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The environmental niche of the global high seas pelagic 
longline fleet
Guillermo Ortuño Crespo1*, Daniel C. Dunn1, Gabriel Reygondeau2, Kristina Boerder3,  
Boris Worm3, William Cheung2, Derek P. Tittensor3,4, Patrick N. Halpin1

International interest in the protection and sustainable use of high seas biodiversity has grown in recent years. 
There is an opportunity for new technologies to enable improvements in management of these areas beyond 
national jurisdiction. We explore the spatial ecology and drivers of the global distribution of the high seas long-
line fishing fleet by creating predictive models of the distribution of fishing effort from newly available automatic 
identification system (AIS) data. Our results show how longline fishing effort can be predicted using environmental 
variables, many related to the expected distribution of the species targeted by longliners. We also find that the 
longline fleet has seasonal environmental preferences (for example, increased importance of cooler surface waters 
during boreal summer) and may only be using 38 to 64% of the available environmentally suitable fishing habitat. 
Possible explanations include misclassification of fishing effort, incomplete AIS coverage, or how potential range 
contractions of pelagic species may have reduced the abundance of fishing habitats in the open ocean.

INTRODUCTION
The high seas [or areas beyond national jurisdiction (ABNJ)] en-
compass more than 45% of the world’s surface area and 90% of the 
ocean’s volume. Before the 1950s, limitations in fisheries technologies 
predominantly restricted global marine fisheries to coastal and shelf 
waters. However, technological advancements after World War II, 
such as improved refrigeration, increased engine power, and acoustic 
sonars, prompted a rapid expansion of marine fisheries into ever 
more remote high seas waters (1). Consequently, high seas fisheries 
catch increased by 10-fold, from 450,000 metric tons (MT) in 1950 
to about 6,000,000 MT by 2014 (2). As of 2015, high seas fisheries 
represented 6% of the global annual marine fisheries catch by mass 
and 8% by fishing revenue (3). Tuna and billfish make up the ma-
jority of the reported high seas catch by longliners and purse seiners 
and, by 2012, represented 9.3% of global annual marine fisheries catch 
(4, 5). This expansion also entailed novel impacts on oceanic and 
deep-sea systems (6, 7). While the importance of the high seas for 
the global seafood industry has continued to grow, the regulatory 
frameworks and monitoring mechanisms necessary to support their 
sustainable use have lagged (7).

The current governance frameworks for management of marine 
life in ABNJ were established in 1982 by the third United Nations 
Convention on the Law of the Sea and were further developed by the 
1995 UN Fish Stocks Agreement (UNFSA) through the establish-
ment and consolidation of regional fisheries management organiza-
tions (RFMOs). RFMOs have the legal responsibility to manage high 
seas fish stocks, but also nonfish species [UNFSA Article 5(g)], and 
biodiversity [UNFSA Article 5(f)]. The performance of these bodies 
in protecting biodiversity beyond their target commercial species has 
been questioned recently (8, 9). According to the UN Food and Ag-
riculture Organization, migratory and straddling stocks harvested in 

ABNJ are overfished or are experiencing overfishing at twice the rate 
of stocks found within national waters (64% versus 28.8%)(4). A sepa-
rate assessment of the status of the stocks managed by the world’s 
RFMOs concluded that 67% of these were either overfished or de-
pleted (8) and that several of these have experienced range contrac-
tions due to overharvesting (10).

Some of the existing concerns about RFMO management include 
insufficient monitoring and weak implementation of ecosystem- based 
management measures due to the consensus-based RFMO governance 
process (9). As an example, the fisheries observer coverage of some 
pelagic longline fleets is as low ~5%, and can be even lower (11), which 
means that most longline fishing remains unmonitored. Novel forms 
of electronic monitoring help to address challenges related to the 
monitoring of catch and bycatch, reporting of fishing effort, and ves-
sel distribution (12). These new technologies include vessel tracking 
systems such as the vessel monitoring system (VMS) or the auto-
matic identification system (AIS), which can help with the surveil-
lance and monitoring of marine fisheries (13, 14) even in remote 
waters. Not all vessels are required to carry AIS devices onboard, 
and regulations change between vessel type, size, and nationality as 
well as where vessels are fishing. For example, the United States re-
quires that all self-propelled fishing vessels of 20 m or more in length 
must carry an AIS device onboard, but only while fishing in near-
shore waters (Code of Federal Regulations, § 164.46). The Interna-
tional Maritime Organization (IMO) requires all passenger vessels 
or those larger than 300 gross MT to carry AIS devices. A growing num-
ber of programs have recently emerged using satellite- based AIS geo-
location data to track and monitor fishing at sea. Some monitoring 
programs such as the Pew Charitable Trusts’ Eyes on the Sea project 
or the FISH-i Africa project (www.fish-i-africa.org) focus on identi-
fying illegal and unreported fishing, while other programs such as 
Global Fishing Watch (GFW; www.globalfishingwatch.org) classify the 
behaviors of fishing vessels, providing open access data on the global 
distribution of fishing effort across the main gear types, and are con-
tinuously improving their ability to detect, classify, and quantify fish-
ing effort estimates (12, 15).

Ecosystem-based fisheries management must address the impacts 
of fishing, such as habitat destruction and alterations of biological 
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communities, via techniques that can monitor current activities and 
predict and manage future ones. Many of the management and con-
servation conflicts addressed by the ecosystem-based fisheries man-
agement framework are the result of a lack of information on the 
spatiotemporal distribution of resources and resource users. One 
mechanism to understand existing impacts on high seas biodiversity is 
to compare the distribution of fishing effort with bycatch species such 
as sharks (16) or seabirds (17). While these studies are very useful 
for gaining an initial understanding of the overlap of fisheries and 
their associated species (which RFMOs are required to manage), they 
are retrospective and do not capture the underlying dynamic oceano-
graphic processes that result in the spatiotemporal overlap. To 
understand potential future interactions, mechanistic or correlative 
statistical models that explore the distribution or density of species 
in relation to environmental predictors are necessary [for example, 
(18–20)]. These studies have been conducted on many marine verte-
brate species, yet very few studies (21) have analyzed the environ-
mental correlates of human (for example, fisheries) distribution and 
attempted to understand their impacts through this lens. One example 
of such a study accurately predicted the distribution of fishing effort 
a year in advance (21). Fisheries managers can use information 
regarding the predicted distribution of fishing effort and bycatch 
species to provide information on the likely location of bycatch [for 
example, (22)], targeted observer coverage or enforcement (23), and 
partial closures or zoning (24). Further, models of the distribution 
of fishing effort can be run under different climate scenarios to help 
understand how fishing effort may shift in the future and affect 
fishing communities (25).

For instance, Kroodsma et al. (26) explore the influence of pri-
mary productivity and surface temperature estimates on the intensity 
of global fishing effort across multiple types of gear and flag States 
derived from AIS data. They conclude that other socioeconomic factors 
are much more influential in explaining the intensity of fishing effort 
than either environmental variable; however, they also note that long-
line fishing effort in the Indian Ocean was correlated with surface 
temperature (26). We consider that the lack of a global response of 
fishing intensity across gear types to either environmental variable is to 
be expected given the wide range of fishing strategies that were assessed 
jointly. We find that their conclusions of a correlation between long-
line fishing and temperature are evidence that, when assessed indi-
vidually, individual gear types may show well-delineated responses to 
certain environmental predictors.

Here, we explore the spatial ecology and drivers of the global dis-
tribution of the pelagic longline fishing fleet in the high seas by cre-
ating environmental predictive models of fishing distribution from 
satellite-based AIS data from GFW. We build environmental niche 
models using a boosted regression tree (BRT) modeling approach 
that relates the location of fishing events to different environmental 
conditions and compares them to a set of pseudoabsence points (areas 
of no observed fishing). By comparing the conditions where fishing 
was observed to locations where fishing was not observed, we hope 
to decipher which environmental conditions seem to be preferred by 
longliners. Our model used 14 environmental variables: sea surface 
temperature (SST), temperature at 400 m (T400), turbulent kinetic 
energy (TKE), particulate organic carbon (POC), net primary pro-
ductivity (NPP), mixed-layer depth (MLD), surface oxygen concen-
tration (SOC), oxygen concentration at 400 m (O400), sea surface 
salinity (SSS), salinity at 400 m (S400), euphotic depth (ZEU), ba-
thymetry (BATH), distance to continental shelf (DCS), and distance 

to seamount (DSM). By applying concepts that were originally de-
veloped to explore the ecological niches of terrestrial and marine 
animals, we aim to better understand the environmental preferences 
of longline fishing fleets in ABNJ and to shed light on the factors 
shaping their distributions at large scales, which opens new avenues 
for predictive forecasting of future spatial patterns of global long-
line fishing effort and concomitant stresses on the high seas. We are 
aware that other socioeconomic factors play important roles in the 
decision-making process of marine fishing activities and hope that 
our analysis informs future work that also includes these variables.

RESULTS
High seas longline fleet composition and distribution
After analyzing all satellite-based AIS fishing effort data from GFW, 
we found that longline fishing effort in the high seas accounted for 
84 to 87% of the fishing effort (by hour) across gears during the 
study period (fig. S1). While longline fishing effort is lower in ABNJ, 
it represents a major top-down pressure on oceanic ecosystems (27). 
Of the high seas longline fishing effort, 88.9% (2015) and 80.4% (2016) 
were attributable to five fishing States or territories: China, Japan, 
South Korea, Spain, and Taiwan (fig. S2). Taiwan dominates global 
longline fishing effort (by hour) in the high seas, followed by Japan, 
Spain, China, and South Korea. Our analysis focuses on these top-
five fishing States or territories. AIS-derived fishing effort data show 
that the distribution of longline fishing effort in the high seas changes 
across space (Fig. 1) and time (Fig. 2). During 2015 and 2016, the 
tropical (23.5°N to −23.5°S) and temperate (66.5°N to 24.5°N and 
−24.5°S to −66.5°S) regions contained 64.6 and 35.3% of the global 
fishing effort, respectively. On average, the intensity of fishing effort 
in the high seas is higher during the boreal summers and peaks in 
July and August during 2015 and 2016, respectively (Fig. 2). The 
overall increase in fishing effort data between years is likely driven 
by an increase in the number of orbiting satellites capable of detect-
ing AIS signals, as well as an increase in the capability of detecting 
and classifying longline fishing effort by the GFW group. Despite 
the increase in fishing effort intensity, the seasonal pattern where 
global longline fishing effort increases during the boreal summer 
months seems to be preserved between the two years. Untangling the 
drivers of the observed seasonal patterns of fishing effort requires a re-
gional, fleet-specific approach that includes information about target 
species, fishing seasons, and quotas. All fishing effort data needed to 
evaluate the conclusions in this paper are available from GFW.

Model performance and prediction
We assessed the accuracy of our models using various metrics that 
measured the degree to which we can predict the raw fishing effort 
observations using our environmental suitability models. Our re-
sults demonstrate how the global distribution of longline fishing 
effort in the high seas can be predicted with high levels of accuracy 
across months and years using BRTs to explore the environmental 
conditions in which fishing observations occurred. By comparing 
four different model performance metrics across years and thresh-
old types (n = 16), we were able to determine that predictions from 
monthly models outperformed the temporally averaged model that 
used the data across all months. Using a Wilcoxon signed-rank test, we 
found statistically significant differences in the distribution of the 
accuracy metrics in 14 of the 16 model performance comparisons 
(table S5), and the average performance scores were superior for the 
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Fig. 1. Distribution of global pelagic drifting longline fishing in ABNJ in 2015 and 2016. (A) 2015. (B) 2016. Light gray areas depict exclusive economic zones (EEZs) 
that were excluded from this study. Fishing effort (hours) as calculated by GFW using satellite-based AIS data. Given the differences in quantified fishing effort between 
2015 and 2016, the scales were maintained separate to showcase how, despite changes in intensity, the main trends in longline fishing effort are maintained. Gray areas 
around coastlines depict EEZs excluded from this study. Data are from GFW.
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monthly model in 15 of the 16 cases. The predictive accuracy and 
correct classification scores were high throughout the entire period 
studied (figs. S3 and S4 and tables S1 and S2) and support the use of 
environmental modeling for understanding the spatial patterns and 
environmental drivers of the human fisheries footprint in the ABNJ. 
We found that the predictive accuracy of the monthly environmental 
niche models after projecting them onto future environments (1, 6, 
and 12 months in advance) remained high. The mean predictive ac-
curacy was lowest for the 6-month prediction (~74%), and both the 
1- and 12-month predictions showed similar mean accuracy rates at 
~82% (fig. S5).

The model outputs were projected onto geographic surfaces, where 
the likelihoods of observing longline fishing effort were displayed as 
probability estimates between 0 and 1. Post-processing of the model 
outputs required a definition of “suitable fishing habitat,” which was 
done by selecting a probability cutoff value threshold for each map. 
Lower thresholds will classify more areas of the study region as suit-
able, while higher thresholds will be more restrictive. Here, we as-
sessed the implications of applying two different types of threshold on 
our model outputs: receiver operator characteristic (ROC) curve and 
mean probability distribution (MPD) thresholds. Our results show 
how the choice of threshold provides slightly different estimates of 
longline suitable fishing habitat, although the differences in model 
performance are small (tables S1 and S2 and figs. S3 and S4). The 
thresholds derived from the ROC curve resulted in higher cutoff val-
ues, while the MPD thresholds were lower on average. Higher thresh-
olds minimized the overprediction of suitable fishing grounds, while 
lower thresholds resulted in higher classification rates of observed 
fishing effort; this is reflected in the specificity and sensitivity values 
presented in the Supplementary Materials (tables S1 and S2).

Monthly persistence maps provide a visual representation of the 
global changes of fishing habitat suitability throughout the year (Figs. 3 
and 4) and help identify areas of the high seas where favorable environ-
mental conditions for longline fishing are most stable. The monthly 
persistence maps also help identify areas of the high seas that are not 
classified as environmentally suitable for longline fishing throughout 
the year, which provides valuable information about which areas may 
be experiencing less longline fishing pressure. The variability of en-
vironmental suitability to fishing in the high seas was assessed by 
mapping the average coefficient of variation of predicted high seas fish-
ing suitability for each year (Fig. 5), which combines the 24 monthly 
predictions and identifies the areas where we can expect the highest 
changes in suitability. Tropical latitudes were found to be the most 
stable year-round fishing grounds after assessing both persistence 
maps and estimates of variability.

We used the binary estimates of suitable fishing habitat to calculate 
the proportion of the predicted fishing grounds where longliners were 
observed to obtain estimates of the global suitable fishing habitat that 
is occupied (table S6). These estimates are important to understand 
the realized niche of global longliners, that is, the amount of suitable 
fishing habitat that is actually fished. Results show how the global 
fleet is not occupying large proportions of the fishing grounds that 
our models classify as potentially environmentally suitable for fishing. 
In 2015, the average proportion of occupied suitable fishing habitat 
was estimated to be 38 to 55%, whereas estimates were slightly higher 
for 2016 at 47 to 64%; the differences within each year were partly 
related to the choice of threshold. We briefly explored the distribu-
tion of false-negative and false-positive classification for two months 
(January and July) in 2015 to explore potential seasonal effects or 
patterns and the influence of using different cutoff thresholds (fig. S6). 

Fig. 2. Monthly distribution of pelagic longline fishing effort in ABNJ by the top five fishing States or territories, and all other countries combined. The total 
calculated fishing effort between the years increases between 2015 and 2016, with China and Taiwan experiencing the largest increases in quantified fishing effort. ”*Other” 
represents a total of 45 other fishing nations deployed longline (LL) gear in ABNJ between 2015 and 2016.
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We consider that, while there might be a slight seasonal effect on the 
distribution of unfished areas that were classified as suitable—higher 
latitudes earlier in the year and lower latitudes in the boreal summer 
months—the distribution of false negatives (unsuitable fished habitat) 
did not seem to follow any patterns associated with latitude, longitude, 
or environmental gradients when these areas were overlaid with var-
ious environmental predictors, including SST, T400, O400, and DCS.

Environmental predictors of fleet distribution
The relative explanatory variable importance (VI) of the environ-
mental variables used in the BRT models fluctuates on a monthly 
and interannual basis (Fig. 6 and tables S7 and S8), with different 
environmental variables explaining the distribution of fishing effort 
during different times of the year. The VI scores obtained from the 
monthly models (Fig. 6) show (i) how the environmental preferences 

of the high seas longline fleet can be characterized by a few environ-
mental variables, namely, SST, DCS, T400 and O400; and (ii) how the 
correlates of fishing effort distribution show both intra- and inter-
annual variability. The four variables shown to be consistently im-
portant throughout the year had annual average VI scores >10. Our 
results also showed how other environmental predictors with lower 
average VI scores (that is, NPP, SOC, POC, MLD, and S000) gain im-
portance during certain times of the year (figs. S3 and S4), although 
these may be difficult to interpret given their weak signals.

We further explored the explanatory power of static and dynamic 
predictors by comparing various iterations of the 2016 monthly mod-
els by using (i) only static predictors, (ii) only dynamic predictors, 
and (iii) a combination of the two. The model performance metrics 
(table S9) demonstrate how the model that included both static and dy-
namic predictors outperformed both the static and dynamic models. 

Fig. 3. The monthly persistence of suitable habitat in ABNJ for 2015. These persistence estimates were calculated using two different probability distribution cutoff 
thresholds: (A) MPD and (B) ROC. Gray areas around coastlines depict EEZs excluded from this study. Data are from GFW.
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The performance of the model with static predictors was worse than 
that of the other two.

We explored the preferences of the longline fishing fleet further 
by assessing graphical visualizations of how increases or decreases 
in an environmental variable (for example, higher or lower tempera-
tures) affect the probability of longline fishing; these figures are termed 
partial dependence plots (figs. S7 and S11). For instance, the rela-
tionship between longline fishing and SST, which was the most im-
portant environmental predictor in both years, shows a two-state 
response, where higher temperatures lead to higher suitability be-
tween January and February, and then progressively transitions to a 
response favoring a broader range of temperatures (including ~15° to 
20°C surface waters). This second temperature state is most apparent 
in the months of June and July. We assessed the partial dependence 
plots for the environmental predictors that appeared to be persistently 
important throughout 2015 and 2016: SST, O400, T400, and DCS.

DISCUSSION
Here, we demonstrate how environmental niche models can be used 
to explain and predict the distribution of longline fishing effort in 
the high seas. What ecological niches do these new “fisheries apex 
predators” occupy in the high seas? Studying fisheries using analyses 
similar to those used to study marine animals has been suggested 
previously (28) and may provide opportunities to understand and 
predict the dynamics of fishing fleets. We suggest that models like 
the ones presented here be used in management to (i) identify likely 
areas of interaction between fisheries and bycatch species, allow-
ing for spatial management approaches to be used to mitigate inter-
actions; (ii) anticipate changes in the distribution of fishing effort 
by using the existing model output to predict fishing effort 12 months 
out or by running this type of model under various climate scenari-
os as has been done for many species (18); and (iii) better focus mon-
itoring and surveillance efforts of longlining in open-ocean pelagic 

Fig. 4. The monthly persistence of suitable habitat in ABNJ for 2016. These persistence estimates were calculated using two different probability distribution cutoff 
thresholds: (A) MPD and (B) ROC. Gray areas around coastlines depict EEZs excluded from this study. Data are from GFW.
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environments within EEZs by directing authorities to areas of likely 
fishing (23), and should be applicable to similar management of 
living marine resources in the high seas.

Model accuracy
The high model performance metrics (figs. S3 and S4 and tables S1 
and S2) demonstrate how the distribution of pelagic longline fish-
ing effort in the high seas is environmentally structured and can be 
explained and projected using predictive models combined with in-
formation on the environment surrounding fishing observations. The 
mean accuracy values (0.84) and area under the curve (AUC) scores 
(0.86) throughout the study period were high and exhibited slight 
average increases in 2016. Improvements in the availability of fish-
ing effort data due to increased numbers of AIS-capable satellites 
launched over the past years as well as increased accuracy of the neu-
ral net detecting and classifying longline fishing effort due to more 
data available may have contributed to this slight improvement. The 
average correct classification (sensitivity) scores for both years were 
also high (0.93) and showed slight increases (6 to 11%) in correct clas-
sification when applying an MPD threshold. Conversely, the average 
false-positive classification (specificity) values were lower, suggesting 
that our model can correctly classify most of the observed fishing 
effort observations but slightly overpredicts fishing in some areas 
where no fishing effort was observed. The small differences in sensi-
tivity and specificity scores between cutoff thresholds were expected 
as the MPD thresholds were, on average, lower than the thresholds 
derived from ROC curves. Lower probability distribution thresholds 
translate to larger areas of the high seas being classified as suitable 
for longline fishing effort, thus capturing more observed presence 
points (explaining the higher sensitivity scores) and including more 
areas with no fishing observations (which explains the higher over-
prediction of fishing or false positives). Regardless of the choice of 

threshold, our BRT models were able to explain most of the high 
seas longline fishing effort observations, which we consider to be a 
meaningful step toward understanding the current and future human 
use of the high seas. Potential explanations for the overprediction of 
the models into areas where no fishing effort was observed follow 
later in the discussion.

Variability and persistence of suitable fishing habitat
Through mapping the habitat suitability of the longline fleet in ABNJ 
across months, we identify areas of the ocean with higher intra-annual 
variability of environmental suitability for fishing; these predomi-
nantly occur in the peripheries of the more stable year-round fishing 
grounds. These areas of high intra-annual variability may correspond 
to waters where oceanographic conditions show strong seasonal vari-
ability throughout the year, such as boundary currents in the pe-
ripheries of oceanic gyres. The latitudinal poleward spread of some 
variables—such as surface temperature or dissolved oxygen, which 
decreases and increases, respectively, as you move away from the 
equator—during the boreal and austral summers likely causes the 
temporary increase in suitability of areas within the temperate and 
subpolar latitudinal bands. As previously mentioned, some target spe-
cies show stable north-south seasonal movements, which correspond 
well to the seasonal increases in habitat suitability in those waters.

Persistent suitable habitat for longline fishing (that is, areas suitable 
for 6 to 12 months) is contained within the tropical and temperate 
latitudes, though there are longitudinal differences (Figs. 3 to 5) and 
the lower latitudes are the most stable and hold most of the persistent 
suitable habitat. These areas seem consistent with the global latitu-
dinal habitat preferences displayed by the top-six tuna target species 
(29, 30), which are among the main target species of longliners in 
ABNJ. However, further work is required to assess the degree of over-
lap by longline fisheries and target, both in geographic space and in 

Fig. 5. The average coefficient of variation of predicted high seas fishing suitability for 2015 and 2016. Tropical latitudes show, on average, more predictive stabil-
ity throughout the study period, whereas temperate and subpolar waters show higher degrees of variability of suitable habitat. Gray areas around coastlines depict EEZs 
excluded from this study. Data are from GFW.
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environmental space; this may help better understand the areas of 
high persistence of fishing suitability seen in Figs. 3 and 4.

Environmental predictors of fleet distribution
Tuna and billfish species comprise 81.2% of the global longline 
landing estimates in ABNJ between 1950 and 2014 (2). While there 
seems to be a clear geographic overlap between the preferred habi-
tat of the main tuna species and suitable fishing habitat for pelagic 
longliners in the high seas, our models also offer the opportunity to 

compare their environmental preferences. Our results suggest that 
longliners in the high seas show similar preferences to those of the 
species they are targeting. In 2015, the fleet showed strong preference 
for areas where the temperature at 400-m depth was between 8° and 
18°C (fig. S8); this preference was stable throughout the year and 
consistent with the temperature preferences of some commercially 
exploited tunas (31). The response of fishing to different oxygen con-
centrations at 400-m depth (fig. S10) shows that longline fishing ef-
fort in ABNJ is more commonly found in waters where the dissolved 

Fig. 6. Radar plots of the average quarterly VI scores in 2015 and  2016. (A) 2015. (B) 2016. The monthly VI scores for each of the two years assessed were averaged by quarter 
(Q) to capture the seasonal changes in the importance of each of the environmental predictors: Q1, January–March; Q2, April–June; Q3, July–September; Q4, October–December.
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oxygen concentration at that depth is between 1 and 5 ml O2 liter−1; 
this is also consistent with findings on the physiological preferences 
and thresholds of tuna. For instance, studies have found oxygen 
concentration tolerances as low as 3.5 ml O2 liter−1 for skipjack tuna 
(Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) and 
1.5 ml O2 liter−1 for bigeye tuna (Thunnus obesus) (32). We consider that 
the response to the DCS variable is partially masked by the 200-nm 
jurisdictional buffer that was used to exclude any within-EEZ fish-
ing in this study; a separate analysis including coastal fishing may be 
required to interpret the true influence of this variable on longline 
fishing effort distribution. From the DCS partial dependence plot 
(fig. S9), we can infer that the probability of fishing in the high seas 
increases with DCS during some months of the year, which is likely 
driven by the high amounts of longline fishing in the central Pacific 
Ocean. The overall preference for warmer waters described by the 
model likely results from the fact that many of the species targeted 
by the global pelagic longline fleet year-round are tropical or sub-
tropical (for example, T. albacares or T. obesus). These results (figs. S7 
and S11) agree with those of Kroodsma et al. (26), who found that long-
line fishing effort intensity was highest between the 16° and 19°C iso-
therms. The bimodal response to SST that can be observed during 
the boreal summer months may be caused by the northward move-
ment of some targeted species into more temperate waters during 
these months, as seen in swordfish (Xiphias gladius) (33) or Atlantic 
bluefin tuna (Thunnus thynnus) (34). These findings are aligned with 
the conclusions of the study by Arrizabalaga et al. (30), where sea 
temperature and dissolved oxygen were the variables that explained 
the most deviance when modeling tuna logarithmic catch per unit 
effort. Despite differences in the extents between our studies, as well 
as some variations in the environmental variables, the similarities in 
the environmental preferences of tunas and those displayed by long-
liners suggest that the high seas longline fleet is tracking many of the 
same environmental cues as their main target species. Given the wide 
range of species targeted by the global pelagic longline fleet, the en-
vironmental preferences of the fleet are not expected to bear exact 
resemblance with any one given taxon. Further, the high seas long-
line fleet may not have a static environmental niche but instead may 
adapt its distribution and “environmental preferences” to maximize 
overlap with its multiple target species throughout the year, in a po-
tentially consistent and predictable manner.

Given the global scale of our analysis, the spatial and temporal 
resolution of our predictors was coarse, which limited our ability to 
capture the influence of mesoscale oceanographic features, such as 
oceanic frontal zones and eddies, on the distribution of fishing effort. 
However, given the spatial scale of our study, we consider that our 
models successfully explain the broad environmental patterns that 
shape the distribution of the global longline fishing fleet in the high seas. 
We also see great promise in the use of environmental niche models 
for predicting the distribution of future fishing effort, which could 
bring us a step closer to designing and implementing precautionary 
spatiotemporal management measures based on future oceanographic 
conditions. While these efforts would have to be tailored for specific 
regional fleets, the promising predictive accuracy estimates that we 
obtained from our models indicate that estimating the future distri-
bution of fishing pressure based on oceanography is likely feasible.

Interpreting low occupancy rates
Our models predict significantly more area as being suitable for fish-
ing than was observed to have fishing effort. The unfished parts of 

ABNJ that were classified as suitable fishing grounds are not closed to 
fishing by RFMOs and are not further away from commercial fishing 
ports than those areas fished in ABNJ. While these areas could be 
the result of classification errors in our models, ecological theory 
provides an alternative explanation: decreased occupancy by target 
species of their fundamental niche. Multiple factors may influence 
whether a species occupies its fundamental niche, including limita-
tions to dispersal, predator avoidance, exclusion by interspecific or 
intraspecific competition, or lack of resources. Our results show that 
the average proportion of fishing ground occupancy for high seas 
longliners fluctuated by year and threshold method, with a maximum 
of 55 and 64% in 2015 and 2016, respectively. Just as an animal 
would avoid habitats with limited resources, unfished areas with ap-
propriate environmental conditions may be avoided by the high seas 
pelagic longline fleet due to reduced overlap with target species or 
insufficient abundances despite environmentally suitable conditions. 
A recent study demonstrated how several pelagic target species have 
experienced contractions in their ecological range because of decreas-
ing abundance (10). It is therefore conceivable that environmentally 
suitable fishing areas are avoided by longliners given changes in the 
distribution and abundance of pelagic target species, such as the range 
loss in the South Atlantic seen for bluefin tuna (10). Have the last six 
decades of pelagic fishing led to the overfishing of a significant pro-
portion of the suitable fishing grounds in ABNJ? Or are longline fleets 
just following changes of prey abundance influenced by other fac-
tors such as decadal oscillations or climate change? Limitations in 
fleet capacity or fuel cost seem unlikely reasons to explain the ab-
sence of fishing effort in 36 to 62% of suitable fishable habitat in 
ABNJ, as the high seas fishing fleet is supported by subsidies and the 
extent of their distribution suggests that no region of the ocean is 
too distant to be fished. We run a linear regression between the in-
tensity of longline fishing effort and DCS and found no correlation 
between the two (fig. S12); this suggests that any lack of fishing is 
not due to the remoteness of those areas despite the high fuel costs. 
The suite of explanatory variables used in our models is limited to 
the biophysical and physiographic dimensions, and therefore, do 
not take into consideration socioeconomic factors that may be cru-
cial for explaining observed patterns of fleet distribution. Fishermen 
are not subject to the same physiological and dispersal limitations 
as are marine species; their limitations are more likely to be political 
and economic ones. The distribution of high seas longliners is there-
fore likely to also be influenced by socioeconomic factors, includ-
ing, but not limited to, catch quotas, market prices of commercial 
species, fleet communication, or selection of landing sites. Regional 
bioeconomic models of the distribution of fishing effort could be 
used to understand differences in the drivers of distributions of fish-
ers and nontarget species and allow for the development of dynamic 
management measures based on the environmental and economic 
correlates (33); we believe that our models could represent a mean-
ingful component of these wider frameworks.

Additional factors may explain the lack of observed occurrence of 
fishing activities in areas predicted to be suitable for fishing, including 
(i) misclassification and thus missed observations of longline vessels 
or fishing effort, (ii) poor spatiotemporal satellite coverage, (iii) inten-
tionally switching AIS transponders off, and (iv) fishing events by 
fishing States or territories not included in our analysis. We addressed 
the last factor by assessing how much of the unfished suitable habitat 
may have been fished by longliners from the 26 States or territories 
not included in our analysis. We found that none of these countries 
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fished the unoccupied suitable fishing areas; most (65%) of the 1267 
fishing events by these fleets were predicted by our model. We think 
that a more detailed understanding of the behavior of fishing vessels 
out at sea may help us identify the general areas of expected fishing 
vessel activity, thus bringing us one step closer to abating illegal 
fishing by designating enforcement resources more strategically.

Reflections on the use of predictive models of fishing effort
While the distribution of some sectoral activities, such as deep-sea 
mining or oil and gas exploration, is well mapped and static, the 
dynamism of open-ocean fisheries makes understanding their spatio-
temporal distribution difficult and, consequently, monitoring, control, 
and surveillance a challenge. The models we present could become a 
useful tool for managers to focus their efforts on areas of likely fishing 
activity. As high-resolution satellite imagery is increasingly being used 
to look for fishing vessels, narrowing the areas of the ocean where 
there is a high portability of fishing activities may help streamline the 
process of detecting legal or illegal fishing vessel activity. The spatial 
and temporal resolution of our predictors was coarse, which limited our 
ability to capture the influence of mesoscale oceanographic features, 
such as oceanic frontal zones and eddies, on the distribution of fishing 
effort. However, given the global scale of our analysis, we consider that 
our models successfully explain the broad environmental patterns that 
shape the distribution of the global longline fishing fleet in the high seas.

We see great potential in improving the predictive ability of 
global longline fishing effort models through the development of 
future region-specific models that capture the regional relationships 
between fishing effort and environment, and predator-prey dynamics 
in more detail. Additionally, partitioning the niche models by fishing 
State may also be required to tease apart distinct environmental cor-
relations and behaviors, leading to more accurate predictions. As the 
spatiotemporal coverage of satellites capable of recording AIS signals 
improves and fishing effort classification algorithms become more 
accurate, so will the estimates of fishing effort between years, and 
behavior classification errors will decrease. Furthermore, with more 
years of data and improving spatiotemporal satellite coverage, the 
differences in environmental preferences between years will be at-
tributable more to changes in fleet behavior than to biases in fish-
ing effort observations.

CONCLUSIONS
As we combine an improved understanding of open-ocean fleet be-
havior with knowledge of the drivers of distribution of target and non-
target marine taxa, our ability to predict the co-occurrence of fishing 
with sensitive species or ecosystems will improve, as will the efficacy 
of related management measures. As the intensity and overlap of 
human uses of ABNJ continue to grow, ocean governance structures 
will have to rely more heavily on different forms of dynamic spatial 
management to accommodate all users and activities (35), which, in 
turn, rely on open-access remote sensing data and collaborations be-
tween researchers, fishers, and the management community (36). Our 
research demonstrates how the global pelagic longline fleet exhibits 
predictable environmental preferences for various biophysical and 
physiographic predictors, which can be used to explore the current and 
future distributions of fishing fleets. Improvements in remote sensing 
and oceanographic forecasting for variables (for example, SST) open 
new opportunities for the implementation of adaptable ocean manage-
ment measures that match the dynamics and distributions of ocean 

biological resources and resource users. As we grapple with rapidly 
changing oceans and ocean uses, advancements in predictive modeling, 
aided by new technologies, will help us move away from reliance on 
retrospective tactics in area-based management and toward more dy-
namic approaches capable of delivering ecosystem- based management.

MATERIALS AND METHODS
Here, we used a form of classification model known as BRT to charac-
terize the distribution of longline fishing in the high seas (as reported 
by GFW) from environmental variables primarily obtained from in-
creasingly available remote sensing sources (36). We used the pro-
cessed AIS geolocation data from GFW in the form of gridded fishing 
hour estimates for 2015 and 2016 as observations to fit the environ-
mental niche models.

AIS fishing effort data
GFW analyzes and provides online interactive maps of the behavior 
of fishing vessels from global AIS and VMS data. AIS was originally 
designed as a tool to avoid collisions at sea as part of the IMO Safety of 
Life At Sea Treaty [SOLAS Treaty, Chapter V; (37)]. Vessels equipped 
with an AIS transponder signal their position and vessel identifica-
tion data such as IMO number, maritime mobile security informa-
tion number, call sign, ship type, speed and course over ground, and 
other information to ships nearby carrying the transponders as well 
as to receiving ground stations and low-orbit satellites. Signal trans-
mission frequencies vary with speeds between a few seconds and a 
few minutes. These high-resolution tracking data are then analyzed by 
GFW to assess ship movements and behavior, using neural network 
algorithms and logistic models to classify different fishing gear types 
as well as the points in space and time where individual vessels de-
ploy their fishing gear (16). Data used for this study were derived 
from the logistic regression model 1.1 (http://globalfishingwatch.io/
fishing__logistic_1_1.html). It is worth noting, however, that GFW 
only uses satellite-based AIS data, which have limitations such as a 
maximum number of individual signals that can be detected simulta-
neously, heterogenous satellite spatiotemporal coverage, or gaps near 
coastlines, where shore-based stations receive the signal that the satel-
lite can no longer detect. It is unlikely for areas in the high seas to 
experience satellite channel saturation, and vessel AIS signals are also 
unlikely to be detected by shore-based stations. Fishing effort is de-
tected and calculated, as hours of fishing, for individual fishing gear 
types: (i) pelagic longlines, (ii) trawls, (iii) purse seines, (iv) fixed gear, 
and (v) other types of fishing gear. However, each of these is subject 
to behavior classification errors. For this study, estimates of global 
pelagic fishing effort for the years 2015 and 2016 were extracted from the 
GFW database, including vessels from 114 countries and territories.

We filtered the GFW fishing effort estimates spatially to only in-
clude longlining events in the high seas. Within the high seas, fishing 
effort by pelagic longliners accounted for 88.9 and 80.4% of the quan-
tified fishing effort (hours) in ABNJ across all gear groups in 2015 
and 2016, respectively (fig. S1). The dominance of longline fishing 
effort in ABNJ and its known negative impacts on multiple nontarget 
species (38) underscore the importance of understanding the poten-
tial drivers of its global distribution (Fig. 1). Hence, we focused on 
longlines only in our modeling efforts, particularly the distribution 
of fishing events rather than fishing intensity.

According to GFW fishing effort estimates, 45 to 50 fishing States 
and territories deployed longlines in ABNJ throughout 2015 and 2016. 
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We refined the list of countries to only include those that accounted 
for the >80% of the observed fishing effort; this reduced the list of 
fishing States and territories to five (fig. S2). We further selected the 
fishing effort data used to build the environmental niche models by 
only including these five major fishing States and territories. The 
fishing effort applied by these countries was aggregated spatially to 
1° by 1° cells for 2015 and 2016 (Fig. 1) given the global extent of the 
analysis (39) and then partitioned temporally into 24 months (Fig. 2). 
Environmental data layers specific to each month were then used to 
run each of the 24 monthly environmental niche models. The use of 
monthly averages and monthly climatologies for certain environmental 
variables inevitably resulted in the loss of some fine-scale environmental 
features (for example, mesoscale oceanic eddies and frontal zones) 
that may influence the distribution of fishing effort at submonthly time 
steps. Future analysis at finer spatiotemporal resolution may allow 
the inclusion of more information on dynamic oceanographic fea-
tures. For the purpose of this study, we focused on the monthly envi-
ronmental variability on the distribution of fishing effort.

Environmental predictor variables
The environmental variables selected for modeling the ecological 
niche of global longline fishing effort in ABNJ included both static 
(physiographic) and dynamic predictors (biophysical). Various habitat- 
modeling studies support the inclusion of biophysical and physio-
graphic predictors across spatial and temporal scales for studying the 
ecology of species of commercial interest (30, 33). The dynamic vari-
ables were extracted by month and consisted of SST, T400, TKE, POC, 
NPP, MLD, SOC, O400, SSS, S400, and ZEU. The static physiographic 
variables included BATH, DCS, and DSM. All variables were extracted 
at 1° by 1° spatial resolution cells or aggregated as necessary and had 
different temporal resolutions; some are monthly estimates while 
others are climatological (that is, averages for the month across many 
years; see table S9).

Environmental niche model fitting, validation,  
and projection
All BRTs were fitted to the fishing effort data using RStudio, a de-
velopment environment for the open-access statistical software R. 
The models were fitted to the number of monthly fishing effort pres-
ence points derived from GFW estimates and double the number 
background (pseudoabsence) points from the high seas region; a low 
number of points is recommended for modeling approaches such as 
BRTs (40). Background points were created on a monthly basis by 
randomly selecting from the unfished areas of ABNJ (tables S11 and 
S12). Randomly selecting background pseudoabsence points from any-
where in the high seas, including polar and subpolar regions, where 
almost no longline fishing effort occurs, biased the results and exag-
gerated the importance of latitudinally structured variables such as 
SST and SOC (fig. S13). The distribution of background pseudoab-
sence points was therefore constrained to areas that had SST values 
within the observed temperature range of observed fishing. In addi-
tion to the 24 monthly models, we computed a temporally averaged 
model that included the data from all 24 months to assess which of 
the two approaches performed better. After fitting the classification 
models, model outputs were mapped onto geographic space by pro-
jecting them using layers of the same environmental predictors. The 
resulting two-dimensional map represents a probability distribution 
surface where each grid cell in ABNJ was assigned a value between 
0 and 1. Confusion matrices were then computed to assess how well 

each of the monthly models could predict the distribution of long-
line fishing effort. Various model performance indices were calculated, 
including the AUC, κ statistic (a measure of categorical agreement 
describing the difference between the observed and chance agree-
ments), sensitivity (the proportion of actual presence that is accu-
rately predicted), specificity (the proportion of actual absences that 
are accurately predicted), and accuracy values (tables S1 to S4 and 
figs. S3 and S4). We then used a nonparametric Wilcoxon signed- 
rank test to assess whether the performance metrics of the monthly 
models are statistically dissimilar from those of the temporally aver-
aged model (table S5).

We also explored the explanatory accuracy of the monthly mod-
els at predicting the distribution of future fishing effort by project-
ing monthly models onto the oceanographic conditions 1 (n = 23), 
6 (n = 180), and 12 (n = 12) months in advance and assessing how 
accurately we could predict the distribution of observed longline 
fishing effort in those months (fig. S5). We further explored the in-
fluence of the environmental variables by running two additional 
monthly models for all the months of 2016, one of which only in-
cluded static (n = 3) variables and the other was run using only dy-
namic variables (n = 11) (table S10).

There are multiple possible approaches for selecting a probability 
distribution threshold to convert probability maps into binary maps. 
Here, we explored the influence of two separate methods of selecting 
thresholds for obtaining binary habitat suitability maps. Areas with a 
monthly probability distribution above the set threshold were con-
sidered as suitable habitat for the studied organism. First, we calcu-
lated monthly thresholds based on ROC curves, which show the 
relationship between the true-positive (sensitivity) and false-positive 
(specificity) rates. The second type of threshold that we calculated was 
based on the MPD of the monthly models. While both methods are 
widely accepted procedures (41) for establishing cutoff threshold val-
ues, the resulting binary habitat suitability landscapes can differ, and 
results must not be interpreted as final, but instead as different 
scenarios of pelagic longline fishing suitability in the high seas. 
Additional information about how BRTs were fitted and projected is 
available in Supplementary Materials and Methods.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/8/eaat3681/DC1
Supplementary Materials and Methods
Fig. S1. The proportion of 2015 and 2016 fishing effort (hours) in ABNJ by gear.
Fig. S2. The proportion of pelagic longline fishing effort attributed to the main fishing States or 
territories.
Fig. S3. Accuracy values obtained for the 2015 and 2016 monthly boosted regression tree 
models  after applying an ROC threshold. 
Fig. S4. Accuracy values obtained for the 2015 and 2016 monthly boosted regression tree 
models after applying an MPD threshold.
Fig. S5. The predictive accuracy of the monthly BRTs after projecting them onto future 
environments.
Fig. S6. Distribution of predicted and observed fishing effort in January and July of 2015 using 
different thresholds: ROC and MPD.
Fig. S7. The SST partial dependence plots from the monthly 2015 models.
Fig. S8. The temperature at 400-m partial dependence plots from the monthly 2015 models.
Fig. S9. The DCS partial dependence plots from the monthly 2015 models.
Fig. S10. The oxygen at 400-m partial dependence plots from the monthly 2016 models.
Fig. S11. The SST partial dependence plots from the monthly 2015 models.
Fig. S12. The distribution of fishing effort intensity as a function of the Euclidean distance 
(kilometers) to the continental shelf.
Fig. S13. Monthly variable importance scores for boosted regression trees using background 
pseudoabsence points from the entire high seas areas for 2015 and 2016.
Table S1. Various model performance indices of the monthly BRTs for 2015 and 2016.
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Table S2. Various model performance indices of the monthly BRTs for 2015 and 2016.
Table S3. Various model performance indices of the temporally averaged BRT model.
Table S4. Various model performance indices of the temporally averaged BRT model.
Table S5. Results from the Wilcoxon signed-rank test comparing the performance of monthly 
models to the temporally averaged model.
Table S6. Amount of fundamental niche occupied by pelagic longliners.
Table S7. The 2015 VI scores.
Table S8. The 2016 VI scores.
Table S9. Average 2016 model performance metrics using different environmental variables.
Table S10. Description of the variable type and source for each of the 14 biophysical and 
physiographic predictors.
Table S11. The number of presence and pseudoabsence points in 2015.
Table S12. The number of presence and pseudoabsence points in 2016.
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