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ABSTRACT 

Sharks in Mexico have economic, fishing, and social importance; however, there are 

no complete assessments of their populations, mainly due to scarce and inadequate catch 

and effort data. Nevertheless, through size frequency analysis, it is possible to obtain 

preliminary fishing indicators to know the status of an exploited population. This study 

analyzes fishing-dependent data (sizes and sexes) of nine species of pelagic sharks from 

data collected onboard medium-size shark vessels in the Mexican Pacific from 2006 to 2018. 

Our results suggest that the average lengths in the catch have remained constant throughout 

the study period. Similarly, exploitation rates remained below the benchmarks proposed 

by the literature. However, the results presented in this study should be taken cautiously 

and only as a preliminary analysis until more complete studies are carried out. 
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RESUMO 

Os tubarões no México têm importância econômica, pesqueira e social. No entanto, não há 

avaliações completas de suas populações, principalmente devido aos escassos e inadequados dados de 

captura e esforço. Contudo, através da análise de frequência de tamanho, é possível obter indicadores 

pesqueiros preliminares para conhecer a situação de uma população explorada. Este estudo analisa 

dados dependentes da pesca (tamanhos e sexos) de nove espécies de tubarões pelágicos a partir de 

dados coletados a bordo de embarcações de tamanho médio voltadas para pesca de tubarão no Pacífico 

mexicano de 2006 a 2018. Nossos resultados sugerem que os comprimentos médios nas capturas 

permaneceram constantes ao longo do período de estudo. Da mesma forma, as taxas de exploração 

permaneceram abaixo dos valores de referência propostos pela literatura. No entanto, os resultados 

apresentados neste trabalho devem ser tomados com cautela e apenas como uma análise preliminar 

até que estudos mais completos sejam realizados. 

 

Palavras-chave: abordagem bayesiana, Pacífico mexicano, tubarões pelágicos, mortalidade total. 
 

 

INTRODUCTION 

Mexico is the 15th largest fish producer worldwide, with an annual production of 

1.47 million tons (FAO, 2020). Sharks are one of Mexico’s main marine fishes with high socio-

economic importance (Castillo-Géniz et al., 1998), with 111 recognized species (Ehemann et 

al., 2018). Mexico is historically among the top shark producers worldwide, with an average 

annual catch of 30,000 t (Bonfil, 1994). However, considered a bycatch, sharks were not a 

priority for the catch and effort data programs (Compagno, 1990). Shark fisheries have grown 

driven by the country’s demographic growth, which required new animal protein sources 

during the 1950s and 1960s (Sosa-Nishizaki et al., 2020). In addition to fins, mainly meat, 

liver oil, skin, cartilage, jaws, and teeth are marketed (Tovar-Ávila et al., 2020). All Mexican 

shark meat production is consumed domestically, and shark fins are exported to Asian markets 

following CITES regulations that have been implemented worldwide in recent years (Del 

Moral-Flores et al., 2016). 

Due to indications of overexploitation in coastal shark fisheries in some regions of 

Mexico in the mid-1990s, the National Fisheries and Aquaculture Commission 

(CONAPESCA) and the Mexican fisheries scientific authority, the National Institute of 

Fisheries and Aquaculture (INAPESCA), prepared and published the Mexican Norm: NOM 

029-PESC 2006 (NOM 029) “Responsible Fishing of Sharks and Rays: Specifications for 

their Use” (SAGARPA, 2007). This portfolio of regulations aims to lay the foundations for 

the sustainable fishing of sharks and rays in Mexico. The actions include implementing a 

scientific observer program (SOP) aboard shark vessels in the northern Mexican Pacific. 

This program collected biometric (size and sex), biological (stage of maturity), and effort 

data. Tovar-Ávila et al. (2011) provided an initial comprehensive outline of catch and catch 

rate data for pelagic sharks caught by the Mexican shark longline fishery in the North 

Pacific from data collected during the first years of SOP operations. 

In Mexico, most fisheries are considered data-limited because there is insufficient 

data to conduct a comprehensive quantitative stock assessment to estimate the biomass 
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time-series and fishing mortality relative to their reference points (Dowling et al., 2019). 

Nevertheless, several authors have developed models to evaluate stock status indicators 

based on the total catch (Froese et al., 2018; Martell & Froese, 2013) or length data (Hordyk et 

al., 2015b; Rudd & Thorson, 2017). Therefore, data-limited assessment methods are 

increasingly used for management purposes to report on the regional level of fisheries 

across many stocks and to assess the status of individual data-limited stocks as inputs to 

management decisions (Dowling et al., 2019). In developing countries, length- frequency data 

from commercial catches are often the primary data collection because they are relatively 

low-cost and easy to collect (Hordyk et al., 2015a; Mildenberger et al., 2017; Pilling et al., 2008). 

The size composition of exploited populations has long been used in fisheries management 

to estimate stock status (Beverton & Holt, 1956; Gulland & Rosenberg, 1992), the spawning 

potential ratio (SPR) (Hordyk et al., 2015b), and more recently to determine whether size 

and age structure is comparable to that of a healthy stock (Froese; Demirel & Sampang, 

2015). 

Surveying sharks over large ocean regions is expensive and impractical (Baum; Kehler 

& Myers, 2005). Therefore, in many cases, fisheries-dependent data are often the only available 

source of information to estimate trends in the relative abundance and spatial distribution of 

oceanic sharks. Although more problematic than survey data (Bishop, 2006), fisheries-

dependent data, in some cases, can be used to estimate standardized abundance index 

methods (Harley; Ransom & Dunn, 2001; Maunder & Punt, 2004). For example, in the North 

Pacific, the International Scientific Committee for Tuna and Tuna-like species (ISC) has 

conducted stock assessments for the blue shark (Prionace glauca) and shortfin mako shark 

(Isurus oxyrinchus) incorporating abundance index estimated from standardized catch rates 

from various national longline fishing fleets on integrated stock assessment models (ISC, 2017, 

2018). In addition, González-Ania et al. (2014) and Fernández-Méndez et al. (2016) have 

estimated the abundance index for shortfin mako and blue shark caught in northeastern 

Mexican Pacific waters based on data collected from a scientific observer’s program. 

Despite the limited data in Mexico, the North Pacific shark fishery has endured more 

than fifty years, with its most intense exploitation period between the 1960s and 1980s 

(Castillo-Géniz & Tovar-Ávila, 2021). For the most part, the continued existence of this fishery 

is a result of the conservation measures implemented in Mexican waters in 2006, which 

indicates that they have been adequate. Nevertheless, it is difficult to assess the possible 

benefits of these measures quantitatively due to the lack of complete records of total catches, 

including discards of the main commercial species and systematic monitoring of sizes, sexes, 

and ages of sharks caught. Furthermore, despite sharks’ economic, social, and fishing 

importance, catch statistics are incomplete, so mortality and exploitation rates are scarce 

(Worm et al., 2013). Nevertheless, there are estimations of fishing mortality and exploitation 

rates for some shark species that inhabit Mexican waters (Bada-Sánchez et al., 2019; Chang & 

Liu, 2009; Hayes; Jiao & Cortés, 2009; ICCAT, 2008; Kleiber et al., 2009; Lessa et al., 2012; 

Ricard et al., 2012; Smith et al., 1998, 2009; SEDAR, 2011). 

This study describes and analyzes the length composition of the nine most abundant 

species in landings caught by the longline fishery in the Mexican Pacific using a Bayesian 

approach. In addition, the mortality and exploitations rates as preliminary stock status 

indicators are estimated. Finally, results are discussed in light of the application of this type of 

information and its implications for managing longline fisheries in Mexican Pacific waters. 
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MATERIAL AND METHODS 

 

Data collection 

The Mexican shark observer program of FIDEMAR (Research Trust for the 

Development of the National Tuna Harvesting Program and Protection of Dolphins and 

Others around Protected Aquatic Species) collected size and sex data between 2006 and 

2018 from the blue shark, Prionace glauca; shortfin mako, Isurus oxyrinchus; silky shark, 

Carcharhinus falciformis; oceanic whitetip shark, C. longimanus; bigeye thresher, Alopias 

superciliosus; common thresher, A. vulpinus; scalloped hammerhead, Sphyrna lewini; 

smooth hammerhead, S. zygaena, and the great hammerhead shark, S. mokarran. These 

species are caught using the “J” hook and “Mustad Tuna Circle” hook (0/16). The study 

area, from 15° to 35° N and from 96° to 122° W, was defined by the distribution of fishing 

trips (Figure 1). Each specimen was identified, sexed, and measured in precaudal length 

(PCL) onboard to the nearest centimeter straight along the body axis (Gallegos-Camacho 

& Tovar-Ávila, 2011). 

 
Figure 1 - Study region (fishing area) including location of surface longline sets where observers obtained shark size and sex data 
separated by fleet (Ensenada and Mazatlan) in northwestern Mexico during 2006-2018. 

 

Length and sex analysis 

Size frequency histograms were constructed to describe the size structure of the 

organisms during the study period. The Bayesian approach (Doll & Jacquemin, 2018) was used 

only to compare the observed sex ratio to the expected value and for the linear models 
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comparing mean lengths between sexes and years. 

First, the observed sex ratio was compared to the expected sex ratio (1 Female: 1 

Male) for the overall sample of each species using the chi-square statistic: χ2 = ∑ (Oi - Ei)2/Ei., 

where Oi is the observed frequency by sex (i indicates male or female), and Ei is the expected 

frequency under a null hypothesis of 1:1. 

The chi-square statistic is modeled using a χ2 distribution with a centrality parameter k 

(degrees of freedom). Next, we evaluate the evidence that the null hypothesis (1:1) is true, 

modeled by a chi-square distribution with one degree of freedom, which is the distribution the 

chi-squared statistics would take for a chi-square contingency test with two groups (male 

vs. female) if the sex ratio were 1:1. The prior for k was defined as a uniform distribution (UD): 

k UD (0.01, 100) (Johnson, 2004). Finally, the probability that the sex ratio differed from 1:1 

was calculated as the posterior probability that k was greater than 1 (the expected value under 

the null hypothesis) estimated using Monte-Carlo Markov Chain (MCMC) throughout the R-

packages “R2jags” (Su & Yajima, 2012). To determine if the mean of the sharks’ precaudal 

length (PCL) varied between two factors: sexes (α) and years (β), we used a two-way ANOVA. 

We used a Bayesian hypothesis test through the Bayes factor (Kass & Raftery, 1995) as a model 

selection method. 

[𝐵𝐹10 =
𝑃(𝐷𝑎𝑡𝑎|𝐻1)

𝑃(𝐷𝑎𝑡𝑎|𝐻0)
] 

(1) 

 

First, we set the null hypothesis (H0) as effect size (δ) = 0. For the alternative hypothesis 

(H1), we place a Cauchy prior distribution for δ with a location parameter of 0 and a scale 

parameter of 0.707 for each factor. For sexes, 𝛿 is the standardized difference of the means (μj 

– μj/σ; where μj is the mean of each sex, and σ the standard deviation). For years, β is the 

standardized mean of all years (μ/σ; where μ is the general mean and σ the standard deviation). 

Finally, to test whether there is any factor effect, we used the corresponding Bayes factor 

comparisons BFα and BFβ appropriate for assessing differences between sexes and years, 

respectively. We assume normal probability distribution of the data. The setup described here 

is drawn on and extended in Bayesian methods for model selection (O’Hara & Sillanpää, 

2009; Rouder et al., 2012). 

We used one MCMC with 100,000 iterations to estimate the posterior probabilities. The 

first 5,000 iterations were discarded to avoid autocorrelation, and every tenth iteration was 

saved (Smart & Grammer, 2021). We used the R-package “Bayes Factor” (Morey et al., 2018) 

and followed Goss-Sampson guidelines for Bayes factor interpretation (Table I). We used trace 

plots (Gelman & Rubin, 1992) and Raftery and Lewis’s diagnosis (1992) to monitor the 

convergence of MCMC output. 

All statistical analyses were conducted using Microsoft Excel 2016 and statistical 

software R, vers. 4.0.3 (R Core Team, 2020). 
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Table I – Descriptive classifications to interpret Bayes factor. BF10 = Bayes factor. 

BF10 Evidence In favor of 

>100 Decisive Alternative hypothesis 

30 to 100 Very strong Alternative hypothesis 

10 to 30 Strong Alternative hypothesis 

3 to 10 Moderate Alternative hypothesis 

1 to 3 Anecdotal Alternative hypothesis 

1 No evidence Neither 

1 to 0.33 Anecdotal Null hypothesis 

0.33 to .1 Moderate Null hypothesis 

0.1 to 0.033 Strong Null hypothesis 

0.033 to 0.01 Very strong Null hypothesis 

< 0.01 Decisive Null hypothesis 

 

Mortality Rates 
Natural mortality (M) and total mortality (Z) were estimated to calculate fishing 

mortality (F = Z-M). First, we calculated M through six indirect methods (Hamel, 2015; Jensen, 

1996, 1997; Then et al., 2015) based on each species’ average life history parameters (Table 

II). Then, to estimate the confidence intervals (CI95%), we resampled M using the bootstrap 
method (Ritz & Streibig, 2008) with 1000 resamples. 

To calculate the total mortality rate (Z), first, we convert length into ages using the 

life history parameters (Table II) and the inverse von Bertalanffy equation: 

 

 

𝑡𝐿 = 𝑡0 −
1

𝐾
ln⁡(1 −

𝑃𝐶𝐿

𝐿∞
) 

(2) 

Where tL is the age at length, t0 is the theoretical age when the organism’s size is 0 cm, K 
is the somatic growth rate, PCL is the precaudal length, and L∞ is the asymptotic length. 
 

Table II – Life history parameters. L∞: theoretical maximum length (PCL*, cm); K: growth coefficient (year−1); t0: theoretical 
age at a length of zero (years), and longevity (years). 

 

Species 
 

L∞ 

 

K 

 

Longevity 

 

t0 

 

Zone 

 

Reference 

 
Prionace glauca 

 
329.6 

 
0.11 

 
20 

 
-0.76 

 
North Atlantic Ocean 

Nakano and Stevens (2008); 
Skomal and Natanson (2003) 

Isurus oxyrinchus 339 0.05 18 -4.7 Mexican Pacific Ribot-Carballal et al. (2005); 

 308 0.09 20 
 

North Pacific Ocean Semba et al. (2009) 

 255 0.08 25 -3.68 Pacific Ocean Cerna and Licandeo (2009); 

 306 0.09 30  Mexican Pacific Soriano-Velásquez et al. (2006) 

Carcharhinus falciformis 210.9 0.15 12 -2.32 Mexican Pacific Cruz-Jiménez et al. (2014); 

 182 0.14 16 -2.98 Mexican Pacific Sánchez de Ita et al. (2011) 

 264 0.04 19 -6.53 Mexican Pacific Cervantes-Gutiérrez (2013) 

Carcharhinus longimanus 230 0.05 18 
 

Western North 
                                    Pacific Ocean  

D’Alberto Brooke et al. (2016) 

 
6 



Luis Daniel Carrillo-Colín, Esteban Bada-Sánchez, Jose Leonardo Castillo-Géniz 

7 

Arq. Ciên. Mar, Fortaleza, 2023, 56(1): 1 - 23 

 

 

 

 

 

(continuation Table II) 
 

 

Species 
 

L∞ 

 

K 

 

Longevity 

 

t0 

 

Zone 

 

Reference 

 

Carcharhinus longimanus 
(cont.) 

225 0.08 9 -3.65 Western North Pacific 
Ocean 

Shoou-Jeng et al. (2016) 

 
237 0.08 

 
-3.34 

Southwestern equatorial 
Atlantic Lessa et al. (1999) 

Alopias superciliosus 249.5 0.06 22  Atlantic Ocean Fernández-Carballo et al. (2011) 

 221 0.09 20 -4.2 Northeastern Taiwan Liu et al. (1998) 

Alopias vulpinus 227.25 0.13 24 -4.8 North Atlantic Ocean Gervelis and Natanson (2013) 

 

Sphyrna lewini 
 

268.2 
 

0.11 
 

30.5 
 

-1.17 
The southern coast of 

Sinaloa 
Anislado-Tolentino et al. (2008); 

Piercy et al. (2007) 

Sphyrna zygaena 354.9 0.08 21 -7.62 Mexican Pacific 
Morán-Villatoro (2018); CMFRI 

(2016) 

 

Sphyrna mokarran 
 

297.5 
 

0.11 
 

31.4 
 

-2.86 
North-western Atlantic 
and the Gulf of Mexico 

Piercy et al. (2010); CMFRI 
(2016) 

* Some theoretical maximum lengths were converted from total or furcal length to precaudal length (LPC) based on the 
linear regression parameters for the species in the study area reported by Carrillo-Colín et al. (2022). 

 

Then, Z was calculated by year using the catch curve method through the Chapman- 

Robson method (1961): 

 

𝑍 = − log(�̂�) −
(𝑁 − 1)(𝑁 − 2)

𝑁(𝑇 + 1)(𝑁 + 𝑇 − 1)
 

(3) 

 

Where Z is the total mortality rate, �̂� is the survival rate (
𝑇

𝑁+𝑇−1
), N is the total number of 

sharks observed on the descending limb of the catch curve, and T is the sum of the recorded 
ages of sharks on the descending limb of the catch curve (i.e., the sum of catch multiplied 
by recorded age). 

Finally, we estimated the exploitation rate (U), defined as the proportion of a 

population at the beginning of a given period caught during that time (Blackhart; Stanton 

& Shimada, 2006). This rate was calculated for the fishing season with the equation 

proposed by Ricker (1975): 
 

𝑈 =
𝐹

𝑍
(1 − 𝑒−𝑍) (4) 

Where F and Z are the fishing and total mortality rates, respectively. 
We used the R-package “FSA” (Ogle et al., 2022) for mortality rate calculations from 

the statistical software R, vers. 4.0.3 (R Core Team, 2020). 

 

RESULTS 

We analyzed 111,206 sharks from 9 species caught in 458 trips made by shark semi- 

industrial fleets throughout the Mexican Pacific. The overall sex ratio for each species 
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shows a high probability that the proportion is not the expected (1F:1M) since the posterior 

95% credible interval of k (degrees of freedom) did not include the value of 1, except for 

C. longimanus and A. superciliosus (Table III). 
 

Table III – The Bayesian chi-square analysis results for the sex ratio of oceanic sharks captured by longlines from the Mexican 
Pacific. The number of female and male samples (F, M), observed ratio, chi-square statistics (X2), the credible interval of 
degrees of freedom (K), and probability value that there is not a 1F: 1M sex ratio are shown (P). 

Species F M Ratio X2 K P 

Prionace glauca 28603 66728 1.0:2.33 15247.04 99.60 (98.52-99.98) 1 

Isurus oxyrinchus 2568 3566 1.0:1.38 162.37 96.45 (87.77-99.91) 1 

Carcharhinus falciformis 2125 1889 1.0:0.88 13.87 15.69 (6.53-26.48) 0.99 

Carcharhinus longimanus 74 56 1.0:0.76 2.49 4.37 (0.87-9.93) 0.86 

Alopias superciliosus 721 703 1.0:0.97 0.22 1.56 (0.19-3.98) 0.27 

Alopias vulpinus 274 338 1.0:1.23 6.69 8.74 (2.68-17.29) 0.97 

Sphyrna lewini 607 366 1.0:0.60 59.69 61.76 (41.15-83.76) 1 

Sphyrna zygaena 1322 907 1.0:0.69 77.27 77.29 (55.04-96.80) 1 

Sphyrna mokarran 235 124 1.0:0.53 34.32 36.38 (21.14-53.36) 1 

 

 

Prionace glauca 
The precaudal length (PCL) frequency is shown in Figure 2a. Bayesian ANOVA 

showed decisive evidence of a difference in PCL average size between the sexes (Table IV), 

where the posterior PCL mean is larger for males with a difference of 1.79 cm (credible interval 

95% [CrI95%] 1.51‒2.08). Also, there was decisive evidence of a difference in PCL average 

size between years (Figure 3a). The blue shark’s average natural mortality (M) was 0.215 

[confidence interval 95% (CI95%) 0.17‒0.26] for both sexes. In males, the total (Z) and fishing 

mortality (F) estimates ranged from 0.79‒1.13 (mean: 0.95, sd: 0.12) and 0.57‒0.91 (mean: 

0.73, sd: 0.12), respectively. The exploitation rate (U) shows fluctuations in its trend, with its 

highest value in 2012 (0.55). For females, Z and F ranged from 0.42‒1.70 (mean: 0.82, sd: 0.36) 

and 0.20‒1.48 (mean: 0.60, sd: 0.36), respectively. The exploitation rate shows fluctuations in 

its trend, with its highest value in 2017 (0.71) (Figure 4a). 

 
Table IV – Two-way Bayesian ANOVA results. We show evidence of the alternative hypothesis regarding the null hypothesis 
for each factor (sexes and years). F = Female, M = Male, Mean = Mean precaudal length (cm), sd = Standard deviation, 
BF10 = Bayes factor. 

Species Sex Length range (PCL, cm) Mean (sd) BF10 Sexes   BF10 Years 

Prionace
 
glauca

 
F

 33‒345 146.37(34.78) >100 >100 

M 35‒325 148.16 (27.60)   
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(continuation Table IV) 

Species Sex Length range(cm) Mean (sd) BF10 Sexes BF10 Years 

Isurus oxyrinchus F 48.4‒273.3 117.63 (19.85)   

 
M 46.3‒259.6 119.70 (19.81) 

<1 >100 

Carcharhinus falciformis F 46‒250 130.01 (24.71)  
>1 

 
>3 

 M 48‒271 132.68 (23.01)   

Carcharhinus longimanus F 60‒208 106.29 (22.29) 
<0.33 0.33 

 M 59.76‒179 111.22 (19.76)   

Alopias superciliosus F 70‒218.4 139.67 21.43)   

    <1 <1 
 M 64–235 144.85 (22.28)   

Alopias vulpinus F 60–230 143.02 (32)   

 
M 62.5–200 151.78 (22.22) 

>1 >100 

Sphyrna lewini F 20-217 128.54 (34.01)   

 
M 44–215 132.54 (31.61) 

<0.33 >10 

Sphyrna zygaena F 49–254 132.35 (32.48)  
<0.33 

 
>30 

 M 40–250 140.90 (34.22)   

Sphyrna mokarran F 47–233 126.27 (44.95)   

    <0.33 >1 
 M 51–209 129.28 (39.74)  

 

 

Isurus oxyrinchus 
The length-frequency distribution shows a wide range of values (Figure 2b). There was 

anecdotal evidence supporting the null hypothesis of no difference in size between the 

sexes, where the posterior PCL mean is larger for males with a difference of 2.10 cm 

(CrI95%1.07‒5.14). We also found decisive evidence of an average size difference between 

years (Table IV), where the posterior probability distribution of the mean PCL was 

constant through 2015, decreasing after the year 2016 (Figure 3b). The average M for the 

shortfin mako shark was 0.202 (CI95%0.153‒0.257). Z and F estimates ranged from 0.18‒0.43 

(mean: 0.30, sd: 0.07) and 0.07‒0.32 (mean: 0.19, sd: 0.07), respectively. U shows fluctuations 

across the time series, with its highest value in 2008 and the lowest in 2018 (Figure 4b). 

 
Carcharhinus falciformis 
The size of silky sharks is shown in Figure 2c. We found anecdotal evidence for an 

average size difference between sexes (Table IV), where the posterior PCL mean is larger 

for males with a mean difference of 2.66 cm (CrI95% 1.44‒3.88). We found moderate evidence 

for average size difference between years, where PCL’s posterior probability distribution was 

relatively constant through time (Figure 3c). The M average was 0.21 (CI95%0.167‒ 0.258), and 

Z and F ranged between 0.60‒1.21 (mean: 0.87, sd: 0.19) and 0.37‒0.90 (mean: 0.64, sd: 0.18), 

respectively. U showed a decreasing trend across the time series (Figure 4c). 
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Figure 2. Length-frequency distribution of pelagic sharks captured in the northwestern Mexican Pacific between 2006–2018: a) 
Prionace glauca, b) Isurus oxyrinchus, c) Carcharhinus falciformis, d) Carcharhinus longimanus, e) Alopias superciliosus, f) Alopias 
vulpinus, g) Sphyrna lewini, h) Sphyrna zygaena, and i) Sphyrna mokarran. 

 

 

Carcharhinus longimanus 
The size is shown in Figure 2d. Moderate evidence supported the null hypothesis of no 

differences between the sexes (Table IV). The mean posterior probability of PCL was larger 
in males by 4.92 cm (CrI95% -1.68‒11.55). Also, moderate evidence supported the null 

hypothesis of no change in PCL between years, indicating that the lengths remain constant 
through the period (Figure 3d). The M average was 0.175 (CI95% 0.138‒0.213). Z and F 

ranged between 0.26‒0.77 (mean: 0.52, sd: 0.18) and 0.05‒0.56 (mean: 0.31, sd: 0.18), 
respectively. The average of U was 0.23 (CI95% 0.04‒0.39) (Figure 4d). 

 

Alopias superciliosus 
The length-frequency distribution is shown in Figure 2e. There was anecdotal 

evidence supporting the null hypothesis for size difference between the sexes (Table IV), 
where the posterior mean is larger for males with a mean difference of 5.18 cm (CrI95% - 

3.17–7.24). For difference in sizes between years, also we found anecdotal evidence 
supporting the null hypothesis of no difference in size (Figure 3e). The bigeye thresher has 
an M, Z, and F of: mean: 0.184, (CI95% 0.132–0.243); mean: 0.17 (sd: 0.05) and mean: 0.05 (sd: 

0.05), respectively. The trends in U show their highest value in 2012 (Figure 4e). 
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Figure 3. The posteriors distribution of the precaudal length (cm) of pelagic sharks: a) Prionace glauca, b) Isurus oxyrinchus, c) 
Carcharhinus falciformis, d) Carcharhinus longimanus, e) Alopias superciliosus, f) Alopias vulpinus, g) Sphyrna lewini, h) Sphyrna 
zygaena, and i) Sphyrna mokarran captured in the northwestern Mexican Pacific during 2006–2018. In panel a) dark grey densities 
represent females, and light grey represents males. The black dotted lines represent the posterior probability PCL mean for the 
entire sample, and the horizontal solid line in each distribution represents the mean. 

 

 

Alopias vulpinus 
The length-frequency distribution is shown in Figure 2f. We found anecdotal evidence 

for differences in average size between sexes (Table IV), where the posterior mean is larger 
for females with a mean difference of 8.77 cm (CrI95% 1.24–16.39). We found decisive evidence 

for differences in average size between years (Figure 3f). The common thresher shark has M, 
Z, and F mean values: 0.18 (CI95% 0.142-0.221); 0.27 (sd: 0.08) and 0.16 (sd: 0.08), respectively. 

The exploitation rate trend is shown in Figure 4f. 

 
Sphyrna lewini 
The length-frequency distribution is shown in Figure 2g. There was moderate evidence 

supporting the null hypothesis of length difference between sexes (Table IV), where males 

were larger by 4.09 cm (CrI95% 1.51–6.66) than females. We also found strong evidence of PCL 

differences between years (Table IV), with fluctuations around the general mean (Figure 3g). 

The scalloped hammerhead has an average M of 0.176 (CI95% 0.157-0.192). The Z and F ranged 

between 0.26–0.97 (mean: 0.50, sd: 0.19) and 0.08-0.79 (mean: 0.32, sd: 0.19), respectively. 

The U increased in 2017 and 2018 (Figure 4g). 
 
 
 
 
 

 
11 



12 

Arq. Ciên. Mar, Fortaleza, 2023, 56(1): 1 – 23 

  BAYESIAN LENGTH ANALYSIS AND EXPLOITATION RATES FROM THE MAIN TARGET SHARK SPECIES CAUGHT   

IN THE NORTHWESTERN MEXICAN PACIFIC: A PREAMBLE TO FISHERY INDICATORS 

 

 

Figure 4.- Exploitation rate of pelagic sharks captured in the northwestern Mexican Pacific between 2006–2018: a) Prionace 
glauca, b) Isurus oxyrinchus, c) Carcharhinus falciformis, d) Carcharhinus longimanus, e) Alopias superciliosus, f) Alopias vulpinus, 
g) Sphyrna lewini, h) Sphyrna zygaena, and i) Sphyrna mokarran. In panel a), the solid line represents the males, and the dashed 
the females. Vertical lines represent a 95% confidence interval. 

 

 

Sphyrna zygaena 
The size-frequency distribution is shown in Figure 2h. We found moderate evidence 

of no differences in size between sexes (Table IV), where males were larger than females with 

a mean difference of 8.56 cm (CrI95 6.89–10.23). There was very strong evidence of a difference 

in PCL between years (Figure 3h). The smooth hammerhead shows an M average of 0.185 

(CI95%0.132–0.244). The Z and F ranged from 0.25-1.28 (mean: 0.67, sd: 0.29) and 0.05-1.09 

(mean: 0.48, sd: 0.29), respectively. The U has fluctuations having the highest values in 2011, 

2012, and 2013 (Figure 4h). 

Sphyrna mokarran 
The size-frequency distribution is shown in Figure 2i. We found moderate evidence for 

no difference in size between sexes (Table IV), where the males were larger with a difference of 

3.01 cm (CrI95%-1.27–7.37). Anecdotal evidence for length differences through the years was 

found (Figure 3i). The great hammerhead has an average M of 0.173 (CI95%0.154–0.190). The Z 

and F ranged between 0.26–0.99 (mean: 0.42, sd: 0.25) and 0.09–0.81 (mean: 0.25, sd: 0.25), 

respectively. The U average was 0.19 with a range of 0.08-0.52 (Figure 4i). 
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DISCUSSION 

The sample size problem associated with the statistical significance motivated us to use 

the Bayesian approach to evaluate the sex ratio and length structure among different factors. 

The P-value in the frequentist approach is sometimes regarded as a measure of effect size so 

that a small P is taken to indicate a large (‘significant’) effect. However, P depends on sample 

size and effect size, and the result could be significant with large sample size values 

(Gedorrete, 2011). Furthermore, Bayesian inference results in posterior distributions of a 

parameter. Thus, it makes a direct probability statement of the parameter of interest (Doll & 

Jacquemin, 2018); this is why using Bayes factors is proposed as an attractive alternative for 

hypothesis testing in this study. 

Bayesian inference in fisheries management in Mexican waters has not been used often 

to study chondrichthyan species. Recently, Carrillo-Colín et al. (2021) used a Bayesian 

approach to analyze sizes and estimate age and growth parameters for the golden cownose 

ray (Rhinoptera steindachneri) in the southern Gulf of California. In addition, Bayesian 

inference has been applied in stock assessments (Cortés et al., 2006; ISC, 2017, 2018; Punt 

et al., 2000), modeling life history characteristics (Cortés et al., 2015; Doño et al., 2015; Rolim 

et al., 2020). 

Information on sex ratio is essential to understanding the relationship between 

individuals, the environment, and the population’s state (Vicentini & Araujo, 2003). However, 

the sex ratio in the catches may vary from the expected 1:1 from species to species, or even 

in the same population at different times, influenced by several factors (Vandepuente et al., 

2012). Our results suggest that the sexual proportion differed from the expected in most 

species analyzed. These results could result from segregation by sex which is common within 

adult elasmobranchs (Camhi; Ellen & Elisabeth, 2008). However, sharks have records, such as 

the shortfin mako (Guerrero-Maldonado, 2002; Ramírez- Gonzáles, 2002) and the oceanic 

whitetip shark (Strasburg, 1958), that there is no segregation by sex or reproduction stage but 

by size. Thus, exploiting sharks that exhibit seasonal sex segregation may contribute to a 

population decline (Mucientes et al., 2009). The 90-day shark fishery closure during summer 

months in Mexican Pacific waters could be helping to reduce the fishing pressure on groups of 

mature female sharks for some species (Sosa- Nishizaki et al., 2020). 

Concluding evidence of an overall population bias in sex ratio depends on thorough 

seasonal and geographical sampling of the total population (Mucientes et al., 2009), as shown 

in Carrillo-Colín, Castillo-Géniz and Haro Ávalos (2021), using the geographical distribution of 

the captured species used in the present study. We conclude that the sex ratio bias in our 

results may be influenced more due to the geographical sampling rather than seasonal 

distribution because the time scale of the analysis was annual. Therefore, a year-on-year study 

is needed to determine the seasonal segregation of sexes in the shark fishery in the Mexican 

Pacific Ocean. 

The unimodal distribution of length ranges in the capture highlights the selective nature 

of the longline used by the Mexican fleet, capturing a specific size range. The exception of this 

was for the Sphyrna species. This could be related to the fact that the principal species of pelagic 

sharks exploited by these fisheries are the species of the family Alopiidae, shortfin mako, blue 
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shark, as well as silky shark, and oceanic whitetip shark (Márquez-Farías, 2002; Mendizábal y 

Oriza et al., 2002; Soriano-Velasquez et al., 2002). 

On the other hand, the Sphyrna species have coastal-pelagic habits, and S. mokarran has 

been reported as a species regularly caught by various fisheries. However, among the studies 

of the medium-size fleet fisheries of the Mexican Pacific, it has only been mentioned by Galeana- 

Villaseñor, Galván-Magaña and Santana-Hernández (2009) in experimental ocean longline 

fishing (2011) at the entrance to the Gulf of California between 2007-2011. 

The longline selectivity depends on the fishing strategy, the seasonality of the trips, the 

horizontal and vertical distribution of the species, the type and size of the bait, and the size and 

type of the hook (Santana-Hernández et al.,1998). In this study, there are similarities in the 

length composition of the species depending on the group; for example, the bigeye and common 

thresher show similar modes among their frequency distribution; the same can be found in the 

hammerheads only group with the multimodal distribution. The other two species with similar 

length composition were the silky shark and the shortfin mako. Therefore, it is necessary to 

study seasonality, spatial variables, depth, and their relation to the species and length 

composition. 

Even with its limitation, the length analysis may help manage the fisheries (Froese 

et al., 2018). The mean size of the blue and smooth hammerhead sharks was smaller in 2012, 

probably among the few trips with observers on board that year. There has been a trend to 

larger mean size for the blue shark since 2014, and for the shortfin mako, a trend to smaller 

mean size since 2016. As with all fishery-dependent length-frequency data, results may be 

biased due to recruitment variability, gear selectivity, and unrepresentative length 

measurements for the whole population (Cope & Punt, 2009; Punt et al., 2000). Despite the 

biases mentioned above, the fact that the length frequencies remain stable through the years is 

a good sign of healthy populations; however, it will be necessary to reinforce these results via 

applying data-limited approximations to understand the status of the populations better and 

support the implementation (Sosa-Nishizaki et al., 2020). 

Although the catch curve analysis is an often-used assessment tool to derive estimates of 

the instantaneous total mortality (Z) and exploitation rates, our results suggest that the Z 

estimation does not just reflect natural and fishing mortality rates. This rate might also be 

influenced by migration processes (emigration and immigration), gear, fishery- dependent 

aspects, such as gear selectivity (Smith et al., 2012; Then et al., 2014), the equilibrium 

assumptions, and the uncertainty using the inverse von Bertalanffy equation to calculate 

the ages. Therefore, this method cannot be used to infer information about the stock 

instantaneous total or fishing mortality rates directly. Still, it allows for comparing the 

estimations between different years, fisheries, fleets, and estimating exploitation rates. Also, 

the M estimators from life-history parameters imply uncertainty in the study. Depending on 

which indirect method for estimating M is used, the estimation of F and U varies, so it is 

fundamental to choose the best methods. In our case, we used those methods based on 

longevity, and the von Bertalanffy growth model parameters since several authors mention that 

they have the best performance (Hamel, 2014; Then et al., 2015). 

The results showed a high exploitation rate of blue and silky sharks in 2011, which could 
be overestimated due to the methods for estimating total mortality (Z) values. Therefore, it is 
essential to be cautious with the results. Several exploitation rates have been estimated for the 
blue shark, ranging from 0.02 to 0.148 (ICCAT, 2008; Kleiber et al., 2009; ISC, 2017). Our mean 
exploitation rate (0.428) estimation for the blue shark was above this range. 
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Nevertheless, with our estimations, we can begin to understand the trends in exploiting 
this species. In the case of the blue shark, male exploitation is constant through time. For 
the females, it appears to be an increment in the catches. 

On the other hand, the overall median of 0.135 exploitation rate in this study is above 
the global one reported by Worm et al. (2013) of 0.06; however, their study has other 
species with meager exploitation rates. For example, the mean value of the exploitation 
rate for S. lewini of 0.075 is lower than the 0.148 reported by Hayes, Jiao and Cortés (2009) 
in the Western North Atlantic Ocean and the Gulf of Mexico. For shortfin mako, the mean 
exploitation rate of this study (0.24) is above of previous estimated rates 0.025-0.028 (Anon, 
2017; Byrne et al., 2017; Chang & Liu, 2009; ICCAT, 2008; ISC, 2018). 

No conclusion can be drawn about the status of the stock in terms of biomass from these 
analyses. However, our estimates could reflect an approximation of the population’s health 
status, such as the North Pacific stock assessment (ISC, 2017) for the blue and shortfin mako 
shark (ISC, 2018), which suggest stables populations in North Pacific waters. Nevertheless, 
Babcock and Nakano (2008), reporting on the International Commission for the Conservation 
of Atlantic Tunas (ICCAT) bycatch working group’s population assessment of shortfin mako, 
note that populations have declined in both the North and South Atlantic. For the Alopiidae 
species, the results can only be compared with the stock assessment for the common thresher 
sharks (Teo et al., 2018), concluding that these three species are under-exploited. 

There have been few attempts to conduct a stock assessment of silky sharks for the 
Carcharhinidae species because of limited landings data and the absence of estimates of 
population sizes. Nevertheless, Bonfil (1990) detected growth overfishing of silky sharks in the 
Yucatán fishery. In the Gulf of Mexico, Baum and Myers (2004) compared the catch rates 
of silky sharks from tuna surveys in the 1950s against catch rates from the commercial pelagic 
longline fishery in the 1990s (targeting tunas, swordfish, and sharks). They found a drop of 
nearly 91% in silky shark abundance. For the Sphyrnidae species, our S. lewini exploitation rate 
values were below the catches of coastal fishing in Guerrero and Michoacan, Mexico (Anislado-
Tolentino, 2008). That could be because this coastal fishery operates near a nursery area, not 
to mention high catch as shrimp bycatch. 

The assessment of the population status of pelagic sharks is hampered by the 
generally poor data quality associated with bycatch species in longline fisheries and 
problems with CPUE standardization. Hence it is difficult to determine the degree of fishing 
pressure experienced by these species and whether current fishing rates are sustainable. 
However, due to the high complexity of applying stock assessment models, length analysis 
can be an initial indicator of the condition of stocks. Our results indicate that some shark 
populations exploited in the North and Central Mexican Pacific are at low levels of 
exploitation; nevertheless, it is necessary to continue with robust analysis (catch 
standardization or demographic analysis) to have a broader picture. 
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