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ABSTRACT

Species Distribution Models (SDMs) have been widely applied in ecology to analyze the historical and future patterns of marine

species’ distributions. With the increasing impact of climate change in recent decades, understanding potential shifts in species

distributions has become a crucial challenge. Research on alterations in spatial and temporal distributions has revealed

an increasing focus on developing different statistical approaches for global-scale and long-term forecasts. One promising

approach is Bayesian Additive Regression Trees (BART), a non-parametric machine learning tool based on a sum-of-trees

model that could be useful for addressing ecological problems. The goal of this study is to apply BART on a global scale and

use it to estimate and predict possible present and future habitats of marine species under different climate change scenarios.

Here we show an application of BART focused on the functional group of marine turtles, analyzing their historical and future

distributions both individually and as a taxonomic group, their relationship with environmental variables, and BART’s capacity to

predict long-term distributions at global scales. Furthermore, to assess the capabilities of BART, we conduct a simulation study

under two distinct scenarios: 1) simulating a hypothetical cosmopolitan species distribution and 2) simulating a hypothetical

persistent species distribution. Our results show that BART is a promising approach to predict the potential distribution of our

target species, as well as their relationship with key environmental variables, on a global scale.

Introduction

The impact of climate change on marine ecosystems has increasingly been recognized as a global-scale phenomenon, with

numerous studies highlighting its effects on a worldwide basis1–4. As environmental conditions continue to change, marine

species must adapt and potentially shift their distributions to areas with more suitable conditions for their survival and

reproduction1, 5–11. Therefore, understanding the present spatio-temporal distribution of marine species and accurately predicting

their future is a critical challenge in the current context of global warming12, 13.

In response to the global impacts of climate change, macro-ecological approaches have gained importance in recent

decades14–21. These approaches provide a broader perspective by focusing on large-scale patterns and processes, allowing

for the prediction of species distribution and abundance at regional and global scales22. Therefore, this global perspective is

essential for the evaluation of climate change and biodiversity12, 13, 23. The results of large-scale predictions can contribute

to the development of effective management strategies with global policy objectives, enabling decision-makers to prioritize

conservation efforts, implement sustainable practices, and mitigate the impacts of climate change on marine ecosystems14, 24.

Due to the interest in estimating and predicting the spatial-temporal distribution of marine species, tools such as Species

Distribution Models (SDMs) have become fundamental in Ecology25, 26. SDMs link information about the presence/absence or

abundance of species to key environmental drivers to predict where and how a species is likely to be present in unsampled areas



or time periods27. This explanatory and predictive capacity makes SDMs valuable for various applications across multiple

disciplines, allowing researchers to explore and address a wide range of ecological questions28.

In the field of Ecology, SDMs have been employed in diverse contexts and have provided insights into species distributions

patterns, species-environment relationships, and potential habitat suitability29–33. To implement SDMs, researchers can choose

from a variety of approaches and software tools that facilitate the inference and forecasting processes5. One common form of

analysis applied to SDMs involves classification or regression models34. These models use statistical algorithms to classify

geographic areas into suitable and unsuitable habitats based on environmental conditions, allowing for the identification of

areas with high likelihoods of species occurrence35.

A promising and innovative alternative to traditional SDMs regression tree methods is the Bayesian Additive Regression

Trees (BART) approach36, 37. BART is a non-parametric Bayesian regression approach that builds upon a sum-of-trees model,

and is fundamentally an additive model with multivariate components37. This methodology offers several notable advantages

over conventional SDMs, making it an appealing choice for ecological research.

One of the key advantages of BART over traditional classification tree methods is the incorporation of prior distributions,

which helps mitigate the issue of over-fitting commonly associated with regression trees38. Therefore, with the use of prior

distributions, BART can strike a balance between fitting the data and maintaining flexibility to accurately predict species

distribution in unsampled areas or future time periods. This feature enhances the robustness and reliability of the model’s

predictions39.

SDMs, such as BART, may be a useful tool for informing other models, such as Marine Ecosystem Models (MEMs)40.

Mechanistic models usually rely on parameters specifications that are either originated from raw data, estimated from data

using statistical methods or elicited from expert input41. Some of these inputs pretend to represent the actual native ranges

of species, habitat suitability and their functional responses to key environmental variables42. But, the uncertainty in these

parameters can compromise the precision and validation of MEM results. While there have been efforts to refine these responses

to environmental drivers14, there is still substantial room for improvement to account for the spatial heterogeneity of species

and functional groups. For instance,42 highlight how the integration of SDMs and MEMs, using the outputs of SDMs as inputs

in a MEM, can improve the model’s results.

Overall, BART has been used in the context of SDMs, but only on a local/regional scale43–50. Furthermore, there are very

few tools for modeling at a global scale that allow the user to update data or include different drivers. For this reason, our main

goal is to apply BART on a global scale for the estimation and prediction of spatial-temporal distributions of different marine

species and their relationship with environmental variables. Our hypothesis is that BART may be a powerful approach to predict

historical and future scenarios about the distribution of target species and functional groups, as well as their relationship with

key environmental variables, on a global scale.

In order to test our hypothesis, we conducted a case study on the functional group of marine turtles and a simulation study

to assess the applicability of BART. This group includes all seven existing species of marine turtles, which are distributed

very differently in the marine environment51, 52. Moreover, ongoing research discuss how marine turtles face imminent threats

to their survival in the wake of climate change53–55. This information, combined with their different distributions patterns,

makes marine turtles an ideal functional group for testing the effects of climate change on a global scale. The study that we

present here applies the BART method to obtain the native ranges, potential habitat, relations with environmental variables

and projections of distribution under different future scenarios of climate change using outputs from Earth System Models

(ESM) freely available through the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP)56, 57 and Fish-MIP initiative

(https://fish-mip.github.io/). Due to the uncertainty related to the predictions of climate change effects, we

considered two different ESM set of drivers for our case of study: GFDL-ESM4 and IPSL-CM6A-LR.

Although a real case study can shed light on the predictive capability of a model, the validation associated with such study

is contingent upon errors in observations, as we lack knowledge of the true current or future distribution of the species. For this

reason, a simulation protocol has also been developed, allowing us to investigate the results of a hypothetical species. Then,

through various random samplings of simulations, we can obtain presence and absence data in order to fit the model and assess

the model’s predictive capacity58. In this study we assess two different simulation scenarios: one considers a hypothetical

species that is spread over the entire domain (what we call a ‘cosmopolitan’ species), while the second scenario considers a

species that remains permanently in a specific area (we call it a ‘persistent’ species).

Results

Overview of global BART analysis workflow

Our study is divided into two sections: 1) a case of study, where we present the results obtained from BART for the marine turtle

functional group; and 2) the simulation study, where we illustrate the performance of BART in a presence/absence simulation

and modeling framework (see Figure S1 of supplementary material).
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Therefore, section 1) is based on applying BART on a global scale using the marine turtle functional group as a case of study.

Hence, we propose two different models: the native range model and the suitable habitat model. The main difference between

these two models is that for the native range, we include the latitude and longitude of observations as covariates in the model,

while the suitable habitat model is only based on environmental covariates. The inputs used are georeferenced occurrence

data from GBIF and historical, past, and future projections of environmental variables from ISIMIP. The common output of

the native range and suitable habitat models is a unified map representing the historical spatial distribution from 1950-2014.

Subsequently, using the suitable habitat model, we project the distribution for each year from 1950 to 2100, generating a stack

with the spatial distribution for each year. Results are validated using a k-folds cross validation and real observations.

Section 2) aims to assess the capacity of BART to project in space and time the distribution of different species. For this

purpose, we simulate two different scenarios of probability according to the behavior of a species: first, a cosmopolitan species,

where the species is dispersed over the entire domain, and second, a persistent species, where we observe a concentrated spatial

distribution. Then, we perform 30 different random samplings to obtain presence/absence data for fitting 30 different models

and predicting using BART. This allows us to obtain error measures of the predicted spatio-temporal distribution with respect to

the simulated groundthruth.

Case of study

Species predictions

Here, we present figures depicting the present (1950-2014) and future (2015-2100) predictions of two species and their

respective response functions to environmental variables. The two chosen species are the Australian flatback sea turtle Natator

depressus and the leatherback sea turtle Dermochelys coriacea, both with very different spatial distributions. The first species is

mainly distributed along the Australian coast, while the second species is widely distributed throughout the world51, 52. The

results for the remaining species can be found in supplementary material (refer to section 2 Species predictions).

Figure 1 shows the historical predicted probability (from 1950 to 2014) in the spatial domain for the two species. It is worth

noting that, since we are working in a Bayesian framework, each pixel (1º x 1º) contains a posterior predictive distribution.

Hence, we can compute various statistics to represent the species distribution. In this case, the mean of the posterior predictive

distribution is shown, along with the uncertainty captured by subtracting the 2.5 % and 97.5 % percentile quantiles. Figure 1

confirms how Natator depressus is a species primarily distributed in the Indo-West Pacific, with higher probabilities of presence

along the north coast of Australia, while Dermochelys coriacea is distributed along the tropical and temperate zones globally,

and it has a cosmopolitan distribution excluding polar zones.

On the other hand, it is possible to differentiate between two different models: 1) the native range and 2) the suitable

habitat of both species (Figure 1). In Figure 1 it can be observed that the native ranges have a much narrower distribution than

the suitable habitat for both species. This is reasonable, considering that the native ranges represent the historical observed

distributions of the species and are constrained by adding the coordinates in the model. Furthermore, the results of both

models are obtained for each of the Earth System Models (ESMs), resulting in very similar probability maps for both species

historically.

Regarding future projections, Figure 2 provides an insight into the predicted probability for the last 10 years of prediction,

excluding 2100 (from 2090 to 2099). It should be noted that for future projections, only potential habitats are obtained. Then,

similarly to what was mentioned above, the mean of the posterior predictive distribution from 2090 to 2099 is shown in Figure

2 for two different climate scenarios SSP126 and SSP585. Additionally, to observe changes in the distribution over time, the

difference between the historical prediction for suitable habitats shown in Figure 1 and the future projection presented in Figure

2 is represented as suitable habitat change (Figure 2).

Specifically, for the species Natator depressus, our results project a reduction in potential habitat along the northern coast of

Australia and gains in the northern hemisphere 2. This decrease becomes more evident under the SSP585 scenario and with

GFDL-ESM4, while the gains are more pronounced with IPSL-CM6-LR. In the case of the species Dermochelys coriacea,

a loss of potential habitat is observed in the northern hemisphere with GFDL-ESM4, while gains are observed in the south

(Figure 2). With IPSL-CM6A-LR, the gains are more pronounced specially in the north, while with GFDL-ESM4 the losses are

more pronounced in the Atlantic Ocean. Moreover, for the SSP126 scenario, the losses and gains appear to be less distinct than

for the SSP585 scenario in both species (Figure 2).

In Figure 3 we can observe, for the two mentioned species, the contribution of environmental variables and the nonlinear

relationships of the response variable with each of the environmental variables. For both species, the two variables that

contribute the most to the model are bathymetry and sea surface temperature (Figure 3). However, it is worth noting that all

variables in the model have a similar contribution (Figure 3). In the nonlinear relationships with the response variable, it can be

seen that for bathymetry, both species have their optima at low bathymetric values (Figure 3). Whereas for SST, the behavior is

sigmoidal, their distribution increases until reaching a maximum and then starts to decrease (Figure 3).

In the same way, the native ranges and suitable habitats for other five species are presented in section 2 Species predictions
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(Figures S2, S3 and S4) of the supplementary material. Notably, Caretta caretta appears to have a distribution concentrated in

sub-tropical latitudes and along the west coast of Africa (Figure S2 in the supplementary material). Lepidochelys olivacea seems

to have a more southern distribution compared to Caretta caretta, along with Eretmochelys imbricata and Chelonia mydas

(Figure S2, S3 and S4 of the supplementary material). In contrast, Lepidochelys kempii exhibits a more confined distribution

primarily in the Atlantic Ocean and Europe.

Furthermore, in section 2, Figures S4, S5, and S6 of the supplementary material, we can find information on the suitable

habitat changes for these five species, as well as their contributions and relationships with environmental variables (Figure S7,

S8, and S9 in the supplementary material). Most species seem to experience significant losses around the tropical zones, except

for L. kempii, where losses are focused on the Atlantic North Coast. The spatial results obtained from both ESMs seem to agree

in general terms, with the SSP585 climate scenario showing much more pronounced losses and gains for all species.

In terms of changes over time, we have projected the suitable or potential habitats of all species from 1950 to 2100. Figure

5 illustrates the suitable habitat’s mean probability for each projected year, enabling us to observe how the mean probability of

finding a specific species globally changes over time. Depending on the species, we observe an increase or decrease in the mean

probability of suitable habitat. Specifically, for C. caretta, and L. olivacea, the temporal trend appears to decrease, indicating

less suitable habitat will be available for them in the future. L. kempii presents a more stable temporal trend, with a smooth

decrease for both GFDL-ESM4 climate change scenarios and IPSL-CM6-CR SSP126 scenario results, and a sigmoid function

for the IPSL-CM6-LR SSP585 scenario. Conversely, for E. imbricata and C. mydas, the potential habitat seems to increase in

both ESM configurations, especially for the SSP585 scenario. With respect to Natator depressus, there is an increase during the

historic period, but it seems to stabilize for the future scenarios under GFDL and IPSL 126. Moreover, it’s worth mentioning

that for D. coriacea, we obtain different results depending on the ESM. GFDL-ESM4 shows a decrease in the temporal trend,

while IPSL-CM6-LR shows an increase, especially for the SSP585 scenario (Figure 5).

Furthermore, in Table 1, we have quantified the percentage of change between the historic suitable habitat (1950-2014) and

the last ten years of the future suitable habitat (from 2090 to 2099). The percentages displayed in Table 1 show that depending

on the species, the available suitable habitat will either increase or decrease. It’s worth noting that the percentages obtained for

some species, such as D. coriacea or L. kempii, vary depending on the Earth System Model (ESM) and the climate change

scenario employed in the model.

Functional group predictions

Results of the whole functional group obtained for the seven marine turtle species considered in this study are presented (Figure

4) in terms of the native ranges and potential habitats for all marine turtles. Both outcomes are obtained by calculating the

median of all native ranges and suitable habitats for each species (Figure 4).

We can observe how the highest probabilities for native ranges of the marine turtles functional group are located on the

east coast of the USA and the northern coast of Australia. Meanwhile, for suitable habitats, it appears that coastal areas

generally have optimal environmental conditions for the functional group. Similarly, for both models (native ranges and suitable

habitats), the lowest probabilities are found around the poles. Likewise, it is worth mentioning that for both GFDL-ESM4 and

IPSL-CM6-LR configurations, the width of the intervals is not too large, especially for the native ranges (Figure 4).

On the other hand, it is possible to observe the median of the year 2090-2099 for the future projections of potential habitats

based on the two climate scenarios (SSP126 and SSP585). For both scenarios, we observe a significant loss of potential habitat

on the east coast of North America (Figure 4). In contrast, the southern hemisphere appears to acquire optimal conditions for

marine turtles over time. Furthermore, the losses and gains are more pronounced in the SSP585 climate scenario compared to

SSP126 (Figure 4). Based on the results from both Earth System Models (ESMs), IPSL-CM6-LR exhibits more pronounced

changes in suitable habitat in the Northern Hemisphere compared to GFDL-ESM4.

Finally, in Figure 5 and Table 1, we observe an overall increase in the mean probability of suitable habitat of marine turtles,

especially for the SSP585 scenario of IPSL-CM6-LR, where the percentage of change is 43.98 % higher in the last ten years

compared to the historical suitable habitat. With GFDL-ESM4, the changes in the probability are less pronounced, with a

decrease of -0.80 % for the conservative climate scenario (SSP126) and an increase of 3.5 % for the pessimistic climate scenario

(SSP585).

Validation

In Table 2, we present the results of various metrics obtained through cross-validation. Table 2 displays the median values of

four different statistics calculated for each Earth System Model (ESM) and species. Results show that across all metrics, the

model performance is notably strong, with most values approaching 1. While there is a slight performance difference favoring

GFDL-ESM4 ESM over IPSL-CM6A-LR, this discrepancy is small.

On the other hand, to validate our future projections, we compared maps projected for the period 2015 to 2023 with actual

observations obtained from GBIF during the same time frame, since the hindcasting period of our models spans from 1950
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to 2014. This comparison allowed us to calculate the sensitivity, which measures the proportion of true positives correctly

identified, for each climate scenario and ESM.

Our results indicate a notable level of sensitivity, with GFDL-ESM4 standing out as the ESM that provides the highest

sensitivity values, reaching 0.77 and 0.79 for the SSP126 and SSP585 scenarios, respectively. Additionally, the IPSL-CM6A-

LR model also demonstrates strong performance, achieving sensitivity values of 0.75 for both SSP126 and SSP585 climate

scenarios.

Simulation

Regarding the simulation framework, both simulation scenarios of the occurrence data of a hypothetical cosmopolitan and

persistent species were developed by considering several effects: 1) a spatial-temporal effect, 2) a bathymetric effect, 3) a

temperature effect, and 4) a temporal trend. Therefore, a series of parameters were set for all the terms in equations 2 and 3.

Cosmopolitan species

Our hypothetical field of study is a regular grid (10x10) over a 20-year time window. We started simulating the correlated

spatial effect by setting the values of the range r = 3.5, variance σ = 1, and temporal correlation ρ = 0.7. Then, we constructed

a bathymetry effect (constant over time) in a range from 0 to 800 meters using the following formula 100 · log(xy+1), where x

and y are the coordinates, reflecting that the closer to the axis, the lower the bathymetry. As the response function of species to

bathymetry is usually non-linear, we set up a polynomial of degree two to achieve a quadratic relationship (β1X1(s) =−1.5,

and β2X1(s) =−1.1) between them. To simulate temperature, we considered only the y axis, using the formula
√

y+1+10.

Additionally, since temperature is a dynamic variable, we added 0.5 for each year to represent an increase over time. Concerning

the temporal trend, we simulated a vector of values from an autoregressive model of order 1 (AR1), where ρt = 0.7.

Then, all the terms of the predictor in Equation 2 were summed and transformed to the probability scale (ranging from 0 to 1)

using the inverse of the logit link function. Therefore, we obtained the probability of presence across space and time. In Figure

6 a), we provide an example of a simulated probability field, illustrating how our hypothetical species exhibits a cosmopolitan

behavior across the simulated study field and time. After simulating the probabilities, we performed 50 samplings to obtain the

presence/absence data for fitting the BART model (1). Then we simulate from a Bernouilli distribution to distinguish between

presence and absence according to the simulated probability. It is noteworthy that, for each sampling, we selected a total of 50

observations.

Once we had the presence/absence data, we were able to fit the models and then make predictions across both spatial and

temporal dimensions. In the repository we can observe all predictions across space and time for each replica. Note that we

excluded the data from years 18, 19, and 20 during the fitting process. This exclusion allowed for the subsequent projection of

the entire distribution into the future.

Figure 6 c) presents the median, along with the 0.025 and 0.975 quantiles, of the validation measures (sensitivity, specificity,

and accuracy) across all replications. Examining sensitivity and specificity, we observe that at the beginning of the study period,

sensitivity is notably high, while specificity is lower, particularly in the second year. This pattern shifts around year 7, where

specificity increases, leading to a decrease in sensitivity. However, when we assess accuracy, it consistently remains close to

one throughout the entire period, except for a slight dip in year 2.

Persistent species

Regarding the simulation results for the persistent species scenario, it essentially follows the same process as the cosmopolitan

species scenario but it is based on Equation 3. Specifically, we adjusted the values of several parameters. The range and

variance of the spatial-temporal effect were 5.6 and 1, respectively, with an autoregressive coefficient of ρU = 0.1 for the

spatial-temporal effect and ρt = 0.7 for the temporal trend. Concerning bathymetry and temperature, the formulation was the

same as mentioned above, but the values for the fixed coefficients were β1X1(s) = 7.5 and β2X2(s,t) =−0.8, respectively.

After simulating all the terms, we transformed the predictions into the probability range using the inverse of the logit link

function. This process enables us to generate probability maps. In Figure 6 b), we present the simulated probability distribution,

demonstrating clear persistence across space. Utilizing these maps, we performed a random sampling of presence/absence data,

employing the same methodology as utilized in the cosmopolitan species simulation. Then, we used these presence/absence

data to fit the BART models and perform posterior predictions over space and time. All predictions are display at the repository

for each replication (note that years 18, 19, and 20 were excluded from the fitting, making the entire map a prediction).

Finally, Figure 6 d) presents the median, along with the 0.025 and 0.975 quantiles, of the validation measures (sensitivity,

specificity, and accuracy) across all replications. In this scenario, all measures were high, especially for those years where the

prediction was limited to unsampled locations and not in time. It is worth mentioning the decline in all measures, particularly

sensitivity, in the last years, which are the ones used for projecting the entire distribution. However, the accuracy remained

quite high even for the last years, consistently exceeding 0.75.
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Discussion

Climate change stands as a significant threat to many marine species59. Among them, marine turtles are commonly considered

susceptible to the impacts of climate change due to the important role of temperature in their life cycle59, 60. In 2009, the IUCN

Red List categorized most of the marine turtles species as vulnerable, endangered, or critically endangered61–67. Therefore,

preserving marine turtle populations under new climate change conditions demands global actions to reduce its impact and

bolster turtle resilience59.

Our study successfully tested the capability of global SDMs to investigate the global distribution of marine turtles and

project future potential habitats under different scenarios of climate change. In fact, our results highlight the heterogeneity

distribution of such a diverse group and shows the divergence in future projections according to specific species. While some

species are likely to face important challenges in the future and may experience declines in available suitable habitats, others

are projected to expand their potential habitats. These results highlight the need to tailored management actions to specific

species and regions.

Therefore, based on the future suitable habitats obtained in our research, future studies could focus on analyzing the ability

of different species of marine turtles to reach this new potential habitat68. It’s important to consider that even if a habitat is

suitable in terms of environmental conditions, factors such as proximity or other non-environmental drivers may prevent the

species from reaching that new potential habitat69–71.

Model results also confirm the important role of sea temperature to drive species distributions, and specifically the

distribution of marine turtles. The increase in sea surface temperatures due to global warming can have various impacts on

marine turtles, affecting their habitats, food sources, reproductive patterns, and overall survival72. For example, rising sea levels

and increased temperatures can lead to the loss of nesting beaches for marine turtles. Coastal erosion can destroy nesting sites,

making it challenging for turtles to find suitable areas to lay their eggs73. In the past decade, there has been an observed rise in

sporadic nesting occurrences of sea turtles74, notably linked to unusual increases in Sea Surface Temperature (SST)75. This

phenomenon raises significant concerns regarding the conservation and management of marine turtle populations, prompting an

in-depth exploration of the implications and potential causes behind these irregular nesting events. The correlation between

sporadic nesting and atypical SST elevations suggests a plausible connection between marine turtle behavior and environmental

fluctuations. Elevated SST levels could potentially influence the nesting behavior of sea turtles, prompting shifts in their

traditional nesting patterns and leading to sporadic nesting events in atypical locations. Another important mechanisms linking

sea warming and marine turtles distributions is sex determination since elevated temperatures can cause a bias in sex ratios of

populations due to alterations in ecological sex determination (for example76). The temperature during the incubation period of

turtle eggs determines the sex of the hatchlings, and higher temperatures can skew the sex ratio, leading to an imbalance in

male and female populations.

In the current context of conservation and management of marine turtle, another important threat to these species today is

bycatch in fishing gears77, 78. Our results can be used to identify current hotspots of presence of marine turtles and be used

to minimize fishing practices in those areas with higher risk of by catch. Consequently, an expansion of suitable areas for

marine turtles to specific areas should be done minimizing the risk of interactions with fishing gear. This brings to light the

intricate balance between conservation efforts and the unintended consequences that may arise from increased suitable habitats

intersecting with fishing activities.

Overall, the forecasts models such as the ones presented in the current study could help to inform conservation efforts of

marine turtles, and to minimize incidental capture in fishing gear, potentially through the establishment of protected marine

areas. In fact,79 proposed the use of Regional Marine Turtle Management Units (RMUs) as a framework for prioritizing

conservation across multiple scales of sea turtles. However, this RMU overview could be completely change due to climate

change. While expanding suitable areas for marine turtles is crucial for their conservation, it necessitates a comprehensive

understanding of the intricate interplay between habitat availability, fishing activities, and the broader ecosystem dynamics.

Integrating these complexities into conservation models and strategies is imperative to ensure the long-term survival of marine

turtle populations.

While we acknowledge that BART is a useful tool for solving ecological issues, our study has some limitations, too. One

main concern is the uncertainty linked to the data we used. We relied on the GBIF database, which may have a large amount

of uncertainty within its observations. Despite that, we have followed standard procedures to clean and improve the data

quality. Similarly, environmental drivers could involve significant uncertainty, particularly in future projections. To partially

account for some of the uncertainly, we utilized two different Earth System Model (ESM) outputs, ensuring that we do not rely

only on a single set of drivers. Indeed, for some species of marine turtles GFDL-ESM4 and IPSL-CM6-LR lead to different

results in terms of future potential habitats. This raises the need of considering the uncertainty related to ESMs when we use

environmental drivers as inputs, which has been already observed in previous studies.80.

Another limitation is on how we generated pseudo-absences. Since we lack absence data, we had to create pseudo-absences.

We have tried to make this in a way that does not heavily impact the results, using random generation and equal amounts
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of absences and presences. Furthermore, to address these concerns, we conducted a simulation study to better assess the

performance of BART. This helped us to have a more reliable understanding of the tool’s capabilities, particularly in combination

with a rigorous case study.

Despite the valuable utility of SDMs in estimating distribution changes over time, there is an ongoing need to enhance

these models81. Combining complementary models can yield better results, providing a more comprehensive understanding

of species behavior42. For example, it is important to note that our predictions do not account for changes in ecological

relationships, such as prey-predator dynamics or other crucial factors like fisheries mortality. Changes in sea temperatures can

alter the distribution and abundance of marine turtle prey, such as jellyfish, crustaceans, and sea grasses. This can impact the

feeding habits of turtles and affect their growth and health but our results can only capture this implicitly. In addition, marine

turtles rely on coral reefs for food and shelter. Increased sea temperatures can lead to coral bleaching events, which reduce

the quality and availability of habitat for turtles and their prey. This is the case of Eretmochelys imbricata, which exhibits

strong associations with coral reef ecosystems, feeding predominantly on sponges82. Hence, their distribution might be more

closely linked to food availability than to other environmental factors. This underscores the complexity of factors governing the

distribution and habitat preferences of marine turtles, suggesting that conservation strategies should consider specific dietary

needs and habitat dependencies of individual species. Hence, it’s relevant to integrate models, such as SDM and MEMs, to

account for these additional relationships42, 83. As such, our findings have significant potential value for parameterizing MEMs

in order to improve the overall accuracy of predicted spatial-temporal species distributions of marine species, such as marine

turtles, globally.

Due to the potential use of global SDMs, it is crucial to continue developing tools that enable us to assess the past, present,

and future status of marine species, such as marine turtles84. In this context, the results obtained in this study highlight the

capability of machine learning models like BART to predict changes in the current and future habitats of marine species,

making these models a valuable approach for assessing management and conservation efforts36. Our study shows how BART

can be a reliable tool for predicting both current and future habitats of marine turtles on a global scale. We anticipate significant

developments in both current and future applications of global SDMs approaches.

Methods

This section includes the methodological details of our case of study and the simulation study. The entire analysis was conducted

using RStudio software85 and all code is available in a GitHub repository code.

Case study

The focus of this study is to estimate and predict the probability of presence over space and time for the marine turtles functional

group (refer to Table S1 of supplementary material) for biological information about the species). In order to achieve our goal,

a series of steps were carried out. First, presence data of each marine turtle species and environmental variables potentially

driving their distribution were extracted and cleaned. Then, the BART model was implemented using the collected data of

individual species. Last, the different results were validated and compared.

Extraction and cleaning of the data

Presence-only data of a species are one of the most widely used datasets in the context of SDMs due to their accessibility

at different scales86–88. For our study, which aims to predict using a global perspective, we obtained data from the Global

Biodiversity Information Facility (GBIF) using the rgbif package in R89, 90. All the DOIs with the downloaded raw data for

each species are available in the supplementary material section 1 Marine turtles information and study workflow.

The presence data for the seven species of marine turtles currently occurring in the marine environment were processed by

eliminating repeated and terrestrial locations. We excluded terrestrial locations because we were only interested in predicting

distribution in the oceans. However, it’s worth mentioning that female marine turtles spend part of their life cycle on land. We

also employed the CoordinateCleaner package in R to remove presences with significant uncertainty91. BART requires

both presence and absence data to operate correctly. Due to the lack of available absence data for statistical modeling using a

Bernouilli distribution, we randomly generated pseudo-absences equal to the number of presences for each species92.

Furthermore, we incorporated global spatial time series of varying environmental conditions obtained from The Inter-

Sectoral Impact Model Intercomparison Project (ISIMIP)56, 57 and Fish-MIP initiative (https://fish-mip.github.

io/). We drove our model using outputs from two different Earth System Models (ESMs) of the Coupled Model Intercompari-

son Project Phase 6 (CMIP6): GFDL-ESM4 and IPSL-CM6A-LR93. These models were built under prescribed scenarios for

historic (1950s to 2014) and future (2015 to 2100) time periods93. Moreover, for both ESMs, we used two different Shared

Socio-economic Pathway (SSP) climate scenarios: a more conservative one, SSP126, and a more pesimistic one, SSP585.

Among the various ESM variables available under ISIMIP, we selected SST (Sea Surface Temperature in degree Celsius),

SSS (Sea Surface Salinity in PSU), LPHY (mole content of diatoms), O2 (mole concentration of dissolved molecular oxygen),
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DPHY (mole content of diazotrophs), and SPHY (mole content of picophytoplankton). It is worth noting that the last two

variables were only available for GFDL-ESM4. Additionally, we included bathymetry as a static variable for all analysis.

To prepare the variables for predictions, we standardized all the environmental variables. We carry out standardization by

calculating the mean and standard deviation of the historical data, and then subtracting that mean and dividing by the standard

deviation each historical and future layer. However, for obtaining the functional responses, we utilized the non-standardized

environmental variables to get the response curve in the real scale.

Modeling approach: BART

Regarding statistical modeling, BART models are based on a sum of regression trees.38 provide an illustration of the formulation

and representation of a single tree model, offering a comprehensive insight into the formulation underlying these models.

Essentially, regression trees are algorithms meant for modeling and prediction in machine learning94, 95. The formulation of a

regression tree g could be defined in terms of two components: (1) T a set of decision rules and nodes, and (2) M = µ1, ...,µb a

set of parameter values associated to each terminal node of T. Then, g(X ;T,M) is the function that assigns a value to the b

parameters (M = µ1, ...,µb) according to the covariates (X) added to the tree model.

The main problem with regression trees is that they tend to overfit, as they can split the space until they get one parameter

per datum38. This overfitting may considerably bias predictions. To address this problem, approaches such as BART have been

developed. Through the ensemble of decision trees and regularization using a priori distributions in the Bayesian context,

BART methods reduce the overfitting without performing a cross validation for model parametrization36, 37. In our study, we

adopted the default prior distribution for BART, as the literature praises its strong performance with default parameters38.

In order to model the presences/pseudo-absences data, the statistical model applied in this work was as follows:

Yi ∼ Ber(πi), i = 1, ...,n,

φ−1(πi) =
m

∑
j

g j(X;Tj,M j),
(1)

where Yi represents the presence/pseudo-absence of species for observation i; πi is the parameter of interest linked to the

predictor by a link function; φ−1 denotes the standard normal cdf (probit link function); g j is the j−th ( j = 1, . . . ,m) tree of

the form g j(X;Tj,M j), where m is the total number of trees, X is a vector of multiple covariates, Tj represents a binary tree

structure consisting of a set of interior node decision rules and a set of terminal nodes, and M j = {µ j, ...,µ jb} denotes a set of

parameter values associated with each of the b j terminal nodes of Tj.

Furthermore, a differentiation was established between two types of models: 1) native ranges, which refer to the areas

where the species is known to have occurred historically and it is likely currently present; and 2) suitable habitats, which are

understood as potential habitats where conditions are suitable for the target species. The reason for this differentiation is that

certain areas may be considered potential habitats, but due to other factors such as geographic barriers or physical distances,

the species has never been observed or is not present in those areas. Therefore, the main difference when modeling these two

distributions is that for suitable habitats (2) the X vector of covariates only includes environmental variables, while for native

ranges (1) the X vector of covariates also incorporates the coordinates of historical observations to account for realistic or

plausible spatial variability in the model.

After inferring the model parameters, space and time predictions were carried out for the historical period (1950-2014)

and for future projections (2015-2100) using two different ESMs (GFDL-ESM4 and IPSL-CM6A-LR) and climate change

scenarios (SSP126 and SSP585). Hence, we generated the historical (1950-2014) and future (2015-2100) projections by year

using the suitable habitat model. Consequently, the predictions provide insights into the future areas where environmental

conditions will be optimal for the seven marine turtle species. In contrast, we generated two different aggregated historical

distributions in space: one using the native range model and the other using the suitable habitat model. For these aggregated

historical spatial distributions, we employed the mean of the environmental variables (see Figure S1 in the supplementary

material).

Validation and comparison of predictions

For the validation of the models, we calculate several measures, distinguishing between two types of validations: an internal

validation using a k-folds cross-validation method, and an external validation using new species distributions from GBIF that

were not included in the models. Therefore, for internal validation, we applied the k-folds method to assess the performance of

our model in the historical period. For external validation, we calculated these measures by comparing future projections of

several years with actual observations that were not used in the fitting process.

For the internal validation, we divided the data in k = 10 subsets to test BART’s predictive capacity. Therefore, we obtained

a total of 10 different replicas. To analyze the results, we calculated error measures such as sensitivity, specificity, accuracy and

F1 score (see section 3 Error measures of supplementary material). All measures calculated are based on the estimations of
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true positives, true negatives, false positives, and false negatives96. Furthermore, as our forecasting extended from 2015 to

2100, we were able to compare the model predictions from 2015 to 2023 with observed data from GBIF to evaluate the model’s

performance in projecting the distribution. We compared the observed data with the predicted probability values and calculated

error metrics such as sensitivity. These metrics are essential when dealing with presence and absence data. Sensitivity evaluates

the model’s ability to correctly identify true positives (actual presences), specificity assesses its ability to correctly identify

true negatives (actual absences), and accuracy measures the overall correctness of the model’s predictions (see Section X of

supplementary material).

Finally, we compared the historical predictions (1950-2014) of each species with the last 10 years (2090-2099), excluding

2100, to assess potential future habitat changes. We exclude the last year of the series due to the potential bias in the ESMs

models for this final year of projection. To quantify these changes, we calculated the difference between the predicted historical

distribution and the projections for the last ten years. This allowed us to estimate the extent of potential habitat change based

on future climate change scenarios. Likewise, we extracted the mean probability for each projected year from 1950 to 2100,

allowing us to assess changes over time in the mean probability of potential suitable habitat for each species and for the entire

functional group.

Simulation

To strengthen the validity of our study, we conducted also a simulation designed to corroborate the predictive capabilities of

our BART model across both spatial and temporal dimensions. This simulation involved two specific scenarios: 1) simulating

a cosmopolitan species dispersed across the entire domain and 2) simulating a persistent species with consistent spatial and

temporal patterns. Through this process, we aimed to provide further evidence supporting the reliability of our BART model in

accurately predicting species distribution dynamics over space and time.

Simulation allowed us to replicate the behavior of a random variable in both space and time under controlled conditions, such

as the probability of being presence of a species population. Therefore, the first consideration in simulation is understanding the

factors influencing our variable of interest and developing a model that accounts for its nature. Typically, we lack information

about the entire population and work with a sample instead. In such cases, we propose a model and make inferences about its

parameters to obtain representative insights into the population. However, when simulating the entire population, we have

knowledge of the parameters, enabling us to assess the accuracy of our model estimates34.

For a more detail explanation and figures of the simulation process refer to the following vignettes.

Spatio-temporal occurrence simulation scenarios

The probability of the presence of a given target species is commonly influenced by various external factors (e.g., environmental,

anthropogenic, etc.) as well as spatially structured biological processes (e.g., predation, competition, etc.). Moreover,97 argue

that all species, in one way or another, exhibit spatial structure. However, considering all the factors that affect the probability

distribution of a target species in the modeling is practically impossible. For this reason, we have simplified the reality of our

response variables taking into account two environmental variables (temperature and bathymetry) as essential drivers to explain

distributions, a temporal dependence over the years, and a spatial-temporal effect related to species movement and dispersal.

This selection was made considering that temperature and bathymetry typically play a key role in the spatial and temporal

distribution of marine species98. Additionally,99 discuss how incorporating a spatial effect can enhance prediction accuracy

and mitigate the impact of variables not considered in the modeling. Hence, the simulation models for the different scenarios

(cosmopolitan and persistent species) are formulated as follows:

1. Cosmopolitan species

Y (s, t)∼ Bernoulli(π(s, t)),

logit(π(s, t)) = β0 + f1(t)+ f2(X1(s))+β1X2(s, t)+U(s, t),
(2)

where, the response Y (s, t) represents the occurrence (presence/absence) of the cosmopolitan species at time t in the

location s following a Bernoulli distribution with parameter π(s, t); π(s, t) is linked to the predictor by the logit link

function; β0 is the intercept; f1(t) stands for the temporal trend in the year t; f2(·) is a deterministic function for

the bathymetry (X1(s)); and β1 is the parameter associated to the temperature (X2(s, t)). Lastly, U(s, t) refers to the

spatio-temporal structure.

2. Persistent species

Z(s, t)∼ Bernoulli(π(s, t)),

logit(π(s, t)) = β0 + f1(t)+β1X1(s)+β2X2(s, t)+U(s, t),
(3)
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where the response Z(s, t) represents now the occurrence (presence/absence) of the persistent species at time t in the

location s following a Bernoulli distribution with parameter π(s, t); β1 is a fixed effect for the bathymetry X1(s); and β2

is the parameter associated to the temperature X2(s, t); and the remaining terms are those in 2.

With the model structure determined to start simulating the occurrence data of both scenarios (Y (s, t)andZ(s, t)), some

explanation is warranted to describe how to perform these simulations, in particular, how to deal with each one of the terms

included in the predictors in (2) and (3). First, the spatio-temporal structure is simulated as a Gaussian Markov Random Field

(GMRFs) correlated with an autoregressive AR(1) model with parameter of autocorrelation ρsp
100. Secondly, we simulate

species-specific depth preferences. Particularly, for the bathymetry covariate, a range between 0-800 meters was simulated,

with a non-linear effect for the cosmopolitan species scenario f (X1(s)) and a linear effect for the persistent species scenario

β1X1(s). Last, for the temporal trend f (t), changes in the probability values over time are included by simulating a vector of

values from an autoregressive model of order 1 with parameter of autocorrelation ρt .

Once the predictor terms have been obtained, the occurrence of both species (Y (s, t) and Z(s, t)) has to be determined by

using a Bernouilli distribution. Then, once we have obtained the simulated presence/absence data that will be fitted with the

BART model (Equation 1), we need to perform several random samplings of each simulation. In this case, we conducted 50

samplings for each simulation scenario, allowing us to replicate the simulation and ensure the robustness of the analysis. For

model validation, we calculated three commonly used measures already mentioned: sensitivity, specificity, and accuracy. To

achieve this, we compared the estimated values (whether they indicate presence or absence) with the actual simulated presence

or absence data. This process allowed us to determine how effectively our model assigns the correct status of presence or

absence in relation to the simulated ground truth.
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Species
GFDL-ESM4 IPSL-CM6A-LR

SSP126 SSP585 SSP126 SSP585

Natator depressus 1.81 2.21 12.88 47.14

Dermochelys coriacea -2.62 -6.97 10.53 57.12

Caretta caretta -4.83 -1.97 -14.72 -23.25

Lepidochelys olivacea -24.31 -44.51 -1.45 -29.35

Chelonia mydas 11.70 40.11 9.17 41.63

Lepidochelys kempii -2.85 4.45 36.68 -9.31

Eretmochelys imbricata 21.38 45.59 11.74 62.18

Functional group -0.80 3.51 26.58 43.98

Table 1. Percentage (%) of increase or decrease of the suitable habitat’s mean probability between the historical suitable

habitat (1950-2014) and the last ten years of the future suitable habitat’s projections (2089-2099).

GFDL-ESM4

Species Sensitivity Specificity Accuracy F1 score

Natator depressus 0.98 0.98 0.98 0.98

Dermochelys coriacea 0.80 0.84 0.82 0.82

Caretta caretta 0.94 0.90 0.92 0.92

Lepidochelys olivacea 0.92 0.93 0.92 0.92

Chelonia mydas 0.93 0.92 0.92 0.92

Lepidochelys kempii 0.97 0.98 0.98 0.98

Eretmochelys imbricata 0.95 0.94 0.95 0.95

IPSL-CM6A-LR

Natator depressus 0.97 0.97 0.97 0.97

Dermochelys coriacea 0.73 0.83 0.78 0.77

Caretta caretta 0.90 0.88 0.90 0.90

Lepidochelys olivacea 0.90 0.91 0.90 0.90

Chelonia mydas 0.91 0.89 0.90 0.90

Lepidochelys kempii 0.96 0.97 0.96 0.96

Eretmochelys imbricata 0.93 0.94 0.93 0.93

Table 2. Different error measures for each species and ESM results (GFDL-ESM4 and IPSL-CM6A-LR). We have calculated

sensitivity, specificity, accuracy, and F1 score.
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Figure 1. Maps depict the probability of presence for two species from 1950 to 2014, Natator depressus and Dermochelys coriacea. The

first and second columns illustrate the native ranges (current distribution), while the third and fourth columns portray the suitable or potential

habitats. The first and third rows correspond to the results for the GFDL-ESM4 model, while the second and fourth rows depict the results of

IPSL-CM6ALR. We are presenting the mean posterior predictive distribution for both species, accompanied by uncertainty represented as the

subtraction of quantiles 0.025 and 0.975.
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Figure 2. Maps representing the mean probability of presence from 2089 to 2099 for Natator depressus and Dermochelys coriacea, along

with the difference between the historical suitable habitat (Figure 1) and the projections for the last 10 years (2089-2099). We have calculated

the difference for both climate change scenarios, SSP126 and SSP585, and also for both Earth System Models (GFDL-ESM4 and

IPSL-CM6A-LR).
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Figure 3. Contributions of all the variables to the model for both ESMs are presented. We also provide the additive relation for the variables

that have contributed the most to the model. These additive relations represent the probability of being present at some point along the x-axis.
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Figure 4. Functional group results of the native ranges and suitable habitats (1950-2014) and future suitable habitats (2015-2100) are

provided. Rows one and two represent the spatial predictions for the current distribution, while the third and fourth rows depict the

predictions for the last ten years of projections (2089-2099), including the difference between the projections and the current suitable habitat.

All of these are represented for both climate scenarios and ESMs.
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Figure 5. Changes over time in the mean probability of suitable habitat. The x-axis represents the years from 1950 to 2100, while the

y-axis represents the mean probability for each year of the projected suitable habitat. The orange line represents the climate scenario SSP585,

and the blue line represents the SSP126 climate scenario. Dots represent the mean probability calculated for each year.
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Figure 6. a) and b) are the simulation of the probability distribution in space and time for a cosmopolitan and persistent

species scenarios respectively. The time window is 20 years, and we can observe changes over space and time. c) and d) are the

results of sensitivity, specificity, and accuracy for the cosmopolitan and persistent scenarios respectively. We have calculated

the mean and quantiles (0.025 and 0.975) over the 50 replications conducted.
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