.
However, a small positive trend remains in thesstive errors (0.2% per year for the
NEG-3 index), indicating a slightly lower-than- assed relative abundance during the
early period and a slightly higher-than- assumdalive abundance during the latter
period.

DOL: Again, each of the GLM-based indices perforemsonably well and removes much of
the temporal bias noted in the nominal index. Fosthyears the relative error is less
than 3% thought as for BET there remains a smaiitipe trend (0.13% per year) over
the time-series.

SWO: Apart from the first year, there is a largmperal trend (1.6% per year) in the bias
between the nominal and true indices, implying thatnominal index infers a higher-
than- assumed relative abundance during the earipg and lower-than- assumed
relative abundance during the latter period. Wiiile temporal bias remains in each of
the GLM-based indices, it is substantially redudszing 0.5% for the NEG-3 index.

YFT: As for the results for BET, the GLM-based icel perform reasonably well and over-
comes some of the large biases noted in the nonmdeak (e.g. years 1 and 8). The
small negative trend in the relative errors (-0.586 year) noted in the nominal index
is also substantially reduced (being 0.07% for thEG-3 index). The index
nevertheless, still displays some short-term bigsamsicularly for the years before and
after year 8.

While the standardised CPUE indices displayed ésehllustrative analyses are seen to
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Figure 5.26: Annual time-series of (a) the log-retive error and (b) the relative abundance index
for each species for each of the four GLMs fittedd the M-M data-set.
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Figure 5.27: (a) Distribution of the annual abundarme index for each year based on 100 random
analyses with the mean indicated by the solid blackne (and assumedindex shown by the red
line). The mean of the nominal CPUE for each simutad data set is shown by the dashed grey
line. (b) Distribution of the error for each year with the mean indicated by the solid black line.
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perform reasonably well (i.e. remove some of theersnibstantive biases seen in the nominal
indices), as noted above, there are still a nurobannual and temporal biases remaining in
these indices. The reasons for these biases amth@# to identify improved methods to
standardise the CPUE will be the focus of the tesuutlined in the next chapter.

Further Testing of GLM Models

Further testing of the GLM methods was undertakgmeplicating 100 simulated data-sets
from the M-M data-set, where the catches were naatyleampled from the negative binomial
distribution. Again, the performance of each estonavas calculated using the log-relative
error for each year and replicate. The distribigiohthe annual abundance indices calculated
for each year and data replicate using the NEG+{Bimdeare shown in Figure 5.27a, together
with the assumed annual abundance and the meamalo@fUE and the GLM-based index
across each of the data replicates. The distribsitid the log-relative error (LRE) between the
estimated and true annual index for each year atal r@plicate are shown in Figure 5.26b,
together with the mean across all data replicates.

The main trends in the results are similar to thosiously discussed for the deterministic
catches, and again vary to some extent acrossvihasgecies shown. For ALB, the mean of
the estimated annual indices (c.f. Figure 5.27hjgker in the earlier years (before 2004) than
the true index, but closely follows the trend o thue index after this time. This result indicates
that the estimator, to a large extent, is ablectmant for the large shift in fishing practices in

2006 when there was a shift to deeper sets (usorg RIPF, c.f. Figure 5.22b) and concomitant
higher catch rates of Albacore Tuna (as indicatethb high nominal CPUE indices after this

time). The reasons for the poorer performance @estimator before 2004 (when the LRE is
as high as 10%) remains uncertain and warrantsgumvestigation.

The results for BET are encouraging. Across alicates, the mean annual abs(LRE) for each
estimator is generally small (4%, c.f. Figure 5)2¥dile for all estimators the mean across all
years is less than 2.2% (Figure 5.27b). The meaoanndex over all replicates also closely
matches the true annual index and generally pedavall in those years when there are large
discrepancies between the nominal CPUE and theartdex (e.g. 2009 and 2014, c.f. Figure
5.27a). On the other hand, the results for DOLgareerally poorer, with the error between the
estimated and true index for individual years beiadpigh as 20% in 2000 and averages around
5% across all years and replicates. Nevertheleesnean annual index over all replicates is
similar to the true annual index and again accotontgliscrepancies between the nominal
CPUE and the true index.

The results achieved for SWO are the best of e $pecies, where the error between the
estimated and true index for all but one yearsss than 3% and averaging around 1.5% across
all years and replicates (comparted to the avendgeound 7% for the nominal CPUE). The
estimated annual index closely matches the truexinand it is quite encouraging to see that
the estimated index does not follow the increasiegd seen in the nominal CPUE, especially
during the last few years.

Finally, the results for YFT are similar to thatr BET. Again, the estimated annual index
closely follows the true index and generally parisrwell for those years where the nominal
CPUE shows a greater discrepancy, though thevelagrformance is slightly poorer given
that the mean error across all years and replicatdeser to 3.2% than the 2.0% achieved for
BET.
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5.6.2 Second Simulator: Use of Random Distributions

We developed a second simulator that modelled aatdheffort data with a generic, flexible
and individual vessel based approach. The simulassrdesigned to generate catch rate data
that reflected species abundance, targeting pesctiand (unlike the ETBF simulator)
individual vessel efficiency to capture the facatthdifferent vessels have their own
characteristic catchability and fishing behavidthere is also spatial and seasonal variation in
catch rates, in a species specific manner.

The methods often used to investigate fishingetyias, such as cluster analysis and principal
components analysis, assume that fishing strategiese inferred from the proportions of
each species in the catch. This simulator is desigm explore the reliability of this assumption
when independent factors, such as location andénfjsirategy, also affect species-specific
catch rates.

This simulator may also be used to evaluate managestrategies, if adapted to include
feedback from fishing mortality to abundance.

General approach

The simulator has multiple components: the spdbatain, the fish population dynamics, and
the fishing process. The spatial domain is modedkea gridocy,y of nx by ny cells, withnx
andny initially set to 10. The model covers a periochbyears, withnt initially set to 20 and
each year made up of 12 months.

Fish population

The fish population is modelled as species, witms initially set to 10. The biomad3s  of
speciess at timet is modelled very simply as an exponential tremdugh time:

BS,t = BOS. erst

Initial biomassB0s is created by sampling from a lognormal distribotwith medianMs of
either 50 or 200, such that:
B0, = M e%

wheredevis a normally distributed random number with m@aand standard deviation 0.5.
Population growth rates.is sampled from a uniform distribution betweeril-@nd 0.1. Note,

as with the ETBF simulated data there is no neechadel how the catches (or any other
processes) impact on the fished population of greciss, as all we need to know is the
assumed size of each population at any time fronelwthe simulated catches are sampled.
The known size of each population over time is alsed to calculate the assumed abundance
index for each species.

Each species is distributed across space with staainproportiorps xy of the population in
each cell. The spatial distributipaxyhas three options. Firstly, thendomapproach samples
density by cell from a uniform distribution betwe@mand 1. Secondly, thev-trendapproach
samples the densities of the westernmost and eastet longitudes from a uniform
distribution between 0 and 1. Density at intermedliengitudes follows a uniform linear trend.
Densities are the same at each latitude. Thirbdlyew-randomapproach generates densities
from theew-trendandrandomapproaches, then takes the inverse logit of legtirend +
logit(random)/5. For each of the three approaches, densitgnsalized so thgbs x,y Sums to

1 for eacts, giving density in each locatidacy,y as:
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dens"tyspecies,loc,t = Bspecies,t- reldens"tyspecies,loc

The species are labelled for convenience as ALB,,BET, SWO, MLS, SBT, DOL, BLM,
BUM, and SHK.

The catchability of each specigsonpmonvaries seasonally by month within each year. The
monthly catchability variation of each speciesasdd on the relative monthly catch rates for
the equivalent species in the ETBF (c.f. Figurg.6.1

Fishing Effort

The unit of effort is the set. Fishing effort istlibuted amongtac=4 sets of fishing tactics.
Tactics may differ in a number of ways, such asshaial distribution of effort and the relative
catchability of each species. Initially the onlatiere implemented is relative catchability by
speciestagactic species Tactics are allocated predetermined relativehedditities (see Figure
5.28).

Figure 5.28: Relative catchability by species andshing tactic (qtaGpecies,acty, aS assumed in the
simulation model.
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Fishing effort is associated witlvess15 vessels. Each vessel is assigned a catchatshigte
gvessessethat applies to all species. Vessel catchabiktyiates are sampled from a lognormal
distribution with mean 1 and standard deviation 0.3

Each vessel is assigned a preferred tactic. Egehvyrthat vessel is allocated a main tactic,
and each set within the trip is assigned a tabtithe initial implementation of the simulator
there is no tactic variation or switching, with kacip and each set using the same tactic.
Preferred tactics are allocated randomly to vesbglsequal probability sampling with
replacement.

Each vessel carries ontripvessttrips in a year, with each trip comprisingetip sets. Sets
within a trip occur on consecutive days. Initiadigch vessel has 8 to 12 trips per year, with the
number for each vessel-year sampled from a uniftistnibution, and each trip comprising 5
to 13 sets, with the number for each trip also dachfrom a uniform distribution. Trips in
each vessel-year occur at random non-overlappingstithrough the year.
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Each trip begins in a randomly selected cell, amossquent sets on a trip may move to an
adjacent cell. Movement probabilities on the x atis modelled asmove=(0.05, 0.9, 0.05)

of respectively moving 1 cell left, not moving, oroving one cell to the right. The same
probabilities apply on thg axis, sampled independently. For cells againstoantary,
probabilities of moving outside the area are sét soich thapmove=(0,0.95,0.05).

Catch

The catchability for each species associated veitih set is a function of the fishing tactic, the
vessel, and the season:

QS,vessel,month,tactic = qtacspecies,tactic- queSSyessel- qmonspecies,month

Expected catch by species per set is equal to:

expcatChspecies,loc,yr = densn)’species,loc,yr- qspecies,vessel,month,tactic

Observed catches by species per set are samphadafiaveedie distribution with parameters
mu=expected catctp=1.3, andphi=10. Deviates have variance equapto.mw, so that the
data are very overdispersed compared to the Potiswibution. Deviates are generated using
the functionrTweediefrom the R packagmgcv(Wood 2006). As the set is taken as the unit
of effort, the CPUE (catch per set) associated witich set is equivalent to the catch.
Alternatively, one can set the number of hooks alggad per set to be the same for all sets (e.g.
1000) and then calculate an associated CPUE basédeocatch-per-hook as done for the
simulated ETBF data.

Datasets

One-hundred data sets were generated each sarfipiimghe random distributions described
above. Each data-set contained between 28,000@0808@records and for the remainder of
this report these will be known as the DIST (fostdbutions) data-sets to distinguish them
from the simulated ETBF data-sets described irptegious Section.

5.7 Models Selected for Comparative Analysis

5.7.1 Listing of Models

Based on:

1). the review of CPUE standardising methods oadlim Section 5.2,

2) further investigation of the cluster approacltséction 5.4,

3) development of the new spatio-temporal Bayesiadels in Section 5.5, and

4) consideration of some of the pertinent featofdbe data relating to the ETBF,
the following standardising models were selectedctomparative performance using the two
simulated data-sets developed in the previous &ecthe models selected were broken down
into the following three groups with the analysisath models within each group undertaken
by separate analysers (R.C., S.H. and S.Z. respbgti
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Group-A Models

Model: A-1 (Base Model)

This is the same as the NEG-2 model currently fiestandardising CPUE in the ETBF and
described in Sections 5.3 and 5.6. Specificallg, @M fitted to the probability of obtaining
a positive catch is:

Prob(catch>0)= | + Year*Qtr + Qtr*Area +HPF +STIME+ logit(H)
/ dist= binomial link=logit
while the GLM fitted to the size of the positiveadais:
Catch=1 + Year*Qtr + Qtr*Area + HPF +STIME
/ dist= negbin link=log offset=In(hooks)

where for both modelkis thelntercept HPF andSTIME are the number of hooks-per-float
and the start-time for each fishing operation (setpectively andbgit(Z) is the function as
described in Section 5.3. Following the protoca@dish the CPUE standardisations currently
undertaken in the ETBF (as outlined in Section @B)effects were fitted as categorical
variables (corresponding to the related categdedised in Table 5.1) and the model was fitted
to the data using the SAS GENMOD procedure (SAS200

Model: A-2 (Total Cluster by Set)

A cluster analysis was undertaken across all setedbon the species composition of the catch
using thevardclustering method (SAS 1999) outlined in Sectigh Hhe untransformed catch
composition based on all species included in theukited data sets was used for the cluster
analysis and the number of clusters selected wde fee (to correspond to the five principal
target species in the ETBF). A cluster effect washtadded to the linear models described in
the Base Model (A-1).

Model: A-3 (Total Cluster by Trip)

This is similar to model A-2, except the clustealgris was undertaken based on the species
composition of the catch for each fishing trip (el of set). Set level data is likely to contain
high variability in species composition due to thadomness of chance encounters between
fishing gear and schools of fish. This variabilgylikely to lead to some misallocation of sets
using different fishing strategies. Aggregating ttea tends to reduce the variability, and
therefore reduce misallocation of sets.

Model: A-4 (Month Cluster by Set)

This is similar to model A-2 except the cluster lggia was undertaken in two stages. First,
separate cluster analyses were undertaken foratiagfak each month of the year with each set
assigned to one of four clusters. This gave a tiftdB clusters across all months. In a second
cluster analysis, these 48 clusters were theneskstinto five final clusters based on the
species composition of each cluster. This apprdasthillustrated in Section 5.4) was used to
investigate the possibility that species assoagiatinay change (and as a result the manner that
the sets will clustered based on their catch coitipons) during the different months of the
year. These changes, more fully explored in Sedi8n may be due to seasonal changes in
availability and distribution of the different speg due to prevailing oceanographic conditions.
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Model: A-5 (Bi-Month Analysis)

This model is an extension of the approach usedadel A-4 (and uses the same as model A-
2) except separate (cluster and GLMs) analysesratertaken on the data for each the six 2-
month periods in the data. The resulting annuatesobtained for each bi-monthly period
are then averaged to give a final annual indexsacatl the data. Again, this approach was used
to investigate the possibility that the specie®eaission may change during the seasons of the
year due to changes in both the availability of thi#erent species and the prevailing
oceanographic conditions (c.f. Section 6.3).

As the GLMs are fitted to the bi-monthly data, #hé no need to include tl@@uartereffect
(and in particular the two associated interactiomghe linear models fitted to the data. Indeed,
this reduces the linear model fitted to each sjasgethe sum of the following main effects:

y=1+ Year + Area + HPF +STIME

While this may appear as a ‘simplification’ thispapach has the further advantage that the
gear effectsflPF andSTIME), which are constrained in Models A-1 to A-4 tv@dhe same
relative effects across all spatio-temporal strata,now free to have different relative effects
within each of the bi-monthly periods. This is damito including aQTR*GEARinteraction
effect in the previous models. It is important tite) however, in taking the mean of the six
indices corresponding to the six bi-monthly periatds important to keep the scale of the
standardised CPUE the same for each period. Thi®eachieved by ensuring that the same
set of standardizing reference levels for theditt®F and STIME effects are used for each
period, i.e. the annual index constructed for daghonthly period will need to be standardised
against the same specific reference level for eathe main effects (e.g. using SAS this is the
last categorical level defined for each effect).

Group-B Models

Model: B-1 (Base Model)

This is the same as model A-1 but without fittihg telta (Binomial) component, i.e. all sets
(including those with a zero catch) are fittedhe following single GLM.

Catch=1 + Year*Qtr + Qtr*Area + HPF +STIME
/ dist= negbin link=log offset=In(hooks)
The model was fitted using the functigim() in the R statistical package (R Core Team 2014).

Model: B-2 (PCA-ns Model)

This model is based on the Principal Componentdy&isa(PCA) model initially developed
by Winkeret al (2013, 2014) to identify groups in the data.His tmethod, the proportional
species compositions are first transformed by takire fourth root, in order to reduce the
dominance of individual species. Principal compasesre estimated using the function
prcomg) in the R statistical package which transformesdhta by centering and scaling, so as
to reduce the dominance of species with higherameercatches. Centering is performed by
subtracting the column mean from each column, aading) is performed by dividing the
centered columns by their standard deviations.fitieel model (a GAM) has the form:

Catch=1 + Year*Qtr + Qtr*Area + HPF +STIME+ nsfC1,3) + ns(PC2,3) + ns(PC3,3)
/ dist= negbin link=log offset=In(hooks)
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where PC1-PC3 are the first three principal components of theiaten in the catch
composition anas(,3)is a cubic spline with 3 degrees of freedom.

Model: B-3 (PCA-linear Model)

This is a variation on the Model B-2 where the pipal component variables are fitted with
linear effects rather than cubic splines.

Model: B-4 (PCA-binomial- Model)

This is variation on the Model B-3 where the valoéshe principal component variables are
transformed from continuous space to zeroes ansl Maues less than zero are set to 0, and
values greater than zero are set to 1.

Model: B-5 kmeansuntransformed Cluster by Set Model)

This model uses the base model B-1 and adds aclefect, where clusters are identified
using thekmeansmethod applied to untransformed species propatibhekmeansmethod
minimises the sum of squares from points to thstelucenters, using the algorithm of Hartigan
and Wong (1979). It was implemented using funckoreang) in the R stats package (R Core
Team 2014). The number of clusters was determifted @oplying the functiomScreefrom

the R package nFactors (Raiche 2010), and takiagrtimimum of the numbers selected
according to the Kaiser rule and the optimal cowatés test. At least three clusters were always
used. The same number of clusters was used foluater-based methods.

Model: B-6 clara Cluster by Set Model)

This is the same as model B-5 but th@a method is used to undertake the clustering, and
data for each species are transformed by scalidgcantring before clustering. Thutara
method is an efficient clustering approach for vimgkwith large data-sets (Kaufman and
Rousseeuw 2009). It was implemented with the fondiara in package cluster (Maechler

al. 2014), with samples equal to 100 and sample sjaaldo 250.

Model: B-7 kmeangransformed Cluster by Set Model)

This is the same as model B-5 but the data for spekies are transformed by scaling and
centring before clustering.

Model: B-8 (Ward Cluster by Set Model)

This is the same as model B-5 but iWard method is used to undertake the clustering. The
hierarchical clustering method Walgtlust was implemented with functiohclus() in R,
option ‘Ward.D’, after generating a Euclidean disi&rity structure with functionlist(). This
approach differs from the standard Ward D methddg¢lvcan be implemented by either taking
the square of the dissimilarity matrix or using hoet ‘ward.D2’ (Murtagh and Legendre
2014). However, in practice the method gave sinmitdterns of clusters to the other methods,
more reliably than ward.D2 in the cases we examiNete, this model was generally not used
because it takes too long to run in R.

For the next set of models (B-9 to B-12) we aggredjghe data by vessel-month, and refer to
this level of aggregation as a trip, assumingitidividual vessels tended to follow a consistent
fishing strategy during a month. One trade-off vitits approach is that vessels may change
their fishing strategy within a month, which woulkkult in misallocation of sets.
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Model: B-9 kmean<Cluster by Trip Model)

This is the same as model B-5 but the data aggrégsitthe ‘trip’- level was used to undertake
the clustering.

Model: B-10 ¢lara Cluster by Trip Model)

This is the same as model B-6 but the data aggregatthe ‘trip’-level was used to undertake
the clustering.

Model: B-11 Ward Cluster by Trip Model)

This is the same as model B-8 but the data aggrégsitthe ‘trip’- level was used to undertake
the clustering.

Model: B-12 Ward Cluster by Trip + Vessel Model)

This is the same as model B-11 but the vesseliftenwas added as another categorical effect
to the linear predictor. Note, an individual vessiéct was not used to generate the simulated
ETBF data and as such a Vessel variable could eatdduded in the models fitted to these
data.

Group-C Models

Model: C-1 (Base Model)

This is the same as model B-1 but with lilmgooks)term fitted as a linear effect instead of an
offset. The fitted GLM has the form:

Catch=1 + Year*Qtr + Qtr*Area + HPF +STIME+ In(hooks)
/ dist= negbin link=log
The model was fitted using the functigim() in the R statistical package (R Core Team 2014).

Note, use of the offset term is equivalent to sgtthe coefficient to 1 fdn(hooks)term and

is equivalent to fitting to CPUE on the left hamdiesof the equation (which is not possible with
a negative binomial distribution which requires iactete response). The use of the offset
preserves the assumed 1-to-1 relationship betwageh and effort (i.e. doubling hooks doubles
the catch per set) and uncertainty in the relaligmbetween catch and effort goes into the
residual error, rather than the effort error. i tinue relationship is not 1 to 1 then one can
explore the nature of the true relationship by agf{effort) as an effect in the linear predictor.
While the relation between catch and effort (aretdfore the definition of CPUE) using this
approach become more nuanced, this does not ingpatite calculation of the abundance
index, as thé(effort) will only be a scaling factor that will be can@sllout when the relative
index is determined. However, there may be problertisthis approach. For example, there
may not be enough data to estimate the effortiogiship. Also, when the data-sets are
unbalanced, e.g. when cluster X consistently usa® imooks than cluster Y, the effort effect
would be confounded with the cluster effect. Thieréfeffect may also be confounded with
the year effect, if hooks per set has increaseditjir time (as has been observed in the ETBF).

Model: C-2 (INLA Model)
This model is the same as Model C-1 except thatimhplemented in INLA (see Section 5.5).
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Model: C-3 (INLA continuous spatial Model)
This is a Bayesian spatial model implemented inANThe fitted model has the form:
Catch=1 + Year*Qtr + HPF +STIME+ In(hooks) + f(s)

wheref(s) is spatially structured effects based on cowtirs latitude-longitude point locations
where longlines were deployed. Note that the disaeea (region) is not used in this Gaussian
Markov Random Field Model that uses the statiomdayern function for the spatial effect.

Model: C-4 (INLA discrete and continuous spatial dét

This model is the same as Model C-4 except ttsd includes an interaction te@ir*Area
as in the Base Model.

Catch=1 + Year*Qtr + Qtr*Area + HPF +STIME+ In(hooks) + f(s)

Model: C-5 (INLA continuous spatio-temporal Model)

The difference between this model and Model CtBas it not only includes a random spatial
effect but also a random temporal effect. The ramdpatial effect is modelled by the Matern
function while the temporal effect is modelled afirst order autoregressive process AR(1).
The fitted model has the form:

Catch=1 + Year*Qtr + HPF +STIME+ In(hooks) + f(s,t)
Model: C-6 (INLA discrete and continuous spatio-paral Model)

This model is the same as Model C-5 except thasd includes an interaction term Qtr*Area
as in the Base Model. The fitted model has the form

Catch=1 + Year*Qtr + Qtr*Area + HPF +STIME+ In(hooks) + f(s,t)
Model: C-7 (INLA simple and spatio-temporal Model)

This model is the same as Model C-6 except thddeats not include the discrefdr or Area
effects. The fitted model has the form and is thgptest of the models in Group-C.:

Catch=1 + Year + HPF +STIME+ In(hooks) + f(s,t)

Note: The performance of one further model was imgestigated by this project. This model,
known as Spatial Dynamic Factor Analysis (SDFA, iBoo et al. 2016), was described in
Section 5.2.3. However, as it was only recentlylighled (available online since April 2016),
and as the initial version of the model requiredstderable lead- and run-time to get the model
working on the large ETBF data set, it was not fpbsgo include it in the above list of models
to be analysed. Nevertheless, some analyses t&r8FA model have since been completed
and the results are reported in Appendix D.

5.7.2 Model Analyses and Comparisons

The following sets of analyses using the modetsdisbove and the two simulated data-sets
were undertaken to compare the relative performaheach model.

1D-Trial Group-A and Group-B models were fittedthe ETBF simulated data-set using
the deterministic D-catches.
This trial involved fitting each model once, asrthes only one set of D-catches.
Furthermore, in order to investigate the influeatée inclusion of the two gear
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1R-Trial

2R-Trial

3D-Trial

effects (HPF and STIM) on the performance of eaoldet two sets of analyses
were completed. First, for each of the five GroupnAdels and seven Group B
models the analysis was undertaken with the géectsfincluded in all models.
Second, a similar set of analyses were then urdartaith the two gear effects
(HPF and STIME) removed from all models. These models are denGiéth
where G and N are the model Group and model Nungspectively.

Group A and Group B models were fittedhe ETBF simulated data-set using
the randomly generated R-catches.

This trial involved fitting each model to 100 regates of the data sets, each
generating a different set of R-catches. As withfttst set of analyses, two sets
of analyses were completed with and without ther géfects included in the
models.

Group A and Group B models were fittedie DIST simulated data-set using
the randomly generated R-catches.

This trial involved fitting each model to 100 reggtes of the data sets each
generating a different set of R-catches. As withfttst set of analyses, two sets
of analyses were completed with and without ther géfects included in the
models.

Group A and Group C models were fittectsubset of the ETBF simulated data-
set using the deterministic D-catches.

As noted in Section 5.5, even though INLA is deenfester than the more
traditional MCMC approach, running a multispeciesdel that involves random
effect terms with only a few covariates is stithé-consuming. Indeed, fitting the
Group-C INLA based models to the full simulated ETBata-set proved
impractical even with the use of CSIRO’s High-Parfance computers. To
reduce the computing time and overcome this dilffjca subset of the ETBF
simulated data was selected. This was achievedrbinlg the number of data
records to being three or less in all year, month@ne-degree cells. This resulted
in a data-set with 31,959 records and for the redwiof this report is known as
the ETBF-N3 data-set.

As with the first set of analyses, two sets of geed were completed with and
without the gear effects included in the models.

5.7.3 Model Area Effects

For all models fitted to the ETBF simulated datesgbat included a categoricatea effect,

the areas correspond to the seven GLM-areas sholigure 5.23. As noted previously, these
Area effects were determined externally from the mobgl visual inspection of the
distributions of nominal CPUE in the data. Furtherej the sam@rea effects could be used
in each analysis of the ETBF simulated data-sst)aspatial-distribution of the fishing effort
and the fished resource remained the same acilodataisets. Such an approach, however,
was not possible with the DIST simulated data-sassthe distributions of effort and the
resource varied between simulations, and it woakkhbeen too time consuming to visually
inspect the distributions across all 100 data-getsmisequently, the following two different
approaches were used to model spatial effecteimibdels fitted to these data-sets.
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Group-A models

For each data-set, témeaeffects were identified using the following algbm. First, for each
year the nominal CPUE (total catch divided by tefébrt) was calculated within each of the
100 cells in the simulated data-set. Second, fon eall the mean annual nominal CPUE across
all years was then calculated. Third, the distrdoutf the mean annual nominal CPUE across
all 100 cells was ranked from highest (rank=1) dwdst (rank=100). Each cell was then
allocated to one of tefireaeffects using the following formula:

rank; — 1]
10

whererank is the ranking of the nominal CPUE of delhs determined in the third step above.
This approach makes eaBheaa composite of ten individual cells (so edaeais the same
size), though this approach does not guarantee#wiidreais composed of ten cells that are
contiguous. While this may be seen as unusual,p@ndaps an undesirable feature of this
approach, at the same time one can argue thdtiglistdoing is aggregating together spatial
cells which have similar characteristics, and whilcerefore may behave in a similar and
coherent fashion over time — which one can alsoeig exactly what a well-chosérea
effect is supposed to do.

Area =1+ floor[

Group-B models

A simpler approach was adopted for this group oflel® where théreaeffects were simply
taken to be equivalent to the 100 individual spat#ls used in the simulation. However, due
to the large number dArea effects using this approach no interactions whik effect were
included in the linear predictor. The base modetdfore took the following simple form:

Catch=1 + Year + Qtr + Cell

5.7.4 Model Comparisons

After constructing the estimated abundance intexor speciesin yeart based on the model
parameters, the performance of each model in recmvihe assumed annual abundance index,
Tst, when fitted to each simulated data-set was eteduay first calculating the following four
annual errors:

Error-1: Absolute Log-Relative Error

ALRE;, = abs [log( > >l
s,t

Error-2: Squared Relative-Error

o ES 2
Is¢ —T.
s, - (1)
S

,t

>
~

|

Error-3: Absolute Error
AES,t = abS(is’t - TS,t)

Error-4: Absolute Relative-Error

~

I, —T
AREg, = abs (M)

S,t
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Yy2als - 232y Ts .
y;l; 5y and Ty, = Tg./( yn; %) are the estimated and assumed

abundance, respectively for specgeand yeatt after rescaling to have a mean of one (i.e.,
given their treatment as relative indices of abmeda and wheray is the number of years in
the analysis. The mean annual erfdAE) across all years for each errand species was
then calculated as follows:

where [, = I;./(

1
MAE;; = E Error(i)s:

For those trials based on fitted to the R-catchek far which 100 replicate analyses were
completed, th&MAE for each model was taken to be the mean acrosspdiitate analyses, i.e.

1 100 1 1 ny
MAE; = mzr:l [E t=1Err0r(i)s,r,t

wherer is the replicate number<1,...,100).

For each speciesanderrori, theMAEnm s, for each modein was tabulated then ranked in order
with the best performing model (i.e. that with greallestMAE) given a ranked scor®§ of

1 and the worst performing model (i.e. that witk targestMAE) given a ranked score of
where N is the number of models being compared. A totaked score for each species
(Species Ranked Scot®R$ was then calculated by summing the individuarss@cross all
four errors:

ne
SRS, s = RS i
i=1
whereneis the number of error types (4). Finally, a totalked score for each model (Model
Ranked Scord\IRS was calculated by summing across all species:

ns
MRS,, = SRS

s=1
The relative performance of each model was theerchehed based on thdRSvalue for each
model (smallest = best model, largest = worst mjodel

Each of the above errors is reported where deemgapriate.
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6. Results

6.1 Review of Factors Influencing CPUE

From the discussion provided in Section 3.1, tHatimmship between CPUE and the true
abundance of fishB) within a given spatial regio®\] is influenced by both the availability of
the fish to the fishing geaa) and the efficiency, or catchability, of the fisgigear q):

cpue =298

In this section we review some of the factors théiience either availability or catchability.

6.1.1 Availability

The availability of fish to the fishing gear willebinfluenced by a number of factors —
principally the abundance of fish in the area bdisiged. This in turn will be influenced by a
range of factors (apart from overall stock abundynsuch as seasonal migration patterns of
the fish and prevailing oceanographic conditiong.(eurrents and the characteristics of the
surrounding water masses) that influence the dpdisaibution of the habitats preferred by
the targeted fish (and therefore the spatial distion of the fish themselves). These influences
are obviously beyond the control of the fisher. ghithat fish are available in the area being
fished, availability will also be influenced by thelationship between the depth distribution of
the species being targeted and the depth distibwti the fishing gear.

For example, demersal fishing gears target fiskiispavhich live on or near the seafloor, and
while the distribution of the depth above the smaflfor some of the target species caught by
such gears may vary from time to time (possiblyeda®n prevailing oceanographic
conditions), the distribution of the depths fishieg the fishing gears remains relatively
constant. Consequently, the fish available to ikkirig gear of a demersal trawl will be
generally limited to those fish which are locatetween the seafloor and the head-height of
the trawl net. On the other hand, for fishing geengch target pelagic species (such as pelagic
trawl or pelagic longline), both the depth disttibn of the target species and the depth
distribution of the fishing gear can vary. Conseulye the nature of the catch will be
dependent on the relationship at the time of thkirfig operation between these two depth
distributions. Indeed, an understanding of suchti@is based on observations made in the
ETBF was used in generating the simulated ETBF @ataSection 5.6.1).

Again, the depth distribution of the fish caughtlvee influenced by a number of factors,
including the prevailing oceanographic conditionghich may influence the vertical
distribution of the habitats preferred by the targmecies (e.g. depth of the thermocline), and
possible behavioural characteristics of these sgesuch as diurnal vertical migrations (e.g.
Bigeye Tuna prefer deeper depths during the dayghallower depths during the night). These
factors again remain outside the influence of tisher but various variables related to
prevailing environmental and oceanographic condgican be included in any GLM to model
the influence of such factors on fish availabilityf. Table 5.1). On the other hand, the depth
distribution of the pelagic fishing gear is undee influence of the fisher, as it will be largely
dependent upon the manner in which the fishing gedeployed (though it will also be under
the influence of prevailing currents). Apart froock, an understanding of the factors which
influence the vertical distributions of both theget species and the fishing gears is therefore
required to achieve ongoing success in fishing atpmrs.
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6.1.2 Catchability

The ability (or effectiveness) of a given fishingag to catch the available fish being targeted
will also be dependent upon a range of factors.example, the range of species and the size
of fish caught are dependent upon the size of #e&hmsed by a trawl and the size of the hook
used by a longline. The effectiveness of a fislgagr is, to a large extent, under the influence
of the fisher, but will also be dependent to soxier@ upon their understanding of the size
and behavioural preferences of the species beiggted. For example, the catch of Broadbill
Swordfish increases with the use of light-stickd aquid bait on shallow sets deployed in the
afternoon while the catch of Albacore Tuna showsederence for pilchard baits on deep sets
deployed in the morning.

Like most businesses, individual fishers will striw improve the effectiveness of the fishing
operations over time to increase the catch perafniteployed effort (commonly known as
effort creep). Towards this end, and based on kmewledge of the behavioural characteristics
of the species being targeted, fishers will ‘exmemt’ with the manner in which the fishing
gear is deployed in order to maximize the overdilativeness of the gear. To this end, the
manner in which fishing gears such as a pelagiglioa are deployed can vary considerably
between vessels and will be dependent on the olgsobf the fisher. In order to understand
this variability, and attempt to standardise thsultng CPUE for these differences, it is
important that the details pertaining to the mammevhich the fishing gear is deployed is fully
recorded in the vessel logbook. Unfortunately,nf@any fisheries much of this information is
not captured in the logbooks, though for the Eastema and Billfish Fishery (ETBF) a range
of such information has been recorded since 198i&. ifformation includes: (i) start time of
set, (ii) the length of the longline deployed,)(iumber of hooks deployed, (iv) the number of
hooks-between-floats, (v) number of light-stickpldged, and (vi) bait type (both species and
life-status). Each of these factors (and sevetaradlerived factors, e.g. number of hooks per
kilometer) is currently included in the analysesdito standardise CPUE in this fishery.

6.2 Targeting and Gear-Setting Practices inthe ETB F

A short description of the ETBF together with leeg&longline effort deployed each year has
been provided in Section 3.1 Due to changes inlgliel of operational data recorded in
logbooks used in the fishery, all catch data ferETBF was summarised by year and species
to ascertain continuity of recording of catch byaps on logbooks — see Appendix A. This
information was discussed at the meeting of Trdpicama Resource Assessment Group held
1-2 October 2015 which concluded that the recoradihgeveral species in the logbook is
unreliable (mainly for species which are predonehatliscarded). It was also considered best
to combine the catch of shark species into seveagbr groups.

6.2.1 Gear Configurations

Fishers can target different species in a numbediféérent ways. If there are seasonal
differences in the availability of different spesji¢ghen fishers can target these different species
by fishing at different times of the year. Whilechaf the main species targeted in the ETBF
are generally available all year around, there@mesevidence that the level of availability for
some of these species may change on a seasonal basiexample, the monthly nominal
CPUE for each of the primary target species irBERBF (aggregated over the years 2006 to
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Figure 6.1: Index of availability of the five primary target species in the ETBF as measured by
nominal CPUE.
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2013 and scaled such that the mean over all matge for each species) is shown in Figure
6.1. From this Figure it appears that the avaitghbdf Bigeye Tuna is higher in autumn and

lower over summer, the availability of Yellowfin fiais generally highest during spring, while

the availability of Swordfish is highest during sgrand summer.

Difference in availability can also be noted onpatgl basis, as evidenced by the spatial
distribution of aggregate nominal CPUE across th8fE For example, the availability of

Yellowfin Tuna is generally higher along the coetital shelf off eastern Australia (c.f. Figure
B.2a, Appendix B), possibly due to these fish b&ntyained in the Eastern Australian Current.

On the other hand, when all species are genenedlijadle during the same season and region,
fishers can attempt to target the different spebieslternating the manner in which they
deploy their fishing gears. In order to understand identify such practices, it is instructive to
examine the gear settings deployed in the ETBFtt®purpose, we make use of the deployed
gear information recorded in logbooks and by obsmron vessels. While some gear setting
information is available on logbooks completed ishérs, we make use of the observer data
here as these data incorporate a greater rangéoafiation.

Information on longline gear settings deployed legsels in the ETBF is recorded in the
logbooks completed by skippers for each fishingraipen. While very limited information
was recorded on logbooks before 1997, the intradiictf the ALO4 logbook in 1997 resulted
in a greater number of gear-setting informatiomyetollected. Since 1997 the number of
vessels operating in the ETBF each year has vaeageen 173 in 1999 and 39 in 2015 (c.f.
Figure 3.2a) while the number of longline sets dgetl each year has varied between 13,227
in 2003 and 4,593 in 2013. AFMA observers have bé&sn recording data on longline fishing
operations in the ETBF since 2001, and data fof4ferved sets and 1659 fishing trips were
extracted from in the ETBF Observer database mahlag€&SIRO in Hobart.

Recorded fields for each fishing operation (FOR)ude:
1. Vessel
2. Date of fishing operation
3. Location of FOP
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Start-Time of FOP

Number of hooks deployed

Number of buoys deployed (observer only)
Number of hooks observed hauled (observer only)
Catch by species (retained, discarded)

Number of hooks-per-float

10 Number of light-sticks used

11.Use of line-shooter (observer only)

12.Line-setting speed (observer only)

13.Timer setting for attaching branch-lines (obseimy)
14.Distance between branch-lines (observer only)

15. Bait species

16.Bait life-status

17.Primary target species (observer only)

18. Secondary target species (observer only)

19. Line configuration (observer only)

©oNOoOOA

A number of additional fields are also recordedagrer-trip basis. These include:
20.Length of mainline
21.Length of buoy-line (observer only, up to 2 lengths
22.Length of branch-line (observer only, up to 2 Idrsyt
23.Hook-type (observer only, up to 3 types)
24.Hook-size (observer only)
25.Hook-weights (observer only, up to 3 weights)
26.Presence of line-shooter on vessel (observer only)

The percent of longline sets deployed in the ETBEheyear since 1997 deploying different
categories of gear-types based on information dszbm ETBF logbooks is shown in Figure
6.2. For each gear-type varying degrees of changesage are seen across the years. In
particular, there was a significant change in thber of hooks-per-float (HPF) used in 2006
when vessels began deploying more than 25 HPF. Gmsumate with this change, one can
also see shifts in the bait usage (more pilchdighi-stick usage (fewer) and set start-time
(earlier in the day). The introduction of this nedeep-longline’ technique, and other
associated gear changes, was due to a signifibange in fishing strategy to incorporate the
direct targeting of Albacore Tuna in this fishefyglditional information on the distribution of
the length of the mainline deployed across setl gaar is shown in Figure 6.3, together with
the mean number of hooks deployed per set. Onesmthis information to derive additional
features relating to the deployed fishing gearhsas the distance between floats and the
number of hooks deployed per kilometer of longlidgain varying degrees of change in usage
are seen across the years, together with a suiastemnge in 2006.
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Figure 6.2: Percent of longline sets deployed in hETBF each year using different categories of geaettings. Information based on ETBF logbooks.
(NR denotes Not Recorded, Mack=mackerel, Pilch=pilard, D=dead bait, A=live bait, M=mixed dead and Ne bait).
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Figure 6.3: Percent of longline sets deployed in hETBF each year using different categories of geaettings. Information based on ETBF logbooks.
(UNK denotes Unknown).
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Figure 6.4: Average setting (and standard deviationof individual gear-types during each year
based on observer data collected from longline vess operating in the ETBF (solid blue line).
The number of observer voyages from which data wasvailable is also shown (green columns).
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Figure 6.5: Time-series of branch-line lengths depled on five different vessels operating in the
ETBF. Each dot represents an individual fishing trps and the length recorded by an observer for
that trip.
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Figure 6.6: Annual distribution of hook-types deplyed on observed longline vessel operating in the BF.
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The average (and standard deviation) charactefwstigeveral gear-settings only recorded by
observers during each year is shown in FigureThd.number of observer voyages from which
data was available is also shown. There appedrav® been an increase in the mean length of
the buoy-line deployed from around 10m to 15m dytime 2000s, while the mean length of
the branch-lines has decreased. The weights ptatédte branch-lines (to assist in sinking the
hooks to the fishing depth) have also increased twe. It is also possible to investigate the
use of different gear settings at the individuadsed level, and an example is shown in Figure
6.5 where the time-series of branch-line lengthdajed on five different vessels are shown.
Finally, the annual distribution of hook-types dgpd on observed longline vessels operating
in the ETBF is shown in Figure 6.6 indicating astahntial shift to circle hooks after 2007.

The above results indicate that there can be ceraite variability in the manner that longline
gears are deployed in the ETBF, both between ywatsvithin years on individual vessels.

6.2.2. Gear Usage during Trips

In the absence of knowledge about the fish spdmeyy targeted in each fishing operation,
one can attempt to use information recorded indgkook on the manner in which the fishing
gear is deployed, and the species compositioneotalch, to infer what the targeting intention
of the skipper may have been. Set level data aontariability in species composition due to
the randomness of chance encounters between fighargand schools of fish. This variability
can lead to possible misallocation of sets usirifgr@int fishing strategies. Aggregating the
data tends to reduce the variability, and therefedeice misallocation of sets. The next level
of aggregation above the individual set is the eeBfgp. We therefore investigated the
variability in fishing strategies (i.e. gear sedtipractices) per fishing trip.

For ordinal variables (i.e. those which can be radlyi ordered) such asNumber of hooks
deployed per Setwhich can range from 100 to 3000, it is unlikéat exactly the same
number of hooks will be deployed each set duritrgpaWhat we seek to identify are sets that
deploy a similar number of hooks (e.g. 1000 and01®@&y be considered similar). For this
purpose the meamM, and rangeR, of hooks deployed across all sets during a trgyew
calculated and all sets within a trip were categgtias being similar if the range was within
10% of the mean (i.& <0.1M). This approach was used for the following orduhatia-types:

1) Hooks-deployed

2) Number of Hooks-per-float

3) Start-time of set

4) Percentage of hooks with light-sticks

5) Speed of line-shooter

6) Timer speed (timing between attachment of branoéslh

7) Distance between branch-lines

For categorical variables such as ‘Bait-speci&ajt-life-status’ and ‘Primary target species’,
sets were identified as being similar when the seategory was used for a given gear type on
all sets during a trip. A similar approach can &#lsased for each of the ordinal variables listed
above by first binning these variables into categorAn example is categorizing Start-Time
into six 4-hourly bins (e.g. 0-4am, 4-8am,..., 8pnpid.

The number of observed trips extracted from thalmkge was 1661 and the number of sets
deployed per observed trip is shown in the Figureb@low. The results of the above analyses,
shown in Figures 6.8 and 6.9, indicate variablereleg) of consistency in the deployment of
each gear type during a trip. For example, sintitaoks-per-float setting are used for 60-80%
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of all sets during a trip, while generally simiktart-times are used for less than 20% of sets.
Note that the analysis was only undertaken forghiops where the data on the given gear type
was available for all sets.

Figure 6.7: Histogram of the number of sets per olesved trip.
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6.2.3. Gear Usage by Primary Target Species

The observer data is particularly useful for inigeging targeting practices as the Primary and
Secondary target species are recorded for eachngbts Section we investigate the types of
gear settings associated with each recorded pritaeggt species.

The previous Section indicated that for many ttigsprimary target species is not always the
same for all sets deployed during that trip (dguife 6.9). There may be a range of reasons for
this outcome. This indicates that any groupingisiiihg strategies into target clusters may
need to be undertaken at the level of the individishing operations. As such, in order to
investigate whether there are particular gearrggstassociated with particular target species,
the distribution of settings for each gear-typehat set level against the identified primary
target species was calculated. The results arershofxigures 6.10 and 6.11.

The results indicate that there is a broad rangeetiings for each gear-type associated with
each recorded primary target species. Furthermsexeral characteristics of how the gears are
deployed (e.g. buoy-line length and line-settinges}) do not display any appreciable variation
between the different target species. However,lasec inspection one can discern particular
groups of gear settings which have a higher usagenwargeting particular species. For
example, Figures 6.10 indicate that more hooks lamuoks-per-float are deployed when
targeting Albacore Tuna in comparison to the ofpercies. Albacore targeting also generally
uses fewer light-sticks, a shorter distance betw®anch-lines and longer buoy-lines, early
morning sets, circle hooks and dead pilchard Baitthe other hand, when targeting Swordfish
there is a preference to deploy the gear durirggdéternoon, use a high percentage of light-
sticks, a greater distance between branch-linesdead squid bait. When targeting Striped
Marlin there is a preference for shallow sets {e& hooks-per-float), minimum use of light-
sticks, live mackerel bait and the use of a lineesér.
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Figure 6.8: Percentage of trips where the settingof each gear type was similar for all FOPS
during a trip. The solid line displays the total number of trips for which data on the given gear
type was available for all sets while the dashednle displays the number of trips for which the
gear-settings were similar for all sets within a tip. Trips are stratified by the number of sets
deployed per trip.
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Figure 6.9: Percentage of trips where the settingf each gear type was similar (i.e. the same categdevel was used) for all FOPS during a trip. The
solid line displays the total number of trips for which data on the given gear type was available faill sets while the dashed line displays the number
of trips for which the gear-settings were similar or all sets within a trip. Trips are stratified by the number of sets deployed per trip. For those tps
deploying the same gear type for all sets the pentgge of trips using each gear-type category is alglisplayed.

Percent of trips targeting same species each FOP Percent of with same bait species each FOP
120% 600 120% o E— s P 600
ALB m BET . SBT — PM C — CM
cp m— CPM s
100% _— STM SWO YFT 500 100%  =p —— — S\ — P 500
. OTH = = =Trips ——All Trips \\ sc SCM scp
§ 20% 400 g § 20% \ I SCPM = = =Trips All Trips 400 g
g = & =
5 60% 300 © 5 60% - 300 ©
€ 2 € 2
] £ I} €
S 40% 200 2 S a0% 200 2
a. a.
\
Y
20% I 100 20% l ) 100
-
0% 0 0% E = 0 = = 0
10 11 12 13 14 i 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of FOPs per trip Number of FOPs per trip
Percent of trips with same set-time for each FOP Percent of trips with same bait life-status for each FOP
100% 600 120% - 600
O-4am  mmmm 4-8am  EEEE 8-12am Dead — Alive mm— Unk
0- 48 8-12 - = =Trips All Trips
i 0-4pm -8pm -12pm 100% - 500
80% 480
- = =Trips ——All Trips
z:i 3 z:", 80% 400 g
2 60% 360 = =3 =
= — = —
- s %5 60% 300 ©
- Q - Q
& 40% 240 € 5 €
o > o >
S = 5 40% 200 =
a. a.
10,
20% 120 20% 100
0% 0 0% 0
i 2 3 4 5 6 7 8 9 10 11 12 13 14 i 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of FOPs per trip Number of FOPs per trip

90



Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

The monthly time-series of the percent of obsefigkiing operations by primary target species
is displayed in Figure 6.12a. The targeting of ¥efin Tuna clearly dominates the time-series,
though there are periods when the other tuna spéBigeye and Albacore) and Broadbill
Swordfish are the dominant target species. Noteyeker, that the observer data is not
considered to be a random survey across the dletateas Sections of the fleet are targeted for
increased observer coverage at certain times,veggels catching Southern Bluefin Tuna
during winter. Aggregated over all years, the mbndstribution of targeting practices shown
in Figure 6.12b indicates substantial change igetiamg practices across each month. The
targeting of Southern Bluefin Tuna over winter dtiger with the increased targeting of Bigeye
Tuna in late autumn, of Yellowfin Tuna in springda®wordfish over summer, are clearly seen
and mimic the changes in relative availability leéd$e species throughout the year (c.f. Figure
6.1).

The catch composition of all observed sets by mastehown in Figure 6.13a and again
displays the substantial changes throughout the peadoubt based on the changing relative
availability of individual species and related chas in targeting practices. Note, that targeting
practices, whilst influenced by relative availayilof given species, will also be influenced by
other preferences such as characteristics of thgeVée.g. how far off-shore it can venture),
region location of the fishing operations and madanditions (e.g. prices). Of the 29 species
shown in the catch composition (comprising the ntmshinant species caught), the majority
of the catch (>90%) each month is comprised of fdllewing sub-set of twelve species
(YFT=Yellowfin Tuna, BET=Bigeye Tuna, ALB=Albacofieina, SWO=Broadbill Swordfish,
STM=Striped Marlin, SBT=Southern Bluefin Tuna, LEEscolar/Oilfish, ALX=Lancetfish,
DOL=Dolphin fish, POA=Promfrets/Ray’s Bream, andHB®Blue Shark).

The catch composition of all observed sets steatifby primary target species is shown in

Figure 6.13b. It is reassuring to note that forheaicthe main target species, the proportional
catch of that species is highest when that spésiescorded as the primary targeted species.
This demonstrates that the vessel (skipper) has sability to target and catch a desired

species. Nevertheless, it is also clear that theratpecies are also usually caught, indicating
that it is not possible to just target and catchirale species. Indeed, the target species
sometimes is not the dominant catch. For examplayerage more Yellowfin Tuna are caught

than Striped Marlin when targeting the latter.

Finally, the cumulative percent of sets catchirgg lthan or equal to the indicated number of
fish stratified by primary target species is showirigure 6.14. For example, when targeting
Albacore Tuna around 30% of sets catch 25 Albaootess (with 70% of sets catching more
than 25 Albacore), but when targeting Bigeye Turauad 90% of sets catch 25 Albacore or
less (with 10% of sets catching more than 25 Albajcand when targeting Striped Marlin
100% of sets catch less than 25 Albacore. For leeies shown, the highest number of fish
are caught when that species is the target spegas) indicating that fishers have the ability
to target particular species in the fishery.
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Figure 6.10: Distribution of various gear-setting tratified by primary target species recorded by
observer— ordinal variables.

(a) Hooks deplyed versus Target Species (n=4853) (b) Hooks-per-float versus Target Species (n=4855)
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Figure 6.11: Distribution of various gear-setting tratified by primary target species recorded by
observer — categorical variables.
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Figure 6.12: Percent of observed fishing operationsy primary target species (a) by month and (b) agggated by month across years.
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Figure 6.13: (Catch composition of all observed seby (a) month and (b) primary target species.
(YFT=Yellowfin Tuna, BET=Bigeye Tuna, ALB=Albacore Tuna, SWO=Broadbill Swordfish,
STM=Striped Marlin, SBT=Southern Bluefin Tuna, LEC=Escolar/Qilfish, ALX=Long-nosed
Lancetfish, DOL=Dolphinfish, POA=Ray’s Bream/Promfrets, BSH=Blue Shark, SKJ=Skipjack
Tuna, WAH=Wahoo, MAK=Mako Shark, GES=Snake Mackere| ALO= short-nosed lancetfish,
MOP=Sunfish, SBS=Short-bill Spearfish, BAM=Black Malin, BUM=Blue Marlin, OPA=0Opah,
RAY=Stingrays, TIG=Tiger Shark, BRO=Bronze Whaler, DSK=Dusky Shark, OCS=0ceanic
Whitetip Shark, CSH=Crocodile Shark, SKS=Silky Shak and SPN=Hammerhead Sharks).
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Figure 6.14: Cumulative percent of sets catching $s than or equal to the indicated nhumber of
fish stratified by primary target species.
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6.3 Species Coexistence

Fish are not randomly distributed across the figlgrounds but tend to have distinct species-
specific habitat preferences, which cause catasr vary according to the habitat that is
targeted. These habitats are also likely to changje spatial size and location in response to
prevailing currents and seasonal changes in oceaploig conditions. As a consequence, there
is likely to be a strong seasonal component in boerdistributions of fish species and related
fishing and targeting strategies across any fishery

6.3.1 Correlations between spatial distributions

In order to investigate these changing spatiakitistions for the ETBF, spatial plots (on a
1x1-degree basis) of aggregate nominal CPUE oeyé¢lars 2000 to 2013 for each quarter
were produced for 17 species caught in the ETBFthese are shown in Appendix B. The
persistence of these spatial distributions for esgueties was then investigated by calculating
the Pearson correlatioR, between quarters and the results are displayEajure 6.15.
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Figure 6.15: Pearson correlation between quartersfahe spatial distributions of CPUE for each
species.

1 14 .
- Hooks Yellowfin Tuna
<=
50.8 - 508 -
= 2
kS =
©0.6 - $0.6
8 s
204 20.4
o o
£02 £0.2 -
& &
o o
Qilv2 Qiv3 Qlva Q2v3 Q2va Q3v4 Mean Qlv2 Qlv3 Qlva Q2v3 Q2va Q3v4 Mean
14 . 1 4
- Bigeye Tuna - core Tuna
S0.8 - 508
S =
£ g
©0.6 - $0.6
£ E
S S
204 1 204
3 2
go.z B §0.2 B
o o -
Qilv2 Qilv3 Qlva Q2v3 Q2va Q3v4a Mean Qlv2 Qlv3 Qlva Q2v3 Q2va Q3v4a Mean
1 oo
Skipjack Tuna
So.8 §o0.8
S =
] s
©0.6 - <0
8 Soa
0.4 -
s 502
592 1 g
~ o 4 %2 | Qiv2 Qiv3 Qiva Q2v3 Q2va Q3va Mean
Qilv2 Qiv3 Qiva Q2v3 Q2va Q3va Mean
1 4 . 1 < .
Northern Bluefin Tuna ill Swordfish
08 | =
2 So.8
206 206
504 1 5
0.4
502 - g
s 0 - 50.2
o2 1 Qiv2 Qiv3 Qiva Q2v3 Q2va Q3v4  Mean = 9
Qlv2 Qlv3 Qlva Q2v3 Q2va Q3v4a Mean
1 4 < % 1 %
Striped Marlin Black Marlin
0.8 - <
50.8
k]
$0.6
8
204
2
50.2 4
&
o
Qlv2 Qlv3 Qlva Q2v3 Q2va Q3v4a Mean
1 . 1 - <
Blue Marlin Short-Billed Spearfish
So0s 508
kS =06
0.6 - o
8 S04
0.4 -
s 50.2
g7 g °
~ o “0.2 Qlva Q2v3
Qilv2 Qiv3 Qiva Q2v3 Q2va Q3va Mean
1 — 1 T
- Sailfish - Dolphin Fish
S0.8 - S50.8 4
kS k]
£0.6 - 20.6
Soa Soa -
= e
202 | 202 -
@© @
& &
o o -
Qilv2 Qilv3 Qlva Q2v3 Q2va Q3va Mean Qlv2 Qlv3 Qlva Q2v3 Q2va Q3v4a Mean
1 1
- Wah _ Opah
50.8 - 508
kS k]
£0.6 - 20.6
S S
204 204
202 202
© T @ T
& &
o o -
Qilv2 Qilv3 Qlva Q2v3 Q2va Q3va Mean Qlv2 Qilv3 Qilva Q2v3 Q2va Q3v4a Mean
1 1 -
- Pomfrets - Oilfish
50.8 - Sos -
®0.6 - &
2 206 |
8947 Soa -
502 | g
s 0 50.2 4
o2 1 Qiv2 Qiv3 Qiva Q2v3 Q2va Q3v4  Mean = 9
Qilv2 Q1v3 Qilva Q2v3 Q2va Q3va Mean

97



Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

Figure 6.16: Pearson correlation, by quarter, betwen the spatial distributions of CPUE for a
given specie and all other species.

14 Yellowfin Tuna
0.8
® 04 mQl
[
= 02 oQ2
S o
p a3
8 -0.2
© 0.4 oQ4
(7]
A 06
-0.8
_1 J
YFT BET ALB SBT NBT SKJ SWO STM BAM BUM SBS SAF DOL WAH OPA POA OoIL
1.2 1 Bigeye Tuna
1 4
c
S 08 -
=
© mQl
E 0.6 -
:O, 0.4 - oQ2
c 0.2 4 @ma3
[=}
2 0 oQ4
3
a -0.2 -
04 -
-0.6 -
YFT BET ALB SBT NBT SKJ SWO STM BAM BUM SBS SAF DOL WAH OPA POA OlL
1 Albacore Tuna
c
K=l
E mQl
[7]
£ oaQ2
S
c @a3
[=}
4 oa4
©
(7]
a
YFT BET ALB SBT NBT SKJ SWO STM BAM BUM SBS SAF DOL WAH OPA POA OIL
08 1 Southern Bluefin Tuna
c
]
] mQl
@ 2
5 oQ
p Za3
[=]
4 oQ4
©
(7]
a.
_06 d
YFT BET ALB SBT NBT SKJ SWO STM BAM BUM SBS SAF DOL WAH OPA POA OIL
06 1 Northern Bluefin Tuna
c
2
= mQl
°
5 oaQ2
c @a3
[=}
2 o4
©
(7]
a
YFT BET ALB SBT NBT SKJ SWO STM BAM BUM SBS SAF DOL WAH OPA POA OIL

98



Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

Figure 6.16: (cont'd) Pearson correlation, by quarner, between the spatial distributions of CPUE
for a given specie and all other species.
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Figure 6.16: (cont'd) Pearson correlation, by quarner, between the spatial distributions of CPUE
for a given specie and all other species.
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Fig 6.16: (cont’'d) Pearson correlation, by quarter petween the spatial distributions of CPUE for
a given specie and all other species.
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The spatial distribution of CPUE (assumed to beoxyfor biomass) was found to be most
consistent for Broadbill Swordfish, where for thg gquarterly comparisonR was between
0.84 and 0.95 and reasonable high for Yellowfin& (fbetween 0.62 and 0.95). On the other
hand, the results for Bigeye and Albacore Tunagetter with Striped Marlin, indicate variable
(and often low) degrees of persistence betweeditferent quarters.

In order to investigate where there are suites pecies which have correlated spatial
distributions within and across quarters of theryee Pearson correlation between the spatial
distributions of CPUE for a given species, andtiker species, was determined between each
year. These results (shown in Figure 6.16) candsal Wo identify companion species, i.e.
species which occur in similar habitats and as sftdn are caught together. For example,
results indicate that the distribution of Yellowfinna CPUE is positively correlated with black
and Blue Marlin, Dolphin Fish and Wahoo for all geas (indicating the possible persistence
of this species group), and quite strongly negétieerrelated with Broadbill Swordfish. The
degree of co-habitation identified will help infortime results of other multispecies analyses
carried out on the data (e.g. cluster analysesth&mmore, if the levels of co-habitation are
found not to persist across the different seasoislikely that such analyses will need to be
carried out on a seasonal basis.

Bigeye Tuna and Broadbill Swordfish are reportetbeaclosely linked ecologically, and these
two species have been shown to commonly co-occuorigline catches in the central and
southern regions of the east coast fishery (Wa@b1Similarly, Yellowfin Tuna and Black
Marlin commonly co-occur in longline catches in tdemtral and northern regions, and it has also
been suggested that within the northern regioretiea general inverse relationship between
Yellowfin Tuna and Striped Marlin. These pattemnghe longline catch rates are hypothesized
to result from partitioning of the oceanic habit,is well known in other species groups. This
partitioning has implications both for the efficietargeting of fishing operations and the
interpretation of catch and effort data. For examphanges in fishing operations to target
different species produces changes in the effaatis® of fishing effort units.
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6.3.2 Cluster Analysis

To further explore the coexistence of species albglto the ETBF longline fishery, we again
use the cluster analysis previously described ati@e5.4 to categorise individual fishing sets
using based on similarities in the catch compasitive use the logbook data within the ETBF
which provides catch information for a total of #flividual species (c.f. Appendix A).
Furthermore, to investigate possible seasonalrdifiges in cluster types, two sets of analyses
were undertaken. The first analysis was limitetheomonths of January and February (called
Summer), while the second analysis was limitethiéattvo June and July (called Winter). Each
analysis was also limited to the main central regyb the ETBF (i.e. latitudes between 20-
35°S). A summary of these constraints is providedwetogether with the number of longline
sets included in each analysis:

Analysis 1. Summer Analysis 2. Winter

Spatial area: 28 latitude< 35 Spatial area: 20latitude< 35
Months: January and February only Months: JumeJaty only
Number of records = 12,345 Number of record$;947

Finally, based on the number of key target speicide ETBF, and results of a number of
preliminary trials, the number of clusters to bedarced from each analysis was set at six.
After production of the clusters, the mean catcimpaositions of the sets within each cluster
were calculated and compared, while other operalticharacteristics were also compared
between the clusters. Each longline set was alseng ‘set-type’ label corresponding to the
dominant species caught (by number). For sets where than one species was dominant, the
set was classified as Mixed (MIX). The percentafieseai-types within each cluster were
calculated and compared.

Results

A comparison of the catch composition, set-typas$ @merational characteristics comprising
each of the six clusters corresponding to eachyaisak shown in Figure 6.17. There are clear
differences in the catch compositions between thsters identified, and for most clusters a
single species comprises a dominant proportiom@fcatch (> 40% for 8 of the 12 clusters).
For example, Albacore and Yellowfin Tuna comprig&gand 77% of the catch for clusters 1
and 6 respectively in the winter analysis, and &% 68% of the catch for clusters 6 and 5
respectively in the summer analysis. However, dpant the two respective ‘Albacore Tuna’
and ‘Yellowfin Tuna’ clusters which was seen towrcin each season, the composition of the
other clusters are quite different. For example,dlusters for which Swordfish, Dolphinfish
and Oilfish are dominant during the summer monih$,are not seen in the winter months.
Instead there is a cluster dominated by pomfretissaweral generally mixed-species clusters
(Albacore and Yellowfin, Qilfish and Albacore, aBigeye, Albacore and Yellowfin). This
dissimilarity again illustrates the seasonal déferes in the co-occurrence of species.

Some clusters display distinct differences in teargonfigurations. For example, for summer
cluster 1 (the ‘Swordfish’ cluster) the sets arallelwv (<11 hooks-per-float), deployed mainly
in the afternoon (4-8pm), and predominantly usedshait. On the other hand, summer cluster
6 (the ‘Albacore’ cluster) is associated with ahigge of deep setting (30-40 hooks-per basket),
deployment in the morning (4-8am) and the uselohprd baits, though a different and broader
range of gear configurations are associated wihAktbacore’ winter cluster. There are also
differences in the mix of gears between the sumandrwinter clusters comprised primarily of
Yellowfin Tuna. For most clusters, nevertheles®rehis a relatively wide use of gears
configurations, indicating that ‘targeting’ may &gl on more factors (e.g. oceanographic
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Figure 6.17: Comparison of results of cluster angbis for summer and winter data

Catch by Cluster (Summer) Catch by Cluster (Winter)
100 100
—_— [ | . = SHARKS = SHARKS
- o = o
- =POA =POA
80 1 | noea 80 1 . uoea
= [ | wan = wan
E £
] = oL 8 = oL
= 60 - " sAF = 60 - " SAF
k] uses ] uses
5 =BUM 5 =BUM
) | . oam ) oaw
4 sk g sk
o = neT e = neT
20 4 T 2 4 ser
Yer YT
o | _ ! . e ol ! ! ! e
BB BB
1 2 3 4 5 6 =l 1 2 3 4 5 6 A
Cluster Number Cluster Number
Set-Type by Cluster (Summer) Set-Type by Cluster (Winter)
100% 100% r
wan
=S}

80% -

@
3
B

mpoA mpoA

mopA mora

mol molL

P
3
X

Percen t of Sets
g g
§ ] ]

Set-Type Percentage

=DoL =DoL
=BUM
mBET 20% -
BBl

=BUM
20% - mBET

BB

0% : =ALB 0% : =ALB

w—_
b- -

m_l.
m‘l

2 z

z H

w|_l
b._
mll
m_.
T
£ H EBEZES
Set-Type Percentage
4 = ©
5 3 g
X X X
H_‘
N_ |

Cluster Number Cluster Number

HPB Usage by Cluster (Summer) HPB Usage by Cluster (Winter)
100% 100%
W 30-40 W 30-40

" 20-29 =20-29

1519 1519
1214 1214
=10-11 =10-11

=9 9

U‘_

e l—
L]
B
Percent of Sets
2 8 g g
] ] ]
- —
© —
¢ _
s _
? -_

m_
" om
N ®

w7
20% - 20% -
6
n4s
0% T T T
Cluster Number Cluster Number
Start-Time by Cluster (Summer) Start-Time by Cluster (Winter)
100% 100%
=8-12pm " 8-12pm
80% - 80% -
u4-8pm = 4-8pm
8 oon 8 oon
¢ = 0-4pm ¢ m0-4pm
H H
g g
§40% 1 ©8-12am 340% = 8-12am
— = 4-8am — = 4-8am
= A5
0% E— T T 0% T T T
1 4 5 6 1 2 3 4 5 6
Clust:r Number Cluster Number
Bait-Type by Cluster (Summer) Bait-Type by Cluster (Winter)
100% ey — 100% —_— r— e
. “Group “Group
= Mix,mix = Mix,mix
80% | o 80% | = Mix,live
B Mix,live B Mix,dead
m Mix,dead m Otherlive
ﬁ 60% | = Other,live ﬁ 60% | m Other,dead
; m Other,dead g = Pilchard
i = Pilchard g mScad
Saow | ilchar Faow = Squid
m Scad
= Squid
20% 20%
0% . 0%
6 1 2
Cluster Number Cluster Number
Region Fished by Cluster (Summer) Region Fished by Cluster (Winter)
100% 100%
=3306 3306
=3305 3305
20% 4 3206 s0% 1 3206
3205 3205
3106 3106
3 60% 3105 3 60% 3105
3 3104 5 3104
§ 3007 § 3007
§ 0% 3006 § 0% 3006
3005 3005
3004 3004
20% - 20% -
0% 0%
1 2 5 1 2
Cluster Number Cluster Number

103



Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

conditions such as water temperatures, eddy fegtthran just the configuration of the fishing
gear. The influence of such factors in helping &inate ‘cluster’ types will need to be
investigated separately.

6.3.3 Further Considerations

While the logbook data provided by the ETBF logbpo&vides catch information for a total
of 29 species (including 12 shark species), itkisly that some of the less frequently caught
by-product and predominantly discarded species Appendix A) have not been accurately
recorded throughout the times-series of availablia.dHence, there may be some merit in
limiting the analysis of the data to the catchhaf principal catch species only. Whilst limiting
the analysis to these species may help to simiigyanalyses, on the other hand the analysis
may be compromised by including species where dhehcstatistics may not be as reliable. Of
the 29 species included in the data, only ten sgdMiFT, ALB, SWO, OIL, BET, DOL, STM,
BSH, POA, MAK) individually comprise more than opercent of the mean total catch across
the 87,106 longline sets included in the aboveysesl These ten species together comprise
96.5 percent of the mean total catch. Furthermagart from these ten species only one other
species (SBT) comprises more than one percenteofrian total catch in any month (c.f.
Figures 6.18a&b).

Figure. 6.18: (a) Composition of the mean monthlyatch recorded in ETBF logbooks, and (b)
Percentage of each species recorded in the ETBF hmgpk comprising the mean monthly catch.
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In order to investigate how the configuration af thusters identified in the data are dependent
upon which species are included in the clusterysigl separate analyses were undertaken
using different numbers of species comprising tital tcatch (B), and different numbers of
species upon which the clusters were defined (&)aBalyses were undertaken based on the
winter data set defined previously using the follaywdefinitions:

1) Catch comprised of B=5 species (YFT, BET, ALB, SVBOM),
Cluster on A=5 species (YFT, BET, ALB, SWO, STM)
2) Catch comprised of B=17 species (no sharks),
Cluster on A=5 species (YFT, BET, ALB, SWO, STM)
3) Catch comprised of all B=29 species,
Cluster on A=5 species (YFT, BET, ALB, SWO, STM)
4) Catch comprised of B=17 species (no sharks)
Cluster on A=17 species (no sharks)
5) Catch comprised of all B=29 species,
Cluster on A=17 species (no sharks)
6) Catch comprised of all B=29 species,
Cluster on all A=29 species

The results are shown in Figure 6.19. For eache$ix analyses one can identify a ‘Yellowfin’
and ‘Albacore’ dominant catch cluster and to adegxtent a ‘Bigeye cluster’. Furthermore,

Figure 6.19: Catch comparison of clusters based amalyses using different number of species
(B) comprising the total catch and a subset of diffrent species (A) upon which the clusters were
defined. Individual results are labelled (AxB).
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when the 12 sharks species are not included iratladysis (i.e. B=5 or 17), one can also
identify a ‘Swordfish’ dominant cluster. Howevehngtcatch composition of the other clusters
(not unexpectedly) varies dependent upon the sfigpecies included in the analyses. This
indicates that some thought needs to be given to best to cluster the catch data for
classifying sets, and how to identify suites of cspg associated with different targeting

practices. For example, should the cluster analysesd to identify ‘targeting’ practices be

based only on the main target species in a fist@rghould such analyses also include by-
product and by-catch species (even though theszespare not targeted). The sensitivity of
abundance indices on using the different clustpedyidentified by these different types of
analyses in procedures to standardise CPUE shtzalda investigated.

Note, in the simulation analyses undertaken fag ghibject, the results reported in the next
section are based on the 5x5 cluster analysis etbfivove. This was due to the fact that the
simulated multispecies data for the ETBF usedlies¢ analyses only included five species
(called ALB, BET, YFT, SWO and DOL).

6.4 Comparative Performance of Standardisation Mode Is

The comparative performance of each the modetdlist Section 5.7.1 using each of the four
sets of trials listed in Section 5.7.2 is preseriesck.

6.4.1 1D-Trial and 1R-Trial: Group A and B models ftted to the ETBF simulated data-
sets.

The Mean Annual ErrorMAE) based on Type-1 and Type-2 errors for the Grougnd B
models fitted to the ETBF simulated data-set acsvshfor all 24 models compared in Figures
6.20a&b. Results are shown for each species antthéotwo sets of analyses fitted to the D-
catches and the R-catches (note, the corresporesnlis for another Trial discussed in Section
6.5 are also displayed). The corresponding resoittthe Type-3 and Type-4 errors are not
displayed, as thBIAE for each of the four error types are highly catedl as shown in Table
6.1. A summary of range of errors across all 24 eftbr each species and error type for the

Table 6.1: Pearson correlation coefficient betweethe MAE for each error type for the (a) 1D-
Trial and (b) 1R-Trial analyses.

(&) 1D-Trial

Group A E-1 E-2 E-3 E-4 Group B E-1 E-2 E-3 E-4
E-1 100.0%  98.7% 99.3% 99.8% E-1 100.0%  92.1% 98.9% 99.5%
E-2 100.0% 97.8% 98.6% E-2 100.0% 90.5% 94.0%
E-3 100.0%  99.7% E-3 100.0%  99.3%
E-4 100.0% E-4 100.0%
(b) 1R-Trial

Group A E-1 E-2 E-3 E-4 Group B E-1 E-2 E-3 E-4
E-1 100.0%  83.8% 99.4% 99.5% E-1 100.0%  93.7% 98.4% 99.2%
E-2 100.0% 80.9% 88.0% E-2 100.0% 91.4% 94.5%
E-3 100.0%  98.9% E-3 100.0%  99.3%
E-4 100.0% E-4 100.0%
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Figure 6.20: (a) Error-1 results for the Group A ard B models fitted to the ETBF simulated data-
set. Results are shown for each species and for && sets of Trials described in the text.
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Figure 6.20: (b) Error-2 results for the Group A ard B models fitted to the ETBF simulated data-
set. Results are shown for each species and for && sets of Trials described in the text.
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Figure 6.21: Minimum and maximum MAEs for each the four Error-types and species for the
1D-Trials and 1R-Trials.
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two sets of 1D-Trial and 1R-Trial analyses is shawirigure 6.21. For each error-type, the

minimum error is seen to be similar for each spgeéo the D-catches but displays some
variation for the R-catches (which are larger tli@corresponding D-catch errors), with the

smallest errors found for the BET analyses andatgest errors for the ALB analyses. This

pattern of variation is also seen for the maximonefch error-type and these maximum errors
are similar for both the D- and R-catches. Unlike minimum errors, the smallest errors are
found for the YFT analyses and the largest errarsife DOL analyses.

For the analyses fitted to the D-catches the SpdRemked ScoreéSRS for each species and
model is shown in Table 6.2 together with the tdfmldel Ranked ScoreMRS across all
species, while th&RSfor each species and the mean across all spsaiksplayed in Figure
6.22. Several results are worth noting.

First, the performance of each model varies conalilg between the analyses conducted over
the five species. For example, Model A-1a is seethé be the best performing model based
on the ALB analyses but is ranked™ 35", 20" and 1%' in comparative performance based
on the BET, DOL, SWO and YFT analyses, respectivibross all five species it is ranked
13" in performance (as measured by&tiRS. The reasons for differential performance across
the five species remains uncertain but is likehkdéid to differences in the spatio-temporal
distribution of the different fish resources acrtdssETBF.

Second, the variability in the performance of tde®dels across the five species is relatively
consistent (as measured by the standard devigtmnrsin Figure 6.22). The model with the
lowest variation (Model B-3a, the PCA-linear mo#eth no gear effects) is also the worst
performing model, so there is no consistently Ipestorming model across all species. The
best performing model across all species (Model & Annual cluster by set model) is only
the best model for two of the individual speciealgses (BET and YFT), beind’and ' best

for the DOL and SWO analysis and only™Best for the ALB analysis. Of the PCA-based
models, the B-4 model (PCA-Binomial) was the bestqgrming of the B-Group models while
the two other PCA-based models (B-2 and B-3) weedwo worst performing models. Of the
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Table 6.2: Species Ranked ScoreSRS) for each species and model and the total Model Rked
Score MRS) for the 1D-Trial analyses. All results are ordere from lowest to highest rank.
Shading indicates models with the sam8RS.

ALB BET DOL SWO YFT All Species
RANK SRS Model SRS Model SRS Model SRS Model SRS Model MRS Model
1 4 A-la 4 A-2 5 A-4 4 B-6 4 A-2 94 A-2
2 8 B-1a 10 A-3 7 A-5 8 B-7 8 A-3 133 A-5
3 13 A-2a 11 A-4 14 A-2 12 A-5a 12 A-4 141 A-3
4 16 B-7a 15 A-1 16 A-1 18 B-4 17 A-3a 146 A-3a
5 19 B-6a 20 A-5 19 A-5a 20 A-2 21 A-5 147 A-5a
6 24 A-4a 26 B-1 25 A-3 23 A-5 22 A-1 152 A-4
7 28 B-5a 28 B-4 26 A-3a 27 B-2 30 A-da 184 A-1
8 32 A-3a 31 B-5 32 A-da 32 A-3a 31 A-5a 200 A-2a
9 39 B-2a 37 B-1a 36 B-7a 36 A-2a 39 A-2a 205 A-da
10 41 B-4a 39 A-3a 42 A-2a 41 A-3 42 B-5 228 B-4
11 42 A-5a 43 A-5a 42 B-4 43 B-5 42 B-5a 248 B-5
12 46 B-2 49 A-4a 48 B-7 48 B-2a 47 B-6 259 B-7
13 52 A-2 55 A-la 52 B-4a 53 B-1 50 B-7 261 A-1a
14 57 A-3 57 B-2 56 B-6a 56 A-4 55 B-1 263 B-6
15 61 B-5 57 B-6 62 A-la 59 A-1 60 A-1a 276 B-1a
16 62 A-5 63 B-5a 66 B-1a 65 B-4a 64 B-4 292 B-1
17 68 A-4 69 B-7 67 B-6 70 A-da 70 B-4a 297 B-7a
18 72 A-1 70 A-2a 71 B-5 71 B-3 71 B-7a 303 B-2
19 76 B-4 77 B-4a 76 B-5a 74 B-6a 75 B-1a 305 B-4a
20 80 B-1 79 B-2a 78 B-1 80 A-1la 82 B-2a 305 B-5a
21 84 B-7 84 B-6a 86 B-3 84 B-7a 84 B-2 319 B-6a
22 88 B-6 90 B-3 89 B-2 90 B-1a 86 B-6a 338 B-2a
23 92 B-3 90 B-7a 90 B-2a 90 B-3a 92 B-3 431 B-3
24 96 B-3a 96 B-3a 95 B-3a 96 B-5a 96 B-3a 473 B-3a

Figure 6.22: Comparison of the Species Ranked ScarésRS) for each species and model for the
1D-Trial analyses. The mean and standard deviationf the SRS across all five species is also
shown.
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cluster-based B-Group models, traeansuntransformed cluster by set model (B-5) was the
best, followed closely by tHaneangransformed cluster by set model (B-7).

Third, for the ALB analyses, and except for ModeB3& all the models without the gear effects
included in the linear predictor (the ‘a’ model®riormed better than those with the gear
effects included (c.f. Table 6.2). Indeed, the Base models without gear effects (Models A-
la and B-1a) are the best performing models fargpecies. This is unlike the results for the
other species, where the performance of these éi® af models is more mixed with the
models with gear effects included in most instarmgperforming those without gear effects
(c.f. Figure 6.23). The out-performance of the mieaeéth gear effects included is seen to be
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Figure 6.23: Comparison of the rank of models whiclinclude the two gear effects in the fitted
GLM with those models which do not include these &fcts. The comparison is shown for both the
1-D and 1-R analyses for (a) all species and (b)etiour species other than ALB.
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most pronounced for the analyses conducted on W® $atches, where for example, the
Error-2 results are less than 0.5% for when the gHacts are included, but greater than 3%
when they are not included (Figure 6.20b). Thear#gr the poorer performance of the models
with gear effects for the ALB-catches remains utaer but is somewhat surprising as it was
the introduction of the ‘deep’ longlining technig(essociated with the use of HPF settings
greater than 20) in 2006 that is usually associat#tthe shift to targeting the deeper species
such as Albacore Tuna that the simulated ALB wapssed to mimic (c.f. Figure 6.2).

Finally, it is interesting to compare only the tela performance of the models without the

gear effects included. This is because the geactsfare likely to have the larger influence on
identifying the targeting strategy associated vaitparticular set, than that identified by the

other (secondary and assumed) targeting effeatded in the model based on clustering the
catch. Secondly, many fisheries do not collectrimation on the particular gear configuration

associated with any given set, with the consequtitatehe available data is generally limited

to information on the catch alone. In these sitratithe only models available for standardising
the CPUE would be the models without the gear effec

Of the Group-A models which did not include gedeets, Model A-3a (Total cluster by trip
model) was the best performing model, closely foéd by Model A-5a (Bi-monthly cluster
by set model), while Model A-1a (which is the ontpdel which does not include a targeting
effect) was the worst performing model (c.f. Tabl2). This last result indicates that each of
the models that includes a targeting effect perfobmtter than models that exclude targeting
effects, and that the use of catch-based clusiedentify ‘targeting’ has merit. It is also note-
worthy that the cluster by trip model out-perfortims cluster by set model when the gear effects
are not included. This may indicate that withoutdi information on the targeting strategy
associated with each set (as provided by gear nrdton), the variability in species
composition at the set level (due to the likelyd@am nature of encounters between fishing gear
and fish) may result in a misallocation of setsgecific fishing strategies, and that aggregating
the data across trip reduces both this variabditg the potential for misallocation. Of the
Group-B models, and excluding the anomalous redaltsALB, the B-4a model (PCA-
Binomial) was the best performing, with the othexd®ls having a similar performance except
for the B-3a model which was the worst performing.
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Table 6.3: Species Ranked Scorg¢SRS) for each species and model and the total Model Rked
Score MRS) for the 1R-Trial analyses. All results are ordere from lowest to highest rank.
Shading indicates models with the sam8RS.

ALB BET DOL SWO YFT All Species
RANK SRS Model SRS Model SRS Model SRS Model SRS Model MRS Model
1 4 B-1a 6 A-1 4 A-1 4 B-6 4 A-1 119 A-3
2 10 B-6a 8 A-5 8 A-3a 12 B-7 8 A-3 133 A-1
3 13 A-1la 10 A-4 13 B-4 13 A-3 15 A-4 152 A-4
4 13 A-4a 16 A-3 18 A-3 13 A-5a 17 A-3a 166 A-da
5 21 B-7a 20 A-2 19 B-4a 22 A-2 17 B-5a 174 A-3a
6 24 A-2a 30 B-1 24 A-la 22 A-5 29 B-7 185 A-2
7 27 B-5a 30 B-4 34 A-da 26 A-2a 30 A-da 193 A-5
8 33 A-5a 33 A-la 34 B-7a 33 A-4 31 B-5 200 A-5a
9 36 B-2a 38 B-5 38 A-4 35 A-da 31 B-6 210 A-1la
10 41 A-3a 40 A-5a 43 B-6a 40 B-4 40 A-2 221 B-4
11 43 B-4a 40 B-1a 51 A-2 45 B-2 44 B-1 229 B-6
12 47 B-2 48 B-6 53 B-7 47 A-1 46 A-5 232 A-2a
13 52 A-2 53 A-3a 55 A-2a 53 B-2a 53 A-5a 250 B-7
14 56 A-4 54 A-da 57 A-5 55 A-3a 57 A-2a 266 B-1a
15 60 A-5 56 B-2 58 B-1a 60 B-5 60 A-1a 266 B-5
16 64 A-3 64 B-5a 61 A-5a 64 B-1 62 B-4 267 B-5a
17 68 B-5 68 B-7 62 B-6 68 B-4a 69 B-4a 278 B-4a
18 72 A-1 70 A-2a 63 B-5a 72 B-3 72 B-1a 295 B-6a
19 76 B-4 77 B-2a 69 B-5 76 B-6a 77 B-2a 300 B-1
20 80 B-1 79 B-4a 79 B-3 80 A-1la 82 B-2 313 B-7a
21 84 B-6 84 B-6a 82 B-1 84 B-7a 82 B-6a 317 B-2
22 88 B-7 88 B-7a 87 B-2 88 B-3a 86 B-7a 336 B-2a
23 92 B-3 92 B-3 93 B-2a 92 B-1a 92 B-3 427 B-3
24 96 B-3a 96 B-3a 95 B-3a 96 B-5a 96 B-3a 471 B-3a

Figure 6.24: Comparison of the Species Ranked ScaréSRS) for each species and model for the
1R-Trial analyses. The mearBRS across all five species is also shown.
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For the analyses fitted to the R-catches the Spdtamked ScoreSRS for each species and
model is shown in Table 6.3, together with theltMadel Ranked ScoreMRS across all
species. Th&RSfor each species and the mean across all spsaiksplayed in Figure 6.24.
Again, several results are worth noting. Firstoanparison how accurately the standardised
indices match the assumed relative abundanceseasumed by the mean of the Type 1 and 2
errors across all species, for both the D-catchRuwdtch analyses is shown in Figure 6.26,
indicating that in general the model fits are béfibe the D-catch analyses (both sets with and
without the gear effects included). This relative-performance is greater for the Group-A
models but is quite small for the three PCA-basaxtiets (B-2, B-3 and B-4). Given the
random element added to the R-catches, theseahffes are not unexpected and likely linked
to the higher proportion of zeroes in the R-catdleds Figure 5.20).
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Figure 6.25: Comparison of the model ranks (1-24)diween the 1-D and 1-R analyses by species.
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Figure 6.26: Comparison of the mean Error-1 and Erpr-2 results across all species for models
fitted to the D-catches and the R-catches. The corapson is also shown for both sets of analyses
which include the two gear effects in the fitted GM with those models which do not include these

effects.

(a) Error-1

—— D-Catch : With Gear

(b) Error-2

——D-Catch : With Gear
====D-Catch : Without Gear
R-Catch : With Gear 4,"

-=-==R-Catch : Without Gear

====D-Catch : Without Gear K 4%
——R-Catch : With Gear K ’
====R-Catch : Without Gear O < 3%
o = e
' g
]

N

A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B6 B-7
Model

A-1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B6 B7
Model

Table 6.4: Pearson correlationR, between the model ranks (1-24) for the 1-D and R-analyses.

Species ALB
R 97.5%

BET
96.1%

DOL
67.6%

SWO
87.4%

YFT
86.5%

All
92.5%

Second, the high variability in the performanceath model across the five species is similar
to that noted for the D-catch results, again inttcpthat no single model is seen as being the
best performer across all species. Also, the orfoprance of the models without the gear
effects included for the ALB analyses is retainBhird, a comparison of the overall Rank of
each model fitted to both the D- and R-catcheg#&mh species and across all species is shown
in Figure 6.25, and despite some differences inelsca relatively high degree of similarity
between the two sets of analyses for most speties.similarity is highest for the ALB and
BET analyses and lowest for the DOL analyses {alble 6.4).

While the A-1 (Base delta model) is the best penfag across three species for the R-catch
analyses (and is ranke@‘2cross all species), the best performance oibidel was % for

the D-catch analyses (where is was rankeadtoss all species). The higher performance of
the A-1 model fitted to the R-catches is most lkeéle to the fact that the influence of the
cluster-based targeting effects has been reduecediadthe higher variability in the catches
(with the random component added) and the greatierence of the gear effects alone. The
best performing model overall for the R-catch ase$y(model A-3: Total cluster by trip) ) was
not the best model for any of the individual specheing 2¢, 39, 4" and 4" best for the YFT,
SWO, DOL and BET analyses (respectively) and o6l Hest for the ALB analysis. It was
ranked &' overall for the D-based analyses but was the fesorming model based on the
sum of theMRSfor both sets of analyses. On the other handyelséperforming model overall
for the D-catch analyses (model A-2: annual clubieset) was ranked"6overall for the R-
based analyses, but was tié l2est performing model across both sets of analygesthird
best performing model across both catch types wadehA-4 (Monthly cluster by set), but
was ranked B and ¥ for the D- and R-based analyses respectivelyh®fG@roup-B models,
the B-4 model (PCA-Binomial) was again the besfqraring while the two other PCA-based
models (B-2 and B-3) were the two worst performmgdels. Of the Group-B cluster-based
models, model B-6c{ara clustering) was the best performing, unlike that the D-catch
analyses where tHaneansbased cluster models were better performing. éstergly, the B-

6 model was the best performing for the SWO analggeoss both sets of analyses. Finally,
of the models that did not include the gear effeat&l again excluding the anomalous result
seen for ALB, the A-3a model was the best performer
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ordered from lowest to highest rank. Shading indicees models with the sam&RS.

ALB BET SWO YFT ST™M DOL SBT BUM BLK SHK TOTAL
RANK SRS Model SRS Model SRS Model SRS Model SRS Model SRS Model SRS Model SRS Model SRS Model SRS Model MRS Model

1 4 A-3 4 B-2 4 A-1 4 B-12 4 A-3 4 A-5 4 A-5 4 A-3 4 B-2 4 A-1 80 A-3

9 B-8 8 A-1 11 B-2 8 A-3 10 A-5 8 A-3 8 A-3 8 A-2 9 A-3 8 A-3 161 A-2
3 11 B-12 12 A-3 12 B-12 14 B-8 14 A-1 12 A-2 17 B-8 13 A-5 11 A-1 12 A-2 165 A-5
4 19 A-5 17 A-2 15 A-3 14 A-5 14 A-2 16 B-8 18 B-3 15 B-11 16 A-2 16 A-4 261 A-4
5 20 A-2 21 B-11 19 A-2 23 B-9 18 B-2 20 A-4 18 A-2 22 A-4 21 A-5 20 B-2 302 A-1
6 22 B-9 22 B-6 25 A-4 24 B-5 25 A-4 25 B-9 22 B-9 23 B-2 23 B-11 24 A-5 329 B-2
7 29 A-4 30 A-5 26 A-5 25 A-2 31 B-7 27 B-12 29 A-4 27 A-1 28 A-4 28 B-11 334 B-8
8 30 B-10 31 A-4 32 B-10 32 B-10 31 B-10 34 B-10 31 B-10 32 B-7 32 B-7 32 B-7 366 B-9
9 38 B-7 36 B-7 38 B-3 36 A-4 37 B-6 38 B-4 38 B-6 36 B-6 36 B-6 36 B-6 385 B-10
10 43 B-3 39 B-5 38 B-6 44 B-7 38 B-9 42 B-6 40 B-4 41 B-10 43 B-5 43 B-5 391 B-7
11 43 B-8 44 B-12 46 B-5 46 B-3 47 B-5 45 B-3 43 B-7 46 B-5 43 B-10 43 B-10 398 B-6
12 52 B-5 48 B-9 48 B-9 46 B-4 47 B-9 47 B-5 50 B-5 46 B-7 47 B-9 47 B-9 399 B-12
13 52 B-11 52 B-10 52 B-7 50 B-11 48 B-3 51 B-7 52 B-12 51 B-8 51 B-8 51 B-8 410 B-11
14 55 A-1 56 B-8 54 B-6 54 B-6 56 B-11 52 B-11 53 B-11 57 B-3 57 B-3 57 B-3 437 B-5
15 57 B-4 61 B-3 60 B-11 61 B-2 60 B-4 59 A-1 57 A-1 61 B-12 61 B-4 61 B-4 470 B-3
16 60 B-2 63 B-4 64 B-4 63 A-1 64 B-12 64 B-2 64 B-2 62 B-4 62 B-12 62 B-12 552 B-4

Figure 6.27: Comparison of the Species Ranked Scar(RS) for each species and model for the 2R-Trial ana$es. The mea®RS across all ten species

is also shown.
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6.4.2. 2R-Trial: Group A and B models fitted to theDIST simulated data-set using the
random R-catches.

For the analyses fitted to the R-catches, the $pdeanked Scor&RS for each species and
model is shown in Table 6.5, together with theltMadel Ranked Scored{RS across all
species, while th&RSfor each species and the mean across all spsaiksplayed in Figure
6.27. Several results can be noted. First, sindlahe 1D-Trial and 1R-Trial results there is
high variability among model performance acrosssthecies, with no model performing best
across all species. While model A-3 is the bedopaing for three of the ten species, and best
performing overall, model B-12 is the best perforgifor YFT but is ranked only Yoverall.
The variability in performance can be highly bi-rab@cross species for some models, for
example models A-1 and B -12.

Second, similar to the 1D-Trial and 1R-Trial resulicross all species each of the Group-A
models out-perform all of the Group-B models (€igure 6.28). Of the Group-A models,
model A-3 is the best performing and model A-Zhis second best performing. This result is
consistent with the 1R-Trial results, as these tmaxels were also the best performing for
these analyses. Of the Group-B models, model B&RCA-ns model) is the best performing,
but this result is different from that found foretiR-Trial analyses where of the Group-B
models the B-4 (PCA-binomial) model performed bésterestingly, of the cluster-based
models within Group-B, th@&/ard-cluster model (B-8) was the second best perforrmirge
2R-Trial and this cluster method is the same asubed in the Group-A models.

Figure 6.28: Comparison of the overall rank of theeleven models used in both the 1R-Trial
(ETBF) and 2R-Trial (DIST) analyses.
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6.4.3 3D-Trial: Group A and C models fitted to theN3-version of the ETBF simulated
data-set using the deterministic D-catches.

Finally, for the analyses fitted to the D-catchesgaining to the smaller set (N3) of the ETBF-
simulated data, the Error-1 and Error-2 resultsshmvn in Figure 6.29. Species Ranked Score
(SRS for each species and model is shown in Tabletég&ther with the total Model Ranked
Score MRS across all species. Finally, t8&Sor each species and the mean across all species
is displayed in Figure 6.30.

These results, which can be compared with the liB-fesults (c.f. Table 6.1), show similar

variability in model performance across speciestHeumore, as noted previously, the models
including gear effects generally out-perform thosthout gear effect. However, while this
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Figure 6.29: Error-1 and Error-2 results for the Group A (blue) and C models (green) fitted to
the streamlined (N3) ETBF simulated data-set. Restd are shown for each species. Note, y-axis
values differ between panels.
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difference in performance is seen for all the A«@ronodels, this relative out-performance is
only apparent for several of the C-Group modelg. @-5, C-6 and C-7). For three of the five
species the best performing model is the sameaa®bserved in the 1D-Trial analyses, with
model A-2 relacing model A-4 for DOL and model Adplacing model B-6 for SWO. Over
all species, the best performing model was mod2| while the second best performing model
was model A-5 — these are the same results akdat@-Trial analyses. The best performing
of the C-Group was model C-6, which is the INLAalete and continuous spatio-temporal
model, and the most complex model within this grotdhile this model only out-performed
one of the A-Group models (model A-1a) its perfoncewas substantially better than most
of the other models in the C-Group.

Table 6.6: Species Ranked ScoreSRS) for each species and model and the total Model Rked
Score MRS) for the 3D-Trial analyses. All results are orderd from lowest to highest rank.
Shading indicates models with the sam8RS.

ALB BET DOL SWO YFT TOTAL
RANK SRS Model SRS Model SRS Model SRS Model SRS Model MRS Model
1 4 A-1la 4 A-2 4 A-2 6 A-5 4 A-2 47 A-2
2 8 A-2a 9 A-1 9 A-4 8 A-5a 8 A-4 84 A-5
3 12 A-4a 11 A-5 15 A-1 10 A-4a 13 A-5 94 A-4
4 17 A-3a 16 A-4 19 A-5 16 A-2 15 A-3 113 A-5a
5 19 A-2 20 A-3 20 A-3 20 A-3a 20 A-1 122 A-1
6 24 A-5a 24 A-5a 20 C-6 24 A-4 25 C-6 122 A-3
7 32 C-5a 28 Cc-7 26 A-5a 28 A-2a 30 C-1a 141 A-4a
8 34 A-3 34 C-2 31 Cc-7 33 A-3 31 A-5a 166 A-3a
9 35 A-5 36 C-7a 37 A-4a 35 A-1 34 C-6a 216 A-2a
10 37 A-4 39 A-4a 39 A-3a 40 C-6 41 A-3a 217 C-6
11 43 A-1 43 C-1 44 C-5 44 C-1 43 A-4a 259 c-7
12 47 C-7a 49 A-3a 48 C-6a 48 C-2 48 A-2a 290 A-la
13 52 Cc-7 54 C-3 52 C-1a 53 C-4 52 C-2a 297 C-2
14 58 C-1a 58 C-4 56 A-2a 55 A-la 57 C-2 308 C-1a
15 60 C-5 60 C-5 60 C-5a 60 Cc-3 60 C-3a 310 C-6a
16 62 C-6a 60 C-6 64 C-2a 64 Cc-7 65 C-3 318 C-1
17 68 C-3a 70 C-3a 70 C-2 68 C-5 66 C-1 320 C-5
18 72 C-6 74 C-4a 73 C-1 74 C-7a 72 A-la 344 C-7a
19 77 C-2a 76 A-2a 78 A-la 75 C-6a 76 C-4a 353 C-3
20 81 C-3 78 C-2a 80 C-4a 79 C-1a 80 C-4 355 C-2a
21 82 C-4a 81 A-la 81 C-3a 84 C-2a 84 Cc-7 371 C-3a
22 88 C-2 89 C-1a 86 C-4 90 C-4a 88 C-5 373 C-4
23 92 C-1 91 C-6a 93 C-3 92 C-3a 92 C-7a 378 C-5a
24 96 C-4 96 C-5a 95 C-7a 94 C-5a 96 C-7 402 C-4a

Figure 6.30: Comparison of the Species Ranked ScarésRS) for each species and model for the
3D-Trial analyses. The mearsSRS across all five species is also shown.
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6.5 Further Analyses

The results presented in the previous Section eamenber of questions as to the reason behind
the relative performance of each model. While & ifwestigation of these differences is
beyond the scope of this project, in this Sectienfecus on the following three issues:

1) the relative out-performance of the Group-A of nede

2) the out-performance of the models without gearet$féor the ALB analyses, and

3) the selection of the GLMreaeffects.

6.5. 1 Group-A Models Out-Performance

Apart from differences on how the ‘target’ effecasvadded to the linear predictor in both the
Group-A and Group-B models, the other main diffeeewas that the Group-A models utilised

a two-stage analysis, with the first stage anatysine distribution of zero catches in the data
and the second stage analysing the distributioroofzero catches. As noted previously, this
approach is often used because the number of zertles catch data is usually ‘inflated’, and

is assumed to result in a distribution of erroredus a single-stage analysis that will not be
appropriate (i.e. it will be unable to adequatelplain the large proportion of zero catches).

To explore the implications using a two-stage vemssingle-stage analysis, the following set
of analyses were undertaken. First, the A-1 moded fitted to the 100 sets of R-catches for
the ETBF simulated data set as previously undentakéhe 1R-Trial. Second, the first stage
Binomial model was dropped and instead all the date fitted just to the Negative-Binomial
model. These will be called the Delta-2 and NoD&lenalyses respectively. The analysis was
also extended to investigate the relative perfomaant using a 3-way interaction between the
Year, QuarterandAreaeffects, instead of just the two 2-way interacsioised in all previous
analyses. For this purpose, the above two analyses repeated using the following linear-
effects model:

| + Year*Qtr*Area +HPF +STIME

Following the notation used above, these will bikedathe Delta-3 and NoDelta-3 analyses
respectively Finally, the annual index of abundawes calculated for all four fitted models
together with the corresponding deviations (Errbi) from the true underlying index. A

comparison of these errors for the four modelfiass in Figure 6.31.

Figure 6.31: Comparison of the four index-based eors after fitting the following four variates
of the A-1 GLM to the 100 sets of R-catches for thETBF simulated data set: (i) a two-stage delta-
(Bin-NegBin) model with either the twoYear* Qtr and Qtr*Area 2-way interactions (Delta-2) or
the single 3-wayYear*Qtr* Area interaction (Delta-3) and (ii) a single-stage-NegB-only model
with either the two Year*Qtr and Qtr*Area 2-way interactions (NoDelta-2) or the single 3-way
Year* Qtr* Area interaction (NoDelta-3).

(a) Error-1 (a) Error-2
20% 4.0%
M Delta-2 3.5% M Delta-2
5%
M NoDelta-2 M NoDelta-2
15% 3.0%
_ M Delta-3 = 2.5% M Delta-3
&) = 27
g 5 NoDelta-3 g NoDelta-3
5 10% o 2.0%
IS & 15%
i I I I I I o I I
0.5% I I I
0% I I I I I 0.0% sl nmis
ALB BET DOL SWo YFT ALB BET DOL SWOo YFT
Species Species

119



Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

Several results can be noted. First, for both dggoes and for all species, the Delta-2 model
out-performs the NoDelta-2 model. The improvementperformance between these two
models can be relatively substantial. For exantpketype-1 error for DOL decreases by 61%
(from around 15% to 6%), and by 38% averaged a@ibspecies. Similarly, the Delta-3 model

out-performs the NoDelta-3 model for all specidse dut-performance of the two-stage Delta
models, compared to the single-stage non-Deltaoagpr helps to explain the out-performance
observed in the previous Trials by the Group-Adfanodels in comparison to the Group-B

and Group-C models. However, what proportion ofdoeperformance is explained by this

single factor remains uncertain but it could bessaiitive, especially for some species.

Second, comparison of the results for those madelsding the two 2-way interactions with
those models which include the single 3-way intiéoac indicates in most instances the latter
model out-performs the former. Indeed, for botloetypes and for all species the NoDelta-3
model out-performs the NoDelta-2 model, while fatyathree of the five species (ALB, SWO
and YFT) does the Delta-3 model out-perform thet®2l model. The reasons for this
differential relative performance across the défdrspecies remains unknown (perhaps based
on temporal changes in the spatial distributiothefzero catches) but should be investigated.

6.5.2 Anomalous ALB Result

As noted in the previous Section, and unlike tiseilte for the other species, the results of the
1-Trial analyses for ALB indicated that all modd€except one) without the gear effects
included in the linear predictor out-performed thedels with the gear effects included (c.f.
Tables 6.2 & 6.3). This result was seen as sungiss it was the introduction of the ‘deep’
longlining technique that is usually associatechwiite pronounced shift to targeting of ALB
that was undertaken in 2006 (c.f. Figure 6.2).

Interactions with gear effects

The cluster analyses of the ETBF catch data urkismta Section 6.3 indicated strong seasonal
changes in species composition of the major clsstientified, but for most clusters there was
a relatively wide use of gears configurations. Ramnore, for similar cluster types there was
a difference in the mix of gears between the sedsdusters. For example, the mix of gear
types associated with the fishing operations inetudith the summer and winter YFT and
ALB clusters identified in Section 6.3 is showrHigure 6.32. The large differences in the mix
of gears associated with different clusters indisathat there is a strorggar-by-cluster
interaction and the differences in the mix of gessociated with similar clusters at different
seasons indicates that for some clusters thereaisaybe agear-by-seasotfe.g. gear-by-
guarter) interaction.

In order to investigate whether the inclusion dhei of these two interactions improves the
performance of the GLMs used to standardise theE_&fihe simulated catch and effort data,
especially for ALB, two alternative sets of analyseere undertaken where for both the A-3
and A-5 models described in Section 5.7 the lipeadictor was updated to become:

| + Year*Qtr + Qtr*Area +HPF*CLUSTER +STIME*CLUSTER

The updated A-3 model investigates the inclusioonty thegear-by-clusteinteraction, while
the updated A-5 model also allows tear-by-clusteeffects to have different relative effects
within each of the bi-monthly periods (as explaipegviously). Both models were fitted to the
100 simulated ETBF data-sets with the R-catchesagadh the Mean Annual ErrdviAE) was
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Figure 6.32: Gear types associated with fishing opations included in the summer and winter
YFT and ALB clusters identified in Section 6.3 (cfFigure 6.17)
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Figure 6.33: (a) Comparison of thaMAE associated with the fitting the A-3 model to the EBF
data-set where the linear predictor includes; (i) 0 gear effects, i.e. cluster effects only, (ii) bt
gear and cluster effects, or (iii) the gear-by-clusr interactions.
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Figure 6.33: (b) Comparison of theMAE associated with the fitting the A-5 model to the EBF
data-set where the linear predictor includes; (i) 0 gear effects, i.e. cluster effects only, (ii) bt
gear and cluster effects, or (iii) the gear-by-clusr interactions.
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calculated for each species. The results are slowigures 6.33a&b for both the Type-1 and
Type-2 errors where they are also compared withidbelts from the previously fitted models
where there was either (i) no gear effects inclu@ed only a cluster effect), or (ii) only the
gear and cluster effects alone (i.e. no interagtion

Both sets of results indicate that the inclusiothefyear*clusterinteraction terms in the fitted
models makes little overall difference, if anyth@ performance of the models. Whether the
simulated ETBF data contaigear*clusterinteraction effects like those observed in the real
ETBF data remains uncertain. However, a more likgjylanation for these results is that there
is a substantial random element in the relationsatpeen the deployment of the fishing gears
and the resulting catch and its composition sottiatelationship between these two is weak.
Indeed, this is consistent with the results ofahalyses presented in Section 6.3 which did not
find particularly strong relationships between ta¢ch-composition of the clusters identified
in the ETBF data and the gear settings. Furthernretationships that do exist may not be
consistent over time (implying an interaction wytnar).

The factors that influence the size and compositibthe catch of any fishing operation are
likely to be complex and subject to a reasonabigeabeof natural variability due to the random
nature of fish interacting with longline hooks. Noubt further research is required to identify
and improve our understanding of the factors usefishers to ‘target’ the effort deployed at
specific species and how this is reflected in @gosition of the catch for individual fishing

operations, in particular those factors that actéamthe variability seen in the composition
of the catch given similar gear settings. Theséofacare likely to include spatial features in
the ocean such as temperature fronts and eddiearthbkely to influence the distribution of

fish in the oceans and which are taken as cueshgrt for setting their gears.

Spatio-temporal changes

In lieu of the gear effects not providing the neaeg explanatory power for improving the
estimation of the ALB index, we explored possilpgats-temporal changes in the distribution
of the catch rates in the simulated data. Forghipose, we calculated the Pearson correlation,
R, between the annual distributions of nominal CPh#fween years. The analysis was
undertaken at two spatial scales: (i) at the Lxgrek level, and (ii) at the GLM-area level.
Furthermore, in order to identify any distinct eattin the ALB data that is different from that
associated with the other species, the analysisumndsrtaken across all five species. The
results are displayed in Figure 6.34.

The pattern of annual correlations for ALB basedtandistribution of 1-dgree spatial CPUE
shows a distinct change after 2005. The correldigiween any year up to 2005 and any other
year is generally low, witR mainly between 0.25 and 0.40. However, the caragidetween
any year after 2005 and any other year is genehngly, withR mainly between 0.7 and 0.9.
This pattern indicates a shift in the spatial disttion of catch rates after 2005 and is apparent
in the annual distributions of CPUE displayed igufe 6.35. Up until 2005 the location of
squares with high CPUE was spread around the pe¥ipdf the fishery, but from 2006, and
persisting across all remaining years, there istndt area of high CPUE (>12) located in the
north-east of the fishery. The pattern of annuatetations for ALB based on the distribution
of GLM-area CPUE also displays a distinct changera2005, but also indicates another
change after 2010. These changes in the distribofithe ALB resource between years infers
a largeYear*Areainteraction between these two effects.
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Figure 6.34: Pearson correlation between the annualistributions of nominal CPUE between
years at: (a) the 1x1-degree level, and (b) the GLirea level.
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Figure 6.35: Annual distributions of nominal ALB CPUE for the simulation ETBF data-set. The
colours indicate the following range of CPU: (i) ylbow, <2.0, (ii) orange, <4.0, (iii) green, <6.0i\)

light blue, <8.0, (v) dark blue, <10.0, (vi) red, £2.0, and (vii) purple, >12.
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Table 6.7: Species Ranked ScoreSKS) for each model for the D9-Trial analyses. Modelbaving
equal rank scores are shaded.

Rank 1 2 3 4 5 6 7 8 9 10
SRS 4 8 14 14 20 25 27 32 36 40
Model A-3 A-1 A-2 A-4 A-3a A-4a A-la A-5 A-2a A-5a

Figure 6.36: Comparison of (a) the standardised CPBJindices and (b) the index errors based on
the A-la model for all years and the A-3 model fothe last 9 years. The nominal CPUE and the
assumedabundance indices are also shown.
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The pattern of annual correlations for the otheur fepecies, shown in Figure 6.34, display
differing levels of inter-annual variability (e.gigh for BET and low for DOL), but do not
display the substantive shifts noted in the redoltsALB. This suggests that the distinctive
changes noted in the distribution of ALB CPUE mayhlaving an impact on the performance
of the models fitted to this species.

To investigate this possibility, a further set afalyses (known as the D9-Trial) were
undertaken similar to the 1D-Trial, but limitedth® A-Group of models fitted to the ALB data
for the last nine years of data only (i.e. it exigls the data before the substantive changes noted
in the spatial correlations for ALB). The errorddapecies-ranked-scores were calculated as
before for each model and the results are showiabie 6.7. Unlike the previous 1D-Trial
result for ALB, where the models without the geffe@s out-performed the models including
gear effects and the A-1a model was ranked firskmapplied to the data for the last 9 years
the models with gear effects perform best, and®t3emodel is ranked first. This last result is
consistent with the previous results for the 1Ralfand 2R-Trial analyses.

A further comparison of the D9-Trial and 1D-Triakults is shown in Figure 6.36. First, the
annual abundance index for each Trial is displayeticompared with both the nominal index
and the assumed annual index. All indices have bealed such that the average of the last 9
years is equal to 1. In general, the D9 index bdttrks the true index, and corrects the
negative trend over the last 9 years seen in thd@rid index. Second, a comparison of the
Mean Annual ErrorNIAE) for the four errors calculated over the last @rge but with each
index retaining its original scale, is shown in g 6.36b. Again, a substantive improvement
in each of the four errors is seen, with aroun@% Teduction in the Type-2 error and a 50%
reduction in the other errors.

In order to investigate whether the shift notedhie fishing patterns for Albacore Tuna may
have influenced the model fits to the other specthesabove analysis of fitting the Group-A
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Figure 6.37: Comparison of the overall model rankdr the five Group-A models based in the D9-
Trial analyses with and without the two gear effea included in the linear predictor.
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models to the last nine years of data only was ahtertaken for the other four species. The
following average relative change in thié\E for each error was calculated for each moabel
and species.

4
AMAE.. . = lz (MAEms,i9y = MAE 5i,au)
s 4 ; MAEm,s,i,all

=1
where the subscriptall and 9y refer to the analyses over all years and the 9agears
respectively. The results are shown in Figure 6\8fdere positive and negative changes
indicate a larger and smallgtAE respectively (by the percentage shown) for thdyaisover
the last 9 years compared to all years. Consisgtghtthe previous results above for ALB, the
AMAE is negative for all models, indicating a generalybstantial improvement in the
estimation of the abundance index. However, thssiltas not consistent across all species,
with some improvement in the estimation of the indeer the last 9 years seen for both BET
and SWO, little if any change seen for YFT, andarpr estimation of the index seen for DOL.
The reasons for these differences remain uncledrate a further indication that there are
factors specific to each species that influencdithef any model to the data and as such the
estimation of the annual abundance index.

6.5.3 Construction of GLM Area effects

For all models fitted to the ETBF simulated dattsskbeArea effects correspond to the seven
GLM-Areas shown in Figure 5.23. As previously notdtbseAreaseffects were determined
externally from the model by visual inspectiontod tistributions of nominal CPUE across the
1-degree cells in the data. However, a disadvardaties approach is that the construction of
theAreaeffects has to be undertaken manually (or emplyicand separately for each species.
This can be time-consuming if there are a large bemof analyses (or species) to be
completed. Furthermore, there is no guarantedhisatatherad hocprocess, or the number of
Area effects selected, is optimal. It would be prefégabthe selection oArea effects could
be based on some algorithm which can be incorpibrate the analysing model. In this Section
we compare the performance of the A-1 model usisgite of differentArea effects while
keeping all other model inputs constant.

The following six criteria were used for selectithg Area effects used in the model fitted to
the data for each of the five species:
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Type-1 These are the seven GLM-Areas shown in Ei§u23, and used in all previous
analyses —where the numberAwta effects for each species is seven;

Type -2 These are based on the same empirical agpias Type-1 except the number
of GLM-Areas for each species was increased toewden 9 and 11,

Type -3 These are based on the same empirical agpis Type-1 except the number
of GLM-Areas for each species was increased toetheden 13 and 14;

Type 4 The Type-1 GLM- Areas for YFT were useddbrspecies.

Type -5 The total area of the fishery was divideib iseven GLM-Areas based on the
following latitudinal strips <18S, <22S, <25S, <281S, <34S, ans34S;

Type 6 For each data-set seven GLM-Areas were ifdehusing the algorithm used
for analysis of the DIST data-sets and previouslgcdibed in Section 5.7.2.
First, for each year the nominal CPUE was calcdlatzoss all one-degree cells
in the simulated data-set. Second, for each celtriekan nominal CPUE across
all years was calculated. Third, the distributibneminal CPUE across all cells
was ranked from highest (rank=1) to lowest (ranky1E¥ach cell was then
allocated to one of seven GLM-Areas using the foihg formula:

rank; — 1
20 ]

whererank; is the ranking of the nominal CPUE of celbs determined in the

third step above. This approach makes each GLM-Aremmposite of 20

individual cells (so each Area is the same siz&ugh the approach does not
guarantee that each Area is composed of 20 cellsatk contiguous.

Area =1+ floor[

The A-1 model was fitted to the 100 simulated ETRBa-sets using the random R-catches and
the Mean Annual ErrorsMAE) calculated as described previously. The model alss fitted
using either the two 2-way interactions betweenvtbar, QuarterandAreaeffects (the NEG-

2 model) or the single 3-way interaction (the NE@G3del). For each species and error type,
the performance of the model was ranked acrosssitheypes ofArea effects (1=Best,
6=Worst) and the mean rank was then taken acresfothr model-error combinations. For
each species, and for each typd\oda effects, the Type-1 and TypeMAEs for each model
are shown in Figure 6.38, while the mean ranksshosvn in Table 6.8. Except for ALB, the
size of the errors for the NEG-2 and NEG-3 modeadsensimilar for each species, indicating
that there was little benefit in fitting the morarameter intense 3-way interaction.

The results for the three species-specific empircaa effects (Types 1 to 3) indicate that
varying the number of areas from 7 to 14 does hadys improve the model fit, with the Type

1 model with only 7 Areas effects performing bestil species. On the other hand, the relative
performance of the Type 2 and Type 3 models wasdcross the five species. Of these three
Areaeffects, Type-1 is found to have the best ovéitginean rank of 2.45, c.f. Table 6.8) and
this result supports the initial decision to lintie number of GLM-Area effects to seven.
Interestingly, use of the TypeAlrea effects (equivalent to theType-1 GLM-Areas for YFT
has a better performance for BET than using theispepecific Type-Areaeffects, and are
slightly better for SWO. However, the Type-4 mogetforms poorly for ALB. This implies
that identification of appropriatéreaeffects is not a simple task and most likely ndedake
account of temporal variations in the distributi@isCPUE across the years as observed for
ALB.
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Table 6.8: Mean rank (1=Best, 6=Worst) of the perfanance of the A-1 model fitted to the 100
simulated ETBF data-sets using the R-catches anddhsix types ofArea effects described in the

text.

Area-Effect Construction ALB BET DOL SWO YFT Mean
Type-1 Empirical 2.25 2.875 2.75 2.875 1.5 2.45
Type-2 Empirical 4 3.625 6 4,25 4.5 4.475
Type-3 Empirical 2.5 4 3.25 6 4 3.95
Type-4 YFT Area-1 4.25 1 2.75 2.5 1.5 2.4
Type-5 Strips of Longitude 5.5 5 1.25 1.25 5.5 3.7
Type-6 Ranked 1-degree CPUE 2.5 4.5 5 4,125 4 4.025

Figure 6.38: The Mean Annual Error (MAE) for the A-1 model fitted to the 100 simulated ETE
data-sets using the R-catches and the six typesAfea effects described in the text. Note: NB-2
refers to the NEG-2 model, NB-3 refers to the NEG-Bhodel while ERR-1 refers to Type-1 Error
and ERR_2 refers to the Type-2 Error.
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Of the two algorithmic-basedrea effects, the simple latitudinal stratification tbie fishery
(Type-5) performs best for both DOL and SWO, whideking the nominal 1-degree cells
(Type-6) outperforms the Type-5 model for the otieee species. While the Type-1 models
out-perform the Type-6 models for all species, Tlype-5 models out-performs the Type-1
models for both DOL and SWO, but performs poorlytfe other three species relative to the
respective Type-1 model results. This result maynflaenced by any specific cline in the
north-south distribution for a given species.

These results indicate that, of the six approadhsted, there is no specific (or simple)
approach to specifying th&rea effects that performs best across all specieslyAtgmare
therefore encouraged to investigate various appesafor identifying appropriatéreaeffects
were necessary, especially where the data indittzéthere are substantial shifts in the spatio-
temporal distributions of CPUE over time (as obednin the ALB data). Auxiliary
information, such as that which may help identifffesdlences in preferred habitat types or
demarcate management zones, is likely to be usethis regard.

6.6 Implications for the ETBF Harvest Strategy

The management framework for the ETBF is predicatedetting an annual Total Allowable
Commercial Catch (TACC) for each of the five prpuali target species. The TACC for
Broadbill Swordfish and Striped Marlin is informday the Recommended Biological
Commercial Catch (RBCC) as determined by the harsteategy adopted for this fishery
(Campbellet al. 2007; Daviet al 2008).

The harvest strategy is based on a decision-treehwlilises a number of empirical based
indicators - the standardised CPUE of small, pramd large-sized fish (where small, prime
and large fish are those within the lowel"2&iddle 5¢' and upper-25-percentile of the total
size distribution of fish retained and landed ie fishery, respectively) and the proportion of
these size classes in the total catch. The primamyrol rule for determining the RBCC in any
year involves using the formula:

RBCG+1 = TACG+(1+ £.SraRQ (6.6.1)

whereSrarcis the slope based on the angle subtended byahdasdised prime-sized CPUE
trend line and the line joining the present CPURi&and a target CPUE value a specified
number of yeard\tarces in the future. Such a situation is shown in Feg6r39 where it is
assumed\tarceF5 years. The control paramefers referred to as the feedback gain factor
and defines how responsive the RBCC change isaiogds in CPUE. MSE testing of the ETBF
harvest strategy (Kolodst al.2010) noted that the parametpr@ndNrarceTWere confounded
and recommended a value b1 for the ETBF harvest strategy. Furthermoregrider to
smooth out the high inter-annual variability seerthe CPUE indices for some species the
standardised CPUE indices are first smoothed uwsIbQWESS (locally-weighted scatterplot
smoother) algorithm (Cleveland 1979; Cleveland Bedlin 1988). This is done to ascertain
the underlying trend (the signal) in the abunddrasailability of a species to the fishery (using
the CPUE time-series as a proxy), but which camibdden to some extent by shorter-term
trends (noise) due to the imprecision in which@RUE is measured and standardised and is
a true index of underlying abundance.
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Figure 6.39: Conceptual example of how the slope-target parameter used in the primary
control rule is derived.
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If an index is available that accurately tracks @n@ual size of the resource being managed
then a measure of the error in the RBCC based omg uke standardised CPUE can be
calculated. For example, $8rrue is the slope-to-target of the true index overldst 5 years
then the difference in the RBCC based on this tngex and the RBCC based on the
standardised CPUE is as follows:

ARBCC = RBCGpue — RBCGruE
=TACC*(1+ Spur) — TACC*(1+ Srup)

= TACC*(SpuE - STruUE)
This can be stated as a percentage of the true RBCC
ARBCC  _ ScPUE—STRUE
RBCCrryg  (1+STRUE)

As noted in Figure 6.39, the value®bue (andSrrug) depend on both the angle subtended by
the standardised CPUE (the true resource abundtaeod)line and the line joining the present
CPUE value and a target CPUEAHtan() is the slope of the linear regression of CPUE ove
the past 5 years, am¥tan@) is the slope to the target CPUE, tt&pue=tan(@+6) and after
accounting for the different configurationsAandB it can be shown that:

*100 (6.6.2)

( tan[tan™1(A) — tan™1(B)] A>0B>0A>B
—tan[tan™1(B) — tan"1(4)] A>0,B=>0,A<B
g _ ) tan[tan™1(4) + tan~1(—B)] A>0,B<0
TARG ™) _ tan[tan1(—A) + tan~*(B)] A<0,B>0
tan[tan"1(—B) — tan"1(—4)] A<0,B<0,—-A<-B
\—tan[tan™1(—A4) — tan™1(—B)] A<0,B<0,—-A>-B

In order to simplify the calculation of botrue and Srrue in the following analysis it is
assumed that that B=0 (i#=0) so thaGrarc=A=tan(o) is simply the slope of the standardised
CPUE (true abundance) trend line. Also, the LOWESB®othing of the standardised CPUE

index is not used.

Based on the assumed abundance trend for eaclespsed to generate the simulated ETBF
data (c.f. Figure 5.21), and the annual standadtd¥eUE indices based on each of the models
used to analyse these data, the absolute valire giercentage error in the RBCC given by
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Figure 6.40: For the four simulation trials undertaken based on the ETBF data, comparison of
the Mean Annual Error in the RBCC by species and mdel.
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Figure 6.41: For each species and model, comparisof the Mean Annual Error in the RBCC
across the three simulation trials undertaken basedn the ETBF data.
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Eqgn. (6.6.2) above was calculated for each ofrilaéstpreviously described. For the D-catch
analyses the results are based on the single sthselh CPUE index generated, while for the
R-based analyses the results were the mean ereorativi00 simulations. As with the four

previous Index-based errors, the Mean Annual EiWbAE) based on the RBCC-Error was
calculated for each species and model and thetses@ shown in Figures 6.40 and 6.41.

Several features are note-worthy. First, as wighptevious Index-based errors, the size of the
error in the RBCC varies across the different gmeand models such that no single model
minimises this error. Second, apart from the resigt DOL the mean error is generally less
than 4% (and often less than 2%) and is similarafeumber of models (c.f. Figure 6.42).
Third, again the models not including the gearaffi¢the ‘a’ models) generally perform less
well than those including the gear effects. Thigasticularly noticeable for the Group-C
models for DOL and YFT, though the ‘a’ models imstieroup generally perform better for
YFT and ALB. The reasons for the higher errors olesd for DOL remains unknown and
should be investigated further. Fourth, acrossthinee model Groups, the Group-A models
perform best while the two PCA-based models (B-@ B#B) perform worst. Fifth, across all
species the mean error is generally higher foattayses based on the R-catches compared to
the analyses based on the D-catches, though ffesedlice is largely due to the variation seen
in the DOL results (and to a smaller degree intR& results). The analyses based on the last
9-years of data also generally align with the rssidsed on the analyses across all years (c.f.
Figure 6.41).

Figure 6.42: Distribution of the mean RBCC-Error (rounded to the nearest percent) across the
24 models for the two 1D-Trial and 1R-Trial analyss. Results are shown for both the mean across
all five species and across the four species exdiugl DOL.
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Finally, the Model Ranked Scor®RS was tabulated for each model using the approach
adopted previously and the over-all rank of eactdehdrom best—to-worst performing is
shown in Table 6.9 where results are shown fortthe 1-Trial analyses. For the D-catch
analyses, the A-5 model was the best performesvi@tl by a group of six models each having
a similarMRS Given that these results are based on only desamglysis, and noting that the
slope of the standardised index can vary basedali differences in the index in a single year
(which would be minimised to some extent had th&MESS smoother been used), it remains
uncertain as to how robust this result would be dtrer simulations using the D-catch
approach. On the other hand, for the R-catch aeslyased on 100 random-based simulations,
the two models A-3 and A-1 were the best perforn{BtRS of 38 and 39 respectively),
followed by their ‘a’ model counter-parts with agsitly higherMRS(43 and 44 respectively).
The A-3 model was also the best-performing modeéstimating the abundance index based
on the R-catches.
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Table 6.9: Over-all ranking and Model Rank Score MRS) for each model based on ranking the
mean RBCC-Error across all species for the two 1-Tal analyses. Best=1, Worst=24.

RANK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
D-Catch MRS |38 43 45 46 46 46 46 50 51 55 57 59 60 63 63 70 71 74 78 79 80 8 9 100
Model | A-5 B-7a B-5a A-3 A-3a B-6 B-7 A-2a A-2 A-5a A-4 A-1 B-4 B-la B-5 B-3a B-1 B-6a A-4a A-la B-4a B-3 B-2a B-2
R-Catch MRS |38 39 43 44 49 50 52 53 53 5 56 56 56 60 63 64 69 74 76 8 8 8 93 98
Model | A-3 A-1 A-3a A-la A-4 A-5 A-4a A-2 B-6 B-7 A-2a A-5a B-5a B-7a B-6a B-1a B-1 B-5 B-4 B-4a B-2 B-2a B-3a B-3

While the above results give estimates of the gizbe errors in the RBCC calculations using
the different models, in order to understand thiedtion of the error, the nominal values (i.e.
non absolute values) of the RBCC-error need tobestigated. For this exercise, we used the
best-performing A-3 model identified above, anccaokdted the mean and standard deviation
of the distribution of the nominal RBCC-error vaduacross the 100 simulations conducted
using the R-catches. The results for each speogeshomwn in Figure 6.43. Results are also
shown when the slope-to-target trend is based amgusither the nominal CPUE or the
standardised CPUE based on a GLM incorporatingettie two 2-way interactions (NEG-2)
or a single 3-way interaction (NEG-3) between Year, Quarter andArea effects. For both
ALB, BET and YFT the mean errors(based on the NE&W@ NEG-3 models) are negative,
indicating that the RBCC is conservative in thaintler-estimates the true RBCC, while for
the other two species the mean errors are positidéhe RBCC is over-estimated. Apart from
the results for DOL, the RBCCs based on the stalisk=d CPUE indices are substantially more
accurate than that based on the nominal CPUE.i3Ipiarticularly noted for SWO where the
error is reduced from around 12% to less than 1Pe Jtandard deviations of the related
distributions are also relatively small indicatitizat for four of the simulated species the
estimated RBCCs are most likely (i.e. with 95% aerice) within 3% of the true RBCC.
Finally, the RBCC-errors based on the NEG-2 or NE@odels are seen to be similar, with
no particular model consistently performing betkemn the other.

Figure 6.43: For each species, comparison of the areand standard deviation of the distribution
of the nominal values of the RBCC-error across th&00 simulations.
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Finally, in order to investigate the utility of th@ WESS smoother on the calculation of the
RBCC, the previous analysis was repeated but thedatdised CPUE index was smoothed
before calculation of the corresponding trend dlierpast 5 years. A user-specified input to
the procedure called thedndwidth or "smoothing parameter,’ @etermines what proportion
of the data is used to fit each local polynomiabirporated into the smoothing function. Large
values ofS produce the smoothest functions that wiggle thstlan response to fluctuations in

134



Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

Figure 6.44: For each species (a) example companisof assumedabundance index, standardised
CPUE index and three LOWESS smoothed indices for single analysis and (b) the distribution
of the errors in the RBCCs calculated using eithethe standardised CPUE or the LOWESS

smoothed indices across 100 simulations.
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the data. The small&is the closer the regression function will confdorhe data. Using too
small a value of the smoothing parameter is notralgle, however, since the regression
function will eventually start to capture the randerror in the data. Useful values of the
smoothing parameter typically lie in the range @@9.5 for most LOWESS applications. In
the following we used values 8fof 0.27, 0.33 and 0.40, being equivalent to uging and 6
of the 15 annual data points.

For each species, comparison of the assumed aabbuiadlance index, the standardised CPUE
index calculated using the A-3 NEG-3 model, andcttreesponding three LOWESS smoothed
indices for a single simulation analysis is showirigure 6.44a. Variations in the trajectories
of the LOWESS smoothed indices can be seen, basdubth the value of the smoothing
parameter used, and the inherent inter-annual hiityain the standardised CPUE being
smoothed. The corresponding distribution of therarr the RBCC based on use of each index
in the primary control rule across all the 100 dated data-sets analysed is shown in Figure
6.44Db. The four distributions shown for SWO argn@milar and this is likely linked with the
fact that the annual standardised CPUE for thisispas relatively stable over the last 5 years
over which the CPUE trend is calculated. A highrdegof similarity between the four error
distributions is also seen for ALB. On the othendhathere is a large divergence seen in the
results for DOL and YFT. Again, the annual standad CPUE for these two species are quite
variable overt the last 5 years. Using the CV @&f ¥alues of the annual standardised CPUE
over the last 5 years as a measure of the levehafothness’ or variability in the index, the
values of ALB, BET, DOL, SWO and YFT are 6.6%, £56,819.8%, 2.3% and 25.2%
respectively. Indeed, there appears to be a rakdtiip between the CV of the last 5 data points
of the standardised CPUE and the standard deviafidhe mean of the four RBCC-errors
calculated above (c.f. Figure 6.45). This implieasttthe higher the CV of the last 5 data points
in the standardised CPUE, there is likely to beommensurate higher variability in the
calculated RBCC given the use of different smoatparameters used with the LOWESS.
Indeed, some care should be taken in selectinghmypgcameter to use and the criteria for
identifying the most appropriate parameter requuether investigation.

Figure 6.45: For each species plot of the standankviation of the mean of the four RBCC-errors
shown in Figure 6.44a versus the CV of the last Sath points of the standardised CPUE.
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Finally, the comparison of the mean and standawitden of the distributions of the four
RBCC-errors across the 100 simulations discussedeais shown in Figure 6.46. The errors
for the LOWESS-based RBCCs for DOL are substagt@iéater than those associated with
the RBCC based on the non-smoothed CPUE. As dsdwgsove, this is likely to be due to
the high CV in the CPUE time-series. On the otterd the errors for two of the LOWESS-
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Figure 6.46: Comparison of the mean and standard-deation of the distribution of the RBCC-
error across the 100 simulations discussed in thext.
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based RBCCs for BET are around half that assocwmaittd the RBCC based on the non-
smoothed CPUE. The error for the LOWESS-based irglabso smaller for at least one of the
indices used for SWO and YFT, though the smootlpagameter associated with the best
performing index is not always the same. Whilewagation in the errors between the results
based on the different smoothing parameters islliyssraall, again some care should be taken
in selecting the value of this parameter if the ERkblex is to be smoothed before being used
in the harvest strategy.

6.7 Further Implications for the ETBF Harvest Stra  tegy in a Stock
Assessment Context

This final Section focusses on two important, msemtially flow-on issues of the multispecies
standardisation work: (i) how do alternate serifeca the running of the current harvest
strategy (HS) in the ETBF; and (ii) what are thecktassessment implications of producing
overtly multispecies CPUE series. The first isssi@lviously directly linked to the actual
management implications of alternate methods ofdstalising CPUE, given these indices
drive the current HS. The second issue is both g mmobtle and wide-ranging one. Current
single-species assessments, by construction anchpsen, treat the series independently with
the only commonality the effort series. However teries themselves may well contain
correlation structures in both observation and @sse@rrors that would have to be dealt with if
one wanted to explore a truly more multispecieesmsaent approach - especially in terms of
concepts like multispecies 'optimal’ effort andgi@e it MSY or MEY in nature).

6.7.1 Harvest Strategy Implications

The current ETBF harvest strategy is only impleradrior the two billfish species: Swordfish
and Striped Marlin. The main reason for this ispparent lack of feedback for the two tropical
tuna species Bigeye Tuna and Yellowfin Tuna, stemgnfiom the potentially minimal impact
of the current ETBF catches on those stocks (Hikdral. 2016). The four GLM approaches
(GAM-2, GAM-3, NEG-2, NEG-3) outlined in Sectior68were run for the Swordfish example
(100 simulations for 15 years of data) and it igleese simulated series that we focus the HS
implications work on. There are six series in tothé “true' (simulated) series; the nominal
(unstandardised) series, two types of Gamma GLMérseries; and finally two types of
Negative-Binomial GLM-derived series. Figure 6.4ifmsnarises all six series in a boxplot for
all the three size classes (small, prime, and Jarge
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Figure 6.47: Boxplot summary of the Swordfish CPUHor all size classes (small, prime, large)
and for each of the six series (true, nominal, thevo Gamma and two Negative-Binomial models).
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The ETBF HS adjusts the most recent agreed TACE& dBrtain amount each year, driven by
a hierarchical decision tree rule (Kolodial.2010). The primary level is the trend in prime
CPUE, with subsequent levels in the tree makingusidjents given inferred trends in
recruitment and likely spawners from the CPUE @ tither size classes small and large. A
recent development was the use of a LOWESS smoafiied to the series for each size
class to reduce the often quite high levels ofaklity in the indices over time.

To analyse the impact of the suite of alternatte@dardisation models we consider two main
summary statistics:

1. Relative error: what are the bias properties (¥)aelative to the true final-year
predicted TACC for each of the other four indices

2. Average annual variation (AAV): for a quasi-retresfive analysis (removing
increasing numbers of years and calculating restuRACCs) what are the levels of
percent-age variation from year to year for allitigices (including the true index)

In lieu of a full reworking of the previous MSE wofHillary et al. 2016; Kolodyet al.2010),
with the CPUE simulation and standardisation modeibedded within augmented Operating
Models (OMs), it is difficult to assess the widerpact of alternative CPUE series. The two
simple approaches we explore here can, howeverklgundicate whether key features (i.e.
are we tracking the 'true' dynamics in terms of T&Cand the inter-annual variability in
TACCs?) are being unduly affected by the altera@PUE approaches.

The relative error statistic is a very simple bseful bias indication. We have the true TACC

predicted using the full 15 years of CPUE datagefach of the 100 simulations. We also have
the TACCs as predicted by the HS when using theimalrand four candidate standardised
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Figure 6.48: Relative errors (median and 80% ClI) inthe TACC predicted using the whole data
series (15 years) for each of the 100 simulationEhe percentage error is expressed relative to the
true TACC for each of the other candidate series.
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indices:TAC},, werei denotes the TACC arising from using the nomina@Msor NB-GLM
indices as inputs to the HS. The relative erA@r,is simply given by the following:

true
TACCy

- _
AL = (1 race] ) x 100 (6.71)

with positive/negative values indicative of the @ypf bias (i.e. over/under estimation,
respectively).

Figure 6.48 summarises the relative error propedfehe four series and there are a number
of inferences that can be made from it. Focussimghe nominal seriegersusall the other
standardised series, it is notably more biased @lidour standardised series, with a positive
bias (over estimation) afa. 16-17%. For the four standardised series thegigfllay very
similar relative error properties: small positiviafor all €a. 3-5%) and with no obvious bias
trend across standardisation method (GAM or NEG).

The AAV statistic is very common in MSE work thatcsinctly summarises how much the
TACC (or effort in input control strategies) is clging from year to year (Rademeygdral.
2007). The base statistic for each year is caledlas follows:

TACCy41—TACCy,

AAV} = -
TACCy

y

x 100 (6.72)

with the median over years being used as the sun@mary statistic for each series denoted by
the index.

Figure 6.49 shows a boxplot summary of the AAVistias for each of the CPUE series for a

5-year quasi-retrospective analysis. We use thasghiquasi-retrospective’ because it is a not
a true retrospective analysis, where data are ssiedy removed and the standardisation
models re-fitted. It is quasi in the sense thasingly remove a year of the index at a time (for

five years) and estimate the TACC theduld have been predicted by the HS given those
increasingly truncated data.
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Figure 6.49: Boxplot summaries of the AAV statistis for each of the six CPUE series, for a five
year quasi-retrospective, and across all 100 simulans.
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The results are interesting, and in some casestmahhave been expected. Firstly, the true
index has the highest AAV across all the seriescluding the nominal series - but more

predictably, shows the least variability aroundcéstral tendency. At first this might seem

somewhat counter-intuitive, as the true index hasnmate observation error or structural

uncertainty issues like any model would have. Afgogcess error affects the other indices as
much as the true index. The primary reason whyrtleeindex has a higher AAV than all others

is that over the five year retrospective periodttead in the true index is downwards, whereas
it is up for the nominal and very mixed for the@timdices. This downwards trend in the true
index drives successive decreases in TACC overpdiigd, whereas it generally goes up

slowly for the nominal series, and slightly down the other series. This also adds to the
increased AAYV for the true index, as it is actiagtér to decrease the TACC than any of the
other series. So, in this sense, the lower AAVthar other indices is not necessarily a good
thing - particularly for the nominal series - givdae true exploitable abundance is going down
slightly.

6.7.2 Multispecies assessment implications

At the most general level there is a fundamentdiage between all the species in the ETBF
fishery: effort. At the annual level, the efforties that one might expect to has@mekind of

a relationship with fishing mortality (as is assuhne the WCPO assessments) is the same for
all species. This is a common issue across adl"'tnultispecies fisheries (i.e. multiple target
species of direct economic importance caught bgrancon gear type). In the single-species
stock assessment context this is not necessarilgsae, but iis an issue when it comes to
setting reference points or management measuresethte in any way to fishing mortality -
with Fnsybeing the most obvious example. If there is some &f relationship between effort,
Ey, and annual fishing mortalit§sy - and for argument's sake make it the simplest= gsEy

for species in yeary - thenFmsyonly makes sense at the fishery level (i.e. acatisspecies)
for gs = g for all species with identical life-histories asdlectivities,. Alternatively, and less
likely, they might all be different but still resuh a single effort level that could produ€gsy

for each species simultaneously. If the catchgbp@rametersgs, and/or life-history and
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selectivites are different, then what mighttheyfor one species will surely not be for another.
The outcome being in cases such as these thatisheoauniquely definable level &sythan
can be attained for all species concurrently. Tierea priori reason as to why catchability
would be the same across species - especiallyafoagropical tuna and a billfish with very
different life-history dynamics and feeding straésg Also, while we tend to treat catchability
parameters as nuisance scaling parameters thedrahg reported, they are indeed ofiary
different across even similar species caught instdmme gear and that includes the WCPO
assessments.

The concept of multispecies maximum sustainabli Yi&S-MSY) has been explored in a
number of settings (ICES, multiple-species RFM@ajticularly where the single-species idea
of MSY is the driving force behind the implementednagement approach. At the fishery
level, across all target species, the idea is timage the optimal effort level that maximises
total yield, or some weighted sum of total spegie$d with a weighting given for various
factors, such as economic importance for examphe Most basic link between all such
approaches is this: we need some kind of understgraf the across-species relationship
between effort, catchability arkd

In this Section, we explore some simple state-spamgels that outline some of the things that
couldbe explored in the multispecies CPUE context wdmtsidering inter-species correlative
effects, differing catchabilities and so on, in $theck assessment paradigm. The current WCPO
stock assessment models are very complex, spatgihcit integrated assessment models that
do not lend themselves easily to these kinds ofreungations or explorations. Indeed, a number
of the examples we explore here are, while verplnactual multispecies models that would

- at present - require significant development waokinclude in the MULTIFAN-CL
assessment package favoured by the WCPFC. Therenamg reasons for the level of
complexity required in the current WCPO assessmeaotthis is not a criticism; it just means
that alternative approaches are often easier to dach simpler models initially.

Single and multispecies state-space models

State-space models are ideal for the kind of empilmms given they require an explicit
treatment of the observation and process modebratgy. Issues common to multispecies
fisheries occur in both the observation and pronessels and so this separation simply makes
the process clearer. This first model is very senpl random walk state-space model for the
log-scale relative abundance of the LL exploitgipulation. We have the annual index we
actually modell,, = log CPUE,,, and the following probability model is assumed:

Nyt+1 ~ N("y' ‘77%)'
I,~N(ny,of), (6.73)

with initial stateno. Estimated parameters are the hidden states/randaablesny, and the
variance hyper-parameter. We will call this modeMo for brevity. The next level modeéVje,
includes an additional effort covariate model andifferent tavip only in the population model

ny+1 ~ N(n, — qEy, 2). (6.7.4)

where the additional estimated parameterqis 0. Given we model log-scale relative
abundance, and use the traditional rate-basegbnetation of fishing mortality - i.e. proportion
of actual abundance lost to fishing is egj), then it isgE, that is the term which appears in
the process model fax, in Eqn. (6.7.4). An interesting mathematical asfléhis is model is
that if E is mean-standardised, thgthecomes thde factomeanF).
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The first truly multispecies step (modéés) would then include the across-species observation
and process error covariance structure into th@lsshmodel. Nowy is a vector, with each
element the relative abundance of the particulaciggs. As before, we have the initial states,
no, with the following process model:

Ny ~ MVN(n,,2,), (6.7.5)
and observation model:
I, ~ MVN(n,,%,), (6.7.6)

where MVN( ) is the multivariate normal distribution, aid and 2, are the process and
observation covariance matrices, respectively. dih@t covariate extension tlos, model
Mes, would have the following process model:

Ny, ~ MVN(n, — qE,, %,), (6.7.7)

andq is the vector of species-specific catchabilitygmaeters, with the important feature that
annual effort is shared across species. In alithiispecies extensions, the estimated hyper-
parameters include not just the species-specifianee parameters (diagonal element&)f
but also the correlation parameters that help defie off-diagonal elements bf.

These four putative models§, Mg, Mos, andMes) cover a lot of possibilities and, at least at
the multispecies end, require some sophisticatéda and statistical concepts to sensibly
estimate and choose between. What is worth covesthgn first is what some of these
somewhat abstract parameters may mean in the orld. WVithout effort data, these models
lump together in one random component basicallyaaliors that could change the relative
abundance index from year to year: recruitment.tahty, catchability changes etc. With the
effort covariate, it is then covering off on evéryig not linked to the specific fishery effort
level Ey. One can increasingly add more covariates andéaletraugmentations to account for
these various factors explicitly, but in the modeis explore here they cover a number of
possible drivers. In the multispecies context threatation parameters also have an ambiguous
interpretation. For example: correlation in processrs could mean either catchability
changes over time are correlated across span@eractual changes in abundance in species
are correlated. In the catchability space, a pasitorrelation might mean that you generally
tend to get better catches of both species condiyran the absence of actual abundance
changes. In the abundance space, a negative c¢mmelaight indicate some kind of
competitive effect, where higher abundances of species tend to occur with lower
abundances of another.

The main point is this: when dealing with the megecies side of the problem in the generation
of the abundance indices, there are flow-on modgimentations we can consider to the
standard single-species assessment framework tght be of real interest. At the very least,
a model that attempted a rigorous estimate of MS¢M®uld, atsomelevel, have to consider
an observation and process model similar to thagéned in Eqns. (6.7.5) and (6.7.6),
respectively. The whole point of the indices inémel is to estimate the trend in the exploitable
abundance and, in the ETBF case, actually base TA€Gmmendations on those trends.
Models that can accommodate the correlative sidmtif the observation and process sides of
the problem are, generally speaking, in a bettaitipn to estimate real trends rather than
spurious ones.

Choosing between these models is a little more texrihan in the GLM space. These class
of models fall into the random effect classificati(the hidden/unobserved statgswith
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estimated variance/correlation parameters). Thisasiatandard model-selection tools like the
Akaike (AIC) or Schwartz (BIC) information criterianusable. This is because the concept of
the number of degrees-of-freedom (DOF) in theseeisad quite fluid. TheffectiveDOF will

be strongly linked to the actual values of theaace parameters+{2,), SO one cannot define

a simple integer value of the additional DOF of@encomplex model (lik&le in comparison
with Mo) and use either the AIC/BIC or likelihood ratictéo choose between them.

To get around this, we use a fairly straightforwarodel-selection tool: leave-one-out cross-
validation (LOOCV). What LOOCYV does is to randomgmove a single point in the data
series, in yeay' say, and fit the model to the remaining data.dfdenotd,,- as the fitted index
when considering all the data, we are interestel@ueloping a useful statistic that summarises
how well the model (with one less data point) pcedthe removed data poi@, relative to
the model with all the data includefg}}. The root mean squared error (RMSE) for the asdume
modelM, is a good option in this case:

RMSE(M,) = \/]E (I -5) (6.7.8)

where the expectation is taken over the randonmhored data pointg . The main idea is that,
averaged over all the removed data points, thest"bwaodel will produce predictions with
lower values of the RMSE, relative to the comparison eh@j. Models with too little freedom
will tend to predict more poorly relative to oneghwmore flexibility (under-fitting), but as we
increase their flexibility there tends to be sonmenpwhere the predictions become poorer
again (over-fitting). Models which minimise the RE&re usually judged to be the most
parsimonious, although we still have to be satifieat they are actually fitting to the data well
enough. The useful thing about using LOOCYV is thatdon't need to know about actual or
even effective DOF to make it work, which is vesetul in random effect models such as
these. In all cases 500 iterations of the algoriineused to compute the RMSE for each model.

6.6.3 Application to ETBF CPUE series

Figure 6.50 shows the (mean standardised) CPUEaadrom 1997 to 2014 for each of the
five main target species in the EBTF: Bigeye Tufelowfin Tuna, Swordfish, Striped Marlin,
and Albacore Tuna. There are, given the numbepetiss and models, a large number of
potential species-model combinations we can explbo¥ example: some species show
correlations with one another, whereas others dp swme species show an effort effect,
whereas others do not. The LOOCV approach is agghkcto all the various model
combinations, with the only caveat being that we eomparing models with the same
underlying observations inside them, so we carthise€o get to what seem the ‘best’ overall
species-model groupings. Detailing all the variatsps, selections, and actual LOOCV
statistics required in making this selection waialke a lot of text and tables, and given we are
trying to convey a more general message from thgltss we focus on the outcomes not the
intermediate steps.

The results are, perhaps, not surprising. Yellowfima and Bigeye Tuna group together in
model Ms, inferring that there is no effort effect (it istenated very close to zero and is
deselected by the LOOCV process) but with proceseelation between the two species.
Swordfish and Striped Marlin group together in nldde, so an apparent effort effect but with
no apparent process correlation between them. Atkatuna sits alone in modelh with no
apparent effort effect and showing no process @@ with any of the other species. We
detail the results more thoroughly below, goingiydel-species grouping.
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Figure 6.50: CPUE indices (mean standardised) frorh997 to 2014 for each of the five main target
species in the ETBF.
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To parameterise the procésx Scovariance matrixty, in the most general sense we need a
total of S variance parameters?, and S(S-1)/2correlation parametergs. To maintain
positiveness the log-scale variance parametersestienated, and we use the following
transformation to model the correlation parameters

2

Py = -1, (6.7.9)

T 14eMs

wherey- is the estimated parameter, and by constructicures thap, € (—1,1). For the
observation error matrix we do not have annual gaxae estimates (in terms of total variation
or correlation), so a time-independent diagonakolaion error matrix with a CV of 0.15 in
both cases was assumed.

The models were all estimated using the TemplatdeéViBuilder TMB ) package irR, the
latest and most efficient to date software fomaating the parameters of random-effect models
such as the general class of models we consider MeeTMB package uses the Laplace
approximation method and the expectation-maxinosadigorithm to estimate the parameters,
random effects and associated hyper-parameterstafidem effects (herein, the unobserved
relative abundance parameteyksare estimated first at putative values of thepuaters (like

g) and hyper-parameters (variance and correlatioanpeters). The Laplace approximation is
used to obtain the marginal likelihood of the pagters/hyper-parameters which is then
maximised to obtain their MLEs (the expectation-masgation algorithm part). Standard
asymptotic approaches and the delta method are tosettain the standard errors of the
parameters and random effects.

In terms of parameters values, the estimates dftdrelard deviation of the covariance matrix
were 0.66 and 0.19 for the Bigeye and Yellowfin aumspectively. The correlation MLE (and
approximate 80%CI) was=-0.31 (-0.71-0.15). Figure 6.51 summarises itised the data

144



Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

Figure 6.51: Predicted log-scale CPUE (left) for th Bigeye and Yellowfin Tuna data (magenta
circles) in terms of the MLE (thick blue line) andapproximate 95% CI (dashed blue lines). On
the right the predicted relative abundance, againn terms of the MLE and approximate 95% CI.
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and the actual real-space abundance trends fordpeities. The model fits very well to the
Bigeye Tuna data (interpreting the high variabiiisyessentially process error), and less closely
though relatively well to the Yellowfin Tuna dafast smoothing out the variability while
maintaining the same marginal downward trend. Tdreetation estimates are not extremely
precise given the length of the series (18 yeatstad), but they are coming out as negative,
suggesting that higher/lower CPUE of one spetdesgsto be somewhat weakly associated
with lower/higher CPUE of the other. We cannot dcthis to something specific, but obvious
candidates would be a relationship in catchabdlitg population dynamic effect, where more
of one species tends to result in less of the dttenpetition for resources/space).

Swordfish and Striped Marlin model:gM

When treated separately, both these species eathibitelationship between effort and relative
abundance trend (as opposed to both Bigeye andwfell Tuna). They also showed no
process correlation linkage with either each otbethe other three tuna species. As a result,
the model structure that best explained the Swaindind Striped Marlin data was thNg
model. On closer inspection, both species Ve similar estimated catchability parameters
(Swordfish was higher by around 8%), but givenrtihespective standard errors, were not in
any way statistically significantly different. Wheompared (again via LOOCV) with a model
where the two species share theme catchability (i.e.q = ), the model with a single
catchability was actually preferred.

Figure 6.52 summarises the fits, relative abundareeds, and the ETBF-only annual
estimates for Swordfish and Striped Marlin. Bottedzets are fitted well. In terms of parameter
estimates, the process variance MLEs were mordasithian for the tropical tuna example:
0.13 for Swordfish and 0.18 for Striped Marlin. Tdwrelation parameter was estimated to be
zero, with a confidence interval evenly spread sxre interval (-1, 1), hence the model
selection process removing this factor from thalfimodel. Estimates of the ETBF-orffy
term were quite low but also very variable givea timcertainty in the estimatesgfpeaking

at around 0.02-0.08 in the early 2000s, decreasivgrds the 0.015-0.04 more recently.
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Figure 6.52: Predicted log-scale CPUE (top left) fothe Swordfish and Striped Marlin data
(magenta circles) in terms of the MLE (thick blue ine) and approximate 95% CI (dashed blue
lines). On the top right is the predicted relativeabundance, again in terms of the MLE and
approximate 95% CI. On the bottom left is the MLE and approximate 95% ClI of the inferred Fy
terms, given the effort time-series and the specieshared catchability term.
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Albacore Tuna model: M

As mentioned at the start of this particular suliacthe Albacore Tuna stood alone in the
sense that they showed neither an apparent effect.enor do they correlate in a process error
sense with the other target species. As such, ithglest model Mo) was selected by the
LOOCYV process. Figure 6.53 details the fits to taa and the relative abundance trend
estimated in this case. The process error SD estimas 0.13, with the data generally well
fitted apart from the extremes in the series (Hutihs and lows) and an abundance trend
showing an initial dip in the late 1990s, followeg an increase in the early 2000s and
plateauing at the current level for the last decddwst.
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Figure 6.53: Predicted log-scale CPUE (left) for tb Albacore data (magenta circles) in terms of
the MLE (thick blue line) and approximate 95% CI (dashed blue lines). On the right is the
predicted relative abundance, again in terms of th&#LE and approximate 95% CI.
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6.7.4 Final Remarks

No obvious performance issues have been identifiddrespect to the harvest strategy for the
Swordfish case. For all of the species considerethis Section the standardised models
perform demonstrably better than just using theinahseries (which is always a comforting
result). Additionally they don't seem to be inciegghe noise relative to the true index and
suggesting different TACC levels (5% +ve bias tops$ulting in AAV statistics that appear
acceptable relative to other previous work. Fomeple, Radermeyegt al. (2007) mentions
10-20% as something of a desirable range afterloexamples around the world especially
in South Africa. These findings are consistent it management plan for Southern Bluefin
Tuna.

Some simple multispecies assessment exploratioreswaelertaken for all the five major target
species using statistically rigorous state-spacdatsoof relative abundance. Correlative and
effort-related relationships were explored in teohdrivers of changes in relative abundance
across the species. Bigeye Tuna and Yellowfin Tgnoauped together showing little to no
relationship of abundance with changing fishingpefbut showed a clear negative correlation
— this could be abundance or catchability rela®gordfish and Striped Marlin grouped
together both showing no process correlation kalear relationship between abundance and
fishing effort, and with (statistically speaking)et same overall catchability coefficient.
Albacore formed a group on its own showing neittarelation with any of the other species
nor any apparent effort-abundance relationshipeeithhese kinds of analyses and statistical
methods can serve to outline the complexity invdlireimplementing a general management
framework like the Commonwealth Harvest Strategyickoin the multispecies context.
Clearly a single MSY/MEY type approach is not likéb be workable in the ETBF context,
providing additional support to the more MSE-drivagmproach that the ETBF is currently
being managed under which can take account ofdaheus species-specific issues and trade-
offs encountered.
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7. Discussion and Conclusions

Australia's two tropical tuna fisheries (the Eastéuna and Billfish Fishery, ETBF, and the

Western Tuna and Billfish Fishery, WTBF) are bothltispecies fisheries that target a range
of large pelagic fish. A major constraint for asseg multispecies fisheries, however, is a lack
of reliable abundance indices that are a pre-régquiw the accompanying stock assessments,
which have flow-on impacts to the results (i.e. T@<} obtained from harvest strategies.

Unlike single species fisheries where all effordiiected at the target species, in multispecies
fisheries the effort is directed at a range of ggedConsequently, the fishing effort needs to
be standardised so that the ‘effective’ effort clieel at any single species of interest can be
ascertained. If this is not undertaken correctgntthe resulting index of resource abundance
is likely to be biased and unreliable. Althoughrthare methods available that are currently
used to standardise effort in multispecies fistserieis believed that new techniques need to
be developed so that the resulting indices of nesoabundance can be made more reliable.

In this project we have reviewed existing methadsstandardising multispecies CPUE and a
number of methods were selected for further devetyg. While most models are based on
the GLM framework developed for single species ys&d, they included a number of
extensions aimed at standardising the fishing eftoaccount for the differential targeting of
species within a multispecies fishery. One setxtémrsions follows the method of Hx al
(1997), who used cluster analysis to identify dife fishing strategies based on the species
composition of the catches from all fishing operasi within a fishery. The utility of various
clustering techniqued\(ard clara, kmean¥ was investigated, together with clustering across
different levels of data aggregation (i.e.at theoserip level), as well as undertaking separate
analyses at different temporal periods (e.g. mghtblaccount for seasonal changes in species
availability and assemblages. A second set of nsoftdlowed the Principal Components
Analysis initially developed by Winkeat al. (2013, 2014) to identify targeted species groups
in the data. Finally, a third, and new, set of Bage spatial-temporal models utilising the
relatively new tool Integrated Nested Laplace Apgpration (INLA) were developed. In total,
the performance of twenty-four different model aions were investigated.

Two simulators, which are useful for comparing frexformances of different methods at
estimating known quantities, were also developeddsting the comparative performance of
the standardising models. To help limit potentialshf the data structures incorporated into
the simulator to match the analytical frameworlooné (or more) of the methods to be tested.
The first simulator utilised an empirical approabhsed on a framework generally known as
the habitat-based-standardisation method. Datairesgents include: the total number of
hooks deployed by each longline set, the densigach species within each simulated spatial
area during each montthe proportion of hooks for each longline set witeach simulated
depth stratum, and the proportion of fish for esphcies during each month and hour within
in each simulated depth stratum. These were adidbas direct observations made in the ETBF.
For example, observations of hook depths were basethe 2050 individual time-depth
recordings obtained from vessels deploying longlimethe ETBF during a previous FRDC
funded project (Campbell and Young, 2010), whikhfdepth profiles were obtained from
archival tags deployed on fish caught and taggdinvine ETBF during several projects. On
the other hand, the spatial-temporal density sagdar each of the five species included in the
simulator were modelled on the monthly distribus@f nominal CPUE observed in the ETBF,
while the spatial-temporal distribution of fishieffort across the fishery was taken to be the
same as that observed in the ETBF during the Y48 to 2014. Finally, in order to simulate
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the stochastic characteristic of any catch, thal Brmulated catch was selected from a negative
binomial distribution, and the probability of sussdor each species was selected so that the
proportion of zeros in the distribution of simuldteatches for each species was similar to that
in the distribution of observed catches. To theeixthat the simulator has made use of direct
observations from the fishery, and has been tumegilicate the distributions of catches in the
fishery, it is hoped that the modelled catch arfdrefdata generated by the simulator for
analysis has many of the same characteristicseodidta coming from the real fishery.

For the second simulator, catch and effort dateewaodelled using a more generic, flexible
and individual vessel-based approach and was dsbigm generate catch rate data that
reflected species abundance, targeting practisels(umlike the ETBF simulator) individual
vessel efficiency to capture the fact that differeessels have their own characteristic
catchability and fishing behaviour. There is alpatgl and seasonal variation in catch rates,
which differed among species. While the first siatat was designed to generate data that
mimics a specific fishery, the second simulator wasigned to generate data for a more
generic fishery. This allowed the standardising et®do be tested across a wider range of
fishery types than just that for the ETBF.

Targeting Practices in the ETBF

Before testing the ability of the selected stand@mg model to estimate the assumed annual
abundance indices used to generate the simulated aad effort data, it is important to
understand the factors that influence the varighilbserved in the catch and effort data from
the fishery being assessed. In particular, in atispdcies fishery such as the ETBF, it is
important to understand and identify how fisherterapt to target the different species by
alternating the manner in which they deploy theshihg gears. For this purpose, the
information on the gear settings recorded in bogbboks and by observers in the ETBF were
examined. Results indicate that there can be ceradite variability in the manner that longline
gears are deployed, both between years and widarsyon individual vessels. A substantive
change was noted in 2006 when vessels began deglmore than 25 hooks-per-float (HPF).
Commensurate with this change were shifts in tliteusage (more pilchard), light-stick usage
(fewer) and set start-time (earlier in the day)eTihtroduction of this new ‘deep-longline’
technique was due to a significant change in figlsinategy to incorporate the direct targeting
of Albacore Tuna in this fishery.

Fortunately, each of these gear settings are redontthe ETBF logbook and so these changes
can be taken into account when standardising CRIJEEHanges in targeting and associated
fishing strategies. On the other hand, there hbsgelmeen changes in other gear settings which
are not recorded in the logbook and which theret@enot be accounted for in the CPUE
standardisation. For example, there has been amaise in the mean length of the buoy-line
deployed from around 10m to 15m during the 2000slethe mean length of the branch-lines
has decreased. The weights placed on the brarneh{to assist in sinking the hooks to the
fishing depth) have also increased over time. Thexe also a significant increase in the use
of circle hooks after 2007 (and a correspondingeise of J-hooks) due to management
measures introduced to reduce turtle bycatch. Dtleetlack of information on these gear types
it is difficult to estimate how changes in the a$¢hese gears impacts on catches, though the
results of previously published research can pegioime guidance. For example, Watsbn

al. (2005) found that Blue Shark catch rates weré/8h8her on circle hooks compared to J
hooks, while Warcet al (2008) found that catch rates of Bigeye Tuna wegler on nylon
than on wire leaders, after the latter were bannddlTBF in 2005. Whether or not there is
sufficient information in the observer data foressng how these and other changes in gear
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usage not recorded in the logbook impacts on catobmains uncertain, but perhaps some
consideration should be given to expanding theearignformation on gear usage recorded in
the logbook used in the ETBF (and other multisgetigheries).

Analysis of the gear setting practices within ahifig trip indicate variable degrees of

consistency in the deployment of each gear typeekample, similar hooks-per-float settings

are used for 60-80% of all sets during a trip, @lgenerally similar start-times are used for
less than 20% of sets. Observer data also inditlasééshe recorded primary target species is
not always the same for all sets deployed duritigpaand suggests that multiple targeting

strategies can be utilised within individual trips.

Examination of the particular gear settings assediavith particular target species recorded
by observers indicates a broad range of settings efaich gear-type. While several
characteristics of how the gears are deployed ewgy-line length and line-setting speed) do
not display any appreciable variation between tifferént recorded target species, one can
nevertheless discern particular groups of geaingstthat have a higher usage when targeting
particular species. For example, more hooks anédiper-float are deployed when targeting
Albacore Tuna in comparison to the other speciézadore targeting also generally uses fewer
light-sticks, a shorter distance between brancésliand longer buoy-lines, early morning sets,
circle hooks and dead pilchard bait. On the otlaerdh when targeting Swordfish there is a
preference to deploy the gear during late afternose a high percentage of light-stick, a
greater distance between branch-lines and dead $gui. When targeting Striped Marlin,
there is a preference for shallow sets (i.e. feakBeper-float) with fewer hooks, minimum use
of light-sticks, live mackerel bait and the usadihe-shooter. These observations indicate that
while a range of gear settings are utilised whemgetang particular species, there are
combinations of gears that are more commonly uBeelreasons for the wide-range of settings
associated with targeted species remains uncebmairmay be due to differences in the costs
(and ready availability) associated with differdaits and the use of light-sticks, as well as
differences in the depth range of species giveierdihces in oceanographic characteristics at
different times and locations. The weather is #lggly to be an important factor influencing
gear selection and deployment methods.

Examination of the catch composition of observes séso found that for each of the main
target species, the proportional catch of thatisgas highest when that species is recorded as
the primary targeted species. This demonstratéshbavessel (skipper) has some ability to
target and catch a desired species, and no is doutglated with the groups of gear settings
associated with respective targeted species noteeablevertheless, it is also clear that many
other species are also usually caught, indicatiagit is not possible to just target and catch a
single species. Indeed, the target species songeismet the dominant catch. For example, on
average more Yellowfin Tuna are caught than Stridadin when targeting the latter.

Based on these results it would seem obvious tplgirecommend that the target species be
recorded on the logbook by the vessel skipper. Wasld negate the need to use indirect
methods (i.e. cluster analysis) to infer the fighiactic or target species for use in the model
used to standardise CPUPE. However, such a recodatien is not needed as there is already
a field in the logbook for the skipper to recore tiarget species. While this field is usually
completed, nevertheless, what seems simple inyhses not always translate to simplicity
in practice. Indeed, comments from industry membmnsthe Tropical Tuna Resource
Assessment Group (TTRAG) indicate that the inforamatecorded as the target species on the
logbooks is likely to be unreliable, as the logba®kompleted after the catch is landed on the
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vessel on very often the recorded target specipsidaken to be the species making up the
largest proportion of the catch. A further comgiica is that often more than one species is
recorded. As a consequence, TTRAG has recommergdeasa using this information in the
models used to standardise CPUE.

Analysis of the observer data also indicates thafroportion of fishing operations targeting
particular species changes during the year. Wha#doWfin Tuna is the dominant species
targeted overall, there are periods during the ydan the other species are the dominant
target species. The targeting of Southern Bluefinalover winter, together with the increased
targeting of Bigeye Tuna in late autumn, of Yellowfruna in spring and Swordfish over
summer also correlate the changes in relative @ity of these species throughout the year
(as inferred from the changes in CPUE throughoetytar). This suggests that the seasonal
availability of the principal target species chamg@oughout the year and the fishers are able
to change their targeting practices to avail théweseof these changes in relative abundance.
Changes in the temporal availability of speciesikisly linked with the movement of fish
associated with changes in the oceanographic ¢onslitwithin the ETBF. Fish are not
randomly distributed across the fishing grounds teutd to have distinct species-specific
habitat preferences, which cause catch rates tpa@mording to the habitat that is targeted.
These habitats are also likely to change theinapgize and location in response to prevailing
currents and seasonal changes in oceanographidioosdAs a consequence, there is likely
to be a strong seasonal component in both theldistins of fish species and related fishing
and targeting strategies across any fishery.

The persistence of the spatial distributions fahespecies was investigated by calculating the
Pearson correlatiol, between the four quarterly distributions of noali@PUE. The spatial
distribution of CPUE (assumed to be a proxy fomags) was found to be most consistent for
Broadbill Swordfish, where for the six quarterlyngoarisonsk was between 0.84 and 0.95,
and reasonable high for Yellowfin TunR petween 0.62 and 0.95). However, correlation
between the quarterly distributions was much smétleboth Bigeye and Albacore TunB (
generally less than 0.4). The same method wastosegestigate the seasonal persistence of
species associations and the results suggesf tsgdciations between species do exist, due
possibly to co-habitation within defined habitdaten these associations show generally weak
persistence throughout the year (or across yeds has possible consequences for the ability
to categorise the targeting practices of individisdling sets using cluster analysis based on
similarities in the catch composition.

Finally, the catch composition of observed sets aidicates that the proportional catch of a
given species is generally highest when that spesiecorded as the primary targeted species.
This suggests that the vessel (skipper) has sorhty &b target and catch a desired species.
Nevertheless, it is also clear that each of theroghincipal species are also usually caught,
indicating that it is not possible to just targedacatch a single species. Indeed, the target
species sometimes is not the dominant catch. Fampbe, on average more Yellowfin Tuna
are caught than Striped Marlin when targeting #itet. Cluster analyses of the ETBF catch
data indicate strong seasonal changes in speamgasition of the major clusters identified,
which is likely to be related to seasonal differeh@ the co-occurrence of species reported
above. Furthermore, while the fishing operatiorsoamted with some clusters display distinct
differences in the gear configurations, most chssteere characterised by a broad mix of gear
configurations, indicating that the relationshigvizeen the composition of the catch and the
configuration of the gear is not strong. It waaisted that the mix of gear types associated
with similar cluster types can vary on a seasoraid(.i.e. the dominant Yellowfin Tuna
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cluster in summer and winter). These results inditiaat there are substantial cluster by gear
interactions and season-by-gear-by-cluster intenast This suggests that ‘targeting’ and the
consequent composition of the catch is likely tgpetel on more factors than just the

configuration of the fishing gear, and exploring thature of the relationship between the catch
and these other factors (e.g. availability effexgsociated with the spatial location such as
water temperatures, sea-mounts, eddy featurear@ieaged.

The results of the cluster analysis also indic#ttatithere can be substantive differences in the
characteristics of each identified cluster, depaehdgon which species are included in the
analysis. This indicates that some thought needi® tgiven to how best to cluster the catch
data for classifying sets and possibly identifygwgtes of species associated with different
targeting practices. For example, should clustatyses used to identify ‘targeting’ practices
be based only on the main target species in arfighreshould such analyses also include by-
product and by-catch species (even though theszespare not targeted). The sensitivity of
abundance indices on using the different clustpedyidentified by these different types of
analyses in procedures to standardise CPUE shtzalda investigated.

Comparative Performance of Standardisation Models

Due to practical reasons associated with the aesly®ing undertaken by three analysts
independently (with each at a different locatidh® comparative analyses of the performance
of the twenty-four different standardisation modsédected for testing were broken into a
number of different trials. The main results frdmede trials were as follows:

» The relative performance of each model varied amrably between the analyses
conducted on the different species included in ttwe simulated data-sets. As a
consequence, there was no one best performing racdeds all species. For example,
the overall best performing model across all sgerieone set of trials was not the best
model for any of the individual species analysed.

» Based on the analyses conducted on the ETBF siduldéta, the mean Absolute
Relative-Error ARE = abs|(I;; — Ts.)/Ts ], wherel; .and Ty, are the estimated and
assume@bundance, respectively, for spe@esd yeat after rescaling to have a mean
of one) across all years and species for eachea24hmodels ranged between 3.3% and
20% and averaged 9.5% over all models. This indgcttat the difference between the
estimated and assumatiundance index averages around 3% for the befsiripéang
model, and around 20% for the worst performing nhadiemonstrating that there were
substantial differences in overall model perforneanc

* The overall best performing model fitted to theedetinistic catches of the ETBF-
simulated data-set was the model where the clagtevas undertaken at the set level.
The meamRE for this model varied between 3.1% and 11.3% actis five species
include in this data-set. On the other hand, theal/best performing model fitted to the
catches randomly sampled from a negative-binondisatibution was the model where
the clustering was undertaken at the trip level thes model the meaARE varied
between 3.6% and 12.6% across the five species.hidtesr variability in species
composition at the set level with the use of tmelcanly sampled catches, may be leading
to a higher misallocation of sets using differa@shing strategies, and aggregating the
data across trips may help to reduce this vartgbiind therefore the misallocation of
sets.

* Models which included a two-stage delta-GLM apploperformed considerably better
than models which only used a single staged apprdstalyses based on the current
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model used to standardise CPUE in the ETBF indittzde the two-stage delta-GLM
approach reduces tA&REof the estimated abundance indices by around 36&verage.
Models which included the two gear-effects includethe simulated data also generally
out-performed models which did not include thedeat$, i.e. the inclusion of gear
effects in the standardising models improved thétalof such models to recover the
assumed relative abundance indices than the incdusi derived effects such as those
based on catch-composition derived clusters. ®sslt should not be unexpected, as it
is the actual configuration of the fishing gearttisaunder the control of the fisher and
which can be directly modified to ‘target’ diffetespecies. On the other hand, the use of
a method such as a cluster analysis of the catetpasition of a set to infer the target
species is not only in-direct, but based on a tesalized at the end of the set, and which
is highly likely to be influenced by a number ohet factors.

For the subset of analyses with tested models wdigtimot include the gear effects, but
which were based on the two-stage delta-GLM approte model where the derived
targeting effect was based on clustering undertakehe trip level again displayed the
best overall performance (with the me&RE across the five species ranging between
6.3% and 12.2%). On the other hand, the model wdicthot include any targeting effect
was the worst performing model. This last resullicgates that the use of catch-based
clusters to identify ‘targeting’ has merit, andlusion of such derived effects, in general,
improves the performance of the standardising model

Of the three PCA-based models tested, the modetemie values of the principal
components variables were transformed to zeroesoard was the best performing,
while the two other PCA-based models generallyquaréd poorly.

The results of fitting the models to the secondusated data-set were consistent with
the results for the ETBF-based data-set, with thster-by-trip model being the best
overall performer, followed by the cluster-by-sebdel. However, of the three PCA
models tested, the model where the three princialponents are fitted as cubic splines
generally performed best.

The best performing of the INLA-based models was dahe most complex, which
included both discrete and continuous spatio-cootis effects. Unfortunately, due to
the computational demands of this model it coulg be tested on a sub-set of the ETBF-
data-set (and using the CSIRO high-performance otenp and this limited our ability
to fully compare its performance with the otherssef the models. While the
computational demands of this model may reduceititsy, nevertheless, this model
displays considerable merit and warrants furthemgarative testing in the future.

The current GLM used in the ETBF to standardise ER _performing reasonably well,
no doubt due to the fact that this model incorpemateveral of the features (e.g. two-
stage analysis, inclusion of gear effects) thatewkund to perform well in the
simulations undertaken.

Despite the above results, a consistent observditan all the trials conducted was the

variability in the performance of each model acribgsspecies included in the simulated data-
sets. An example of this variability was demonstidby the result that for one of the species
analysed in the ETBF simulated data-set (ALB), ntlgat did not include the gear effects

out-performed the models that included these effddtis was clearly a different outcome than
for the other four species analysed. The reasanarfomalous result remain uncertain, but
provide an indication that there are factors spetif each species that influence the fit of any
model to the data and as such the estimation adntheal abundance index.
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One possible explanation may be the manner in wihiePALB catch data was simulated, as
the depth-profile for ALB used in the simulation debwas not based on archival tag data (as
was the done for the other four species) but wasdan a created hybrid profile. Furthermore,
in making this hybrid profile substantially differe(i.e. deeper) than the observation-based
depth-profiles for the other species (c.f. Figuds), perhaps it is unrepresentative of the main
species caught in the ETBF (and, in particular,dépth profile of ALB that it was supposed
to represent). This may have resulted in a degfemismatch between the depth profile
simulated for ALB and the depths simulated for fishing gears. For example, while the
majority (85%) of hooks in the simulated data ocatidepths less than 100m, only 23% of
ALB, on average, are found within this depth rafgé Figure 5.16), with the consequence
that the relation between gear settings and theesplent catch of ALB is not as strong as for
the other species.

Putting this possibility aside, some further anasysvere undertaken to explore some of the
other factors that may be influencing the anomalmutsome for ALB. First, analysis of the
ETBF loghook data demonstrated that for catch-caitipm based clusters, the gear
configurations varied across the different clusyges and also varied seasonally within a year
for similar cluster-types. However, the inclusioh gear-related interaction terms in the
standardising models, ostensibly to account foh®ifects, did not improve the estimation of
the abundance indices. However, this result coustl pe an indication that the relationship
between catch-composition cluster types identified the data and associated gear
configurations is weak. Indeed, such a conclussatonsistent with the analysis of the ETBF
logbook data that did not find particularly stramgationships between the catch-composition
of the clusters identified and the gear settings keégure 6.17). The analysis of the observer
data for the ETBF, mentioned in Section 6.2, fotihvat the highest proportion of the catch of
any species generally occurred in those sets wihatespecies had been specified as the
primary target species. Unfortunately it is not bl to investigate whether such a
relationship exists between the catch compositiothe® main cluster types and the species
targeted, as this latter information is not rejabkcorded in the logbooks. As such, how
differences in targeting practices (partially exgzed by differences in how the fishing gear is
deployed) are expressed as differences in thetirmgebmposition of the catch, and how these
are related to the cluster-types identified in dverall catch data for the fishery, remains
difficult to explore. An alternative method for iestigating such relationships, based on
clustering the fishing operations by gear configjores (instead of catch composition), is
provided in Appendix C.

Second, in lieu of the gear-related interactiormteralone not providing the necessary
explanatory power for improving the estimation loé tabundance index for the anomalous
results for the simulated ALB catches mentionedvabéurther investigations indicated that
there had been a substantive change in the splatabution of catch rates for this species
after 2005. Re-fitting the models to the simulaBEBF data-set, but limiting the analysis to
the years after 2005, gave a result consistent thihresults for the other four species: the
models with gear effects out-performing the moddgthout gear effects and the cluster-by-
trip model performing best. There was also a sultis@improvement in the estimation of the
abundance index with around 50% reduction in theohlie Relative Error. This result is
consistent with some preliminary analyses undenalging the simulated data for the ETBF
which indicated that the spatial structure of thgachas a greater impact on the ability of the
model to infer the true annual abundance of a sgeban gear related factors such as the depth
profiles of the fish.
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This last analysis suggests that temporal changetha spatial patterns of fishing and
associated catch rates observed across a fistefikally to have a substantive impact on the
performance of models used to standardise CPUE fighery scientists undertaking such
analyses should investigate whether such changesdtaurred in fisheries they are assessing.
Whether such patterns explain some of the vartghilithe performance of the models across
the other species remains unclear, though thidtrdses demonstrate that there may be a wide
range of factors specific to each species thah@nite the fit of any model to the data, and as
such the estimation of the annual abundance inddeed, the factors that influence the size
and composition of the catch of any fishing operatre likely to be complex, and subject to
a reasonable degree of stochastic variation dtleetcandom nature of fish interacting with a
given set of fishing gear, especially gear suclpelagic longline hooks. No doubt further
research is required to identify and improve owtarstanding of the factors used by fishers to
‘target’ the deployed effort, and which control tbemposition of the catch for individual
fishing operations, in particular those factorstthacount for the variability seen in the
composition of the catch given similar gear sestinthese factors are likely to include spatial
features in the ocean such as temperature frodtedudlies that fishers often take cues from for
setting their gears.

Implications for the ETBF Harvest Strategy

The harvest strategy for the ETBF is based on #&ideetree which utilises a number of
empirical based indicators - the standardised CBfJ&mall, prime and large-sized fish and
the proportion of these size classes in the tai@hc The primary control rule for determining
the RBCC in any year involves using the formula:

RBCG+1 = TACG+(1+ f.Srarg

whereSrarcis the slope based on the angle subtended byahdagdised prime-sized CPUE
trend line over the previous five years and the Joining the present value of the CPUE and
a target CPUE value a specified number of yeligrce=5, in the future. The control
parametep is referred to as the feedback gain factor andiferETBF harvest strategy1.
Once the initial RBCC has been determined by tlmany control rule it is then subject to
review, and possible modification, based on thesudpecified in the higher levels of the
decision tree.

The performance of the harvest strategy in detangia ‘correct’ RBCC was tested using the
same simulation framework for the ETBF as that usedesting the standardising models.
Using the assumed abundance trend for each spsadto generate the simulated ETBF data-
set and the estimated standardised CPUE indicesragjed by each of the models used to
analyse these data, the mean value of the Abs&atative Error in the RBCCARE =
(RBCGstp-crue— RBCGrue/RBCGRug Was calculated across 100 data-sets where tbleesat
were sampled from a random negative binomial ¢igtion. As with the previous Index-based
results, the size of the error in the RBCC was fbotovary across the different species and
models, such that no single model performed beasisaall species. For four of the species
analysed, the mean error was generally less thafaA®@ooften less than 2%), but for one of
the species the error was higher at around 6-7%ulRealso indicate that the direction of the
error was not consistent, being conservative ardkmuastimating the true RBCC for some
species, while over-estimating the true RBCC ftieospecies.

The best performing model was the delta-GLM clubtetrip model, closely followed by the
base delta-GLM model currently being used in th&@ ETWhile the cluster-by-trip model was
also the best-performing model for estimating theralance index based on the same set of
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analyses, it should be noted that the resultsauably based on different time-intervals of the
estimated abundance index. First, the results congpdhe relative performance of each
standardising model for estimating the assumed arahundance time-series were based on
the mean annual error over all 15 years in thietseries. On the other hand, the results
comparing the relative performance of the each mfodestimating the true RBCC were based
on the errors in the trend of the estimated aburelardex over only the last five years. Given
these differences, and the similarity in the penfance of several standardising models, it
would not have been surprising to see differentegderform differently across the two sets
of results. However, in general there was a reddenkvel of correlation between the
performances of each model across the two setsabyses (c.f. Figure 7.1). This is reassuring
as it indicates that the same standardising madebe used for both sets of analyses.

Figure 7.1: Comparison of the overall rank achievedy each model (1=Best, 24=Worst) when
used to estimate either the abundance index over glears or the RBCC. The analyses are based
on the average errors calculated across 100 ETBF @asets where the catches were sampled from
a random negative binomial distribution.
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The potential for the different performance of misdgependent on the time-series of data
being analysed, as noted above, also has implisatar the question of over what time-period
of data should an analysis be conducted takingadatwsideration the end-purpose for which
the results are to be used. For example, if onsomglucting a stock assessment then it is
probably appropriate that the constructed abundemisx be estimated over a time-period as
long as possible (i.e. over the entire availabla-gat). On the other hand, if there is a need to
use only a shorter time-period in the subsequealyais (such as only using the temporal trend
of the estimated abundance index over the lastyears, as required for the EBF harvest
strategy), then some consideration should be gagdn whether the abundance index needs to
be estimated over all the years that the dataagadle or some shorter period. This decision
should be guided by investigation of both tempohalinges in the characteristics of the data to
be analysed that may influence (or bias) subsequesilts, and the sensitivity of the
constructed abundance index to changes in thedaries of data included in the analyses.

Finally, investigation of applying a LOWESS smoattethe annual abundance index before
calculating the slope-to-target used in the ETBRvést strategy, found that for some species
the calculated RBCC varied to some extent, depdénatethe smoothing parameter used. It
was also found that the variability in the calcathRBCC increased as the variability of
standardised CPUE over the last five years (useddliculating the slope used in the primary
control rule) increased. This suggests that some should be taken in selecting which
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smoothing parameter to use and the criteria fontifleng the most appropriate parameter
requires further investigation.

Concluding Remark

Given the multitude of factors which are knownrtiuence the catch of any fishing operation,
the relationship between catch-rates and underlgingk abundance has long been a vexed
one. This is especially the case with multispedigiseries, where the issue of targeting is
central to the relationship between the effectigsna the fishing effort and the catch of any
specific species. While there has been a longtyistbresearch directed at understanding the
nature of these relationships, together with theeigpment of methods aimed at standardising
fishing effort so that the time-series of undentyistock abundance can be recovered, the
complexity of the issue raises a number of chaktertgat prevent easy solutions. In this project
we have investigated the nature of the relationbleipveen the manner in which the fishing
gears are deployed in the pelagic longline sectothe ETBF and the resulting species
composition of the catch, and results indicate suah relations are often elusive. We have
also selected, developed and tested using simuliattadsets, a suite of models to standardise
catch rates and construct indices of relative stamkndance. While the results found that
performance varied widely across the models testedsingle model was found to perform
best across all the trials undertaken. Indeedy#n@bility of the performance of the models
across the different species simulated was onbeofrtost consistent characteristics of these
results. While this project has investigated a neimbf factors likely to influence the
composition of the catch and the ability of any o reconstruct the true time-series of
abundance from catch and effort data, these redaltdemonstrate that there may be a wide
range of factors that influence the fit of any middehe data. Indeed, the factors that influence
the size and composition of the catch of any figloperation are likely to be complex, and
subject to a reasonable degree of stochastic variatue to the random nature of fish
interacting with a given set of fishing gear, esgcgear such as pelagic longline hooks. No
doubt continuing research is required to furthenidy and improve our understanding of the
factors used by fishers to ‘target’ the deployddreéfand which influence the composition of
the catch for individual fishing operations, in f@arlar those factors that account for the
variability seen in the composition of the catchiegi similar gear settings. These factors are
likely to include spatial features in the oceanhsas temperature fronts and eddies that fishers
often take cues from for setting their gears.
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8. Implications

Standardised CPUE is a central input to stock ass&sts undertaken for many fisheries
around the world. Within Australia, standardisedJEHS used in the assessments and harvest
strategies for the two tropical pelagic fisherieSBF and WBTF) as well as many other
fisheries, including the multispecies South-Eastl&sh and Shark Fishery (SESSF). While
the results of this project found there to be mgle method which was best for standardising
CPUE due to differences in the spatio-temporarithstions in the data for each species, the
outcomes and associated recommendations (seers@ctibthis project will provide guidance
on improving the methods used to standardise CRPUReise and other fisheries. In turn, this
will ensure (i) more reliable and accurate stockratance indices, (ii) improved inputs and to
the harvest control rules dependent on standardi$ddE, (iii)) improved outputs of harvest
strategies, in particular the appropriatenessaftified TACCs, and (iv) improvements to our
ability to assess the resource status of non-tasgeties, as required to achieve the
management objective of ecologically sustainalslediies.

The main end users of this research will be thessssent scientists developing indices of
abundance based on the standardisation of CPUEcialp those within multispecies
fisheries. As improvements in assessment resulishave flow on effects for improved
scientific advice and harvest strategy outcomeg. (@proved TACCs), the managers of
Australia's multispecies fisheries will also be edir beneficiaries. Improvements in
management outcomes will lead to a reduction irridleof over-or-under exploitation of the
associated resources, benefiting the long-ternasaile management of these fisheries, the
related fishery resources and related industries.

For fisheries such as the ETBF (valued at $35mDit¥215, ABARES 2015) and the SESSF
(valued at $67m in 2014/15, ABARES 2015), this aitun in risk will increase efficiencies
(i.e. improve returns per vessel) and enhance thenpal to achieve optimal exploitation
levels, improving total value of these fisheriestgmtially by many millions - far greater than
the cost of the research). In this manner perniddrs, the fishing industries, and more broadly
the Australian community will be beneficiaries,dbgh increased and sustained profits.

The outcomes of this project will also benefit figbck assessments associated with the pelagic

fisheries within the Western Central Pacific Oceanal Indian Ocean to which Australia's
domestic tuna fisheries are connected.
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9. Recommendations

Based on the outcomes of this project, the follgaiecommendations are made:

1.

The results of this project should be taken intasideration by fisheries scientists
undertaking analyses of catch and effort data fanselecting appropriate methods for
standardising CPUE for stock assessment purposes.

The recording in logbooks of information on the rawderistics of the fishing gears
deployed by fishers at the set level should be @raged and where this information is
available it should be incorporated into the modeiksd to standardise CPUE.
Logbooks should also record the target speciesdoh set or shot. Where such a data
field already exists in the logbook, effort shobhlimade to improve both the reliability
of this information and our understanding of exatdl what this data relates (e.g. is it
just the most common species in the catch?).

The logbooks for Australia’s two tropical tuna dltfish fisheries should be reviewed,
to ensure that the appropriate information relatetlow the longline fishing gear is
deployed can be recorded. Information consideradiriolusion in the logbooks
includes: hook-type, the length of the float andrah lines, and information related to
the sag-ratio of the line.

Where gear information is not available, derivedé¢ting effects should be considered
for inclusion in models used to standardise CPU&sda on the results of this study,
the approach using a Cluster Analysis based om-@@imposition to categorise sets is
recommended over the use of the Principal Compohealysis approach. Where the
appropriate information is available, and dependamtthe nature of the fishing
operations undertaken within a trip, considerasbould be given to undertaking the
cluster analysis at the trip level of data aggregat

Before selecting a model to standardise CPUE fasitacting an annual abundance
index for a fishery, it is important that analyatsempt to understand the factors that
influence the variability observed in the catch a&fidrt data from the fishery being
assessed. In particular, analysts should investightinges in the spatio-temporal
distribution of CPUE across a fishery and the fectbat influence these changes.
Given the potential for the different performandenmdels dependent on the time-
series of data being analysed, analysts shoulddmntie appropriateness of the time-
period of data analysed relative the end-purposavioch the results are to be used.
This decision should be guided by investigationboth temporal changes in the
characteristics of the data to be analysed thatinflaygnce (or bias) subsequent results,
and the sensitivity of the constructed abundandexro changes in the time-series of
data included in the analyses.

The investigation of temporal changes should aésguoded by information that may
not available within the dataset, such as techryotwgep. For instance, if it is known
that a fleet-wide adoption of a new technology Iteslin a large suspected change in
effective effort (e.g., GPS, colour sounders) dyandefined period of time, then there
is good reason to incorporate that temporal feaiuie the CPUE standardisation
(especially if one has month of adoption data Bwhevessel).

Further work should be undertaken to continue theiew, development and
comparison of the performance of approaches talatdise catch rates for Australia's
multispecies fisheries. For example, the simulatiamework presented in this report
could be extended to model other assumed abundesra#s so that models used to
standardise CPUE could be evaluated across a greatge of hypothetical (but
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plausible) conditions. Also, further work is recgdrto investigate of the performance
of the INLA based spatio-temporal model developgdhis project, as well as the
performance of the spatial dynamic factor analysisdel recently published by
Thorsonet al (2016).

10.Finally, further research is required to identifydamprove our understanding of the
factors used by fishers to ‘target’ the deploystiifig effort to control the composition
of the catch for individual fishing operations particular those factors that account for
the variability seen in the composition of the bafiven similar gear settings. These
factors are likely to include spatial featuresha bcean such as temperature fronts and
eddies that fishers often take cues from for sgtieir gears.
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10. Extension and Adoption

The outcomes of this project will be extended amtmunicated to a range of end-users in the
following ways.

Resource Assessment Groups

Through their membership on a number of Resoursegsnent Groups (RAGs) a number of
the project team will able to use the outputs &f groject to inform the adoption of new and
improved methods for future assessments. This lvaille direct benefits on improving the
accuracy and reliability of the indices of resouabeindance based on the standardised CPUE
as well as the assessments of the related fishinaes This will have flow on benefits for the
utility of the harvest strategies used to manag@gselffisheries, in particular the ETBF and
WTBF and other multispecies fisheries such as #83-, which are highly dependent on the
accuracy of the standardised CPUE.

The Principal Investigator (R.C.) is the principasessment scientist for the ETBF (currently
undertaking both the CPUE standardisation and tmeelst strategy calculations for this
fishery) and together with R.H. is a scientific nregentative on the Tropical Tuna Resource
Assessment Group (TTRAG). Another member of thgeptoteam (M.H.) is a principal
assessment scientist for the Southern and EastatefiSh and Shark Fishery (SESSF), which
is a multi-sector, multispecies fishery that covarost half of the Australian Fishing Zone,
and a scientific representative on the associaestirce Assessment Group. Finally, S.Z. is a
member of the Squid Fishery Resource AssessmenipGitrough these multiple roles these
team members will be able to consult widely witle tielevant RAGs, AFMA, the fishing
industry, and other scientists about the outconigki® project and implement the results to
improve the CPUE standardisations used in the sieskssments and the related inputs into
the associated harvest strategies. In particuiar,outcomes of this project will inform the
review of the ETBF harvest strategy, and the aased¢imethods to standardise CPUE, to be
undertaken during 2017 and as part of this prottessesults of this project were presented to
the meeting of TTRAG held 28-30 March 2017.

Regional Fisheries Management Organisations

This project will have direct input into scientifigork and programs undertaken by, and on
behalf of, the Western Central Pacific Fisheriesn@ussion (WCPFC) and the Indian Ocean
Tuna Commission (IOTC).

The Principal Investigator (R.C.) has attendecattmeual meetings of the Scientific Committee
(and its predecessor) for WCPFC since the mid-199@% more recently the Pre-Assessment
Workshops convened by the Scientific Service Prenvf8ecretariat of the Pacific Community,
SPC) in April each year. He also contributes stesidad CPUE indices to several assessments
undertaken by SPC (e.g. southwest Pacific Swordfrgh Striped Marlin) and has consulted
widely with other scientists in this region on tieed for improving CPUE standardisation for
the associated assessments (e.g. Hetydd 2014). As part of these ongoing contributions the
results of this project were presented to the Warkson the Analysis of CPUE for Stock
Assessments, held 20-21 April at SPC in Noumeas Tieeting was held as part of the
Preparatory Workshop for the 2017 Stock Assessmiemtshe Western Central Pacific
Fisheries Commission.
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Another member of the project team (S.H.) regularigertakes stock assessments for tuna
and billfish stocks in the Indian Ocean and atteti@s annual meetings of the Scientific
Committee for the IOTC while S.Z. has consultedM@TC on a project to undertake CPUE
studies for neritic tunas. The outputs of this gcbjwill inform the adoption of new and
improved methods for future assessments on thesfaiks in this region. A third member of
the project team (R.H.) is a member of Scientifion®nittee for the Convention of the
Conservation of Southern Bluefin Tuna (CCSBT) arltilve able to convey the results of this
project to this forum.

Broader Dissemination

Finally, the results of the project will be pubkshin relevant peer-review journals to help
disseminate the results to the broader scientiffmraunity.
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Appendix A. Annual longline catch by species in the ETBF

1. Introduction

The ETBF has undergone several periods of developaral associated changes in targeting
practices since the advent of the logbook prograthe mid-1980s. For example, the fishery
largely targeted only Yellowfin Tuna, and to soméesat Bigeye Tuna, until the mid-1990s at
which time a component of the fleet switched tgéting Broadbill Swordfish. The catches of
Striped Marlin also increased considerably throtingh1990s, such that by the year 2000 there
were four principal target species in the fishefje size of the fishery also changed
significantly throughout the 1990s, with the effortreasing from 1.1 million hooks in 1990
to 9.6 million hooks in 2000 and the spatial extainthe fishery increasing by more than 2.5
times over this period. Effort peaked in 2003 wh&rv'5 million hooks were deployed and the
spatial extent of the fishery reached 273 1x1-degopiares.

With the advent of lower catch rates and poor epoaaeturns throughout the early to mid-
2000s a number of vessels left the fishery and bfitrt and catches declined. The targeting
of Albacore Tuna, and its subsequent addition @siraary target species, provided some
financial assistance to the fishery with the catthAlbacore Tuna in 2006 and 2007 being the
largest of the now five principal target speciestihet economic returns to the fishery
remaining low a government-based restructuringhef fishery in 2007 saw the number of
active vessels remaining in the fishery declinartmund 50 during 2008 when around 8 million
hooks were deployed. Effort increased to aroundndilfion hooks in 2009 but has again
declined in more recent years with around 6.8 amllhooks being deployed between 2011 and
2013. The number of vessels active in the fisheome only briefly) during 2013 was 41
(down from 49 in 2011). Total allowable catch qothased on individual transferrable
guotas) for the five principal target species weteduced into the fishery in March 2011.

This brief history indicates that there have beenuamber of significant changes in the
operation of the ETBF including changes in the eaofgspecies targeted. Commensurate with
these changes has been the changes in the logbedkruthe fishery. Since the introduction
of the ALO2 logbook in the mid-1980s there has baeeries of four updates since this time
(Figure A.1). With each new logbook there have beeanges in the number of the species

Figure A.1: Annual logbook coverage (as a percentagof sets) in the ETBF. Note: ELINE refers
to an electronic logbook.
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reported in logbooks and this in turn has resulbechanges in the ability to report the catch
by species in the fishery.

In this document the annual reported catch by sgasiprovided for the main species caught
by longline vessels operating in the ETBF overgheods 1985 to 2013. These species cover
72 of the 136 species reported caught during tabg and account for 99% of all fish caught.
A complete listing of the catch of all species mepd in logbooks for the ETBF is provided in
Appendix A.

The catches reported by species are listed byotlmnwing groups:

Tunas (6 species),

Billfish (6 species),

Sharks (10 individual species, 2 species grolgsoup of 17 species,
and a single group of unidentified sharks),

Byproduct (6 species),

Bycatch (6 species),

Other Mackerels (5 species in a single group], an

Skates and Rays (1 group of stingrays, 1 groupaofta rays, and a combined
group).

Catch is reported by both the retained catch aeddtecarded catch reported in logbooks.
Whilst the accuracy of the each catch componentaisnto be verified, it can perhaps be
assumed that the retained catch is more accuraietyted than the discarded catch.

It is important to note that not all species hagerbreported in each logbook and a listing of
the number of fish caught by species in each logh®@rovided in Appendix B. There have
also been some changes in the identifying code aoselbgbooks for several species. For
example, the code SPC_ID=146 was used to identigaBish on the ALO2 logbook, while
the code SPC_ID=53 has been used to identify Shikketd Spearfish on all other logbooks.
Also, Mako Sharks were identified by the single e®@PC _ID=138 on the ALO2 logbook,
while the codes SPC_ID=3 and 63 have been usatktdify Short-fined Makos and Long-
finned Makos respectively on all other logbooksnigirly, the code SPC_ID=184 was used
to identify Smoothed Hammerheads only on the Ald@fbbok, the code SPC_ID=15 was used
to identify Scalloped Hammerheads on the logbodi32AAL05, while the code SPC_ID=360
has been used to identified undifferentiated Hanheei Sharks on the ALO5, ALOO6 and
ELINE logbooks.

Finally, there may also have been changes in timerdahat several species have been reported
on logbooks. For example, large quantities of Maeké&comber scombrysiave only been
reported on the ALOS5 logbook (as SPC_ID=47) whidegé quantities of Snake Mackerel
(Gempylus serpehsave only been reported on the ALO6 logbook R€ SD=362).

Given the above comments, some care is requiregssuming that the reporting of any
particular species (other than the principal cafuécies) has been continuous across the period
reported here. Given this situation, some speci@g meed to be grouped to more accurately
reflect the nature of the species groups cauglpiaoticular longline sets.

171



Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

2. SPECIES CODES

TUNAS BILLFISH
CODE |SPC_COMMON_NAME CODE |SPC_COMMON_NAME
YFT Yellowfin Tuna BBL Broad Billed Swordfish
SKJ Skipjack Tuna STM Striped Marlin
SBT Southern Bluefin Tuna BUM Blue Marlin
ALB Albacore Tuna SAF Indo-Pacific Sailfish
BET Bigeye Tuna BAM Black Marlin
NBT Northern Bluefin Tuna SBS Shortbilled Spearfish
SHARKS - Individual species SHARKS - Grouped identified species
CODE |SPC_COMMON_NAME CODE |SPC_COMMON_NAME
CSH Crocodile Shark SHK White Shark
POR Porbeagle SHK School Shark
TSR Thresher Shark SHK Cookie-cutter Shark
BRO Bronze Whaler SHK Roughskin Shark
DSK Dusky Shark SHK Saw Shark
BSH Blue Shark SHK Broadnose Sevengill Shark
SKS Silky Shark SHK Sandbar Shark
TIG Tiger Shark SHK Bull Shark
ocCs Oceanic Whitetip Shark SHK Australian Black Shark
TIP Blacktip sharks SHK Australian Angel Shark
SHK Ogilbys Ghost Shark
SHARKS - Grouped by species type SHK Australian blacktip shark
CODE |SPC_COMMON_NAME SHK Sorrah shark
MAK  |Shortfin Mako SHK Whaler and weasel sharks
MAK Longfin Mako SHK Platypus shark
MAK |Mako shark species SHK whiskery shark
SPN Scalloped Hammerhead SHK Grey reef shark
SPN Smoothed hammerhead
SPN Hammerhead sharks
SHARKS - Unidentified group
CODE |SPC_COMMON_NAME
SHO Shark "Other"
SHO other sharks (ALO2)
SHO Sharks (other)

BYPRODUCT - Individual species BYCATCH - Individual species
CODE |SPC_COMMON_NAME CODE |SPC_COMMON_NAME
OPA Moonfish LAN Lancet fish
DOL Dolphinfish BAR Barracouta
POA Ray's Bream MAC Mackerel

OIL Oilfish SUN Ocean Sunfish
WAH |Wahoo MOP [Short Sunfish
BOF Black Qilfish GES Snake Mackerel

BYPRODUCT - Grouped mackerel species BYCATCH - Skates and rays
CODE |SPC_COMMON_NAME CODE |SPC_COMMON_NAME
MCK Butterfly Mackerel STR Stingray
MCK |Jack Mackerel RAY Manta Ray
MCK Blue Mackerel RAI Skates & rays, unspecified

MCK [Spanish Mackerel
MCK Frigate mackerel
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3. TUNAS

SPC_ID CODE |SPC_COMMON_NAME SPC_NAME N_FOPS
38 YFT |Yellowfin Tuna Thunnus albacares 146151
39 SKJ Skipjack Tuna Katsuwonus pelamis 7725
40 SBT |Southern Bluefin Tuna Thunnus maccoyii 8314
41 ALB |Albacore Tuna Thunnus alalunga 102852
42 BET [Bigeye Tuna Thunnus obesus 90059
46 NBT |Northern Bluefin Tuna Thunnus thynnus 476

Note: N_FOPS = Number of fishing operations tipecses caught

Figure A.2: Logbook recorded annual catch (number bfish retained and discarded) of tuna
species in the ETBF.
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4. BILLFISH
SPC_ID CODE |SPC_COMMON_NAME SPC_NAME N_FOPS

48 BBL |Broad Billed Swordfish Xiphias gladius 92432
49 STM  [Striped Marlin Tetrapturus audax 50996
50 BUM [Blue Marlin Makaira mazara 5620
51 SAF  [Indo-Pacific Sailfish Istiophorus platypterus 1827
52 BAM [Black Marlin Makaira indica 3613
53 SBS |Shortbilled Spearfish Tetrapturus angustirostris 7666
146 SBS |Spearfish (ALO2 only) Tetrapturus angustirostris 587

Note: N_FOPS = Number of fishing operations tipecses caught

Figure A.3: Logbook recorded annual catch (number bfish retained and discarded) of billfish
species in the ETBF.
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5. SHARKS
SPC_ID | CODE [SPC_COMMON_NAME SPC_NAME N_FOPS
2 CSH [Crocodile Shark Pseudocarcharias kamoharai 280
5 POR [Porbeagle Lamna nasus 653
6 TSR [Thresher Shark Alopias vulpinus 1719
8 BRO |Bronze Whaler Carcharhinus brachyurus 8973
9 DSK  [Dusky Shark Carcharhinus obscurus 1815
10 BSH [Blue Shark Prionace glauca 24189
11 SKS  |Silky Shark Carcharhinus falciformis 347
12 TIG |Tiger Shark Galeocerdo cuvier 3950
13 OCS [Oceanic Whitetip Shark Carcharhinus longimanus 5982
14 TIP Blacktip sharks Carcharhinus species 1479

Figure A.4: Logbook recorded annual catch (number bfish retained and discarded) of shark
species in the ETBF.
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5. SHARKS (cont'd)

Figure A.4 (cont'd): Logbook recorded annual catch(number of fish retained and discarded) of
shark species in the ETBF.
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3 MAK  [Shortfin Mako Isurus oxyrinchus 28858
63 MAK [Longfin Mako Isurus paucus 51
138 MAK [Mako shark species Lamnidae spp 3275
15 SPN  [Scalloped Hammerhead Sphyrna lewini 2477
184 SPN  [Smoothed hammerhead Sphyrna zygaena 78
360 SPN [Hammerhead sharks Sphyrnidae - undifferentiated 730
Note: SPC_ID=3, 63, 138 grouped as Mako Sharks
Note: SPC_ID=15, 184, 360 grouped as Hammerhbatk$

Figure A.4 (cont’d): Logbook recorded annual catch(number of fish retained and discarded) of

shark species in the ETBF.
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5. SHARKS (cont'd)

SHK: Identified Sharks (grouped) includes the failog species:

SPC_ID CODE |SPC_COMMON_NAME SPC_NAME N_FOPS
4 SHK  |White Shark Carcharodon carcharias 4
7 SHK  [School Shark Galeorhinus galeus 480
17 SHK [Cookie-cutter Shark Isistius brasiliensis 9
18 SHK  [Roughskin Shark Centroscymnus and Deania. 4
19 SHK  [Saw Shark Pristiophorus 33
62 SHK [Broadnose Sevengill Shark |Notorynchus cepedianus 206
64 SHK [Sandbar Shark Carcharhinus plumbeus 11
65 SHK  |Bull Shark Carcharhinus leucas 19
67 SHK  [Australian Black Shark Dalatias Licha 144
70 SHK  [Australian Angel Shark Squatina australis 96
71 SHK [Ogilbys Ghost Shark Hydrolagus ogilbyi 453
93 SHK  [Australian blacktip shark Carcharhinus tilstoni 6
94 SHK  [Sorrah shark Carcharhinus sorrah 36
95 SHK |Whaler and weasel sharks [Caracharhinidae 1764
96 SHK  [Platypus shark Deania calcea 283
178 SHK  [whiskery shark Furgaleus macki 89
182 SHK |Grey reef shark Carcharhinus amblyrhynchos 2
SHO: Unidentified Sharks includes the following:
SPC_ID CODE |SPC_COMMON_NAME SPC_NAME N_FOPS
58 SHO [Shark "Other" Family "Shark" other 248
134 SHO |other sharks (ALO2) Carcharhinidae, Hemigaleidae 2989
358 SHO [Sharks (other) sharks - other 105

Figure A.4 (cont'd): Logbook recorded annual catch(number of fish retained and discarded) of

shark species in the ETBF.
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6. BYPRODUCT SPECIES

SPC_ID CODE |SPC_COMMON_NAME SPC_NAME N_FOPS
23 OPA |Moonfish Lampris guttatus 6640
29 DOL |Dolphinfish Coryphaena hippurus 60560
30 POA [Ray's Bream Brama brama 8559
35 OIL |Qilfish Ruvettus pretiosus 1922
45 WAH |Wahoo Acanthocybium solandri 13789
36 BOF |Black Qilfish Lepidocybium flavobrunneum| 12053
55 BOF |Rudderfish Centrolophus niger 50831

Note: Rudderfish are grouped with Black Oilfisu¢édo misidentification on logbook)

Figure A.5: Logbook recorded annual catch (number tfish retained and discarded) of byproduct
species in the ETBF.
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7. BYCATCH SPECIES

SPC_ID | CODE |SPC_COMMON_NAME SPC_NAME N_FOPS
22 LAN [Lancet fish Alepisauridae 22427
34 BAR |Barracouta Thyrsites atun 689
47 MAC [Mackerel Scomber scombrus 726
56 SUN [Ocean Sunfish Mola mola 3481
361 MOP [Short Sunfish Mola ramsayi 119
362 GES  [Snake Mackerel Gempylus serpens 341

Figure A.6: Logbook recorded annual catch (number bfish retained and discarded) of bycatch
species in the ETBF.
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8. OTHER MACKERELS (Grouped)

SPC_ID CODE |SPC_COMMON_NAME SPC_NAME N_FOPS
43 MCK  [Butterfly Mackerel Gasterochisma melampus 165
75 MCK  |Jack Mackerel Trachurus declivis 6
83 MCK  [Blue Mackerel Scomber australasicus 7
84 MCK [Spanish Mackerel Scomberomorus Commerson 11
115 MCK [Frigate mackerel Auxis thazard 2
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9. SKATES & RAYS

SPC_ID CODE |SPC_COMMON_NAME SPC_NAME N_FOPS
21 STR  |Stingray Dasyatididae "family" 306
91 RAY [Manta Ray Manta birostris 504
359 RAl  |Skates & rays, unspecifie [Skates & rays, unspecified 697

Figure A.7: Logbook recorded annual catch (number bfish retained and discarded) of skate and
ray species in the ETBF.
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Table A.1: Complete listing of the logbook reportedcatch of all species reported by longline
vessels operating in the ETBF. (Note, the last cotwn indicates whether the species is reported in
main document)

No. |SPC_ID| SPC |SPC_COMMON_NAME SETS RETAINED | DISCARDED TOTAL Report
1 38 YFT |Yellowfin Tuna 175569 1300099 51873 1351972 1
2 41 ALB |Albacore Tuna 114333 1315727 26802 1342529 1
3 48 SWO |[Broad Billed Swordfish 95800 467613 10701 478314 1
4 42 BET ([Bigeye Tuna 93493 388339 19085 407424 1
5 29 DOL (Dolphinfish 60475 289843 9549 299392 1
6 22 LAN ([Lancet fish 22424 1847 296256 298103 1
7 55 CEO |Rudderfish 50698 272338 8928 281266 1
8 30 POA |Ray's Bream 8549 149978 3688 153666 1
9 10 BSH |Blue Shark 24199 18633 88694 107327 1

10 49 MLS (Striped Marlin 53687 99056 3087 102143 1
11 40 SBF |Southern Bluefin Tuna 11025 92247 8775 101022 1
12 36 BOF |[Black Qilfish 12053 82121 2413 84534 1
13 3 SMA |[Shortfin Mako 28822 40427 6608 47035 1
14 59 MIX |OTHER 12640 36642 2070 38712 1
15 39 SKJ  |Skipjack Tuna 9612 35725 1896 37621 1
16 45 WAH |Wahoo 13706 24515 919 25434 1
17 8 BRO |Bronze Whaler 8915 10595 12201 22796 1
18 23 OPA |Moonfish 6640 16503 265 16768 1
19 134 other sharks (ALO2) 5573 11823 3356 15179 1
20 53 SBS [Shortbilled Spearfish 7666 11557 1030 12587 1
21 50 BLM [Blue Marlin 6886 1362 9361 10723 1
22 13 OCS |Oceanic Whitetip Shark 5980 3907 6002 9909 1
23 95 whaler and weasel sharks 3245 6912 2421 9333 1
24 52 BKM (Black Marlin 4292 13 8087 8100 1
25 56 SUN |Ocean Sunfish 3481 130 7852 7982 1
26 47 MAC |Mackerel 723 140 6468 6608 1
27 138 Mako shark species 6352 6010 568 6578 1
28 35 OIL |OQilfish 1900 5741 707 6448 1
29 12 TSH |Tiger Shark 3937 2414 3431 5845 1
30 15 SPL |Scalloped Hammerhead 2751 3534 2226 5760 1
31 9 DSK |Dusky Shark 1812 1370 3270 4640 1
32 14 TIP  |Blacktip sharks 1479 2266 1386 3652 1
33 51 SAF [Indo-Pacific Sailfish 2037 1838 1693 3531 1
34 362 GES [Snake Mackerel 341 1 3495 3496 1
35 6 TSR [Thresher Shark 1717 559 2365 2924 1
36 5 POR [Porbeagle 645 1722 806 2528 1
37 34 BAR [Barracouta 689 179 2300 2479 1
38 359 RAI |Skates & rays 697 0 1732 1732 1
39 360 SPN |hammerhead sharks 730 1059 643 1702 1

40 146 Spearfish 1143 1097 125 1222 1

41 2 CSH |Crocodile Shark 280 15 1191 1206 1

42 91 RAY |Manta Ray 504 42 1026 1068 1

43 11 SKS |Silky Shark 347 274 516 790 1

44 21 STR |Stingray 306 0 659 659 1

45 71 SHT |Ogilbys Ghost Shark 448 439 190 629 1

46 96 platypus shark 276 564 64 628 1

a7 46 NBF [Northern Bluefin Tuna 478 496 22 518 1

48 73 GRE |Blue Grenadier 98 228 151 379 0

49 58 SHO |Shark "Other" 215 161 213 374 1

50 61 MAR |Marlin/Sailfish 115 2 367 369 0
51 43 MAB |Butterfly Mackerel 165 235 99 334 1
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Table A.1: (cont'd)

No. [SPC_ID| SPC |SPC_COMMON_NAME SETS RETAINED | DISCARDED TOTAL n Report
52 67 SLH |Australian Black Shark 144 170 158 328 1
53 26 BKF [Black Kingfish 149 290 6 296 0
54 361 MOP (Short Sunfish 119 0 266 266 1
55 184 Smoothed hammerhead shark 78 86 179 265 1
56 102 Moonfish 181 236 3 239 1
57 7 SHS [School Shark 83 209 10 219 1
58 353 pufferfish 93 0 214 214 0
59 182 grey reef shark 2 193 0 193 1
60 358 SHO |Sharks (other) 105 68 114 182 1
61 44 ABO |Australian Bonito 35 163 3 166 0
62 70 SHA |Australian Angel Shark 65 68 97 165 1
63 25 OAR |Oarfish 80 75 48 123 0
64 37 SFF  |Southern Frostfish 98 37 80 117 0
65 83 MAS (Blue Mackerel 7 105 2 107 1
66 178 whiskery shark 8 1 98 99 1
67 31 SNA |Snapper 21 93 2 95 0
68 27 YEK |Yellowtail Kingfish 35 79 8 87 0
69 80 BRE |Black Bream 19 83 0 83 0
70 63 LFM [Longfin Mako 51 36 16 52 1
71 28 RRR |Rainbow Runner 29 48 3 51 0
72 24 RIB |Dealfish 42 2 47 49 0
73 94 Sorrah shark 29 34 14 48 1
74 54 TBE |Blue Eye Trevalla 16 47 1 48 0
75 65 BUL |Bull Shark 19 16 27 43 1
76 78 BSP |Big-scale Pomfret 7 32 0 32 0
77 85 MKT |Eastern Little Tuna 5 27 0 27 0
78 64 SBH [Sandbar Shark 11 18 4 22 1
79 157 CAR |Cardinal Fish 20 12 8 20 0
80 114 Gemfish 57 2 17 19 0
81 87 DTT |Dogtooth Tuna 9 17 0 17 0
82 1 SHY |Grey Nurse 13 0 15 15 0
83 317 yellow-spotted boarfish 15 13 0 13 0
84 75 MAJ [Jack Mackerel 6 12 1 13 1
85 367 tunas 9 4 13 0
86 79 JOB |Jobfish 12 1 13 0
87 84 SNM [Spanish Mackerel 11 11 0 11 1
88 159 JOR |Rosy Jobfish / King Snapper 2 11 0 11 0
89 17 CCS [Cookie-cutter Shark 9 4 6 10 1
90 227 "true" dories 1 10 0 10 1
91 18 SRH [Roughskin Shark 4 9 0 9 1
92 62 SHL |Broadnose Sevengill Shark 6 6 2 8 1
93 93 Australian blacktip shark 6 8 0 8 1
94 115 Frigate mackerel 2 8 0 8 1
95 16 SHD |(Dogfish 21 2 5 7 0
96 103 Reef ocean perch 75 6 0 6 0
97 111 jackass morwong 53 6 0 6 0
98 354 porcupine fish 5 0 6 6 0
99 32 MOO |Moonlighter 3 6 0 6 0
100 60 TUN |Tuna/Mackerel 1 6 0 6 0
101 155 trevallies and jacks 3 4 1 5 0
102 4 JAW |White Shark 4 0 4 4 1
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Table A.1: (cont'd)

No. |SPC_ID| SPC |SPC_COMMON_NAME SETS RETAINED | DISCARDED TOTAL n Report
103 82 TRU |Bastard Trumpeter 4 4 0 4 0
104 88 LUV |Luvaru 4 4 0 4 0
105 250 eastern orange perch 3 4 0 4 0
106 156 MUL |Jewfish/Mulloway 1 0 4 4 0
107 264 coral trout 1 4 0 4 0
108 86 LTT |LongTailed Tuna 3 3 0 3 0
109 363 BRA [pomfrets 3 3 0 3 0
110 290 green jobfish 2 3 0 3 0
111 209 cod 1 3 0 3 0
112 90 SQO |[Squid 103 2 0 2 0
113 170 cow shark 2 1 1 2 0
114 216 garfishes 1 0 2 2 0
115 343 large-headed hairtail 1 2 0 2 0
116 368 tonquefish & soleidae 0 2 2 0
117 89 TRS |[Spotted Warehou 55 0 1 1 0
118 351 triggerfishes and leatherjackets 25 1 0 1 0
119 33 BOA |Boarfish 9 1 0 1 0
120 265 bar rock cod 4 0 1 1 0
121 81 REM [Red Mullet/Blue- lined Goatfish 3 1 0 1 0
122 312 silver bream 2 0 1 1 0
123 68 DFS |White-Spotted Dogfish 1 1 0 1 0
124 72 PIK |Common Pike Eel 1 1 0 1 0
125 74 GRB |Hapuku and Bass Groper-NSW 1 1 0 1 0
126 76 SAM [Samsonfish 1 1 0 1 0
127 137 perches, basses, rock cods 1 1 0 1 0
128 158 RAE |Southern Eagle Ray 1 0 1 1 0
129 277 bigeye trevally 1 1 0 1 0
130 280 black pomfret 1 1 0 1 0
131 310 sea breams 1 1 0 1 0
132 345 medusa fish 1 0 1 1 0
133 356 squid 1 1 0 1 0
134 380 wedgefishes 1 1 0 1 0
135 399 Saddleback Snapper 1 1 0 1 0
136 425 WHO |whales 1 0 1 1 0
Toral 4710775 629117 5339892 136
In Report 4709416 628115 5337531 72

99.97% 99.84% 99.96%  52.94%
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Table A.2: Listing by logbook of the reported catchof all species by longline vessels operating in
the ETBF (Note, the last column indicates whetherthie species is reported in main document)

No. [SPC_ID| SPC [SPC_COMMON_NAME N_FISH ALO2 ALO3 ALO4 ALOS ALO6 ELINE | Report
1 38 YFT |Yellowfin Tuna 1351972 | 276810 84041 184616 527284 273399 5822 1
2 41 ALB |Albacore Tuna 1342529 | 145909 38435 138753 587110 429508 2814 1
3 48 SWO |Broad Billed Swordfish 478314 6213 14083 124253 205137 126643 1985 1
4 42 BET |Bigeye Tuna 407424 | 12200 12366 89959 194340 97589 970 1
5 29 DOL |[Dolphinfish 299392 0 4206 37732 163036 92180 2238 1
6 22 LAN [Lancet fish 298103 0 0 952 195997 100145 1009 1
7 55 CEO (Rudderfish 281266 0 9283 56007 149769 65754 453 1
8 30 POA |Ray's Bream 153666 0 2645 14379 65604 70590 448 1
9 10 BSH ([Blue Shark 107327 0 9461 35222 37436 24738 470 1

10 49 MLS |[Striped Marlin 102143 5819 2943 24459 48591 20063 268 1
11 40 SBF [Southern Bluefin Tuna 101022 36596 8225 30473 5732 19996 0 1
12 36 BOF |[Black Oilfish 84534 0 0 0 56331 28203 0 1
13 3 SMA [Shortfin Mako 47035 0 1714 12515 18802 13871 133 1
14 59 MIX |OTHER 38712 36841 887 454 380 150 0 1
15 39 SKJ  [Skipjack Tuna 37621 10198 1784 3906 14161 7548 24 1
16 45 WAH |Wahoo 25434 0 1420 3676 11589 8648 101 1
17 8 BRO |[Bronze Whaler 22796 0 2596 4429 11244 4527 0 1
18 23 OPA |Moonfish 16768 0 0 934 7151 8671 12 1
19 134 other sharks (ALO2) 15179 14472 550 0 8 149 0 1
20 53 SBS |Shortbilled Spearfish 12587 0 122 734 7618 4082 31 1
21 50 BLM [Blue Marlin 10723 1610 220 3 6908 1908 74 1
22 13 OCS |Oceanic Whitetip Shark 9909 0 0 720 7117 1974 98 1
23 95 whaler and weasel sharks 9333 9333 0 0 0 0 0 1
24 52 BKM |Black Marlin 8100 0 0 26 5538 2448 88 1
25 56 SUN |Ocean Sunfish 7982 0 0 817 4922 2243 0 1
26 47 MAC |Mackerel 6608 0 0 67 6481 60 0 1
27 138 Mako shark species 6578 6578 0 0 0 0 0 1
28 35 OIL |Oilfish 6448 0 464 1278 4681 15 10 1
29 12 TSH |Tiger Shark 5845 0 0 679 3528 1617 21 1
30 15 SPL |Scalloped Hammerhead 5760 837 214 1401 3308 0 0 1
31 9 DSK  [Dusky Shark 4640 0 0 5 1568 2890 177 1
32 14 TIP  |Blacktip sharks 3652 0 0 908 2328 412 4 1
33 51 SAF |Indo-Pacific Sailfish 3531 695 107 375 2090 263 1 1
34 362 GES [Snake Mackerel 3496 0 0 0 6 3330 160 1
35 6 TSR [Thresher Shark 2924 0 163 619 1329 732 81 1
36 5 POR |Porbeagle 2528 0 0 1866 625 37 0 1
37 34 BAR |Barracouta 2479 0 194 109 1663 462 51 1
38 359 RAIl |Skates and rays 1732 0 0 0 1450 282 0 1
39 360 SPN |hammerhead sharks 1702 0 0 0 500 1081 121 1
40 146 Spearfish 1222 1222 0 0 0 0 0 1
41 2 CSH |Crocodile Shark 1206 0 0 4 622 425 155 1
42 91 RAY [Manta Ray 1068 0 0 560 304 177 27 1
43 11 SKS |Silky Shark 790 0 0 0 403 265 122 1
44 21 STR |Stingray 659 0 0 0 157 474 28 1
45 71 SHT |Ogilbys Ghost Shark 629 0 398 231 0 0 0 1
46 96 platypus shark 628 0 628 0 0 0 0 1
47 46 NBF [Northern Bluefin Tuna 518 3 0 101 368 46 0 1
48 73 GRE |Blue Grenadier 379 0 16 363 0 0 0 0
49 58 SHO |Shark "Other" 374 0 0 374 0 0 0 1
50 61 MAR [Marlin/Sailfish 369 2 0 0 0 367 0 0
51 43 MAB |Butterfly Mackerel 334 0 0 326 8 0 0 1
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Table A.2: (cont'd)

No. [SPC_ID| SPC [SPC_COMMON_NAME N_FISH ALO2 ALO3 ALO4 ALOS ALO6 ELINE |n Report
52 67 SLH |Australian Black Shark 328 0 0 328 0 0 0 1
53 26 BKF [Black Kingfish 296 0 30 61 188 16 1 0
54 361 MOP |Short Sunfish 266 0 0 0 50 0 216 1
55 184 Smoothed hammerhead 265 0 0 0 265 0 0 1
56 102 Moonfish 239 0 239 0 0 0 0 1
57 7 SHS [School Shark 219 0 88 125 3 3 0 1
58 353 pufferfish 214 0 0 0 17 186 11 0
59 182 grey reef shark 193 0 0 0 0 193 0 1
60 358 SHO |Sharks (other) 182 0 0 0 65 117 0 1
61 44 ABO |Australian Bonito 166 0 0 4 104 58 0 0
62 70 SHA |Australian Angel Shark 165 0 0 161 4 0 0 1
63 25 OAR |Oarfish 123 0 0 50 38 27 8 0
64 37 SFF  |Southern Frostfish 117 0 1 31 71 14 0 0
65 83 MAS |Blue Mackerel 107 0 0 1 5 101 0 1
66 178 whiskery shark 99 0 0 0 99 0 1
67 31 SNA |Snapper 95 0 0 7 71 17 0 0
68 27 YEK |Yellowtail Kingfish 87 0 0 15 33 39 0 0
69 80 BRE |(Black Bream 83 0 0 83 0 0 0 0
70 63 LFM |Longfin Mako 52 0 0 2 16 34 0 1
71 28 RRR |Rainbow Runner 51 0 0 21 20 6 4 0
72 24 RIB [Dealfish 49 0 0 4 32 6 7 0
73 94 Sorrah shark 48 0 48 0 0 0 1
74 54 TBE |[Blue Eye Trevalla 48 0 3 0 1 44 0 0
75 65 BUL ([Bull Shark 43 0 0 28 12 3 0 1
76 78 BSP [Big-scale Pomfret 32 0 0 32 0 0 0 0
77 85 MKT |Eastern Little Tuna 27 0 0 27 0 0 0 0
78 64 SBH [Sandbar Shark 22 0 0 0 4 18 0 1
79 157 CAR [Cardinal Fish 20 0 0 0 15 5 0 0
80 114 Gemfish 19 0 0 0 12 7 0 0
81 87 DTT |[Dogtooth Tuna 17 0 0 8 7 2 0 0
82 1 SHY |Grey Nurse 15 0 0 0 15 0 0 0
83 317 yelllow-spotted boarfish 13 0 0 0 13 0 0 0
84 75 MAJ [Jack Mackerel 13 0 0 0 13 0 0 1
85 367 tunas 13 0 0 0 0 9 4 0
86 79 JOB [Jobfish 13 0 0 2 11 0 0 0
87 84 SNM |Spanish Mackerel 11 0 0 0 11 0 0 1
88 159 JOR |Rosy Jobfish / King Snapper 11 0 0 0 3 8 0 0
89 17 CCS |Cookie-cutter Shark 10 0 0 1 8 1 0 1
90 227 "true" dories 10 0 0 0 0 10 0 1
91 18 SRH |Roughskin Shark 9 0 0 0 0 9 0 1
92 62 SHL |Broadnose Sevengill Shark 8 0 0 8 0 0 0 1
93 93 Australian blacktip shark 8 0 8 0 0 0 0 1
94 115 Frigate mackerel 8 0 0 0 8 0 0 1
95 16 SHD |Dogfish 7 0 0 7 0 0 0 0
96 103 Reef ocean perch 6 0 0 0 6 0 0 0
97 111 jackass morwong 6 0 6 0 0 0 0 0
98 354 porcupine fish 6 0 0 0 6 0 0 0
99 32 MOO [Moonlighter 6 0 0 2 4 0 0 0
100 60 TUN |Tuna/Mackerel 6 0 6 0 0 0 0 0
101 155 trevallies and jacks 5 0 0 0 1 4 0 0
102 4 JAW |White Shark 4 0 0 0 4 0 0 1
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Table A.2: (cont'd)

No. [SPC_ID| SPC [SPC_COMMON_NAME N_FISH ALO2 ALO3 ALO4 ALO5 ALO6 ELINE |n Report
103 82 TRU |[Bastard Trumpeter 4 0 2 2 0 0 0 0
104 88 LUV (Luvaru 4 0 0 2 1 1 0 0
105 250 eastern orange perch 4 0 0 0 4 0 0 0
106 156 MUL |Jewfish/Mulloway 4 0 0 0 4 0 0 0
107 264 coral trout 4 0 0 0 4 0 0 0
108 86 LTT |Long Tailed Tuna 3 2 0 0 0 1 0 0
109 363 BRA |pomfrets 3 0 0 0 2 1 0 0
110 290 green jobfish 3 0 0 0 3 0 0 0
111 209 cod 3 0 0 0 3 0 0 0
112 90 SQO |[Squid 2 0 0 2 0 0 0 0
113 170 cow shark 2 0 0 0 2 0 0 0
114 216 garfishes 2 0 0 0 2 0 0 0
115 343 large-headed hairtail 2 0 0 0 2 0 0 0
116 368 tonguefish & soleidae 2 0 0 0 2 0 0 0
117 89 TRS [Spotted Warehou 1 0 0 1 0 0 0 0
118 351 triggerfishes and leatherjackets 1 0 0 0 0 1 0 0
119 33 BOA |Boarfish 1 0 0 0 0 1 0 0
120 265 bar rock cod 1 0 0 0 1 0 0 0
121 81 REM [Red Mullet/Blue- lined Goatfish 1 0 0 1 0 0 0 0
122 312 silver bream 1 0 0 0 1 0 0 0
123 68 DFS [White-Spotted Dogfish 1 0 0 1 0 0 0 0
124 72 PIK |Common Pike Eel 1 0 0 1 0 0 0 0
125 74 GRB |Hapuku and Bass Groper-NSW 1 0 0 1 0 0 0 0
126 76 SAM [Samsonfish 1 0 0 1 0 0 0 0
127 137 perches, basses, rock cods 1 0 0 0 0 0 1 0
128 158 RAE |[Southern Eagle Ray 1 0 0 0 0 1 0 0
129 277 bigeye trevally 1 0 0 0 1 0 0 0
130 280 black pomfret 1 0 0 0 1 0 0 0
131 310 sea breams 1 0 0 0 1 0 0 0
132 345 medusa fish 1 0 0 0 0 0 1 0
133 356 squid 1 0 0 0 1 0 0 0
134 380 wedgefishes 1 0 0 0 0 1 0 0
135 399 Saddleback Snapper 1 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0

136 425 WHO |whales
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Appendix B. Spatial and temporal and distributions

in the ETBF

The following are shown in this attachment:

of CPUE

1. Spatial plots (1x1-degree) of aggregate effort mmhinal CPUE over the years 2000-
2013 for each quarter of the year where:

Quarter 1 = Jan - Mar
Quarter 2 = Apr — Jun
Quarter 3 = Jul — Sep
Quarter 4 = Oct - Dec

2. Pearson correlation between quarters of the spdisaiibutions of CPUE for each
species. (Note, in order to avoid non-represergdiR UE values due to a small amount
of effort the spatial distribution over which thercelation was calculated was limited
to the 76 one-degree squares where the deploygtiriereffort was greater than 3000
hooks in each quarter.)

3. Pearson correlation, by quarter, between the dghsmibutions of CPUE for a given
specie and each other species. (Note: uses the Brore-degree squares as for 2

above.)

Results are shown for the following species:

1 YFT
2 BET
3 ALB
4 SBT
5 NBT
6 SKJ

7 SWO
8 STM
9 BAM
10 BUM
11 SBS
12 SAF
13 DOL
14 WAH
15 OPA
16 POA
17 OIL

Yellowfin Tuna
Bigeye Tuna
Albacore Tuna
Skipjack Tuna
Northern Bluefin Tuna
Southern Bluefin Tuna
Broadbill Swordfish
Striped Marlin

Black Marlin

Blue Marlin
Short-billed Spearfish
Sailfish

Dolphin Fish

Wahoo

Opah

Pomfrets

Qilfish
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Figure B.1: Longline Effort
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Figure B.2a: Yellowfin Tuna
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Figure B.2b:Bigeye Tuna
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Figure B.2c: Albacore Tuna
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Figure B.2d: Skipjack Tuna
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Figure B.2e:
Tuna

Quarter 1

&

CPUE: SOUTHERN BLUEFIN - Q=1
No Hooks

Wosw03s ()
Dol 02 (1)
0o w0 01 (302)

f
[
(N
O
[
DD
[
0
0

CPUE: SOUTHERN BLUEFIN - Q=3
No Hooks

Wos5035  (27)
Ho2w0 03 (3
Dol 02 (4
0o w0 01 (215

AN

Southern Bluefin

193

Quarter 2

CPUE: SOUTHERN BLUEFIN - Qu=2
Number 00 Hooks

Mo43s (20
Wo3o 04 (4)

Doio 02 (1
00 t 01 (262)

1

Quarter 4

O

CPUE: SOUTHERN BLUFIN - Qir=4
Number per 1000 Hooks

Woins (1)
o2 03 (1)

Dol 02 @
00 1 01 (260)




Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

Figure B.2f: Northern Bluefin
Tuna
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Figure B.2g: Broadbill Swordfish
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Figure B.2h: Striped Marlin
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Figure B.2i: Black Marlin
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Figure B.2j: Blue Marlin
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Figure B.2k: Short-billed
Spearfish
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Figure B.2l: Sailfish
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Figure B.2m: Dolphin Fish
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Figure B.2n: Wahoo
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Figure B.20: Opah
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Figure B.2p: Pomfrets
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Figure B.2q: Qilfish
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Appendix C. Clustering by deployed fishing gears

Numerical data (such as catch number) have meaméng measurement and as such a
‘distance’ (or dissimilarity measure for use inlaster analysis) between any two such data
points is easy to define. On the other hand, &egorical data which represent characteristics
such as a fish’s gender, reproductive stage, otyftes of gears used in a fishing operation, it
is not obvious how one define a ‘distance’ or ‘digfarity’ measure. One can associate
categorical data with numerical values (such agridiicating male and “2” indicating female)
but these numbers don’t have mathematical meamngrder to define a ‘distance’ measure
for clustering by gear-type the following approachs used.

First, the following gears-settings were identified

A) Hooks-per-float 7 levels (<8, 8-9, 10-11,12-14,152D-29,30-40)

B) Start-time 6 levels (0-4am, 4-8am, 8-12am, 0-48pm, 8-12pm)

C) Bait 8 levels

D) Light-stick usage 7 levels (0-19%, 20-39%, 40-58%:.,79%, 80-99%, 100%)

Second, for each set the use of each gear andiagetoded by a series of 0's and 1’s. This
provides a string of 28 characters long consistihg ‘1’s and 24 ‘0O’s for each data record.
Third, the Jaccard measure of similarity was thaeltudated between each set where the
Jaccard coefficiend is defined as the number of variables that aded as 1 for both states
divided by the number of variables that are codedlafor either or both states. Since
dissimilarity measures are required by the clugievcedure, the Jaccamheasure of
dissimilarity (1-J) is selected. Finally, using this distanceasuee a hierarchical cluster
analysis using th&vardmethod is undertaken on each of the data records.

As with the cluster analysis based on species cesitipo, the above analysis was first carried
out separately for each month and then as a sargysis across all records combined. For
the monthly analysis seven cluster-types were ifiethitfor each month and the aggregate
species composition for each cluster-type was Gked. These 84 species-compositions (7
clusters x 12 months) were then subject to a secluster analysis in order to identify a set of
dominant cluster-types. Based on an inspectiom®fRseudo-F clustering criterion for each
month (c.f. Figure C.1) this final number of clustevas set to be nine. A pictorial
representation of the nine clusters for each mbased on plots of the first two canonical
variables are shown in Figure C.2.

The distribution of the 84 monthly cluster-typeentified in stage 1 of the analysis across the
nine cluster types identified in second clustefysisibased on species-composition are shown
in Figure C.3. For each cluster-type the catch amsitipn based on 11 species is shown. Note,
where more than one of the 7 cluster-types idewtifor a month related to the same stage-2
cluster-type, these clusters were combined intsirgle cluster. This resulted in a total of 52-
monthly clusters being distributed across the 12t

The distribution of the nine cluster types (as ecpertage of sets) across each year and month
are shown in Figures C.4 while the distributioseitings for four gear-types (bait-type, hooks-
per-float, light-stick usage and set start-timapas the seven cluster—types is shown in Figure
C.5. While this latter figure shows that a largega of gear-settings are associated with each
cluster-type, again certain combinations of ge#tirggs are more likely to be associated with
certain cluster-types (and resulting catches) tthars.
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Figure C.1: Clustering criteria used to identify the appropriate final number of clusters based on
clustering the 84 monthly cluster types identifiedn the first stage of the gear-based analysis.
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Figure C.2: Pictorial representation of the nine dlister types based on plots of the first two
canonical variables for the 84 monthly gear-basedusters.

Results of algorithm to group longline gears into 9 Clusters

5

3

oo *

5 @ b
* %

=
. ®x *x
*

fok i ® AR

¥ ¥ " *
(E * el - -
8 0 LY ‘A“‘ N & 8 a o DSDD
A, * ; = o
B ° o 5
* o o O
b L 4
:' ° . e
54
T T T T
10 -5 0 5
Canl
[CLUSTER @1 %2 m3 4405 %6 07 8 %9

Finally, the catch composition of the nine cludtgres identified in the clustering the 84
monthly clusters (Figure C.6a) can be compared tgtcatch composition of the nine cluster-
types identified directly by a single analysis bfl®8,650 records (Figure C.6b).

207



Developing approaches to improve CPUE standardis&ioAustralia’s multispecies longline fisheries

Figure C.3: Distribution of the 84 monthly clustertypes identified in stage 1 of the gear-based
analysis across the nine cluster types identifieth ithe second cluster analysis.
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Figure C.4: Distribution of nine cluster types (pecentage of sets) based on the gear-based cluster
analysis across (a) month, and (b) year.
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Figure C.5: Distribution of gear-settings across th nine gear-based cluster types identified in the &age monthly analysis.
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Figure C.6: Catch composition of the nine clusterbased on (a) the analysis by month, and (b) the
single analysis of all sets.
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Appendix D. Spatial Dynamics Factor Analysis Model

SDFA method

We explored the potential of a method known asi&lpaynamic Factor Analysis (SDFA) (Thorson
et al. 2016) to provide improved indices of abundance ajpproach simultaneously models several
effects on catch rates in a statistically cohevemyt, and has the potential to provide robust, gesci
and reliable indices of abundance. Issues thattadgch rates and which are included in the model
include:
i) spatial variation in the density of each spsrcie
i) auto-correlated spatiotemporal variation for eguécees, since species distributions change
through time;
i) correlations in spatiotemporal variation among sm®csuch as those caused by species
having similar habitat requirements; and
iv) correlated catch rates among species arising finenbéhaviour of the fisheries.
The method explains species density as a log-linearbination of factors, in which each factor
represents unobserved spatial variation in defsitg species assemblage.

The SDFA method is very different from the two-&tagustering-based models, otherwise used in
this project. The SDFA analysis is done in a simgtalel, so variation in one part of the model (e.qg.
time trends in abundance) is allowed for elsewiretiee model (e.g. in the allocation of effort argon
fishing strategies).

Thorsonet al. (2016) report the following advantages for the 8DRethod:

1. Uncertainty in the identification of fishing taddics propagated throughout the analysis,
rather than being ignored in the regression amalysi

2. The design of the overall model and the interast@mong components are clearly
expressed.

3. The number of subjective decisions is reduced, ssdhe number of clusters to use, the
choice of data transformation when estimating fightactics.

4. Changes in relative abundance among species avardaed for in the estimation of fishing
tactics.

However, there are also disadvantages. The modengputationally demanding, which limits the
ability to take covariates into account in the &adatasets used for CPUE standardization. In addliti

the approach is new (published in April 2016) atilll snder development, and software changes
occur regularly. For example, the SpatialDFA paekasgno longer being actively maintained and a
new package VAST is recommended instead (Jim Thopasonal communication). VAST can do
almost everything that the SpatialDFA package doesit may run slower, and was not tested here.
Code for the SDFA model itself was obtained from 8patialDFA package in the github repository
https://github.com/James-Thorson/spatial_DBAd other code was based on the example analyses
therein.

The aim of the analyses undertaken and outlineoWbelas to explore the viability of the approach

given the large size of the ETBF datasets anduh&er of species involved; to determine RAM and
time requirements for analysis, and to see whetieresults were reasonable. We did not aim to
optimise the approach by including covariates kntovbe important, such as gear factors.
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Methods

We conducted analyses using the SDFA model. Folt ddscription of the approach see Thorson
al. (2016).

Paraphrasing Thorsaat al.(2016), SDFA models the catch for spe@bssed on the catch equation
c; = qsfsds, whereq is catchability,f is nominal fishing effort after accounting for divecale
targeting, andl is density. Density, fishing mortality and catciigdpare modelled as follows:

J L
log(ds(a,) = ) Ag (@) + ) vm(a,t
j=1 1=1
K
log(£:(a,0)) = ) Boyer(d)
k=1

L
log(gqs(a, b)) = Z Vs, ¥ (1)
=1

Asjjis anS by J matrix of factors on log-density;(a,t) is the value of factorin areaa at timet, X is
thel-th measured variable at sgand timet, andY5s, is the effect of covariateon density for species

S. Bskis anS by K matrix representing the impact on spec®$ small-scale variables, (i), such
thate, (i) is one or more latent variables representing tiarian fishing tacticsyy, is the effect of
covariate | onb catch rates from species sy is thel-th measured variable affecting catch rates
for fishing occasiom. Residual variation follows the zero-inflated Gaandistribution.

Analyses were carried out for the following dataset
i) the reduced simulated ETBF dataset (N3) with 31/89& of data, using the deterministic
catches;
i) the full simulated ETBF dataset with 113,711 roWwdata, using the deterministic D-
catches;
iii) the full simulated ETBF dataset, using 10 reales@tiof the randomized R-catches (called
hear-after the R10 results).

Set locations, specified in the dataset by latitadé longitude, were modelled with a 139 location
mesh using INLA. Data were entered into the modetatch rates (number per hook per set). The
number of spatial factor§ which represent unobserved spatial variationansity for a species
assemblage, was set to 4. The number of targetmatprs K, which represent small-scale
spatiotemporal variation in targeting of specieseatblages, was set to 3.

To increase computation speed, covariates thataffagt catchability, such as HBF and set time,
were not included in the standardization. Time atasn was annual, and quarterly variation in
catchability or spatial effects was not includedoddls were run using Microsoft R Open with R
version 3.3.2 and a CRAN mirror snapshot from 1 é&ioker 2016. We used the Intel Math Kernel
Library for parallel mathematical computing. Thegessor was Intel core i7-6700HQ with 64 GB
RAM, running 64 bit Windows 10 Pro.

Results

All models ran successfully. The model for the @mtliN3 deterministic dataset ran for 1.4 hours,
while the full deterministic ETBF dataset run to@& hours. The full random ETBF datasets took
similar times, averaging 6.7 hours and with a rdng®a 5.4 to 7.3 hours. Memory use was reasonable
with up to 6.8 GB per model run for the full datas@arying through each run. In the following we
only report those results fitted to the full sintelh EBF dataset.
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A comparison of the annual abundance indices basdtie SDFA method with the assumed and
nominal model indices is shown in Figure D.1. Peniance of the SDFA method fitted to the 10
realisations of the randomized R-catches in commparwith the Group-A models (fitted to the same
set of 10 realisations) varied by species (Figur2).DThe SDFA method had the second-best
performance for YFT, but worst for DOL and (partanly) SWO. Averaging errors across all species
gave the lowest rank to the SDFA method for eadr &ype (Figure D.3). Similar results (not shown)
were obtained for the performance of the SDFA methitted to the single realisations of the
deterministic D-catches in comparison with the @rédumodels, though the relative performance of
the SDFA model was found to be best)(for ALB.

Figure D.1: Comparisons by species of annual indisebetween true, nominal, and SDFA model results.
The SDFA-R10 model indices are the means of the ffiodel runs using random data, while the SDFA-
D model indicates the index for the single run usimthe deterministic catches.
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Figure D.2: Comparisons among the Group-A and SDFAnodels by species, for the four error types.
All results based on fitting each model to the 10ealisations of the ETBF dataset using the random
catches.
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Figure D.3: Comparison of the Species Ranked ScoréSRS) for the Group-A and SDFA models by
species, when fitted to the 10 realisations of tHETBF dataset using the random catches.
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Discussion

The SDFA method appears promising. Results werergin worse than those for the Group-A
models, indicating that the approach, as implentehége, requires more development before it can
be used for management advice. Resource use vgathézswe expected with analyses completing
in about 6 hours for a large dataset of over 1(Dr@@ords.

However, the worse model performance may be caused by aspects of the model implementation
than by the modelling approach itself. The SDFA eiatructure differed from the Group A models
in several important ways, quite separate fromntlagor difference in statistical approach. Seasonal
variation Qtr and its interactions witNearand Areg was not accounted for, witfiearthe only
modelled time effect. Seasonal effects are import@anthese species. The gear effddBF and
STIME were also omitted, so that the structure of thelehavas effectivelfCPUE ~ Year Area
However, gear effects were omitted in the Group @deis with subscripd, and these models also
outperformed the SDFA model. The SDFA model als® &anore complex spatial representation
than the standard models, and incorporates timeedfects.

Our limited exploration of this new modelling appoh suggest that it has potential, and we
recommend further work to explore and developajsabilities.

Code

# File structure

TmbFile = system.file("executables", package="SpatialDFA")
basedir <- "~/SDFA_memtests/"

setwd(basedir)

DateFile = paste(getwd(),'/',Sys.Date(),'/',sep=")
dir.create(DateFile)

setwd(DateFile)

# Settings
Version = "spatial_dfa_v18"

# Settings
Nfactors =4 # spatial factors
Nobsfactors =3 # targeting factors

# Libraries
library( INLA )
library( TMB )

# Specific libraries
library( SpatialDFA )
setMKLthreads(1)

# Compile TMB model
setwd( TmbFile)
compile( pasteO(Version,".cpp") )

# Data
dsets <- list.files(path=pasteO(basedir,"../../Robs100datasets/"),pattern="datagen_",full.names = TRUE)
for(ds in 1:3) {

nm <- read.table( dsets[ds],skip=5,nrows=1,stringsAsFactors = FALSE)
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Data = read.table( dsets[ds],header=FALSE,col.names=nm,skip=7 )
#Data = read.table( pasteO(basedir,"../../Robs100datasets/datagen_1.txt"),header=TRUE )
Data = Data[,1:23]
Data = cbind(Data, 'Lat'=Data[,'LAT'], 'Lon'=Data[,'LON'])
# lat_set
DataSLat = DataSLat - 12
DataSLon = DataSLon - 144
latlong_set = unique(paste( Datal,'Lat'], Data[,'Lon'], sep="_"))
lat_set = as.numeric(sapply( latlong_set, FUN=function(Char){strsplit(Char,"_")[[1]][1]}))
long_set = as.numeric(sapply( latlong_set, FUN=function(Char){strsplit(Char,"_")[[1]][2]}))
loc_xy=data.frame(x=lat_set,y=long_set)
# Rename stuff
DataSFOP_ID <- factor(DataSFOP_ID)
YRs = sort(unique(Data[,'YEAR']))
DF_blank = data.frame( 'sitenum'=match(paste( Data[,'Lat'], Datal[,'Lon'], sep="_"),latlong_set), 'spp'=NA,
'vear'=match(Datal[,'YEAR'],YRs), 'catch'=NA, 'TowID'=Data[,'FOP_ID'])
# DF_blank = data.frame( 'sitenum'=match(paste( Datal[,'Lat'], Data[,'Lon'], sep=
'spp'=NA, 'year'=Datal,'yr'], 'catch'=NA, 'TowID'=Datal,'X']) # try this later
DF = NULL
for(iin1:5 ){
Temp = DF_blank
Templ,'spp'] = c("ALB_R", "BET_R", "DOL_R", "SWO_R", "YFT_R")[i]
Templ[,'catch'] = Data[,Temp][1,'spp']] / Data[,'HOOKS']
DF = rbind(DF, Temp)
}
DF[,'spp'] = as.factor(DF[,'spp'])
EncounterFunction=1
estimation_method = ¢("mesh","grid")[1]

),latlong_set),

## Build SPDE object using INLA

mesh = inla.mesh.create( cbind(long_set, lat_set), plot.delay=NULL, refine=FALSE ) #loc_samp ;
,max.edge.data=0.08,max.edge.extra=0.2

plot.inla.mesh(mesh)

# Bundle inputs
if(estimation_method=="grid") {
InputList = Makelnput_Fn( Version=Version, DF=DF, Nfactors=Nfactors, Nobsfactors=Nobsfactors,
loc_xy=loc_xy, EncounterFunction=EncounterFunction,method=estimation_method )
}else {
InputList = Makelnput_Fn( Version=Version, DF=DF, Nfactors=Nfactors, Nobsfactors=Nobsfactors,
loc_xy=loc_xy, inla_mesh=mesh, a_n=rep(1,meshSn), EncounterFunction=EncounterFunction )
}
InputListSTmbDataSa_n[InputListSTmbDataSa_n==0] <- 1
InputListSMapSgamma_ptl = NULL

# Link TMB
dyn.load( dynlib(Version) )

# Initialization

obj <- MakeADFun(data=InputList[["TmbData"]], parameters=InputList[["TmbParams"]],
random=InputList[["Random"]], map=InputList[["Map"]], hessian=FALSE, inner.control=list(maxit=1000) )

objScontrol <- ¢( objScontrol, list(trace=1, parscale=1, REPORT=1, reltol=1e-12, maxit=100) )

objSenvSinner.control <- c(objSenvSinner.control, list("step.tol"=1e-8, "tol10"=1e-6, "grad.tol"=1e-8) )
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# Bounds

Upper = rep(Inf, length(objSpar) )
Upper[grep("rho_j",names(objSpar))] = 0.99

Lower = rep(-Inf, length(objSpar) )
Lower[grep("rho_j",names(objSpar))] = -0.99

# Run model

# Rprof(tf <- "rprof.log", memory.profiling=TRUE)

Start_time = Sys.time()

for(i in 1:2) opt = nlminb(start=objSenvSlast.par.best[-c(objSenvSrandom)], objective=0bjSfn,
gradient=objSgr, upper=Upper, lower=Lower, control=list(eval. max=1e4, iter.max=1e4, trace=1, rel.tol=1e-
14))

opt[["final_gradient"]] = objSgr( optSpar)

opt[["total_time_to_run"]] = Sys.time() - Start_time

print(opt[["total_time_to_run"]])

Report = objSreport()

SD = sdreport( obj, bias.correct=FALSE )

# Loadings matrix
L_pj = ReportSL_pj
dimnames(L_pj) = list(levels(DF[,'spp']), paste("Factor",1:Nfactors))

# Extract factors
Psi = ReportSpsi_njt

# Rotate

if(Nfactors>1){
RotatelList = Rotate_Fn( L_pj=L_pj, Psi=Psi, RotationMethod="PCA", testcutoff=1e-5)
L_pj_rot = RotateList[["L_pj_rot"]]
Psi_rot = RotatelList[["Psi_rot"]]

lelse{
L_pj_rot=L_pj
Psi_rot = Psi

}

opt[["total_time_to_run_plus"]] = Sys.time() - Start_time

# Save stuff

Save = list("opt"=opt, "Report"=Report, "Sdreport"=SD, "ParHat"=objSenvSparList(optSpar),
"TmbData"=InputList[["TmbData"]])

save(Save, file=pasteQ(DateFile,"Save",ds,

capture.output( opt, file=pasteO(DateFile,"Opt",ds,"

capture.output( SD, file=pasteQ(DateFile,"Sdreport",ds,
}

,estimation_method,".RData"))
" " estimation_method,".txt"))
" " estimation_method,".txt"))
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