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ABSTRACT 

Given the mounting threats of species overexploitation, climate change, 

and other anthropogenic stressors to global biodiversity, there is a growing need 

for conservation and management efforts informed by the life history and 

ecology of target species. Apex marine predators such as the shortfin mako 

shark (Isurus oxyrinchus) are especially vulnerable owing to their life history 

traits, but accurately mapping habitat preferences remains challenging. Using a 

novel framework that combines multiple analytical techniques, I report on nearly 

a decade of habitat preferences of 106 shortfin makos in the Gulf of Mexico 

(GoM) and western North Atlantic Ocean (NAO). I leverage the predictive power 

of machine learning (ML) to generate region-specific habitat suitability models 

based on satellite telemetry and remote sensed environmental data. Ensemble-

based models performed best in predicting shortfin mako habitat suitability, and 

variables indicating coastal proximity were consistently the most important for 

model predictions at broad scales. In the GoM, sharks concentrated their 

residency behaviors around the Yucatán Peninsula during the late winter and 

early spring but expanded home ranges to include much of the GoM during the 

summer. In contrast, NAO sharks concentrated their residency behaviors off the 

northeastern U.S. coast during the summer, whereas winter habitats were more 

diffuse and located further south along the U.S. East Coast and in the open 

western NAO. Predicted habitat suitability from ML models aligned well with 

these observed contrasting patterns in seasonal shortfin mako movements, 

while also demonstrating considerable interannual variability. 
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CHAPTER 1 
 

INTRODUCTION 
 

Given the mounting threats of species overexploitation, climate change, 

and other anthropogenic stressors to global biodiversity (Johnson et al. 2017), 

there is a growing need for conservation and management efforts informed by 

the life history and ecology of target species. In particular, understanding 

species’ movement patterns and habitat preferences will be critical in 

identifying and protecting key habitat areas, as well as predicting climate 

change impacts (Hays et al. 2016). This knowledge is especially important for 

highly mobile species and apex predators for a number of reasons. For 

example, apex predators directly promote biodiversity through resource 

facilitation and trophic cascades (Sergio et al. 2008; Ritchie and Johnson 

2009). Apex predators can also serve as biodiversity indicators owing to their 

dependence on ecosystem productivity, sensitivity to disturbance, habitat 

selection, and links to multiple trophic levels (Sergio et al. 2008; Ritchie and 

Johnson 2009). Moreover, their charismatic nature makes apex predators 

popular targets for conservation and ecotourism (Ordiz et al. 2013; Macdonald 

et al. 2017). However, many of the traits that characterize apex predators also 

render them highly vulnerable to anthropogenic stressors (Ordiz et al. 2013). 

Highly mobile marine species are additionally challenging to manage, as their 

subsurface movements are not readily visible, their large ranges increase their 

exposure to a variety of threats, and these ranges often span multiple 
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management jurisdictions (Shiffman and Hammerschlag 2016; Dulvy et al. 

2017; Manz 2021). 

The shortfin mako shark (Isurus oxyrinchus; hereafter, “shortfin mako”) is 

a large, pelagic species that exemplifies many of the conservation needs and 

challenges described above. Shortfin makos are widely distributed throughout 

the world’s temperate and tropical oceans (Stevens 2008; Lohe et al. 2022) 

and are known to travel long distances. As apex predators, shortfin makos 

influence ecosystem structure and function directly through predation and 

indirectly via behavioral effects on prey species, which include teleosts, 

cephalopods, other smaller sharks, cetaceans, and crustaceans (Ferretti et al. 

2010; Dulvy et al. 2014; Lohe et al. 2022). Through their far-ranging 

movements, shortfin makos can also facilitate horizontal nutrient and energy 

transfer between ecosystems (Shiffman and Hammerschlag 2016).  

However, many of their life history traits also leave shortfin makos 

particularly susceptible to fishing pressure. Due to their high mobility and 

broad distribution, shortfin mako ranges frequently overlap with longline 

fisheries (Oliver et al. 2015; Queiroz et al. 2016; Vaudo et al. 2017; Lohe et al. 

2022), where they are caught as incidental bycatch. Shortfin makos are also 

popular in recreational fisheries, owing to their size and power. Unfortunately, 

due to their late age-at-maturity and low fecundity, shortfin mako populations 

recover slowly and are especially vulnerable to fishing pressures (Shiffman 

and Hammerschlag 2016; Lohe et al. 2022). 
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Consequently, shortfin makos have experienced substantial population 

declines in the Atlantic Ocean (Dulvy et al. 2014), and there is growing 

recognition of the need for improved conservation and management 

measures. For example, in 2018 the International Union for Conservation of 

Nature (IUCN) listed shortfin makos as globally “Endangered” (Rigby et al. 

2019), while in 2019 shortfin makos were added to the Convention on 

International Trade in Endangered Species of Wild Fauna and Flora (CITES) 

Appendix II (Sellheim 2020). In 2021, the International Commission for the 

Conservation of Atlantic Tunas (ICCAT) implemented a two-year retention ban 

on shortfin makos, based on assessments in 2017 and 2019 that suggested a 

high likelihood of the North Atlantic shortfin mako stock being overfished 

(ICCAT 2021). However, shortfin mako ranges overlap with multiple regional 

and international jurisdictions (Vaudo et al. 2017; Gibson et al. 2021; Manz 

2021), which complicates conservation and management if sufficient 

protection is not enacted across the entire range. In addition, climate change 

will likely shift, and in some cases decrease, suitable habitat areas for shortfin 

makos (Robinson et al. 2015; Birkmanis, Freer, et al. 2020). Therefore, 

understanding shortfin mako movement patterns and habitat preferences will 

be critical for informing future conservation efforts and promoting recovery of 

their stocks (Shiffman and Hammerschlag 2016; Dulvy et al. 2017; Birkmanis, 

Partridge, et al. 2020).  

Shortfin makos are known to inhabit a broad range of habitats, and their 

distributions have been extensively tracked worldwide through a combination 
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of satellite telemetry, tag-and-recapture, and fisheries observer efforts (Lohe et 

al. 2022). Prior studies have found sea surface temperature (Vaudo et al. 

2017), depth (Byrne et al. 2019; Francis et al. 2019; Gibson et al. 2021), and 

primary productivity (Byrne et al. 2019; Nasby-Lucas et al. 2019) to be 

important indicators of shortfin mako habitat preference, though seasonality, 

regional differences, and size segregation in behaviors contribute additional 

variability (Byrne et al. 2019; Nasby-Lucas et al. 2019; Gibson et al. 2021). 

However, knowledge gaps remain surrounding the relative influences of 

environmental conditions in driving shortfin mako habitat preferences, and 

most studies have examined only a handful of environmental variables at a 

time. Given that marine environments are extremely complex, dynamic, and 

expansive, shortfin makos likely make habitat decisions based on a multitude 

of sensory information. Thus, accurately predicting shortfin mako habitat 

preferences requires extensive data not only on the sharks’ movements, but 

also the underlying environmental conditions associated with those habitats 

(Beyan and Browman 2020).  

A large, ongoing tagging effort has allowed us to gather relatively high-

resolution and long-term satellite telemetry data from 106 sharks within the 

Atlantic shortfin mako population. Coupled with the increasing availability of 

high resolution remote-sensing information, these data afforded me the 

opportunity to explore relationships between observed shortfin mako 

movements and their potential environmental drivers. Here, I report on nearly 

a decade of movement patterns and habitat preferences of 106 shortfin makos 
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tagged in the Gulf of Mexico (GoM) and the western North Atlantic Ocean 

(NAO). Notably, I leverage the predictive power of machine learning (ML) and 

demonstrate its application in movement ecology through a novel framework 

that evaluates a suite of ML algorithms in predicting habitat suitability from 

remotely sensed environmental variables. The aims of this study were three-

fold: (1) Evaluate the individual and ensemble performance of 11 ML 

algorithms to assess their suitability to shark telemetry data; (2) Identify which 

of 17 environmental variables contribute most to model predictions; and (3) 

Compare shortfin mako habitat suitability predictions between two ecoregions 

(NAO and GoM).  
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CHAPTER 2 
 

METHODS 
 

To understand the movement patterns and habitat preferences of shortfin 

mako sharks in the Gulf of Mexico (GoM) and open western North Atlantic 

Ocean (NAO), I analyzed a long-term satellite telemetry dataset using a 

variety of techniques that combined animal-borne telemetry, remote sensed 

environmental data, spatial and movement modeling techniques, and machine 

learning. Broadly, these methods can be divided into four sections: (1) 

Movement Patterns, which includes satellite telemetry, kernel utilization 

distributions, and state-space and movement-persistence modeling; (2) 

Environmental Variables, which includes acquisition, transformation, and 

imputation of remote sensing environmental data; (3) Machine Learning, which 

includes model training, evaluation, and selection as well as ranking of 

environmental variables; and (4) Habitat Suitability Predictions, where final 

models were used to predict on gridded ocean data. These are described in 

further detail below. All data processing, analysis, and figure creation were 

performed using R (R Core Team 2021), unless specified otherwise. 

Movement Patterns  
 

Satellite telemetry—Shortfin mako sharks have been extensively tracked 

with satellite telemetry in the GoM and NAO (e.g., Vaudo et al. 2017; Byrne et 

al. 2019). Tagging efforts typically commenced in the late spring (April) 

through the summer season (mid-October), depending on the tagging 

locations, which included coastal waters off Rhode Island, USA, Maryland, 
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USA, and Cancun, Mexico. As of this study, 106 sharks have been tagged 

since 2012, comprising 58 males and 48 females (Table S1, S2; Fig. S1).  

I followed similar tagging procedures as described in previous studies 

(Vaudo et al. 2017; Francis et al. 2019; Logan et al. 2020). Shortfin mako 

sharks were caught by chumming the waters from boats and landing them with 

baited circle hooks. Once hooked, sharks were restrained alongside the vessel 

or brought aboard, in which case a saltwater hose placed in the mouth 

supplied flowing seawater over the gills. Each shark was sexed and had its 

precaudal, fork, and total lengths (PCL, FL, and TL) measured; hereafter, size 

refers to FL in accordance with prior size-at-maturity analyses (Natanson et al. 

2006; Natanson et al. 2020). A Smart Position and Temperature tag (SPOT 

tag; Wildlife Computers, Redmond, WA, USA) was then attached to the 

shark’s dorsal fin. These transmitters communicated directly with the ARGOS 

satellite tracking system (argos-system.org) each time the dorsal fin broke the 

sea surface long enough to trigger a wet/dry sensor on the tag, yielding 

location data that ARGOS classified based on its accuracy (i.e., location class; 

Vaudo et al. 2017; Francis et al. 2019). Location classes ranged from LC 3 

(best quality; error < 250m) to LC B (error unknown; CLS 2016). Hereafter, 

“location” will refer to a latitude-longitude pair unless stated otherwise. All 

landing, measurement, and tagging were performed in such a way to minimize 

unnecessary stress and injury to the animals, as per the Institutional Animal 

Care and Use Committee and the Institutional Review Board protocols (IACUC 

protocol AN1617-020). 
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Prior to analyses, I pre-processed the shortfin mako satellite telemetry 

data, as recommend by Vaudo et al. (2017) and Logan et al. (2020). To 

reduce the impact of post-release stress on shortfin mako movements, I 

removed the first 10 days of location data from each shark. I also removed 

very short tracks (< 20 transmissions or < 20 days) and anomalous 

transmissions (e.g., on-land). As per Vaudo et al. (2017), I applied a speed-

distance-angle filter to remove improbable ARGOS locations requiring turn 

angles ≥ 165° and 155° for distances > 5 and 8 km, respectively (see Freitas 

et al. 2008 for further details). Pre-processing removed 5,652 locations (8.28% 

of all locations) and omitted tracks from 11 sharks (10.38% of all sharks), 

reducing the final sample size to 95 sharks. Table 1 summarizes the final, pre-

processed track data for each region. 

Kernel utilization distributions—To visualize population-level shortfin mako 

home ranges, I constructed Kernel Utilization Distributions (KUDs) from the 

pre-processed satellite telemetry track data using functions from the 

adehabitatHR package in R (Calenge 2006). Following Vaudo et al. (2017) 

and Manz (2021), I used bivariate normal kernel density estimation with the 

reference bandwidth as the smoothing parameter (Calenge 2015). Monthly 

KUDs were generated using the satellite locations of all sharks for each 

tagging region (GoM and NAO) and depicted as percent density isopleths 

(25%, 50%, 75%, 95%), each containing the given percentage of satellite 

locations for that month and region (Calenge 2015). Typically, the 50% 

isopleth is considered an animal’s core area within the 95% isopleth home 
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range (Vaudo et al. 2017; Manz 2021). These KUDs also allowed me to 

visually ground truth the predictions from my ML habitat suitability models; the 

KUDs were generated from actual shark locations, whereas the habitat 

suitability predictions were generated based on gridded environmental and 

temporal data. 

State-space & move persistence modeling—In addition to KUDs, I fit 

hierarchical state-space models (hSSMs) and move persistence models 

(MPMs) to the shortfin mako telemetry data using functions from the R 

package foieGras (Jonsen et al. 2019; Jonsen et al. 2020; Jonsen and 

Patterson 2020). The hSSMs interpolate smoothed, continuous tracks by 

estimating shark locations (± 95% confidence intervals [CIs]) at regular 

intervals from the intermittent ARGOS telemetry data (hereafter, “location 

estimates” or “interpolated locations”). Hierarchical models can also reduce 

uncertainty and improve location interpolation because they estimate one set 

of movement parameters for all sharks simultaneously, rather than individually 

(Jonsen 2016). Based on previously documented regional differences in 

shortfin mako behaviors (Byrne et al. 2019) and examination of the present 

study’s transmission data (Fig. S2; Table S1), I fit separate hSSMs to the GoM 

and NAO sharks. I generated hSSM location estimates at 12-hour and 8-hour 

intervals, respectively, which matches the average reporting interval for each 

ecoregion (Table S1; Vaudo et al. 2017). Additionally, because large gaps in 

ARGOS transmissions can increase uncertainty in hSSM location estimates, I 
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