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Context. Currently, little information exists describing the population structure of great 
hammerhead sharks (Sphyrna mokarran) in Australian waters. Aims. This study used single 
nucleotide polymorphisms to investigate fine-scale population structure in S. mokarran across the 
Indo-Pacific. Methods. DNA was extracted from 235 individuals across six Australian locations and a 
Red Sea outgroup. Population parameters were calculated and visualised to test structuring across 
locations. Key results. No fine-scale population structuring was observed for S. mokarran across the 
Indo-Pacific. However, population structuring occurred for all Australian locations when compared 
to the Red Sea outgroup. Conclusions. Findings suggest a single stock is most likely for S. mokarran 
found in Australian waters. Results provide key information for understanding the broad range 
movements of S. mokarran and help to define the scale of management required to preserve 
genetic diversity in this species. The structuring between Australia and the Red Sea indicates limited 
gene flow and movement. Implications. Results indicate that large-scale movements of S. mokarran 
could be occurring to facilitate genetic mixing. Future research focusing on individual tagging to 
corroborate movements would be highly beneficial to determine how far (and often) individuals 
are dispersing, and to note where cross-jurisdictional management, including from neighbouring 
regions in the Indo-West Pacific–Oceania region, are most critical. 
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OPEN ACCESS 

More than one-third of the world’s shark and ray species are threatened with extinction, 
mainly due to overfishing (Dulvy et al. 2021; Pacoureau et al. 2021). With a global listing 
as Critically Endangered, the great hammerhead shark (Sphyrna mokarran) is among those 
species of most concern (Rigby et al. 2019). Throughout its distribution across inshore and 
oceanic tropical and temperate waters, S. mokarran is targeted and bycaught in various 
commercial, recreational and artisanal fisheries (Compagno 1984; Stevens and Lyle 
1989; Compagno et al. 2005). Global declines of S. mokarran (and hammerhead sharks 
more broadly) have been widespread and swift, approaching 99% in some regions, 
including off South Africa and in the Mediterranean Sea (Gallagher et al. 2014; Miller 
et al. 2014; Roff et al. 2018; Raoult et al. 2019). Shark finning and meat or cartilage trade 
are major drivers of global population declines, with the largest hammerhead species 
(including S. mokarran, smooth hammerheads, S. zygaena and scalloped hammerheads, 
S. lewini) often sought for their large fins and supposed medicinal benefits (Clarke et al. 
2006; Carde ̃nosa et al. 2022). 

Across its Australian range, S. mokarran is caught in several commercial and recreational 
fisheries, and often managed collectively within the Sphyrnidae family. Approximately 
90% of catches originate from five regulated fishery groups, with the remaining 10% as 
bycatch (Department of Agriculture Water and the Environment 2021). However, overall 
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the catches of S. mokarran within Australian waters is 
considered to be low, and key fishery groups are managed 
by precautionary jurisdictional measures that aim to limit 
catches and prevent overfishing. Australia’s 2014 non-
detriment finding (NDF) reported that if the relevant regional 
fisheries remained within annual quota limits, the harvest of 
S. mokarran would not be detrimental to populations 
(Department of Agriculture, Water and the Environment 
2014). Nevertheless, if hammerheads leave Australian waters, 
they can be exposed to other commercial and artisanal 
fisheries, often with fewer regulations or low monitoring and 
enforcement capacity (Clarke et al. 2006; Dudley and 
Simpfendorfer 2006). 

There have been various attempts to document the 
migration (and connectivity) of S. mokarran, with  most studies  
employing tagging methods. In the western North Atlantic 
Ocean off Florida and The Bahamas, Guttridge et al. (2017) 
reported the first evidence of philopatric behaviour for 
S. mokarran, with observations for both sexes of large-scale 
migrations, seasonal residency and site fidelity. In addition, 
Boube et al. (2023) reported sexual segregation, seasonal 
residency or long-term site fidelity for S. mokarran off 
French Polynesia, noting aggregations and the possibility of 
natal grounds nearby. Similarly, Queiroz et al. (2016) found 
that when S. mokarran were not making long distance 
movements, they remained in localised preferential habitats. 
Other recent tracking off northern Australia by Heupel et al. 
(2020) found localised movements but was limited to small 
specimens (200–240-cm total length). Although it is less 
precise due to rely on chemical tracers, Raoult et al. (2020) 
noted that adult S. mokarran captured in New South Wales 
(NSW) waters are likely residents further north in Queensland 
(Qld) and possibly as far north as Papua New Guinea. It is 
these challenges in obtaining local tracking data across an 
appropriate size and sex range that requires alternative 
assessment techniques to decipher stock structures and connec-
tivity, among which genetic applications are uniquely relevant. 

Identifying genetic stock structure is an integral 
component of fisheries management, so that the spatial 
scale required for the assessment and management of stocks 
is based on the appropriate management ‘units’; that is, the 
number of stocks within a given management jurisdiction 
(Begg et al. 1999). Over recent decades, genetic analysis has 
evolved into an invaluable tool for fisheries management 
(Benestan 2020), and nowadays complimentary to fish 
tagging, parasite and isotope methods. Although tagging 
efforts reflect individual movement and are often stochastic, 
genetic signatures are relevant at the population level, 
allowing inferences of historical connectivity or isolation 
(Kraft et al. 2020). Few studies have investigated genetic 
population structure to determine the scale of genetic 
structuring for S. mokarran. Previous work by Testerman et al. 
(2008) using mitochondrial DNA (mtDNA) found genetic 
differences between North Atlantic and Indo-Pacific 
conspecifics, with little spatial exchange of haplotypes 

(i.e. across ocean basins). This study further revealed 
significant population structuring with both microsatellites 
(msats) and mtDNA between samples collected in waters of 
the western North Atlantic, Australia, and the northern 
Indian Ocean (Testerman 2014). Similarly, using mtDNA, 
Naylor et al. (2012) reported two distinct populations of 
S. mokarran: one from the North Atlantic, and the second 
from Australia and Borneo. 

Evaluation of within-basin population structure for the 
Atlantic and Indian oceans by Gonzalez et al. (2017), 
Testerman et al. (2008) and Testerman (2014) failed to note 
any genetic structuring. Currently, only one technical report 
by Heupel et al. (2020) has undertaken single nucleotide 
polymorphism (SNP) analysis for northern Australian 
specimens, revealing no evidence of structuring and a 
relatively homogenous panmictic population extending to 
Papua New Guinea. It should be noted, however, that this 
study had only five Australian samples. The report of Heupel 
et al. (2020) recommends further studies using SNPs due to 
their power to resolve fine-scale population structure and 
applications in similar species (Green et al. 2019; Green 
et al. 2022). Additionally, previous studies emphasise that an 
appropriate sample size is needed for sufficient testing, so that 
appropriate conclusions can be made. Considering the above 
limitation, we aim to evaluate: (1) the population structure or 
connectivity using SNPs across a number of sampled locations 
throughout the Australian range of S. mokarran; and (2) test 
for any population structuring between individuals from 
Australia and the Red Sea (a spatially separated outgroup). 

Methodology 

Sampling design and collection 
Tissue samples of S. mokarran (n = 235 individuals) were 
sourced from various collections across Australia (Fig. 1, 
Supplementary Table S1). Red Sea samples were opportunis-
tically obtained through collaboration with Dr Julia Spaet, in 
order to include an outgroup. For specific collection processes 
see associated papers (Red Sea, Spaet and Berumen 2015; 
NSW, Broadhurst and Cullis 2020). Samples were either 
small fin clips or muscle pieces from captured specimens, 
stored in 99% ethanol that were provided along with data 
on individuals total length (TL), sex and sampling location. 
Samples within this study contain individuals of both sexes 
at varying life stages (see size distribution in Fig. S1). In 
addition to the Red Sea outgroup, sampling locations were 
arranged into Australia’s predefined current commercial 
fishing management zonings of Western Australia (WA), 
Northern Territory (NT), Queensland (Qld), Qld Gulf of 
Carpentaria (Gulf), north-east Qld, south-east Qld and NSW 
(Fig. 1 and 2). 

This work was authorised under the University of the 
Sunshine Coast’s risk assessment number 210095 and ethics 
approval number ANA21180 from the University’s Animal 
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Fig. 1. Sampling locations for great hammerhead (Sphyrna mokarran) tissue samples across northern Australia. 

Ethics Committee. Samples used in this analysis collected 
from within the North-west Marine Parks Network were 
obtained under permit numbers AU-COM2020-485, AU-
COM2020-488, AU-COM2020-494, issued by the Director of 
National Parks, Australia. Additional samples sourced elsewhere 
were collected under the corresponding researchers permits and 
ethics. 

DNA extraction, sequencing and genotyping 
DNA was extracted using QIAGEN DNeasy blood and tissue 
kits following their outlined standard protocol (Qiagen, 
Valencia, CA, USA). The DNA concentrations were tested 
using a Nanodrop 2000 spectrophotometer machine 
(ThermoFisher Scientific, Waltham, MA, USA), where samples 
were diluted or further concentrated to obtain a concentration 
of between 50 and 100 ng μL–1. The DNA isolates within this 

Fig. 2. Sampling locations for great hammer-
head (Sphyrna mokarran) tissue samples in 
the Red Sea. 

range were transferred to a 96-well plate and sent to Diversity 
Arrays Technology for sequencing (DArT Pty Ltd, Canberra, 
ACT, Australia). Sequencing involved using the DArTseq (DArT 
Pty Ltd) protocol to uncover SNPs (variations in the DNA 
sequence) within the species (Kilian et al. 2012; International 
Society of Genetic Genealogy 2020). The DArTseq was used to 
significantly reduce the complexity using four restriction 
enzymes. Sequences were processed using DArT Pty Ltd 
analytical pipelines producing high-quality SNP markers and 
metadata. In-depth protocols for such procedures can be 
reviewed in Georges et al. (2018). 

Single nucleotide polymorphism filtering 
Of the 235 tissues sampled across the seven locations, the 
DArTseqTM pipeline yielded 83,579 SNP markers for 233 
S. mokarran. Quantitative analyses were undertaken using the 
statistical package R (ver. 4.2.1, R Foundation for Statistical 
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Computing, Vienna, Austria, see https://www.R-project.org/). 
The SNP data and metadata produced by DArT Pty Ltd was 
converted into a genlight object for further filtering using 
the package dartR (ver. 2.7.2, see https://cran.r-project.org/ 
package=dartR; Gruber et al. 2018). Filtering for repeatability, 
loci call-rate and minor allele frequencies removed 9409, 2783 
and 19,508 loci respectively (Table S2). With all populations 
pooled, 403 loci were removed for Hardy–Weinberg disequi-
librium (Table S2). Using the gl.outflank function nested 
within dartR, 69 loci  were  identified as outliers and removed. 
South-east and north-east Qld were combined to form a single 
‘Qld’ grouping due to a small regional sample size, similar 
genetic distance and non-significant FST and P-values. 
Following quality control procedures, 3846 putatively neutral 
SNPs were retained for 211 individuals, whereas 69 outlier 
SNPs were identified (Table S2). These individuals comprised 
29 from the Gulf, 29 from east Qld, 23 from NSW, 52 from the 
NT, 22 from the Red Sea and 56 from WA. 

An additional dataset was constructed from the filtered 
dataset above to support a fine-scale population structure 
analysis among Australian locations using high pairwise 
fixation indexes (FST) loci. The approach was undertaken in 
which outlier loci were firstly identified and removed as 
they are assumed to be putitively under selection that can 
lead to biased population differentiation estimates (Luikart 
et al. 2003; Maduna et al. 2024). To identify potential SNPs 
under selection, both pcadapt and OUTFLANK methods were 
used. OUTFLANK identified zero outliers whereas pcadapt 
observed 249, which were subsequently removed, creating 
a neutral dataset. To characterise fine-scale population genetic 
structure, the remaining loci in the neutral were ordered to 
high to low FST, and a subset panel was constructed by 
selecting the 300 neutral diagnostic SNPs with the highest 
locus-specific FST. 

Population structure analyses 
Genetic differentiation between populations was quantified 
through FST following Weir and Cockerham’s methods, with 
Bonferroni adjusted conservative alpha significance and 
99% confidence intervals (CIs) through bootstrapping 2000 
times (Weir and Cockerham 1984; Pembleton et al. 2013). 
The dartR package was used to estimate the number of 
alleles (n), inbreeding coefficients (FIS), observed (HO) and 
expected (HE) heterozygosity (Gruber et al. 2018). The 
function snmf(), embedded in the R package LEA (ver. 3.8.0, 
see https://bioconductor.org/packages/release/bioc/html/ 
LEA.html; Frichot and Francois 2015), estimated individual 
admixture coefficients from the genotypic matrix, assuming 
K ancestral populations (Frichot and Francois 2015). The 
package is similar to the Bayesian clustering program 
STRUCTURE, but it provides a cross-entropy criterion from 
least-squares estimates testing 10 repetitions of scenarios 
K = 1–7 for the number of ancestral populations (K) that  
best explain a dataset (Frichot and Francois 2015). 

Population differentiation was visualised through three 
different approaches. To identify locations, individuals 
were plotted with their original location (e.g. south-east and 
north-east Qld) and not with groupings assigned for analyses. 
First, a principal components analysis (PCoA) was performed 
to visualise population patterns and genetic similarity 
between individuals and locations using dartR (Gruber 
et al. 2018). A discriminate analysis of principal components 
(DAPC) without priors was conducted through the package 
adegenet (ver. 2.1.7, see https://cran.r-project.org/package= 
adegenet) to establish optimal clusters based on the Bayesian 
Information Criterion (BIC) (Jombart 2008). A final admix-
ture plot was produced to visualise a geographic map of 
ancestry coefficients for different K scenarios using the 
tess3r package (ver. 1.1.0, see https://rdrr.io/github/ 
cayek/TESS3_encho_sen/man/tess3r.html; Caye et al. 2016). 
Additional methods of genetic distance and isolation by 
distance (IBD) tests were conducted to determine if there was 
a correlation between gene flow and geographical distance 
(Gruber et al. 2018). 

Results 

No significant deviations in heterozygosity were found at any 
location (P > 0.05, HE = 0.129–0.140; HO = 0.126–0.142, 
Table 1). The Red Sea outgroup had greater heterozygosity 
than all Australian samples (HE = 0.140; HO = 0.142, Table 1). 
Gene flow between Australian locations was high, indicated 
by the inbreeding coefficient (FIS) observations being similar 
(FIS = 0.037–0.052, Table 1). The FIS value for the Red Sea 
outgroup (0.010) was closer to HWE and varied to the 
Australian locations (Table 1). A Euclidean distance matrix 
revealed non-significant population differentiation between 
the Australian locations and the Red Sea outgroup (Table S3). 

The estimates of genetic pairwise differentiation (FST) from 
samples collected between all locations were small (mean 
FST = 0.006). Significant gene differences were observed 

Table 1. Population parameters for great hammerhead (Sphyrna 
mokarran). 

Location n HO HE FIS 

Gulf 29 0.132 0.135 0.040 

Qld 29 0.134 0.138 0.052 

NSW 23 0.126 0.129 0.041 

NT 52 0.130 0.134 0.037 

Red Sea 22 0.142 0.140 0.010 

WA 56 0.133 0.137 0.037 

n, number of individuals; HO, observed heterozygosity; HE, expected 
heterozygosity; FIS, inbreeding coefficient; Gulf, Queensland Gulf of Carpentaria; 
Qld, Queensland; NSW, New South Wales; NT, Northern Territory; RS, Red Sea; 
WA, Western Australia. 
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Table 2. Pairwise genetic differentiation (FST) values collected for 
great hammerhead (Sphyrna mokarran) samples below the diagonal 
and P-values above the diagonal. 

NSW WA Qld NT Gulf RS 

NSW 0.2525 0.7345 0.4960 0.0340 0.0000 

WA 0.0004 0.0325 0.0135 0.0500 0.0000 

Qld −0.0004 0.0008 0.025 0.001 0.0000 

NT −0.000003 0.0007 0.0009 0.001 0.0000 

Gulf 0.0014 0.0008 0.0020 0.0015 0.0000 

RS 0.0163 0.0148 0.0144 0.0157 0.0175 

Significant P-values (P < 0.01) shown in bold. Gulf, Queensland Gulf of 
Carpentaria; Qld, Queensland; NSW, New South Wales; NT, Northern Territory; 
RS, Red Sea; WA, Western Australia. 

between samples from all Australian locations and the 
Red Sea outgroup (P < 0.01, Table 2), with the highest 
differences (FST = 0.0175) being observed between the Red 
Sea and Qld Gulf samples (Fig. 3 and S5). A lack of signifi-
cant genetic differentiation was detected between Australian 
regions using the neutral dataset, with the exception of 
comparisons between the Qld Gulf and each of the NT, 
and east Qld, which showed low but significant differen-
tiation (P < 0.01, Table 2). However, significant genetic 
differentiation was detected for all Australian locations 
when testing with the 300 diagnostic SNPs (P > 0.01, Table 3). 

Based on the cross-entropy criterion, the optimal number 
of ancestral populations (K) was two (Fig. S2). Population 
structuring was visible from the DAPC plot with all 

Fig. 3. DAPC using neutral SNP genotypes, visualising Indo-Pacific 
structuring of great hammerhead (Sphyrna mokarran) along the first 
two axes. Locations (n = 7) were used as priors for clustering 
calculated with Bayesian Information Criterion. 

Table 3. Pairwise genetic differentiation (FST) values collected for 
great hammerhead (Sphyrna mokarran) samples below the diagonal 
and P-values above the diagonal. 

East Coast WA NT Gulf 

East Coast 0 0 0 

WA 0.0228 0 0 

NT 0.0194 0.0203 0 

Gulf 0.0322 0.0298 0.0294 

Significant P-values (P < 0.01) shown in bold. Gulf, Queensland Gulf of 
Carpentaria; East Coast, Queensland and New South Wales combined; NT, 
Northern Territory; WA, Western Australia. 

Australian locations clustered together, whereas the Red 
Sea outgroup sat independently (Fig. 3). This outcome was 
further supported by a PCoA output which showed 
seperation of the Red Sea outgroup and Australian locations 
into two separate clusters (Fig. S5). When undertaking a 
hirachical investigation with the Red Sea outgroup removed, 
no population structuring was detected in the PCoA plot 
among Australian locations (Fig. 4a). Additional investiga-
tion using the diagnostic dataset of 300 of the most informa-
tive SNPs showed marginal overlap of Australian locations 
(Fig. 4b). With all locations connected through a central 
cluster, location-based variance was observed between 
WA, the Gulf of Carpentaria, NT and the East Coast, with 
overlap visualised between the latter two. 

Population and location admixture plots showed the 
admixture ancestry coefficients for scenarios K = 2 and 
K = 3 (Fig. S3 and S4). The Red Sea outgroup showed 
strong differentiation and population structuring for all 
admixture scenarios when compared against Australian 
locations (Fig. S3 and S4). 

Both the PCoA and DAPC were visualised for datasets 
against sex and maturity or immaturity. This was done for the 
purpose of identifying any signatures driven by various life 
events (i.e. pupping, residency, philopatry) from biases in 
size, sex or both. Nevertheless, no structuring was evident 
(Fig. S6 and S7). 

Discussion 

Here, we present the first comprehensive study assessing 
the fine-scale genetic population structure of selected 
S. mokarran populations in the Indo-Pacific, complimenting 
earlier efforts for conspecifics between the Atlantic and Indian 
oceans (Testerman et al. 2008; Testerman 2014; Gonzalez 
et al. 2017). Further, by analysing samples from various 
regional locations throughout S. mokarran’s Australian range, 
we have highlighted high genetic connectivity and facilitated 
comparisons against previous work. These results contribute 
to the limited genetic knowledge employing more recent 
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Fig. 4. (a) Scatterplot of great hammerhead (Sphyrna mokarran) structuring for Australian only locations using 
PCoA modelling. The first two principal coordinate axes are shown with the amount of variance explained by each 
axis in parentheses. (b) PCoA modelling of great hammerhead (S. mokarran) structuring for Australian only 
locations using the most informative 300 diagnostic SNPs. 

next-generation sequencing techniques with the use of 
SNPs for greater detection of structure. The results can be 
discussed with respect to key life-history parameters and 
ultimately used to support the regional and international 
management of S. mokarran populations. 

Australian structuring 
Both the DAPC and PCoA results indicated a lack of genetic 
structure among S. mokarran from all sampled Australian 
locations. Further, the FST values (a measure of population 
differentiation due to genetic structure, Frankham et al. 
2002) for all Australian locations (mean = 0.006) were low, 
indicating little genetic differentiation and high gene flow 
between the sampled locations, although there were some 
significant pairwise differences. Additionally, the diagnostic 
SNPs indicate low, but significant, differentiation between 
all Australian locations (FST mean = 0.026). This result is 
supported by the PCoA plot indicating marginal overlap, 
but not complete panmixia. Ovenden (2013) notes that 
elasmobranchs are likely to experience phenomena termed 
‘crinkled connectivity’, whereby ‘connectivity is large enough 
to make the populations genetically similar, but not large 
enough to make them demographically linked’. This crinkled 
connectivity is similar to what has been observed in this study. 
It infers that a number of migrants are successfully exchanging 
genetic material across locations to comprise of a single stock, 
yet the proportion of migrants is not significant enough to 
infer complete demographic connectedness and panmixa. 
Waples (1998) noted that some departures from complete 
panmixia are expected when comparing geographic samples. 
It is suggested that the complete dispersal throughout 
northern Australia is unlikely and instead S. mokarran 
populations (relevant to location) are remaining connected 

through this crinkled connectivity method. Admixture plots 
also show the mixing of ancestry across all locations and so 
there does not appear to be fine-scale genetic population 
structuring for S. mokarran off Australia. 

Our results suggest that broad-scale population connec-
tivity (i.e. across the Australian coastlines) is being maintained, 
despite movement of tagged S. mokarran not having been 
recorded at this spatial scale to date (3030 km largest 
return trip reported in Florida, Guttridge et al. 2017). This 
potential for population admixture aligns with conclusions 
from Raoult et al. (2020) that suggest S. mokarran forage 
across large parts of the eastern Australian coastline. Further, 
S. mokarran reportedly use shallow coastal environments to 
target prey (Chapman and Gruber 2002; Doan and Kajiura 
2020) and extend across both pelagic and oceanic shelf 
waters (Queiroz et al. 2016; Raoult et al. 2019). Guttridge 
et al. (2022) also studied the thermal and vertical range of the 
species, noting they primarily use shallow depths (75% at 
<30 m) and occupy warm waters (89% between 23 and 28°C). 
This range reflects the possibility for significant connectivity 
due to the <100 m of water connecting the Gulf of Carpentaria 
to the Timor Sea, Arafura Sea, Torres Strait and Gulf of Papua 
(National Oceanic and Atmospheric Administration 2022) as  
well as the continuous shallow continental shelf along Qld’s 
Great Barrier Reef (Dudgeon et al. 2009). This preferential 
habitat, to a degree, may facilitate the connectivity seen in 
this study around the Australian coastline. Although it is 
unknown what level of influence the direct long-distance 
movement of individuals has on the genetic homogeneity 
found herein, we theorise that it may be substantial and 
likely remains understudied. Specifically, additional tracking 
of S. mokarran to further understand contemporary move-
ments, along with consideration to the spatiotemporal 
segregations among S. mokarran based on life-stage and sex 
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(Harry et al. 2011; Chin et al. 2017), will be critical for 
understanding the species demography. 

Indo-Pacific structuring 
Inclusion of the Red Sea outgroup provided an important 
genetic comparison, revealing structuring against all 
Australian locations, and therefore implying no regular 
movement and interbreeding of individuals across the 
Indian Ocean. This conclusion is reinforced by within-basin 
structuring in the Indian Ocean (i.e. comparing the Red Sea 
individuals to only those in WA). The distance between the 
Red Sea and Australia, combined with the deep waters of 
the Timor Trench (2–3 km) and Wallace’s Line in Indonesia, 
are both regarded as potential geographical barriers between 
WA, northern Australia and Indonesia, preventing movement 
and gene flow among various species, which might explain 
the clear separated population structures between these 
regions (Ovenden et al. 2009; Chin et al. 2017). Similar 
restriction of genetic mixing is seen between the Atlantic and 
Indian oceans and often explained by the Benguela Barrier, a 
cold-water current flowing around the southern tip of Africa 
that limits transfer. This phenomenon likely reflects the 
genetic differences found in Atlantic and Indo-Pacific 
S. mokarran (Briggs 1995; Dudgeon et al. 2012; Testerman 
2014). Despite such environmental barriers limiting mixing, 
it is possible some Red Sea and Australian specimens have 
nevertheless exchanged genetic material off Indonesia, or 
instead, the slight shared genetic signals seen in the admixture 
plots are a result of shared histories. 

The challenge of this study was that the variance is driven 
only by what has been sampled. Although testing of specific 
groupings (i.e. immature or mature and male or female) failed 
to reveal any trends, the sample sizes of these specific groups 
was limited. Additional sampling of neonates warrants testing 
in future studies. Also, coupling SNPs with mtDNA would be 
an interesting and beneficial way to investigate if both males 
and females are dispersing (e.g. occurring in the blue shark, 
Prionace glauca; Veríssimo et al. 2017), if movement is 
solely male (e.g. S. lewini; Marie et al. 2019) or female 
mediated, or driven by natal philopatry like in other species 
(e.g. lemon sharks, Negaprion brevirostris; Feldheim et al. 
2001). The observed trends seen in the Australian S. mokarran 
here could reflect broad movements of a select number of 
individuals resulting in the spreading of alleles across their 
population range. Initially, mtDNA literature noted that large 
movements of S. lewini were male-mediated with females 
exhibiting philopatry (Daly-Engel et al. 2012). However, 
using SNPs, large-scale movement has been shown in both 
sexes (Green et al. 2022). Philopatric behaviours exhibited 
by S. mokarran over large spatial scales have previously 
been discussed in the literature, yet it is unclear if these 
instances relate to natal philopatry, mating opportunities or 
functional residency behaviours like feeding events (Chapman 
et al. 2015; Guttridge et al. 2017; Boube et al. 2023). 

Management implications and conclusions 

Defining genetic connectivity and structuring of species like 
S. mokarran provides valuable information which can help to 
define populations used in stock assessment and development 
of biologically relevant management units (Green et al. 2022). 
Our study describes a genetically mixed stock of S. mokarran 
within Australian waters. Until more is known about the 
contemporary movements of S. mokarran (using tagging or 
telemetry), we suggest that the species is managed as a single 
Australian genetic population. To support this, continued 
research into the reproductive biology, natal or nursery 
areas and tagged movement for the species will be valuable. 

To more effectively manage the S. mokarran population, 
fisheries’ harvest strategies should clearly encompass cross-
jurisdictional biological assessments to determine if efforts 
are affording enough protection against harvest levels. 
Jurisdictional approaches to managing this species may 
have limited success in isolation if this species regularly 
crosses Australian jurisdictional boundaries, as implied by 
this study. Recent management changes within Qld have 
led to S. mokarran becoming a no-take species within Qld 
waters. These changes are likely to lead to a complete loss 
of data from the fishery, and will undoubtably make cross 
jurisdictional assessment and management for this species 
throughout northern Australia a more challenging process. 

It is also evident that, although stringent restrictions and 
limits apply under Australian law for S. mokarran, this only 
extends to the limit of the Australian Exclusive Economic 
Zone (EEZ). International waters and neighbouring countries 
are less regulated, with high illegal, unreported and unregu-
lated (IUU) fishing activity (Vince et al. 2021). Fishing efforts 
in these areas are likely to have ongoing impacts on this 
migratory species, which may affect Australian populations. 
Through further efforts of population assessments and 
modelling, especially in adjacent regions to the Australian 
EEZ, understanding of the species can be better managed with 
consideration of cross-jursidictional movement and exchange. 

Supplementary material 

Supplementary material is available online. 
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