Comisión Interamericana del Atún Tropical Inter-American Tropical Tuna Commission

Jon Lopez, Cleridy E. Lennert-Cody, Mark N. Maunder and Ernesto Altamirano

SAC-10-10

10th Meeting of the Scientific Advisory Committee San Diego, California USA, 13-17 May 2019

CIA

IATTC

- Purse-seine fleet **effort continuous to increase** in the eastern Pacific Ocean (EPO), which requires more stringent management measures.
- However **extending the closures** of the fishery is difficult.
- Additional measures have been tried as alternatives in the past.
 - <u>Catch limits</u> by set type in 2017, and limiting the number of <u>active FADs</u> per vessel in 2018.
- Nevertheless, the current tuna conservation measures (Resolution C-17-02) may not be as effective as desired, and **new and different measures may be required**.
- As such, the staff has recently received a growing number of requests for further analyses of **alternative management measures**.
- Also, using vessel well volume as the measure of fleet capacity is somewhat simplistic, and a **more precise measure of capacity** needs to be quantified.
- Therefore, a full-time researcher was hired in early 2018 for two years to address six related questions that were grouped into **one project (J.2.a)**.

Background - Tasks

• Project J.2.a responds to a series of management-related research requests recently made to the IATTC staff:

Comisión Interamericana del Atún Tropical Inter-American Tropical Tuna Commission

DEVELOPING ALTERNATIVE CONSERVATION MEASURES FOR BIGEYE TUNA IN THE EASTERN PACIFIC OCEAN: A DYNAMIC OCEAN MANAGEMENT APPROACH

Jon Lopez, Cleridy E. Lennert-Cody, Mark N. Maunder, Haikun Xu, Stephanie Brodie, Michael Jacox, Jason Hartog

SAC-10-INF-D

10th Meeting of the Scientific Advisory Committee San Diego, California USA, 13-17 May 2019

CIA

IATTC

CLAT

IATT

Conservation measures in force

- Res. 17-02 [plan for 2018-2020]
- 72 days closure
- 30 days additional closure (Oct-Nov)

Staff proposal to maintain/reduce F:

- Limit the **number of sets** (FOB+Una)
- Project F_{mort}
 - Operational characteristics vs F
 - Automatic set classification
 - BET DOM

Little is known on BET preferred habitat in the EPO.

Figure 1. Closure area

Data and methods

FISHERIES DEPENDENT DATA

Purse seine observer data (1995-2017)

~450,000 fishing sets

OBJ sets (2000-2017)

~150,000 FOB sets (~50% positives)

Small BET (<2.5kg; <46cm(age1)) present

Spatio- temporal	Surface						Subsurface			Operational	
	Abiotic	Sp. Res	T. Res	Biotic	Sp. Res	T. Res		Sp. Res	T. Res		Sp. T. Res Res
Latitude	SST	1/4	D	CHL	1/4	W	Temp 100m	1/4	D	Net Depth	set by set
Longitude	∆ SST	1/4	D	Δ CHL	1/4	W	ILD	1/4	D	OBJ Depth	set by set
Day of the year	Salinity	1/4	D	Oxygen	1/4	W	BF	1/4	D	Set time	set by set
	SSH	1/4	D				MLD	1/4	D	OBJ epibio	set by set
	VOL	1/4	D								
	Speed	1/4	D								
	Heading	1/4	D								
	EkE	1/4	D								
	FSLE	1/25	D								
	Front index	1/4	W								

Data and methods – Statistical modelling

Results – Variable Importance by size category

Results – Partial dependence plots – SMALL BET

IATTO

Results – Partial dependence plots – MEDIUM BET

FOLE II

Results – Partial dependence plots – JUVENILE BET

sst_grad (1.3%) chl_grad (1.2%) FSLE (1%)

Results – Partial dependence plots – LARGE BET

CLAT

Results – Partial dependence plots – TOTAL BET

CIAT

IATT

OBJEpibiotaPcnt (1.3%) chl_grad (1.2%) FSLE (1.1%)

Results – Predictions by size category

Large

Medium

Small

Juveniles

Medium

2002-03-11

Results – Predictions by size category

Juveniles

Results – Seasonality

01-01-2017

Results – Partial dependence plots – Juvenile YFT

SetTime (3.2%) Vol (3.2%)

LATT

CIAT

Conclusions

- We present the basis to develop a **dynamic ocean management** tool for BET in the EPO.
- Next step would be to **make the tool operational**.
- Ideally similar models should be established for **SKJ and YFT** and weight outputs based on users preference-needs.
- **Different possibilities** exist:
 - Provide maps to the fleet in **near real time** to make fishery more selective, both catch-restricted or unrestricted.
 - Adaptive closures (e.g. weekly, monthly, seasonal)
- **OBJ depth and Net Depth** may have implications on juvenile BET and YFT catch rates. However, hard to extract definitive conclusions for management due to spatial correlation particularly for Net depth and OBJ epibiota (e.g. deeper nets are used in the western area).

Questions

Operational vs Longitude

NetDepth

SetTime

