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Commercial fishing constitutes an important food source but induces

undesirable bycatch on animals worldwide. This study extends bycatch

research geographically to the Western Pacific Ocean, filling a knowledge

gap regarding bycatch and mitigation measures in the region. Bycatch has

causedmany lethal consequences to the pantropical spotted dolphins (Stenella

attenuata) during their interaction with fisheries in the research area. We

provided a self-developed acoustic deterrent system and conducted field

experiments, suggesting its effectiveness as a potential useful conservation

tool to reduce bycatch. Dolphins departed the area and the number of dolphins

in sight declined to zero after the deployment of the system. Additional

evidence was reflected in acoustic recordings, showing the number of clicks

emitted by dolphins decreased from 1,502 to 136 per minute after the ADS was

activated. Meanwhile, click amplitude was reduced by 84%, indicating an

increase in the distance between dolphins and the system. These combined

results indicate that the system was effective in driving dolphins away to

facilitate the conservation of the species by protecting them from

potential bycatch.

KEYWORDS

pantropical spotted dolphins (Stenella attenuata), bycatch mitigation, acoustic
deterrent system, fishery interaction, acoustic monitoring
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1 Introduction

The acceleration of anthropogenic activities into the oceans

has expanded since at least the 1950s, as a replenishment to the

increasing scarcity of terrestrial resources and important food

sources (Garcia and Rosenberg, 2010; Bostock et al., 2010; FAO,

2013). The resulting negative impact on marine mammals,

including cetaceans, pinnipeds, sea otters, and sirenians, can

be reflected in the threats imposed either directly or indirectly on

the animals through fisheries, transportation, and oil and gas

extraction (Berta et al., 1999; Committee on Taxonomy, 2016;

Temple et al., 2021). This has raised an issue on how to

reasonably develop an ocean-based economy while ensuring

the conservation of marine mammals as 33 species have been

currently classified as globally endangered (Avila et al., 2018).

Among the threats, fishery bycatch constitutes one of the

primary factors that has led to population reductions of marine

mammals since the 1970s (Mitchell, 1975; Hofman, 1995; Read

et al., 2006; Hodgson et al., 2007; Read, 2008; Wilson et al., 2014;

Liu et al., 2017; Moore et al., 2021; Wade et al., 2021). Bycatch

results from the direct interactions between marine mammals

and fishing gear when animals forage or prey spatiotemporally

with anthropogenic fishing activities (Kiszka et al., 2008).

Marine animals, even for odontocetes possessing an

exceptional biosonar system, sometimes have a limited

capability to detect fishing nets, especially at a long distance

(Kastelein et al., 2000). Harbor porpoises (Phocoena phocoena)

were unable to detect monofilament nets from distances greater

than 3 to 6 m. This limitation in their biosonar system might

mislead the animals to deliberately remove fish captured in gear

and become entangled (Rabearisoa et al., 2015; Machernis et al.,

2021). The fishery bycatch of marine mammals, imposed by the

growing need for seafood consumption, has become a serious

issue widely in the South Pacific, Indian, North Pacific, and

Atlantic Oceans, involving dozens of cetaceans (Werner et al.,

2015; Papageorgiou et al., 2022). Reeves et al. (2013) pointed out

that the past two decades has witnessed a gillnet bycatch on at

least 75% of odontocetes, 64% of mysticetes, 66% of pinnipeds,

and all species of sirenians and marine mustelids. Interactions

with fishing gear may result in incidental mortality or serious

injury to individuals that led to infections, starvation, and a

reduced ability to forage and can raise the possibility of being

caught by predators (Machernis et al., 2021). The number of

harbor porpoise carcasses found along the German Baltic Sea

coast increased yearly, of which 47%–86% were confirmed to be

caused by bycatch (Herr et al., 2009; Koschinski and

Pfander, 2009).

Fishery bycatch was also found in the South China Sea,

which is a vital habitat for more than one-third of extant

cetacean species on Earth (Li et al., 2020). The high-intensity
Frontiers in Marine Science 02
fisheries in this region have posed a great threat to the survival of

cetaceans in the South China Sea (Li et al., 2020; Lin et al., 2021;

Liu et al., 2022). A recent study showed a high overlap between

humpback dolphin habitat and trammel-net fishing area in the

northern Beibu Gulf, China (Wu et al., 2022). The fishery

activities had a negative impact on dolphins, causing distinct

injuries (Slooten et al., 2013; Chen et al., 2016). Liu et al. (2017)

conducted a large-scale interview among local fishermen in

Hainan Island, China, reporting a total number of 150 bycatch

events involving more than 600 animals from 2000 to 2013 (Liu

et al., 2017). Wang et al. (2015) summarized the bycatch data

from 2000 to 2006 and found that a total of 66 bycatches and 30

injuries covering at least 18 Cetacean and Carnivora species were

attributed to fishery bycatch.

Among the victims of fishery bycatch, the pantropical

spotted dolphin (Stenella attenuata) has been recognized as

one of the most affected, and the majority of deaths were

attributed to fishing operations (Bernard and Hohn, 1989;

Chivers and Myrick Jnr, 1993). Stenella attenuata is primarily

distributed in tropical and subtropical waters (Perrin and Hohn,

1994; Perrin, 2009). Interactions between fisheries and this

species in and around Hawaiian waters have induced its

serious entanglements with fishing gear (Bradford and Lyman,

2015; Stack et al., 2019; Carretta et al., 2020). Sixteen pantropical

spotted dolphins were caught by accident during fishery

activities in the Yellow Sea, China (Wu et al., 2015). This also

holds true in other sites where the bycatch of foraging spotted

dolphins has frequently been documented in tuna fisheries and

dolphins were found trapped in the fishing nets during their

preys on tuna (Baird andWebster, 2020). The South China Sea is

an important habitat for S. attenuata (Zhu et al., 2003; Gong

et al., 2019; Liu et al., 2022). Though listed as a national

protected animal, bycatch still constitutes a major concern for

the conservation of the pantropical spotted dolphins inhabiting

the South China Sea (Wang et al., 2021). Using field data and

documentation from fishermen, researchers estimated bycatch-

induced deaths of 20, 18, and 7 specimens in 2015, 2017, and

early 2021, respectively (Wang et al., 2021). These aggregations

demonstrate a serious status for the dolphins even though the

real number of dolphin deaths induced by bycatch might have

been underestimated as local fishermen stated that the dolphins

occasionally get trapped and entangled by the fishing nets when

trying to remove fish from nets (Figure 1). The fishery bycatch

has significantly affected the conservation and recovery of the

population in the South China Sea and caused serious loss of

biomass catch for fishermen, calling for an urgent need to

develop mitigation methods.

Countermeasures to fishery bycatch have been proposed

accordingly (Bjørge et al., 2013; Geijer and Read, 2013; Senko

et al., 2013; Senko et al., 2013; Dunn et al., 2014; Hamer et al.,
frontiersin.org
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2015; Passadore et al., 2015; Thode et al., 2015; Werner et al.,

2015; Prado et al., 2021). Establishing nature reserves and

restricting fishing activities in the reserves have been useful to

revive the animal populations (Zhou et al., 2007; Guinet et al.,

2015). Changing the operation mode of fishing by using a mesh

with larger size purse seines was also effective in reducing the

bycatch of dolphins which chased after the same fish runs (Yang,

2005). Using barium sulfate-enhanced material to fabricate nets

can acoustically raise its reflectivity and create a greater detection

distance for animals to potentially reduce entanglement and

bycatch (Mooney et al., 2004; Mooney et al., 2007).

However, these means cannot force the animals to actively

swim away from fishing sites. Using sounds sensitive to the

potential bycatch victims was useful to exclude marine

mammals, e.g., odontocetes from fishery regions by increasing

their minimum distance to the threat, mitigating bycatch

situations (Au, 1993; Barlow and Cameron, 2003; Kastelein

et al., 2006; Nachtigall and Supin, 2008; Graham et al., 2009;

Mooney et al., 2009; Schakner and Blumstein, 2013), as has been

demonstrated in studies previously conducted on porpoises and

beaked whales (Culik et al., 2001; Koschinski et al., 2006;

Carretta et al., 2008; Carlström et al., 2009; Papageorgiou

et al., 2022). Porpoises were excluded hundreds of meters

away from the fishing sites, and bycatch cases of beaked

whales dropped to zero after the acoustic deterrent device was

deployed to work. Apparently, acoustic deterrence constitutes an

appropriate method to reduce fishery bycatch with respect to

feasibility and cost, as well as acceptability for fishermen. In this

paper, we developed an acoustic deterrent system (ADS) for the

pantropical spotted dolphins (S. attenuata) and carried out field

experiments in the South China Sea.
Frontiers in Marine Science 03
2 Materials and methods

2.1 Development of the ADS

The ADS was integrated into a waterproof portable box,

including a high-capacity lithium battery power module,

providing power to the entire system; a signal generator; a

digital-to-analog signal transform module; a power amplifier

module; and a transducer (Figure 2A). Signal generation was

completed by feeding LabView (National Instruments, Austin,

USA)-based codes to the system to generate the source signal in

demand, which was further transformed to an analog signal

through a digital-to-analog signal transform module (DAQ Card

USB-6216, National Instruments, Austin, USA) at a sampling

rate of 400 kS/s. The output was then fed into the customized

power amplifier module to boost the signal energy, reaching up

to 120 W. The signal was transmitted into the water through a

non-directional underwater transducer (WBT 30, China

Shipbuilding Industry Group Co., Ltd., Hangzhou, China)

with a centroid frequency of 30 kHz.

The ADS was first tested in a laboratory pool with a size of 27

m × 12 m × 3 m, prior to its application in the field. The system

had a stable performance during the tests, and the actual

deterring signal transmitted was recorded by a self-contained,

calibrated professional underwater acoustic recorder,

SoundTrap 300 HF (Ocean Instruments, Auckland, New

Zealand) (Figure 2B), which was placed at 1 m from the

transducer. Both the ADS and SoundTrap were hung in the

water column, 1.5 m below the water surface. The received signal

had a peak frequency of 17.3 kHz, sound energy was mainly

distributed from 1 to 18 kHz, and the −20-dB frequency
A B

C

FIGURE 1

(A) A dead specimen in fishery bycatch. (B) Sea observations of a pantropical spotted dolphin showing the white beak tip. (C) A dolphin
wandering around the vessel during a fishing activity.
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bandwidth equaled 12.5 kHz, ranging from 5.49 to 17.94 kHz

(Figure 2D). The amplitude dropped rapidly over 18 kHz. The

test was repeated 20 times. Peak-to-peak sound source level was

181.59 dB (re 1 mPa) (Figure 2C).
2.2 Field applications

The deployment of the ADS followed a protocol in which

dolphins were sighted and faced potential bycatch during fishing

(Figure 3B). Two separate field surveys were conducted in 2019

and 2021.

We took advantage of the annual fishery resource survey

voyage organized by the South China Sea Fisheries Research

Institute of the Chinese Academy of Fishery Sciences to deploy

the ADS during encounters with the pantropical spotted

dolphins when fishing (Figure 3A). The marine fishery survey

vessel, China Fishery 301, had a size of 42.8 m in length, 8 m in

width, and 5.2 m in height, with a gross tonnage of 398 allowing

for a continuous survey of 30 days. The actual deterring signal

transmitted in field tests was recorded by SoundTrap 300 HF

(Figure 3C), which was compared with the lab-based

measurements (Figure 3D).

During the survey, the vessel sailed during the day and

conducted light falling-net fishing at night. Before releasing

the fishing net, all the lights on the vessel were turned on to

attract fish to aggregate around the vessel. This huge

aggregation of biomass, including various fishes and squids,

attracted the pantropical spotted dolphins to the operating

area to prey, consistent with the observations in a previous
Frontiers in Marine Science 04
study (Qin et al., 2009). The ADS system was deployed, by

putting the sound transducer into the water, which was

suspended 3 m underwater by a rope with an iron block

tied at the end as ballast. The deterring signal was transmitted

by pressing the starting button on the ADS. The surfacing

positions and movements of dolphins as well as the number of

the total animals were documented through visual

observation both before and after the deployment of the

ADS. A fish-detecting sonar, Simrad EY60 (Kongsberg

Maritime, Kongsberg, Norway), was equipped laterally at

the vessel to specifically help determine the relative position

of dolphins to the vessel, and another fishing sonar, and

Simrad EY60 (Kongsberg Maritime, Kongsberg, Norway),

was deployed at the bottom of the vessel to monitor fish

biomass. The same SoundTrap 300 HF that was used in the

lab was used in the field in 2021 to record the clicks emitted by

dolphins. Results from visualizations, fish sonar images, and

acoustic analysis were combined to quantitatively evaluate

the efficiency of the ADS.

2.2.1 Trials in 2019
During the 30-day survey voyage in 2019 , we

opportunistically encountered dolphins in two of our fishing

events on May 19 and 28 (Figure 3A). We visually observed the

movements of dolphins in addition to the deployment of the

EY60 in the horizontal direction, and the EK60 was used to

monitor the abundance of fish in the vertical direction.

Calibrations of the two sonars were done in the waters off

Wanshan Island, Zhuhai, before the field experiments (Foote

et al., 1987).
A B

DC

FIGURE 2

(A) Components of the self-developed acoustic deterrent system. (B) Outlook of the acoustic recording SoundTrap 300 HF. (C) Waveform and
(D) the mean power spectrum density level of the deterring signal measured in a laboratory condition.
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The acoustic images of sonars in the horizontal plane were

used to monitor the distance between dolphins and the vessel,

serving as an important reference to examine whether the

dolphins swam away after the ADS was set to work. Those in

the vertical plane were processed to calculate the nautical area

scattering coefficient (NASC) within the beam range of sonar, to

estimate the biomass of fishes (Zhang et al., 2017; Kang

et al., 2020).

The image data were processed through the software

Echoview (v6.1, Echoview Software Pty. Ltd., Australia), to

reconstruct the tomography of an area (6 to 120 m in the

horizontal direction and 10 to 50 m in the vertical direction)

by inputting the depths of the sonars and the operation area. The

acoustic images were reconstructed before the ADS started to

work to compare with those selected 20 min after the

deployment of the ADS. Data were then filtered using multiple

filter variables to eliminate noise for further processing (Tarling

et al., 2009).

For the images gained in the horizontal plane, the “single target

detection” was used to extract the acoustic image of dolphins by

setting specific target strength thresholds. To process an acoustic

image in the vertical plane, data were divided into 2-min × 10-m

integration units to calculate their respective NASC values, which

were averaged as the final output. The Kolmogorov–Smirnov (K-S)

and Kruskal–Wallis (K-W) tests were conducted, respectively, to

compare the average NASC values gained before and after the ADS

was set to work at a significance level of 0.05.
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2.2.2 Trials in 2021
Another set of trials occurred on June 2, 4, and 10 during the

30-day survey in 2021 (Figure 3A). We deployed the SoundTrap

300 HF at the same depth of 3 m underwater as that of the ADS

on June 4, to record clicks of dolphins to provide additional

assessments on the efficiency of the ADS in addition to visual

observations. Analyses were conducted to estimate the relative

number and amplitude of the clicks recorded before and after the

use of the ADS, respectively. Visual data were analyzed to

determine the relative distance between the dolphins and the

transducer as well as the change in the number of dolphins

within eyesight after the ADS was set to operate. To analyze the

clicks, we used customized MATLAB (MathWorks, USA) codes

to extract clicks from background noise and the deterring sound

of ADS. To begin, a threshold was determined to isolate the

clicks from the surrounding background noise. Thus, the time

location of each click can be roughly determined, which was then

used to extract clicks.

To separate the principal part from each click, we selected a

certain number of neighboring data points around the location

of the amplitude peak to calculate their power spectral density.

The number of clicks per minute and the amplitude were

compared between the data sets recorded before and after the

application of ADS (Carlström et al., 2009). The background

noise and deterrent sound were filtered for the data set obtained

after the use of ADS because the amplitude of the clicks was

lower than the deterring signals.
A B

DC

FIGURE 3

(A) Sites of the field tests conducted in the South China Sea. (B) Illustration of procedure workflow of the acoustic deterrent system. (C)
Waveform and (D) the mean power spectrum density level of the deterring signals measured in the field, which was compared to signals
measured in the laboratory condition.
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3 Results

3.1 Visual observation and fish
sonar imaging

The pantropical spotted dolphins swam away from the

fishing vessel shortly after the deployment of the ADS, and all

animals disappeared beyond visual sight 20 min later. The

summary of the alerting experiments suggested that 20 min

after the trigger of the ADS, dolphins were out of sight (Table 1,

Figure 4). In a control experiment conducted on 28 May 2019,

the treatments were presented by periodically turning on/off the

ADS. Dolphins were gone 20 min after the ADS was turned on

and gathered around the fish school near the survey vessel again

about 30 min after the ADS was turned off. The application of

the ADS reduced the number of dolphins by 70, 26, and 20

during field trials conducted on June 2, 4, and 10

(2021), respectively.

Additional evidence can be found in the images from the

fish-detecting sonars. The images of the pantropical spotted

dolphins were extracted by setting the target strength thresholds

of −25, −30, and −35 dB, referring to previous studies (Au et al.,

2007; Zhang et al., 2010). After thresholding and extraction, the

output can be regarded as an individual dolphin within the sonar

beam and preset detection range, which was further examined by

manually examining its shape (Figure 5). The analysis can help

to determine the distance between the animals and the fish

sonar. The target strengths of the pantropical spotted dolphins
Frontiers in Marine Science 06
and their location were examined by analyzing the images within

a 20-min window before the ADS was set to work, which were

compared with those in the same 20-min window after the

deployment of the ADS (Table 2). The number of pixels

representing the dolphin was reduced, and the average

distance of the dolphins increased after the ADS worked,

suggesting that the use of the deterring signal drove the

pantropical spotted dolphins away from the fishing site. On

May 28, the image numbers all reduced to 0 after the ADS

worked, indicating that dolphins were “driven” beyond the sonar

detection range (120 m). At the same time, we found that after

the use of the ADS, the average NASC of integration units

increased from 19.44 to 36.70 (P < 0.05) and from 18.58 to 32.41

(P < 0.05) in the experiments conducted, respectively, on 19 and

28 May 2019, indicating that the biomass of fish increased after

the ADS was activated.
3.2 Passive acoustic monitoring

The deterring signals were recorded by the SoundTrap 300

HF in the field experiments conducted on 4 June 2021

(Figure 3C). The mean power spectrum density of 20 deterring

pulses was compared with those tested in the laboratory

(Figure 3D). The ambient noise in the field data was added to

the low-frequency (below 2 kHz) components, which can be

ascribed to biological sources, e.g., fishes and shrimps as well as

wave fluctuations. Two extra peaks were found in the field data
TABLE 1 Results of the number and distances of dolphins 20 min before and after activation of the deterrent system in 2021.

Date 20 min before the ADS work 20 min after the ADS work

Number of dolphins Distances (m) Number of dolphins Distances (m)

June 2 70 0–50 0 Beyond visual sight

June 4 26 0–50 0 Beyond visual sight

June 10 20 0–50 0 Beyond visual sight
FIGURE 4

Visual observation results before and after deployment of the acoustic deterrent system.
frontiersin.org

https://doi.org/10.3389/fmars.2022.1023860
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Fu et al. 10.3389/fmars.2022.1023860
at 200 and 240 kHz, respectively, corresponding to the sounds

emitted by the shipborne depthometers.

Clicks recorded by the SoundTrap recorder served as an extra

examination of the efficiency of the ADS. We extracted the clicks of

the pantropical spotted dolphins (Figures 6A, B) recorded on 4 June

2021 and found that the number of clicks per minute decreased
Frontiers in Marine Science 07
from 1,502 to 136, dropping by 90.9%, and the average amplitude

dropped by 84.0% after the ADS was set to work (Figure 6C). These

drops in both the number and amplitude demonstrated an increase

in the distance between the animals and the survey vessel as the

sound energy attenuated with the propagation range. Overall, the

results suggested that the number of dolphins around the survey
FIGURE 5

The acoustic images of the pantropical spotted dolphins from the fish sonar Simrad EY60.
TABLE 2 Comparisons of the number and average distance of the acoustic images of the pantropical spotted dolphins, and the average NASC of
integration units, 20 min before and after the trigger of ADS in the trails conducted on 19 and 28 May 2019.

Date May 19 May 28

TS threshold (dB) −35 −30 −25 −35 −30 −25

20 min before the ADS work Signal number 10 8 5 11 10 8

TS range (dB) −33 ~ −17 −32 ~ −20 −24 ~ −20 −30 ~ −22 −26 ~ −22 −24 ~ −22

Range from the vessel (m) 27 ~ 95 27 ~ 68 41 ~ 68 11 ~ 103 11 ~ 103 11 ~ 96

Mean range (m) 54 47 55 60 56 52

NASC (m2/nmi2) 19.44 18.58

20 min after the ADS work Signal number 4 3 0 0 0 0

TS range (dB) −31 ~ −29 −31 ~ −29 – – – –

Range from the vessel (m) 73 ~ 117 73 ~ 117 – – – –

Mean range (m) 95 97 – – – –

NASC (m2/nmi2) 36.70 32.41
fron
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vessel was reduced and dolphins actively swam away under the

deterrence of the ADS.
4 Discussion

The interaction between fishery activities and cetaceans has led

to serious bycatch worldwide (Werner et al., 2015), raising an

important issue on how to enhance the conservation on animals

under serious threat. The victims include the pantropical spotted

dolphins across the Pacific and Atlantic Oceans (Bradford and

Lyman, 2015; Zhao et al., 2017; Stack et al., 2019; Carretta et al.,

2020). The self-developed ADS system showed its potential to serve

as a conservation tool for the pantropical spotted dolphins.

Meanwhile, the deterrence did not negatively affect fishing

because the fish biomass increased after the ADS worked

(Table 2). Gazo et al. (2008) found a decrease in the fish catch

after the deterrence on bottlenose dolphins. It may be that the

animals caught in our fishing spots have different sensitivities to

those in Gazo et al. (2008), and it is challenging to determine

this inconsistency.

The self-developed ADS had a source level of 181.59 dB re 1

mPa, higher than that of a previous system (Dawson et al., 2013). In

some studies, previously conducted on acoustic deterrence, many
Frontiers in Marine Science 08
odontocetes including porpoises and killer whales (Orcinus orca)

get habituated to the deterring signals after a prolongation of the

acoustic stimulation (Cox et al., 2001; Carlström et al., 2002;

Schakner and Blumstein, 2013; Tixier et al., 2014; Guinet et al.,

2015). Porpoises were fully adapted to the deterring signals on day

11 after the initial deployment of the deterring system (Cox et al.,

2001). When first exposed to the deterring device, killer whales

moved away from the vessel. However, the deterring effect

disappeared after successive stimulation exposures (Tixier et al.,

2014; Guinet et al., 2015). The long-term efficiency of our ADS has

not been tested, and how pantropical spotted dolphins react to

exposure to this deterring signal in the South China Sea needs to be

further examined. The potential for habituation requires developing

a next-generation deterrent system incorporating multiple channels

to irregularly change deterring signals from different channels. This

improvement may accommodate the need to drive different species

away because the sensitivity may vary among species.

The application of the ADS will not significantly influence the

distribution of the odontocetes as fishery cannot fully cover their

habits simultaneously (Larsen and Eigaard, 2014; Northridge et al.,

2017). Larsen and Eigaard (2014) found that gillnet fishery in the

North Sea of Denmark covered <1% of the harbor porpoise habitat.

Northridge et al. (2017) suggested that even if all gillnet fisheries in

southwest England used acoustic deterrent devices, the habitat of
A B

C

FIGURE 6

(A) Example of clicks before and after the ADS deterrence. (B) Mean power spectrum density level of dolphin clicks recorded in the field
experiments before and after the ADS deterrence. (C) Comparison of the number and average magnitude of clicks before (data 1) and after
deterrence (data 2).
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the dolphins was affected by <1%, and the range it imposed on was

≤2 km. Thus, the impact of deterrence on animals’ habitats was

negligible. The pantropical spotted dolphins inhabit a wide range in

the South China Sea, and it is reasonable to assume that the ADS

has little impact on the general habitat of this population, but it can

help to reduce bycatch.

There is a controversy over the possibility of potential

hearing damage caused by acoustic deterrent devices on

cetaceans (Ace-Hopkins, 2002). The concern about the

negative impacts of ADS on animal hearing capability can

neither be proven nor dismissed (Gordon and Northridge,

2002). Despite a potential risk that has not been quantitatively

examined, the application of the ADS has to date been one of the

most efficient ways to protect the odontocetes from fishery

bycatch to enhance conservation. Fishing operations were the

biggest source causing the death of the pantropical spotted

dolphins (Bernard and Hohn, 1989; Chivers and Myrick Jnr,

1993). The ADS proves effective to prevent animals from fishing

sites and enhance population conservation. This application of

the ADS can also be extended to other scenarios to prevent

animals from negative influence resulting from anthropogenic

zones, prior to the onset of pile driving, ammunition blasting,

etc. Though the development of the ADS and its application was

effective as a tool to conserve the pantropical spotted dolphins

and facilitate fishery events in the South China Sea, the ADS

should be improved to be handy for fishers to operate and

inexpensive for user expansion, which can further enhance

animal protection and fishery activities.
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