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1. INTRODUCTION

In this report, prepared at the request of the NOAA Fisheries Pacific Islands Regional Of-
fice (PIRO), predicted future annual levels of bycatch in the Hawaii deep-set longline fishery
are provided for the main Hawaiian Islands insular stock of false killer whales; leatherback,
loggerhead, green, and olive ridley sea turtles; and humpback and sperm whales. Addition-
ally, predictions of the future annual levels of bycatch resulting in a classification of serious
injury or mortality are provided for the three cetacean populations. The data, methods, and
assumptions used to derive these predictions are described within this report.

The Hawaii-based longline fishery is a limited entry fishery with a maximum of 164 permits
and is split into two management components: a shallow-set fishery (targeting primarily
swordfish) and a deep-set fishery (targeting primarily tunas, most commonly bigeye tuna).
In this report, a Hawaii longline fishing trip is defined as any commercial fishing trip by a
vessel with a Hawaii longline permit that departs or returns at a Hawaii port. An exception
to this rule is a trip that departs from a Hawaii port and lands in American Samoa. In this
case, the trip is assigned to the American Samoa longline fishery. The shallow-set fishery
consists of trips that were declared to the NOAA National Marine Fisheries Service (NMFS)
by the captain, prior to departure, as shallow-set trips. The deep-set longline fishery consists
of all other trips and must comply with the regulations for this fishery. A permitted vessel
may participate in both fisheries. All the predictions provided in this report refer to the
deep-set fishery.

Bycatch rates used in this report are derived from data on incidental takes of protected
species collected by NMFS observers deployed on sampled deep-set Hawaii longline trips.
The Marine Mammal Protection Act (MMPA) and the Endangered Species Act (ESA) define
“take” in slightly different ways, but basically, “take” means to catch, kill, or harm a marine
mammal or protected species in any way. An “incidental take” means a take that is incidental
to, and not the purpose of, the carrying out of an otherwise lawful activity. Herein, “bycatch”
refers to the total number of take events in which an animal is hooked or entangled in the
longline gear. Under this definition, bycatch is a component of the total incidental take
in the Hawaii longline deep-set fishery. For marine mammals, the definition of bycatch is
extended to include observed calves of an adult marine mammal taken as bycatch. As there
have been no such observed calves for the species being analyzed, I do not go into details
about incorporating these events into the bycatch estimates.

Following the guidelines outlined by NMFS (2012a), an observed marine mammal inciden-
tal take is classified as a death or into a relevant injury category (i.e., serious or non-serious).
Herein, the category “death or serious injury” is abbreviated as DSI. For cetaceans, the pre-
dictions computed here are for both the total bycatch and the number of bycatch events
resulting in a DSI.

There are a couple of practical constraints on the definition of bycatch used herein. First,
observers are instructed to record all observed hooked or entangled animals during haulback
of the longline gear (Pacific Islands Regional Office Observer Progam, 2013). Animals ob-
served hooked or entangled that are freed before being landed on deck are included in this
definition. However, hooked or entangled animals that are removed (e.g. by predators) or
freed (e.g. by escape or drop-off) from the longline prior to the longline becoming visible
on the haulback would not be observable and therefore could not be recorded, unless war-
ranted by convincing circumstantial evidence of their capture. These “missed” animals are
not included in the bycatch estimates or predictions as there is no practical way to quantify
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them. Nor do the predictions include animals that are not hooked or entangled but are in
some other unobserved way caught, killed, or harmed by the activity of deep-set fishing.
Such events are not included because it is not feasible to monitor all aspects of a trip. If
an observer witnesses an interaction with a marine mammal or sea turtle that does not fall
into the category of hooked or entangled, the interaction is reviewed by NMFS to determine
if that interaction should be included in the bycatch estimates. There has only been one
observed take between 2002 and 2012 that was not categorized as hooked or entangled. This
incident involved a marine mammal that was briefly restrained by the gear and non-seriously
injured. Upon review, it was decided to include this interaction in the bycatch estimates and
record this interaction in the catch table (table of all species that were hooked or entangled
during an observed haul).

Second, the predictions of bycatch refer to the total number of bycatch events, which may
exceed the number of individual animals that are caught. It is possible for an animal to be
observed caught, then freed or released, and then caught again during the same year. For
example, a loggerhead sea turtle was observed to be caught twice during a shallow-set trip
in 2012. These two events are considered two bycatch events. Similarly, the DSI predictions
refer to the total number of bycatch events resulting in a DSI. This number may exceed the
number of individual animals that are DSI.

The predictions in this report were derived using a Bayesian inferential approach. In the
next section some of the underlying assumptions and caveats behind the predictions are
discussed. In Section 3 the data collection process for the data used to develop the prior
predictive density is described. The prior predictive density is defined and the different
Bayesian models used to compute these densities are introduced in Section 4. The requested
predictions for each species are given in Section 5. The sections covering the predictions for
each species are written so they are self-contained with regards to the results.

2. UNDERLYING ASSUMPTIONS AND CAVEATS

2.1. Effort Scenario. Except for predictions concerning false killer whales, the predictions
presented in this report assume that the only alteration in the fishery or ecosystem that may
affect bycatch is an increase in effort. The scenario for future effort provided by PIRO in
its Biological Evaluation (BE) (NMFS, 2013) is that future fishing effort may be the same
as that in 2012, but with the addition of small increases in the number of hooks and sets
deployed annually. Specifically, including these increments, the effort scenario hypothesized
1,305 trips2, 18,592 sets, and 46,117,532 hooks. The scenario implies that, on average, trips
will be composed of more sets and that more hooks will be deployed on a set. Although effort
is expected to fluctuate between years, predictions are made assuming that future annual
effort is constant and equal to PIRO’s projected scenario.

When using a statistical model to make predictions for new observations, the predictions
for new cases are referred to as interpolations or extrapolations. Interpolation means the
prediction is for new cases with predictor variables not too different from the sampled values
of the predictor variables used to construct the fitted model; whereas, extrapolation refers
to predictions based on predictor variables outside the range observed in the sample used
to construct the model. For an interpolation to be useful, only a few assumptions must

2There were 1,305 deep-set Hawaii longline fishing trips landing in 2012; this is the number of trips used
in the predictions. The BE indicated there were 1,523 trips in 2012; this figure was based on a different
method of aggregation and was not used.
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be satisfied, principally that the new cases behave like those in the dataset used to fit the
model. For valid extrapolation we also require that the estimated prediction function is
relevant to cases with predictors outside of the interpolatory range. For the extrapolations
in this report to be relevant, not only does the predictor model have to be relevant for
values of effort outside the range of observed effort, it also needs to be relevant to the future
composition of trips (more hooks per set and more sets per trip).

2.2. Bycatch as a Function of Effort. To predict future annual bycatch levels, we are
assuming that bycatch levels are proportional to a function of effort. This is a simple model
that makes the assumption that bycatch can be controlled by changing the amount of effort.
Although it may seem logical that there is a causal relationship between bycatch levels and
effort, it is unlikely that the causal relationship between bycatch levels of endangered species
and effort is so simplistic. During a fishing operation, the maximal number of a species that
can be caught is the number of that species exposed to the operation. For endangered species,
this is likely to be very few animals, if any. As a fishing operation typically involves deploying
thousands of hooks, it seems that the number caught would have a stronger relationship to
the number of animals exposed to the operation than to the number of hooks set during the
operation. For example, in a randomized experiment where three animals are exposed to a
single longline set with 1,000 hooks and, alternatively, a longline set with 1,500 hooks, where
the conditions are such that each animal is exposed to numerous hooks, would we really
expect there to be a difference in the bycatch levels between 1,000 and 1,500 hooks? Now
consider effort summarized over several trips and dozens of sets, then effort gives a measure
over a wider area, longer time period, and wider range of fishing practices. At this scale,
effort may have a stronger association with bycatch levels and such a simplistic equation
could be useful for prediction. However, such a model relies on the stringent assumption
that the casual conditions that are captured by effort in the data used to construct the model
will be similar in the future. Nevertheless, as predictions of future bycatch based on future
projected effort have been requested by management, a simple proportional relationship
between fishing effort and bycatch has been imposed.

2.3. Prohibited Area in Main Hawaiian Islands. For the main Hawaiian Islands insular
false killer whale (IFKW) stock, the predictions assume the main Hawaiian Islands longline
fishing prohibited area is that which went into effect on December 31, 2012 (NMFS, 2012b)
and permanently closed a portion of this area which had previously been seasonally open
to longline fishing. The imposed geographic range of the IFKW stock is the waters within
140 km of the main Hawaiian Islands, meaning that any observed false killer whale (FKW)
takes outside the 140 km boundary are assumed not to be from the insular stock. Under
this assumption, the only zones that remain open to longline fishing where a FKW from the
IFKW stock may interact with a longline trip are the zones within the 140 km boundary
and outside the longline fishing prohibited area (Figure 1). Herein, the zones that remain
open to longline fishing and are within the 140 km boundary are referred to collectively as
the “open area”. All predictions of future levels of bycatch and DSI given in this report for
the FKW are therefore only for the open area.

2.4. Effort in the Open Area. A scenario specific for effort in the open area was not
prescribed by PIRO for this analysis. The effort trends within the 140 km boundary and
the open area for 2008-2012 given in Table 1 do not match those for the entire deep-set
fishery (NMFS, 2013). So for this analysis it is assumed that the fleets effort within the
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Figure 1. The boundaries for the main Hawaiian Islands insular false killer
whale stock (140 km boundary) and the longline fishing prohibited area (closed
area). The predictions for future annual bycatch levels for the insular false
killer whale stock are for the area that is within the 140 km boundary and
outside the closed area boundary; i.e., the open area (shaded in grey).

open area will be similar to that of past years, although a range of effort (from lower to
higher) is also explored. As the zones within the open area are small compared to the length
of a deployed longline, prior to the regulations that established the longline fishing prohibited
area it was not uncommon for a longline set to span a zone and cross the boundaries of the
open area. To approximate past effort within the open area, the four points representing the
recorded begin and end locations (longitude and latitude) of the gear setting and haulback
were used. A set was assumed to have been in an area (e.g., within 140 km boundary or
within the open area) if at least one of the four points was within the area, and a trip was
assumed to have been in the area if at least one set was considered to be within the area.
The number of hooks within a set in an area was approximated as the number of hooks
multiplied by the proportion of the four points in the area. For example, if a set had 2,000
hooks and three or the four points (0.75) were within the open area, the approximate effort
in the open area was 1,500 hooks. As a set or trip can be assigned to more than one region
and hooks cannot, using hooks seems like a more logical measure of effort in this situation.
Although annual effort within the open area is expected to fluctuate, predictions within this
report assumed a constant effort of 600,000 hooks. The effort of 600,000 hooks is slightly
less than the average (635,620 hooks) and greater than the median (499,440 hooks) for the
effort given in Table 1. Except for assuming the new (for 2013 and onwards) prohibited area
and the future effort in the open area, it is assumed that all fishing and ecological factors
that affect bycatch remain at historical levels.
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Table 1. Hawaii deep-set longline fishing effort in the range of the
IFKW stock computed using the Hawaii longline logbook database
(https://inport.nmfs.noaa.gov/inport/item/2721). Effort for a trip was as-
signed to the year the trip arrived back at port. The headings “140km” and
“open” refer to the area within the 140 km boundary and the open area,
respectively.

year trips† sets hooks

140km open 140km open 140km open

2008 259 235 1,085 855 1,893,507 1,014,775
2009 218 193 871 614 1,595,487 750,906
2010 134 118 534 339 1,057,813 433,036
2011 164 138 542 371 1,064,569 499,440
2012 170 138 501 357 928,818 479,944

†Number of trips returning during the year that exerted some effort (sets, hooks) within the open area or
140 km area.

2.5. Probability of a DSI. When predicting future levels of bycatch events resulting in a
DSI, it is assumed that levels of past classification proportions are representative of future
classification proportions. In other words, it is assumed that there will be no changes in the
fishery or ecosystem that will affect the probability that a bycatch event will result in a DSI.

3. SAMPLE SELECTION AND DATA STRUCTURE

3.1. The Two-Stage Probability Sampling Design. A sample of deep-set longline trips
on which scientific observers were deployed was used to develop the models for computing
the predictive densities. When developing a Bayesian model, the structure of the data
used to construct the model needs to be taken into account. As the data collection method
determines the data structure, I now explain how trips were selected for observer deployment.

From mid-year 2002 through mid-year 2012, a probability sampling design was used to
randomly select the trips. A probability sample implies that all trips have a probability
of being sampled and the sampling probabilities are known or approximated accurately.
To reach a balance between obtaining a probability sample and being cost effective, the
sampling design used to sample the fleet had a two-stage sampling protocol. This two-stage
design accommodated fluctuating coverage levels while utilizing observers efficiently. This
flexibility was advantageous as coverage levels typically varied throughout the year because
of fluctuations in the fleet’s activity level, demands of 100% coverage in the Hawaii longline
shallow-set fishery, and an influx of new observers after their completion of NMFS observer
training. Additionally, the time between an observer’s deployments needed to be minimized
as they were not paid during this period. The alternative of paying them while they were
waiting to be deployed would have increased the cost of the observer program.

3.1.1. The First Stage. The first stage of the sampling protocol was a systematic sample. The
sampling frame used to draw the systematic sample was the list of notifications of intended
departures of deep-set trips. Before departing on a fishing trip, longline vessels were required
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to notify the PIRO observer program contractor at least 72 hours prior to their intended
departure date. Consequently, the list of notifications is a record of all deep-set longline
trips that were undertaken. To enable sample selection, the PIRO contractor numbered
notifications sequentially in the order in which they were received. Herein, this assigned
number is referred to as the notification number. Prior to the beginning of a quarter, a new
systematic sample of notification numbers was drawn by the NOAA Fisheries Pacific Islands
Fisheries Science Center (PIFSC) and supplied to the contractor. The trips associated with
these selected notification numbers were designated to be sampled.

The systematic sample required having an observer available to be deployed whenever
a selected trip was ready to depart. Achieving this requirement under the full targeted
coverage, typically 20%, required having enough observers on contract to accommodate
higher levels of fleet activity and paying them between deployments. These requirements
could not be met under the level of funding; therefore, the systematic sample was drawn at
5% smaller coverage than the targeted level.

3.1.2. The Second Stage. The additional trips needed to reach the full targeted level were
selected using the secondary sampling protocol. This second stage was used when all trips
selected by the systematic sample were already covered and an observer was ready to be
deployed. In this instance, a trip was randomly selected with equal probability from the
notifications still eligible for observer placement. If more than one observer needed to be
assigned, the appropriate number of trips was sampled with equal probability from this pool
of notifications. The coverage obtained by this second stage was flexible and dependent on
the need to deploy observers. This secondary sampling protocol departs from traditional
probability sampling because the days when additional samples were drawn were not ran-
domly selected but determined by the need to deploy observers; consequently, the sampling
probabilities are unknown. To approximate the sampling probabilities the contractor’s no-
tification records were used. Examination of these records revealed periods of time when
coverage appeared to have been greater or less than the full targeted coverage.

3.1.3. Systematic-Plus Sample. Herein, this two-stage sampling design is called a systematic-
plus design. The samples selected by the systematic sample are referred to as the systematic
sample and the samples drawn additional to the systematic sample are referred to as the
plus sample. These two samples compose the systematic-plus sample. The systematic-plus
sample is not a traditional two-stage sample design as the term “two-stage design” typically
refers to a design where primary units are selected during the first stage, and during the
second stage, elements within the selected primary units are selected. With the systematic-
plus sample, the second stage involves selecting notifications that are not sampled during
the first stage.

3.2. Implementation of the Systematic-Plus Sample. Now consider a few details con-
cerning the implementation of this design in the deep-set fishery. To allow periodic ad-
justments to the level of coverage by the systematic sample, a new systematic sample was
drawn quarterly. The quarterly samples were drawn at 15% coverage, except for the samples
covering the first quarters of years 2005-2009 that were drawn at 10% coverage. The lower
coverage ensured observers were available to cover the deep-set systematic sample and all
the trips by the shallow-set fleet (typically most active during the first quarter). The lower
coverage in the first quarter was offset using the plus sampling protocol throughout the year
so that the required annual coverage of at least 20% deep-set trips was achieved. Because
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a new systematic sample was being drawn each quarter, a year’s sample was a stratified
sample with a systematic-plus sample within each stratum (quarter).

On 27 August 2012 there was a change in the regulations of the Hawaii longline deep set
fishery that imposed new limits on swordfish landed (NMFS, 2012c). The new limits are as
follows: (1) With a NMFS observer onboard, there is no limit on the number of swordfish
landed or possessed on a trip, regardless of the type of hook used; (2) With no NMFS
observer onboard, the limit is 25 swordfish landed or possessed on a trip, if the vessel uses
only circle hooks; (3) With no NMFS observer onboard, and if the vessel uses any hooks other
than circle hooks, the limit is 10 swordfish landed or possessed on a trip. In essence, this
regulation created three components of the deep-set fleet defined by the number of swordfish
a trip can keep. Regardless what design is used to select notifications, the first component
(no limit on swordfish kept) will have 100% coverage and the other two components will
have no observer coverage. Prior to the new regulations all deep-set trips had a trip limit
of 10 swordfish landed. The regulation limiting number of swordfish landed was put into
place to discourage trips from targeting swordfish, which typically implies setting the gear
shallow. The shallow setting of gear has historically resulted in different observed catch rates
for the protected species. The exclusion of part of the fleet from the sample gives rise to
the potential of exclusion bias and places limits on how much information our sample can
provide about the population (total effort of the deep-set fleet). Extrapolating from our
sample to the population requires making assumptions about the population that cannot be
confirmed from the sample.

Although the systematic-plus sample is still used to sample the notifications, the new
regulations changed what the sample represents. Prior to the new regulations, the sample was
a random sample of all deep-set trips fishing under a uniform set of rules and requirements.
Under the new regulations, what is being randomly drawn is a selection of trips that will
have an observer onboard and not have a trip limit on swordfish landings.

3.3. Properties of the Systematic-Plus Sample. For now ignore the consequences of
these new regulations and consider some of the properties of the systematic-plus sample.
First, consider just the systematic sample as this sample by itself constitutes a probability
sample of the fleet. The systematic sample is a one-stage cluster sample where all elements
in the selected clusters are sampled. For example, suppose there are a total of 100 trips
and a systematic sample at 20% coverage with 5 starting points is to be drawn from these
100 trips. Using sets of notification numbers, the 25 clusters that define the population are
{1, 26, 51, 76}, {2, 27, 52, 77}, . . . , {25, 50, 75, 100}. To draw a sample of 5 clusters, only five
starting points (the first notification number in a cluster) between 1 and 25 need to be drawn
to define the selected clusters. Hereafter, the clusters defined by a systematic sample will
be referred to as the systematic clusters. The systematic samples used to sample the deep-
set fleet used simple random sampling without replacement to select 5 systematic clusters.
Therefore, the primary sample units are the systematic clusters and the notifications (trips)
are the primary elements of the systematic clusters.

A desirable property of the data collection process when using Bayesian inference is ig-
norabililty. Informally speaking, ignorability means that a model can explain the inclusion
process (process that determines if a unit is observed or missed) and that the inclusion
process can be ignored after the model accounts for it; that is, conditional on measured co-
variates, the missing data are not related to the variable of interest. However, the inclusion
process does need to be modeled for the purpose of simulating replicated datasets and model
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checking (Gelman et al., 2004). The simple random sample is a design that is ignorable and
known with no covariates. Designs that are ignorable and known given covariates include the
stratified design with simple random sampling within strata and the two-stage cluster design
with simple random sampling at both stages. With regards to the systematic samples of the
deep-set fleet, a year’s sample is a stratified sample where within strata a one-stage cluster
sample is drawn using simple random sampling. Thus, the design is ignorable given known
covariates. For a detailed discussion of ignorability see Gelman et al. (2004) and Little and
Rubin (2002).

So far, I’ve assumed that all selected samples are observed. However, there have been
instances when a trip selected by the systematic sample was not observed. The typical reason
for not deploying an observer was that no observers were available. When the number of
missed samples is small, one can often perform a good analysis assuming that the missing
data are ignorable (conditional on fully observed covariates). As the fraction of missing
information increases, the ignorability assumption becomes more critical (Gelman et al.,
2004). One component of the definition of ignorability states that the data are missing at
random. An informal definition of missing at random is that missingness is not related to the
data values. In the earlier years of the systematic-plus sample there would be periods where
observer coverage fell below the targeted coverage of the systematic sample and several trips
selected by the systematic sample were missed. In recent years a small percentage, under
7%, of trips selected by the systematic sample have been missed.

Now consider the plus sample. Standing alone, the plus sample does not necessarily pro-
duce a probability sample as there are typically periods when no plus samples are selected so
some trips will not have a chance of being selected. In terms of the complete systematic-plus
sample, trips are typically selected with unequal probability as a result of the plus sample.
For example, trips that have a potential of being selected by the plus sample will have a
greater probability of being selected than trips that are never subjected to being drawn by the
plus sample. Random sampling with unequal sampling probabilities is ignorable conditional
on the covariates that determine the sampling probability, as long as the covariates are fully
observed in the general population (Gelman et al., 2004). One possible strategy is to consider
the periods that appear to have a constant level of observer coverage as post-stratification.
Two obstacles with this strategy are that most post-strata would have no observed bycatch
and it is unclear how to model the inclusion process for the purpose of simulating replicated
datasets and model checking as the systematic sample would run through the different post-
strata. A key idea for Bayesian inference with complicated designs is to include in the model
of the sampling distribution (or data distribution) enough explanatory variables such that
the design is ignorable. The problem with this strategy is that the information recorded in
a vessel’s logbook is very limited and bycatch events are so rare that models quickly become
over parameterized.

3.4. Datasets used for Analysis of Bycatch. Because of the uncertainty on how to
proceed using the systematic-plus sample, the plus sample was excluded. The majority
of observed bycatches of the species of concern were on trips selected by the systematic
sample. As the samples from 2002 through 2007 had long periods where coverage fell below
the targeted coverage of the systematic sample, the data from these years were not used.
For years 2008 through 2010 there were a few short periods where coverage fell below the
targeted coverage of the systematic sample. As there were trips selected by the plus sample
near these periods, these trips were substituted for the missed trips in the systematic sample.



9

In 2008 the coverage during most of the last month of the fourth quarter was below the
targeted coverage of the systematic sample so the data were truncated near the beginning
of December. During all years, there were trips selected by the systematic sample that were
missed even when coverage was above the targeted level of the systematic sample. In these
cases, trips selected by the plus sample that were near these missed samples were used as
substitutes. The percentage of notifications selected by the systematic sample that were
missed was 3% for year 2008 (excluding notifications in December), 6% for year 2009, and
only 1% to 0% for the years 2010 through 2012. As explained above, mid-year 2012 a change
in regulations for the fishery resulted in part of the deep-set fishery not being subject to
selection. Nevertheless, these data were included and treated as if representative of the two
components of the fleet not sampled.

As there were so few observed bycatch events for the species of concern, stringent distri-
butional assumptions were made when modeling the data. With these stringent assumptions
it would be advantageous to have a sample that would be robust to model misspecification.
A self-weighting sample would be preferred as it can provide robustness to some forms of
model misspecification (Lohr, 2010). A self-weighting sample is a sample in which the prob-
ability of inclusion (probability the unit is included in the sample) are equivalent. If each
quarter had a systematic sample at 15% coverage the sample would be self-weighting as
each systematic cluster, and thus each trip, would have a 15% chance of being included in
the sample. Therefore, to create a self-weighting sample, we can exclude the three quarters
with only 10% coverage or use the plus samples to create a psuedo systematic sample at
15% coverage. As each of the three quarters had sufficient plus samples to create a psuedo
systematic sample at 15% coverage, three pseudo systematic samples were created. This
was achieved by adding trips selected by the plus sample within the same stratum to each
sampled systematic cluster so that it contained the number of trips that would have been
included had the systematic sample been drawn at 15% coverage. As the trips in the plus
sample were generally spread out throughout the first quarter, the adjusted systematic clus-
ters should approximate systematic clusters at 15% coverage. With regards to predicting
bycatch, this adjusted systematic sample should provide some level of robustness to tempo-
ral and similar fluctuations of bycatch rates. Herein, this dataset will be referred to as the
adjusted systematic sample and the dataset that includes the unadjusted systematic samples
will be referred to as the systematic sample. The effort observed for both of these samples
is provided in Table 2.

3.5. Additional Datasets used for Analysis of DSI. For inference concerning the future
annual predicted levels of DSI, the injuries of observed bycaught marine mammals during
2007-2011 were classified under the current policy directive for classification (NMFS, 2012a).
The observed bycatches of sperm and humpback whales prior to 2007 were also classified
under the current policy directive. The sperm, humpback, and Bryde’s whale observations in
the deep-set and shallow-set fisheries were pooled for analysis related to DSI. As these three
species are not known to depredate catch or bait and their observed interactions have been
entanglements, pooling their injury conditions likely introduces little, if any, bias; whereas,
without pooling, the predictions of DSI would likely be less accurate as a result of each
species having only a couple of observed interactions. For inference concerning FKW, injury
classifications of blackfish were also considered. A blackfish is a cetacean that is either a
false killer whale or a short-finned pilot whale but which of these two is unknown. FKW
and blackfish observed prior to 2007 and classified under the previous policy directive for
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Table 2. Observed effort in the Hawaii deep-set longline fishery com-
puted using the Pacific Islands Region longline observer database
(http://ias.pifsc.noaa.gov/lds/lods.html). The effort is given for the system-
atic sample and the adjusted systematic sample (adj.systematic). Trips are
assigned to the year when their notification was sampled.

year systematic adj.systematic

trips sets hooks trips sets hooks

2008 166 2,295 5,140,728 184 2,504 5,593,824
2009 179 2,518 5,735,715 194 2,733 6,185,006
2010 152 2,109 4,738,414 167 2,290 5,123,772
2011 194 2,698 6,359,670 194 2,698 6,359,670
2012 201 2,720 6,540,941 201 2,720 6,540,941

Table 3. Observed counts in categories of injury classifications, where large
cetaceans include the sperm whale, humpback whale, and Bryde’s whale. The
categories represented are DSI (dead or serious injury), NSI (non-serious in-
jury), and PR (prorated).

2007-2011 pre-2007

DSI NSI PR DSI NSI PR

large cetaceans
0 1 2 0 2 3

false killer whales
20 2 - 20 1 -

blackfish
5 1 - 5 0 -

classification were used as prior information. Table 3 provides the counts in each category
for observed bycatches prior to 2007 and after 2007. The 2012 marine mammal observed
interactions were not classified prior to this report. In 2012 there were no observed bycatches
of humpback or sperm whales but there were observed bycatches of FKW and unidentified
marine mammals.

4. BAYESIAN INFERENCE AND PREDICTION MODELS

The first part of this section provides a brief introduction to Bayesian inference. Following
this introduction, the different models used to compute the predictive probability densities
are defined.

4.1. Bayesian Inference. A Bayesian approach to inference starts with the formulation of
a model that we hope is adequate to describe the situation of interest. Specifically, the model
provides a joint probability density of the variable of interest y and the unknown parameters
θ of the data density. This joint density can be written as a product of two densities that
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are commonly referred to as the prior density g(θ) and the data density f(y | θ). The
intent of the prior density g(θ) is to capture our knowledge or beliefs about these parameters
before observing the data. In the absence of prior knowledge about a parameter, or if we
are interested in letting the data speak for themselves without the influence of our prior
knowledge, a noninformative prior is chosen.

The prior and data densities are all the ingredients needed for Bayesian analysis as Bayes’
rule combines g(θ) and f(y | θ) to produce the posterior density of θ:

(1) g(θ | y) =
f(y | θ)g(θ)

f(y)
,

where f(y) is the marginal density of the data. As f(y) is the normalizing constant, the
posterior density of θ can be characterized without computing f(y). That is, Equation 1 can
be expressed as

g(θ | y) ∝ f(y | θ)g(θ).

This simple expression of the posterior density is at the core of Bayesian inference.
To compute the posterior density, the likelihood of the data distribution L(Y | θ) is

computed after observing some data Y, where Y represents a vector of observed values
(y1, y2, . . . , yn). Given the likelihood and the prior, the posterior density of θ is completely
determined by the unique distribution function proportional to the product of these two:
g(θ | Y ) ∝ L(Y | θ)g(θ). Once this expression is formulated, the next step is to perform the
necessary computations to summarize the posterior density in appropriate ways.

While we do not need the normalizing constant f(Y ) =
∫

g(θ)L(Y | θ)dθ to define the
posterior density, we do need to know it if we want to calculate details of the posterior density,
such as the mean, variance, and percentiles. For the posterior densities evaluated in this
report either evaluating the normalizing constant was not needed or it was straightforward.

All Bayesian inference is based on posterior densities, including predictions of hypothetical
data, such as future annual bycatch levels. Specifically, the predictive density is the poste-
rior density of hypothetical replicates of the data, ỹ, generated under the same conditions
as produced y. Although the exact values of the parameters are unknown, we have their
posterior densities that express what we believe the parameters to be given the data we’ve
already seen. The predictive density averages all of the various predictive probabilities over
the different possible parameter values, weighting them according to how strongly we believe
in them. Formally, the predictive density of ỹ is given by

f(ỹ) =

∫

f(ỹ | θ)g(θ)dθ.

If g(θ) is a prior density, f(ỹ) is referred to as the prior predictive density, and if g(θ) is a
posterior density, f(ỹ) is referred to as the posterior predictive density.

If the intent of this report were to quantify (predict) the bycatch of the unobserved portion
of the fleet for past years, the Bayesian approach to finite population modeling would be to
treat the unobserved portion of the fleet as missing data. As observed data from past years
are available to compute the posterior density, the posterior predictive density would be used
to predict the bycatch of the unobserved portion of the fleet. The intent of this report is to
quantify the future annual levels of bycatch. Under the Bayesian framework, a convenient
source of prior information is the observed samples from the past years that are assumed to
be generated under the same conditions as expected in the future. As we have yet to sample
the fleet in future years, it is the prior predictive density that is computed.
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One can check the adequacy of the proposed model by inspecting the posterior predictive
density. This can be done by locating the observed data values in the predictive density. If
very few of the observed values are located in the tails of the predictive density, then the
model seems reasonable. On the other hand, an observed value in the extreme tail portion
of the predictive density casts doubt on the adequacy of the model.

4.2. Models for Predicting Bycatch. To estimate the future bycatch based on the as-
sumed future effort, the unknown parameters of interest are the bycatch rates (quantity of
bycatch per unit effort). The first model makes the assumption that the bycatch events for
the systematic clusters are independent Poisson variates whose mean is the cluster’s effort
multiplied by a common bycatch rate, the unknown parameter. The second model goes a
step further and makes the stringent assumption that the bycatch for the trips are indepen-
dent identically distributed (iid) Poisson variates, implying a common bycatch rate per trip.
These two models are simple models that make assumptions concerning a common bycatch
rate throughout the past data and into the future. Based on the assumption of a common
bycatch rate, the covariates defining the strata can be dropped for the purpose of calculating
the posterior density. To add some robustness to the violation of a common bycatch rate,
the adjusted systematic dataset was used. The third model allows the bycatch rate to vary
between strata. All computations required to predict bycatch were done in the statistical
software program R (R Core Team, 2013). Several functions available in the LearnBayes R
library (Albert, 2009) were used for model construction and diagnostics.

4.2.1. Notation. Prior to defining the models, some notation needs to be defined. Hereafter,
let yij represent the observed number of bycatch events in the jth systematic cluster of the
ith stratum and let eij represent the total effort for this systematic cluster. Additionally, let

yi+ =
∑5

j=1 yij (the total observed bycatch for a stratum) and ei+ =
∑5

j=1 eij. Furthermore,
let yyr and eyr represent the observed bycatch and effort, respectively, within year yr for
yr = 2008, . . . , 2012; and let ỹ represent an unknown hypothetical value of bycatch from a
unit with known effort ẽ. As the objective is to predict the future annual level of bycatch,
denote the annual level of bycatch as τ and its predicted value as τ̃ . Denote the projected
future annual effort as ẽτ . At times τ̃ will have a subscript identifying the species of the
prediction.

4.2.2. Poisson/Gamma Model. The first model assumes that the yijs are independent Poisson(eijλ)
variates for i = 1, . . . , 20 and j = 1, 2, 3, 4, 5. The common bycatch rate per unit of effort λ
is assigned a standard noninformative prior of the form

g(λ) ∝
1

λ
.

The posterior density of λ is given by

g(λ | y) ∝ λ
P20

i=1

P5
j=1 (yij−1) exp

(

−λ

20
∑

i=1

5
∑

j=1

eij

)

,

which is the gamma distribution with parameters α =
∑20

i=1

∑5
j=1 yij and β =

∑20
i=1

∑5
j=1 eij

(Albert, 2009). The predictive density is given by

f(ỹ | ẽ) =

∫

fP (ỹ | ẽλ)g(λ)dλ,
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where fP (ỹ | ẽλ) is the Poisson data distribution with mean ẽλ.
To simulate the posterior predictive density of ỹ, we first simulate a large number of

draws of λ from its gamma(α, β) posterior density and then, conditional on λ, simulate
draws of ỹ from a Poisson distribution with mean ẽλ. When computing future predictions,
the gamma(α, β) posterior density becomes the updated prior density. Using this updated
prior gamma density, the prior predictive density is generated in a similar manner as the
posterior density. Of interest is the prior predictive density of annual bycatch in future years.
Under the independence and common bycatch rate assumption, τ̃ ∼ Poisson(λẽτ ); therefore,
the prior predictive density of annual bycatch can be generated by substituting ẽτ into the
algorithm above. As the predictive density of bycatch is discrete, the predictive probabilities
can be computed by computing the frequency of each predictive value of bycatch and dividing
these by the number of predictive values generated. Hereafter, this model will be referred to
as the Poisson/gamma model.

4.2.3. Conditional Binomial Model. The second model was developed to handle the situation
where no bycatch events were observed during 2008-2012, i.e.,

∑2012
yr=2008 yyr = 0. Let yt

represent a trip’s bycatch. This model assumes that the yts for all trips completed by the
fleet over the period of interest are iid Poisson(λ) variates. Now, let τobs represent the total
observed bycatch, τunobs the total unobserved bycatch, and τ the true total bycatch, where
τ = τobs + τunobs. Furthermore, let nt represent the number of trips observed and Nt the
number of trips completed during the sampling period. Under the iid Poisson assumption,
τobs ∼ Poisson(ntλ) and τ ∼ Poisson(Ntλ). It follows that (τobs | τ ) ∼ binomial(n = τ, p =
nt/Nt). With this reformulation, τ is now the unknown parameter in the data distribution.
Assign τ a discrete uniform distribution [0, τmax] prior, where τmax is what we believe is the
maximal value of τ . The posterior density of g(τ | τobs) is

g(τ | τobs) =
g(τobs | τ )

∑τmax

τ=0 g(τobs | τ )
,

where

g(τobs | τ ) =

(

τ

τobs

)(

nt

Nt

)τobs
(

1 −
nt

Nt

)τunobs

.

For predicting future levels of bycatch, let Ñt represent the projected effort expressed as the
number of trips. Since Ñt < Nt the predictive density of τ̃ is given by

f(τ̃ | Ñt) =
∑

fB(τ̃ | τ, Ñt, Nt)g(τ | τobs),

where fB(τ̃ | τ, Ñt, Nt) is the binomial density

(2)

(

τ

τ̃

)

(

Ñt

Nt

)τ̃(

1 −
Ñt

Nt

)τ−τ̃

.

Random draws from f(τ̃ | Ñt) are generated by simulating draws of τ from g(τ | τobs)
and then simulating draws of τ̃ from a binomial distribution conditional on parameter τ
(Equation 2). Hereafter, this model will be referred to as the conditional binomial model.
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4.2.4. Poisson/Gamma Exchangeability Model. Unlike the first two models that assume a
common bycatch rate per unit of effort, the third model assumes that there is random
fluctuation in the true bycatch rate. This model simultaneously estimates the true bycatch
rate λi for each of the 20 strata and is developed in Albert (2009) and recreated here in
terms of our situation. Under the assumption that bycatch rates are equal across strata such
that yi+ ∼ Poisson(ei+λ) for i = 1, . . . , 20, the maximum likelihood estimate of λ is

∑20
i=1 yi+

∑20
i=1 ei+

.

This pooled estimate is based on the stringent assumption that the true bycatch rate is the
same across the strata and into the future. An alternative is to simply estimate the true
rates within each stratum by using the individual observed bycatch rates,

y1+

e1+
, . . . ,

y20+

e20+
.

Unfortunately, as bycatch is so rare there are typically very few, if any, observed bycatches
within a stratum, consequently, the observed rates can be poor estimates. This is especially
apparent when there are no observed bycatch events and the estimated bycatch rate would
be 0, likely underestimating the true bycatch rate within the stratum. A third possibility is
the compromise estimate

(3) (1 − β)
yi+

ei+

+ β

∑20
i=1 yi+

∑20
i=1 ei+

.

This estimate shrinks or moves the individual estimates yi+/ei+ toward the pooled estimate
∑

yi+/
∑

ei+, where the parameter 0 < β < 1 determines the size of the shrinkage. This
shrinkage estimate is a natural by-product of the application of an exchangeable prior model
to the true bycatch rates.

As the name implies, this model assumes that the true bycatch rates λ1, . . . , λ20 are ex-
changeable. Informally, exchangeable means that the stratum labels are interchangeable.
An example where this assumption would not be appropriate is when there is a seasonal
pattern such that the true bycatch rate in the first quarter (λ1, λ5, λ9, λ13) is different than
the bycatch rate from the other quarters. In this circumstance, the stratum labels from
the first quarter could not be interchanged with the other quarters. If it is not appropri-
ate to assume exchangeability across quarters, in theory, the exchangeable model could be
used within quarters. For the two species where this model is used, the exchangeablility
assumption appears to be reasonable.

Proceeding with the assumption that a stratum’s observed bycatch follows a Poisson dis-
tribution with mean ei+λi. The prior density is constructed in a hierarchical fashion. At
the first stage of the prior, the true bycatch rates λ1, . . . , λ20 are assumed to be a random
sample from a gamma(α, α/µ) distribution of the form

g(λ | α, µ) =
(α/µ)αλα−1 exp(−αλ/µ)

Γ(α)
, λ > 0.

The prior mean and variance of λ are given by µ and µ2/α, respectively. At the second stage
of the prior, the hyperparameters µ and α are assumed independent. The parameter µ is
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assigned a vague prior of the form

g(µ) ∝
1

µ
, µ > 0,

and the parameter α is assigned a relatively flat prior of the form

g(α) =
z0

(α+ z0)2
, α > 0.

The parameter z0 is the median of α and needs to be specified.
The posterior density of λi is gamma(yi+ + α, ei+ + α/µ). The posterior mean of λi,

conditional on α and µ, is

(4) E(λi | yi+, α, µ) =
yi+ + α

ei+ + α/µ
= (1 − Bi)

yi+

ei+

+Biµ,

where

Bi =
α

α + ei+µ
.

As Equations 4 and 3 have the same form, we can interpret the posterior mean of the true
rate λi as a shrinkage estimator, where Bi is the shrinkage fraction of the posterior mean
away from the usual estimate yi+/ei+, toward the prior mean µ.

The marginal posterior density of (α, µ) is

p(α, µ | data) = K
1

Γ20(α)

20
∏

i=1

[

(α/µ)αΓ(α + yi+)

(α/µ + ei+)(α+yi+)

]

z0

(α+ z0)2

1

µ
,

where K is a proportionality constant.
Random draws from the predictive density are simulated as follows:

• Simulate draws of (µ, α) from the marginal density of the hyperparameters µ and α.
• Simulate draws of λi from its gamma distribution conditional on the values of µ and α.
• Simulate draws of a quarter’s (stratum’s) bycatch from its Poisson distribution conditional

on the value of λi.
Random draws from the predictive density for a year’s bycatch require simulating draws

from each quarter and then adding these across quarters. When generating the predictive
density of future annual bycatch levels, a quarter’s effort was a fourth of the year’s effort.

To simulate draws from the marginal density of the hyperparameters, I used the R func-
tions poissgamexch and gibbs in the LearnBayes package (Albert, 2009). The gibbs function
uses Gibbs sampling to sample from the distribution of interest. An explanation of Gibbs
sampling is beyond the scope of this report; see Albert (2009) and Gelman et al. (2004) for
details on Gibbs sampling. For a more detailed discussion of this model see Albert (2009),
and for more information concerning Bayesian hierarchical models see Gelman et al. (2004).
Hereafter, this model will be referred to as the Poisson/gamma exchangeability model.

4.3. Models for Predicting the Number of Bycatch that Result in a DSI. This
section applies only to predictions concerning marine mammals. Let d̃ represent an unknown
hypothetical value of DSI. As the objective is to predict the future annual levels of bycatch
events resulting in DSI, denote the annual level of DSI as δ and its predicted value as δ̃.
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4.3.1. Predicting δ for Humpback and Sperm Whales. First consider predicting the number
of humpback and sperm whale bycatch events that result in a DSI. The three injury classi-
fications of interest for predicting future levels of DSI are (1) death or serious injury (DSI),
(2) non-serious injury (NSI), and (3) a prorated category where an injury has a probability
ψ of being a DSI (PR). The assumption is made that bycatch events (past and future) have
common probabilities θ1,θ2, and θ3 of being classified in these three categories, respectively.
Let m1, m2, and m3 represent the observed count in each category and M = (m1, m2, m3)
the vector of these three counts. The model used to predict future levels of δ begins with
assuming that the data distribution of M is the multinomial distribution with sample size
m+ =

∑3
i=1 mi and respective probabilities θ1,θ2, and θ3, where

∑3
i=1 θi = 1. Based on these

assumptions

f(M | θ) ∝
3
∏

i=1

θmi

i .

The vector θ = (θ1, θ2, θ3) is assigned the uniform prior distribution (assigns equal probability

to any vector θ satisfying
∑3

i=1 θi = 1). The resulting posterior density of θ is proportional
to

g(θ) = θm1

1 θm2

2 θm3

3

(Gelman et al., 2004), which is known as the Dirichlet distribution with parameters (m1 +
1, m2+1, m3+1). To simulate draws from this Dirichlet distribution the R function rdirichlet
in the package LearnBayes (Albert, 2009) was used. For a more extensive discussion on the
multinomial model and the Dirichlet distribution see Gelman et al. (2004).

For the next step let ψ be the probability that a bycatch event that is classified as PR is
from the DSI category. Assuming that θ and ψ are independent, the probability of interest
is ρ = θ2 + θ3ψ. To simulate draws from the posterior density of ρ, we need to simulate
draws from the posterior density of ψ to combine with the simulated draws from θ. In the
policy document that provided guidelines for classifying injuries (NMFS, 2012a), the value
of ψ was determined to be .75 based on a sample of 114 documented entanglement events of
which 85 were determined to be a serious injury. It appears that this probability was derived
assuming these events were iid binomially distributed. As these data were collected over
different fisheries, this assumption presumes that ψ does not fluctuate spatially, temporally,
or between fisheries and species. I proceed using this imposed assumption. To formulate the
posterior density of ψ, assume

f(x | ψ) =

(

n

x

)

ψx(1 − ψ)n−x,

where n is the number of sampled entanglements and x is the number of these determined to
be DSI, and assign ψ a relatively flat beta(2.07,2.07) prior. The resulting posterior density
of ψ is the beta distribution with parameters 2.07 + x and 2.07 + (n− x).

To simulate draws from the posterior distribution of ρ, simulated draws from the Dirichlet
posterior density of θ are combined with simulated draws from the beta posterior density of
ψ using the equation θ2 + θ3ψ.

At this junction, the methods for constructing g(ρ) and f(ỹ) (Section 4.2) have been
described. The next step is to formulate the predictive density of f(d̃). Assume ρ and ỹ are
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independent, the predictive density of d̃ is given by

f(d̃) =

∫

fB(d̃ | ỹ, ρ)f(ỹ)g(ρ)dỹdρ,

where

fB(d̃ | ỹ, ρ) =

(

ỹ

d̃

)

ρd̃(1 − ρ)ỹ−d̃.

For δ̃, the prior density of ρ is updated with the posterior density g(ρ) and f(ỹ) is the

prior predictive density f(τ̃ ). Random draws from the predictive density of δ̃ are simulated
as follows:
• Simulate draws of τ̃ from its predictive density.
• Simulate draws of ρ from its updated prior density.
• Simulate draws from a binomial distribution with parameters conditional on τ̃ and ρ.

4.3.2. Predicting δ for FKW. Now consider formulating the predictive density of δ̃ for FKW.
For FKW the third injury category does not apply, thus the injury classifications can be
collapsed into the 2 categories (1) DSI and (2) NSI. The predictive density is formulated in a
similar manner as for the humpback and sperm whales but without the third category. The
assumed data distribution of M is the binomial distribution with sample size m+ =

∑2
i=1mi

and probability of a DSI θ: f(M | θ) ∝ θm1(1 − θ)m2 .
Although there were changes in the guidelines for injury determinations, they seem to have

had little effect on the probability that a FKW bycatch event results in a DSI. Therefore, the
classifications of observed FKW bycatches prior to 2007 are used to develop a prior density.
The prior density of θ is assigned the form beta(s + 1, f + 1), where s is the number of
DSI and f is the number of NSI prior to 2007. Based on this formulation of the prior, the
posterior density of θ is beta(s+m1 + 1, f +m2 + 1).

Under the assumption that ỹ and θ are independent, f(d̃) =
∫

fB(d̃ | ỹ, θ)f(ỹ)g(θ)dỹdθ,
where

fB(d̃ | ỹ, θ) =

(

ỹ

d̃

)

θd̃(1 − θ)ỹ−d̃.

For δ̃FKW , the prior density of θ is updated with the posterior density of g(θ) and f(ỹ) is
the prior predictive density f(τ̃ ) (Section 4.2). Random draws from the predictive density

of δ̃FKW are simulated as follows:
• Simulate draws of τ̃FKW from its predictive density.
• Simulate draws of θ from its updated prior density.
• Simulate draws from a binomial distribution conditional on parameters τ̃FKW and θ.

4.4. Model for Determining if a FKW Bycatch is from the IFKW Population. At
this juncture, the methods for constructing the predictive densities of τ̃FKW and δ̃FKW have
been described, and to achieve the objective of predicting τ̃ and δ̃ for the IFKW, the density
of the probability that a FKW caught in the open area is from the IFKW stock needs to be
constructed. Herein, let ι denote this probability. A database of sufficient size where FKW
bycaught inside the 140 km boundary are identified as from the IFKW stock, or another
stock, does not exist. Instead, the mathematical model that NOAA Fisheries has decided
upon (Carretta et al., 2011) and information on the spatial distribution of effort within the
open area are used to create a prior density of ι. The mathematical model used to determine
ι is a function of the minimal distance to shore from the location where the animal is first
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observed bycaught and the abundance estimates of the IFKW and Hawaii FKW pelagic
stocks. McCracken (2010) describes this mathematical model and its assumptions and com-
pares it to other models that were considered. For the present analysis, this mathematical
model was updated with the most current abundance estimates. The old FKW stock abun-
dance estimates were 123 individuals in the IFKW stock and 484 individuals in the Hawaii
pelagic stock within the U.S. EEZ surrounding Hawaii (Carretta et al., 2010). The updated
abundance estimates are 151 individuals in the IFKW stock and 1,503 individuals in the
Hawaii pelagic stock within the U.S. EEZ surrounding Hawaii (Bradford et al., 2012). The
mathematical model is described by the logistic curves shown in Figure 2. As the mathemat-
ical model is dependent on the capture locations, a distribution of these capture locations
is required. Because there have been no confirmed captures inside the open area, it was
assumed that the distribution of capture locations resembles the distribution of effort within
the open area. Unfortunately, constructing the distribution of effort is not straightforward
as a longline will typically span over a mile and can traverse the boundaries of the open area.
To approximate the distribution of effort, the set and haul begin and end locations of fishing
operations that occurred in this open area were used. Using the set and haul locations from
the 2008-2012 observer data within the open area, the minimal distance from each point to
shore, and subsequently ι, were computed. The collection of these probabilities, rounded to
the third decimal, was used to create an empirical probability density of ι. Figure 3 shows
the set and haul begin and end locations that occurred in the open area. Figure 4 is a
graphical depiction of the empirical density of ι.

To predict future levels of IFKW bycatch, τIFKW , this empirical density is used as the
prior density of ι. Given that a FKW has been bycaught, let z = 1 if it is from the IFKW
stock and z = 0 if it is from the pelagic stock. Assuming that τ̃FKW (predicted annual
bycatch of FKW in the open area) and ι are independent, the predictive density of τ̃IFKW

is given by

f(τ̃IFKW ) =

∫

f(τ̃IFKW | τ̃FKW , ι)f(τ̃FKW )g(ι)dτ̃FKW dι,

where

f(τ̃IFKW | τ̃FKW , ι) =

τ̃FKW
∑

i=1

I(zi = 1)

and zi ∼ Bernoulli(ιi). Random draws from the predictive density of τ̃IFKW are simulated
as follows:
• Simulate draws of τ̃FKW from its predictive density.
• Simulate τ̃FKW draws from a Bernoulli distribution conditional on ι, where a new random

draw of ι from its prior density is made for each Bernoulli draw.
• The sum of the Bernoulli variates is τ̃IFKW .

4.5. Simulating Random Draws from the Predictive Density of δ̃IFKW . At this
juncture, all the densities necessary to create the predictive densities of δ̃IFKW have been
established. The predictive density for δ̃IFKW follows the same formulation as the predictive
density of δ̃FKW (Section 4.3.2) with τ̃IFKW substituted for τ̃FKW . Random draws from the

predictive density of δ̃IFKW are simulated as follows.
• Simulate draws of τ̃IFKW from its predictive density (preceding algorithm).
• Simulate draws of θ from its updated prior density (Section 4.3.2).
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Figure 2. New and old conditional probabilities that a bycaught false killer
whale is from the main Hawaiian Islands insular stock or pelagic stock.
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Figure 4. The empirical probability density function of the probability that
a FKW bycaught in the open area is from the IFKW stock (ι).

• Simulate draws of δ̃IFKW from a binomial distribution conditional on parameters τ̃IFKW

and θ.

5. PREDICTIONS

The predictive density of the annual future level of bycatch is presented for all seven
species in this section. Prior to presenting the results by species, details concerning model
fitting, model diagnostics, and a summary of the results that are common between species
are presented.

5.1. Statistical Details.

5.1.1. Measures of Effort. The measures of effort considered were number of trips, number of
sets, number of hooks deployed, and functions of these variables of effort. One such variable
was

e?
i =

mi

Mi

N.hooksi

(
∑20

i=1N.hooksi/20)
,

where for stratum i, mi was the number of clusters sampled, Mi was the total number of
clusters, and N.hooksi was the total number of hooks deployed. The first part of this equation
represents the sampling fraction, and when using the adjusted systematic sample, mi/Mi is
constant and plays no role. When predicting future levels of τ , mi/Mi = 1 and N.hooksi is
the projected number of hooks. Most predictions were not sensitive to the measure of effort
modeled.
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To make predictions based on the projected effort of 1,305 trips and ignore that the effort
within a trip is projected to increase compared to the effort within a trip in 2012 seems
naive. Still, there are times when using the number of trips as the measure of effort may be
advantegous. For example, when there has been no observed bycatch between 2008 and 2012
using the conditional binomial model may be advantageous, however, this model uses trips
as the measure of effort (Section 4.2.3). To assume unconditionally that the increase in effort
within a trip will not increase the bycatch rate per trip may result in the under-prediction
of future levels of bycatch. Therefore, adjusting the projected number of trips upward to
account for the increase effort seems advisable if under-prediction is a concern. How best to
adjust the number of projected trips upward is unclear.

In this report, we are concerned with how the projected future levels of effort and compo-
sition of trips compare to the effort data from the 2008-2012 period that provided bycatch
data used to construct the predictive models. The recorded annual effort based on year of
landing (arrival in port and catch is offloaded) as it is usually defined for annual bycatch
estimation for years 2008 through 2012 is given in Table 43. If we compare the projected
future effort to the 2008-2012 average annual effort, the increase to 18,592 sets is a 8.1%
increase in sets, and to 46,117,532 hooks is a 15.5% increase in hooks. Thus, we might
consider adjusting 1,305 by 8.1%, 1,411 trips, or 15.5%, 1,507 trips. Alternatively, we could
first adjust the projected number of sets for the increased number of hooks per set and then
adjust the number of trips by the adjusted number of sets per trip. Specifically, the adjusted
number of sets is the projected number of sets multiplied by the ratio of the projected hooks
per set to the five year average hooks per set, 18,592(2,480.5/2,321.3)= 19,867 sets. Then,
the adjusted number of trips is the adjusted number of sets divided by the five year average
sets per trip, (19,867/13.677)=1,453 trips. The figure of 1,453 trips is very similar to the
product of the projected number of trips times the projected hooks per trip divided by the
average hooks per trips, 1,305(35,339/31,754)=1,452 trips. Herein, to distinguish from the
projected number of 1,305 trips, the adjusted number of projected trips will be referred to
as the effective number of projected trips.

Since management requested one value of the average predicted bycatch, when using the
conditional binomial model appeared advantageous, 1,453 effective projected trips is used
to compute the predictive distribution for future annual levels of bycatch. Furthermore, in
this section, 1,453 effective projected trips is used whenever future effort in terms of number
of trips is required. Because it is unclear how to derive the effective number of projected
trips, a sensitivity analysis that evaluated the mean of the predictive distribution under
different levels of projected effort was conducted. This study is presented in Appendix A.
As expected, the distribution of the mean of the predictive distribution shifts upward but
very gradually as a result of bycatch being so rare (Appendix A).

5.1.2. General Details of Generating Predictive Distributions. Whenever simulated draws
from a distribution were generated, 10,000 draws were simulated. For the Poisson/gamma
exchangeability model, the first 2,000 draws from the marginal density of (µ, α) were dis-
carded as is commonly done when using Gibbs sampling. As all other distributions had a
familiar distribution, draws from these distributions could be simulated using the R random
variate function for the distribution.

3Effort in this table is slightly different from the effort table in the BE as a result of a different rules for
assigning effort to the year.
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Table 4. Hawaii deep-set longline fishery annual effort in recent years with
trips and components of effort (number of sets, total number of hooks deployed,
and functions of these values) assigned to the year of landing (date the trip
arrived back at port and offloaded its catch). Included is the average annual
effort over 2008-2012 and the projected future effort.

year trips sets hooks sets/trips hooks/sets hooks/trips

2008 1,333 17,875 40,063,212 13.410 2,241.3 30,055
2009 1,225 17,001 38,177,005 13.878 2,245.6 31,165
2010 1,179 16,077 37,244,654 13.636 2,316.6 31,590
2011 1,246 16,888 40,022,132 13.554 2,369.9 32,120
2012 1,305 18,151 44,160,245 13.909 2,432.9 33,839
average 1,258 17,199 39,933,450 13.677 2,321.3 31,754
future 1,305 18,592 46,117,532 14.247 2,480.5 35,339

5.1.3. Upper Bound, τmax, of Discrete Uniform Prior for the Conditional Binomial Model.
The conditional binomial model was only used when there was no more than 1 observed
bycatch event during 2008-2012. When fitting the conditional binomial model to the five
years of data, the value of τmax needs to be specified (Section 4.2.3). In this situation, τmax is
the maximal number of bycatches over five years that we believe is possible. To evaluate the
sensitivity of the conditional binomial model to the specified value of τmax, the model was
constructed using the specified values τmax = 25, 50, and 100. Comparing the models with
τmax = 50 and τmax = 100, there was very little difference between the predictive densities.
When comparing the models with τmax = 25 and τmax = 50, there were slight differences
between the predictive densities and these differences seemed to be slightly more pronounced
when there was 1 observed bycatch. These results suggest that the conditional model is not
sensitive to the value of τmax if it is larger than the upper limits suggested by the data
distribution.

5.1.4. Summary Statistics of Predictive Density. Along with the mean and median of the
predictive density being computed, a credible interval was also computed. A 100(1 − α)%
credible interval is an interval that contains 100(1 − α)% of the probability density’s mass.
For example, a 95% credible interval for τ̃ that is given as [0,5] means that 95% of the
predictive density lies between 0 and 5. With discrete distributions it is not uncommon that
an interval with the exact desired coverage, such as 95%, does not exist. In this situation,
the interval provided is the interval that has the smallest coverage that is at least 95%. The
exact coverage is given for all credible intervals provided in this report.

5.1.5. Evaluating Different Models. One method used to compare the performance of the
different models was to compute the probability of observing a predicted observation ỹyr

at least as extreme as the observed data value yyr, min (P (ỹyr ≤ yyr), P (ỹyr ≥ yyr)). If an
observed value is in the extreme tail of the predictive density, the predictive probability will
be small and the validity of the Bayesian model becomes questionable. On the other hand, if
none of the predictive probabilities are small then the observed values are consistent with the
predictive density and the model seems adequate. A table of these predictive probabilities
of “at least as extreme” bycatch observations is provided for each species.
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Table 5. Predictive probabilities of “at least as extreme” observations of log-
gerhead sea turtle bycatch in the adjusted systematic sample. The conditional
binomial and Poisson/gamma models are denoted as BIN and PG, respec-
tively. The variable of effort (number of trips or hooks) for the PG models
and the values of τmax (25 or 50) for the BIN models are shown in parentheses.

year observed BIN(50) BIN(25) PG(trips) PG(hooks)

2008 0 0.71 0.74 0.83 0.96
2009 0 0.70 0.74 0.83 0.95
2010 1 0.26 0.24 0.15 0.04
2011 0 0.71 0.73 0.84 0.95
2012 0 0.69 0.73 0.81 0.95

If the primary regulatory concern is the control of the risk to the endangered species
population and more than one model provides a predictive density that is consistent with
the observations between 2008 and 2012, then the predictive density with the largest mass
to the right of the other distributions is considered the most conservative predictive density.
This presumes that over-predicting future bycatch is preferable to under-predicting.

5.2. Loggerhead Sea Turtle. During 2008-2012 there was one observed loggerhead sea
turtle bycatch event in the deep-set fishery. Previously, there were four observed bycatch
events in 2002 (two of the four were on trips that did not comply with the regulations)
and one in 2007. With so few observed takes the Poisson/gamma exchangeability model
was not considered. Predictive densities were computed using the Poisson/gamma and the
conditional binomial model. Table 5 gives the predictive probabilities of “at least as extreme”
loggerhead bycatch observations for years 2008-2012. The Poisson/gamma model with effort
expressed as number of hooks has a small probability, 0.04, for the year when the one
observed bycatch occurred. This small probability indicates that the model is inadequate
for explaining the relationship between effort and bycatch as the value of 1 is in the extreme
tail of the predictive density. Comparing the Poisson/gamma model with the conditional
binomial model, the conditional binomial model has the larger probabilities when there is
one observed bycatch event and the smaller probabilities when no bycatch is observed. There
is little difference between the probabilities when comparing the conditional binomial model
with τmax equal to 50 and 25. If the bycatch rate during 2002-2007 is similar to that in
2008-2012, the Poisson/gamma model is likely underestimating the bycatch rate. Although
both conditional binomial models appear to adequately fit the observer data, a τmax = 25
seems small considering it is the maximal bycatch possible over five years.

Table 6 provides the means, medians, and 95% (at least) credible intervals for the three
different models. The most conservative predictive density is the density constructed using
the conditional binomial model with τmax = 50. This is the predictive density I would
recommend if it is necessary to select one. Figure 5 is a graphical depiction of the predictive
density of annual bycatch for the conditional binomial model with τmax = 50. The predictive
density has a long tail with most of its mass below 10 bycatch events.
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Table 6. The means, medians, and credible intervals, including their cov-
erage, are given for the predicted densities of annual loggerhead sea turtle
bycatch (τ̃ ). The conditional binomial and Poisson/gamma models are de-
noted as BIN and PG, respectively. For the PG models the variable of effort
is number of trips. The value of τmax (25 or 50) for the BIN models is shown
in parentheses.

model mean median credible interval coverage

PG(trips) 1.5 1 [0,5] 95%
BIN(25) 2.5 2 [0,7] 98%
BIN(50) 2.8 2 [0,8] 97%
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Figure 5. Predictive density of the annual loggerhead sea turtles bycatch (τ̃ )
constructed using the conditional binomial model with τmax = 50.

5.3. Green Sea Turtle. During 2008-2012 there was one observed green sea turtle bycatch
event in the deep-set fishery. Previously, there were four observed bycatch events during 2002-
2007: 2 in 2006, 1 in 2004, and 1 in 2002. With so few observed takes the Poisson/gamma
exchangeability model was not considered. Table 7 gives the predictive probabilities of “at
least as extreme” green sea turtle bycatch observations for years 2008-2012. There is very
little difference between the Poisson/gamma models and between the conditional binomial
models. Comparing the Poisson/gamma model with the conditional binomial model, the
conditional binomial model has the larger probabilities when there is one observed bycatch
event and the smaller probabilities when no bycatch is observed. If the bycatch rate during
2002-2007 is similar to that in 2008-2012, the Poisson/gamma model is likely underestimating
the bycatch rate. Although both conditional binomial models appear to adequately fit the
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Table 7. Predictive probabilities of “at least as extreme” observations of
green sea turtle bycatch in the adjusted systematic sample. The conditional
binomial and Poisson/gamma models are denoted as BIN and PG, respectively.
The variable of effort is number of trips or hooks for the PG models. The value
of τmax (25 or 50) for the BIN models is given in parentheses.

year observed BIN(50) BIN(25) PG(trips) PG(hooks)

2008 0 0.71 0.75 0.83 0.84
2009 0 0.71 0.74 0.83 0.83
2010 0 0.73 0.76 0.85 0.85
2011 1 0.30 0.27 0.18 0.18
2012 0 0.70 0.73 0.82 0.82

Table 8. The means, medians, and credible intervals, including their cover-
age, are given for the predicted densities of the annual green sea turtle bycatch
(τ̃ ). The conditional binomial and Poisson/gamma models are denoted as BIN
and PG, respectively. For the PG models the variable of effort (number of trips
and hooks) and for the BIN models the value of τmax (25 and 50) are given in
parentheses.

model mean median credible interval coverage

PG(hooks) 1.6 1 [0,6] 97%
PG(trips) 1.6 1 [0,6] 97%
BIN(25) 2.4 2 [0,6] 96%
BIN(50) 2.8 2 [0,8] 97%

observer data, a τmax = 25 seems small considering it is the maximal bycatch possible over
five years.

Table 8 provides the means, medians, and 95% (at least) credible intervals of τ̃ for the
four different models. The most conservative predictive density is the density constructed
using the conditional binomial model with τmax = 50. This is the predictive density I would
recommend if it is necessary to select one. Figure 6 is a graphical depiction of the predictive
density of annual bycatch for the conditional binomial model with τmax = 50. The predictive
density has a long tail with most of its mass below 10 bycatch events.

As loggerhead and green sea turtles have the same number of observed bycatches during
2008-2012, in theory, the Poisson/gamma models using the same measures of effort are equiv-
alent and the conditional binomial models with the same values of τmax are equivalent. Any
difference between these theoretically equivalent predictive densities is a result of simulation
error.

5.4. Leatherback Sea Turtle. During 2008-2012 there were 7 observed leatherback sea
turtle bycatch events, all but one of which were within the systematic sample. During
2002-2007 there were 11 observed leatherback sea turtle bycatch events, however, one of
the two observations in 2002 was on a vessel not complying with the current regulations.
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Figure 6. Predictive density of the annual green sea turtle bycatch (τ̃ ) con-
structed using the conditional binomial model with τmax = 50.

The Poisson/gamma and the Poisson/gamma exchangeability model were both considered.
The adjusted systematic sample was used to construct the Poisson/gamma model. The
Poisson/gamma exchangeability model was formulated using the systematic and adjusted
systematic sample to examine if there were any anomalous differences in the results between
these two data sets. Differences between comparable predictive probabilities are evidence
that the assumed relationship between bycatch and effort is inappropriate or the adjusted
systematic sample is not representative of systematic samples consistently drawn at 15%
coverage. A problem with the Poisson/gamma exchangeability model was that suspiciously
very large numbers of bycatch (in the hundreds) were occasionally predicted. Expressing
effort as e? slightly reduced the frequency of these suspiciously large numbers. As there
appeared to be a problem with the exchangeability model in the far right tail of the predictive
density of annual bycatch, the top 0.5% of the largest predicted bycatches was discarded.
This level of truncation still left some questionable large predicted values of bycatch, reducing
the risk of underestimating the extreme right tail of the predictive density.

Figure 7 is the contour plot of the posterior density of (log(µ),log(α)) constructed using
the adjusted systematic sample and e? as the measure of effort. The contour lines are drawn
at 10%, 1%, and 0.1%. A simulated random sample from this density is shown on top of the
contour plot. This figure confirms that the samples are from the posterior distribution as
the mass of points are within the inner contours, hiding the contour at 10%.

Table 9 gives the predictive probabilities of ‘at least as extreme” leatherback bycatch
observations for years 2008-2012. As results are similar between the different measures of
effort, only the results for number of successful trips, number of hooks, and e? are shown.
Year 2008 has no observed bycaught leatherbacks and 2011 has three observed bycatches; all
other years have one observed bycatch. Although the observed bycatch levels are identical
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Figure 7. Contour plot of the posterior density of (log(µ),log(α)) for
leatherback sea turtles constructed using the adjusted systematic sample. A
sample of simulated draws from the distribution lies on top.

between the systematic and adjusted systematic datasets, their effort levels are different.
The Poisson/gamma exchangeability models have slightly higher predictive probabilities in
2008 and 2011, the years of minimal and maximal observed bycatch, respectively. For the
other years, the Poisson/gamma has slightly higher predictive probabilities, except for year
2012 where all models have very similar probabilies. When comparing the exchangeability
models fitted to the systematic and adjusted systematic datasets, there appears to be very
little difference between the probabilities. This is reassuring as we expect the probabilities
to be similar if the adjusted systematic sample resembles systematic samples consistently
drawn at 15% coverage and the relationship between bycatch and effort is adequate.

Figure 8 compares the predictive density of τ̃ under future levels of effort constructed
using the Poisson/gamma and Poisson/gamma exchangeability models. The exchangeability
models are flatter with a longer tail compared to the Poisson/gamma model. Although the
exchangeability model occasionally produced unrealistic values of τ̃ , it appears to do better
in predicting the tail of the density.

Table 10 provides the means, medians, and credible intervals for the predictive densities.
The means are smaller and the confidence intervals shorter for the Poisson/gamma model.
The results are robust to the measure of effort and the dataset (systematic or adjusted
systematic) used to construct the Poisson/gamma exchangeability model. If one model is
to be recommended, I would lean towards the exchangeability model using the systematic
data with effort expressed as e? for two reasons. First, the Poisson/gamma model likely
underestimates the extent of the right tail as a consequence of assuming a constant bycatch
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Table 9. Predictive probabilities of “at least as extreme” observations of
leatherback sea turtle bycatch. The Poisson/gamma and Poisson/gamma ex-
changeability models are denoted as PG and EXPG, respectively. Shown in
parentheses is the dataset used to construct the model: systematic sample
(sys) or adjusted systematic sample (adj.sys). The observed values (obs) are
from the specified sample: the systematic or adjusted systematic sample.

PG(adj.sys) EXPG(sys) EXPG(adj.sys)
year obs e? hooks trips e? hooks trips e? hooks trips

systematic sample
2008 0 0.36 0.39 0.37 0.42 0.43 0.42 0.43 0.45 0.46
2009 1 0.63 0.65 0.65 0.59 0.60 0.60 0.55 0.58 0.58
2010 1 0.61 0.58 0.60 0.57 0.54 0.56 0.55 0.52 0.55
2011 3 0.13 0.14 0.15 0.19 0.20 0.20 0.17 0.19 0.17
2012 1 0.63 0.64 0.64 0.63 0.63 0.63 0.62 0.63 0.62

adjusted systematic sample
2008 0 0.33 0.36 0.34 0.39 0.41 0.39 0.40 0.42 0.41
2009 1 0.66 0.65 0.65 0.59 0.63 0.62 0.59 0.62 0.61
2010 1 0.64 0.61 0.63 0.60 0.57 0.58 0.57 0.55 0.57
2011 3 0.13 0.15 0.15 0.18 0.19 0.18 0.17 0.18 0.18
2012 1 0.63 0.63 0.65 0.63 0.63 0.63 0.62 0.63 0.62
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Figure 8. Predictive densities of annual bycatch (τ̃ ) for leatherback sea tur-
tles for the Poisson/gamma and Poisson/gamma exchangeability models.
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Table 10. The means, medians, and credible intervals, including their cov-
erage, are provided for predicted densities of annual leatherback sea turtles
bycatch (τ̃ ). The Poisson/gamma and Poisson/gamma exchangeability mod-
els are denoted as PG and EXPG, respectively. Shown in parentheses is the
dataset used to construct the model: systematic sample (sys) or adjusted sys-
tematic sample (adj.sys).

model effort mean median credible interval coverage

PG(adj.sys) e? 9.2 9 [1,19] 96%
PG(adj.sys) hooks 9.2 8 [1,18] 95%
PG(adj.sys) trips 9.3 9 [1,19] 96%
EXPG(sys) e? 10.5 8 [0,31] 95%
EXPG(sys) hooks 10.2 8 [0,31] 95%
EXPG(sys) trips 10.0 8 [0,29] 95%
EXPG(adj.sys) e? 10.2 8 [0,29] 95%
EXPG(adj.sys) hooks 9.7 7 [0,29] 95%
EXPG(adj.sys) trips 9.7 8 [0,26] 95%

rate. While the exchangeability models may overestimate the extent of the right tail, this
seems preferable to underestimation. Without truncating the predicted values generated
using the recommended exchangeability model, the mean, median, and 95% credible interval
of the predictive density are 12.0, 8, and [0,31], respectively. As the mean is sensitive
to outliers, truncating the data has the greatest effect on this value. Second, although
simulation error may account for the small difference between the exchangeability model
constructed under the systematic and adjusted systematic sample, the adjusted systematic
sample has psuedo systematic samples for three quarters,

5.5. Olive Ridley Sea Turtle. During 2008-2012 there were 23 observed olive ridley sea
turtle bycatch events, 20 of these were observed by the systematic sample. There were 43
observed olive ridley sea turtle bycatch events during 2002-2007. The Poisson/gamma and
the Poisson/gamma exchangebility model were both considered. The adjusted systematic
sample was used to construct the Poisson/gamma model. The Poisson/gamma exchangeabil-
ity model was formulated using the systematic and adjusted systematic sample to examine
if there were any anomalous differences in the results between these two data sets. Differ-
ences between comparable predictive probabilities are evidence that the assumed relationship
between bycatch and effort is inappropriate or the adjusted systematic sample is not rep-
resentative of systematic samples consistently drawn at 15% coverage. A problem with the
Poisson/gamma exchangeability model was that suspiciously very large numbers of bycatch
(in the hundreds) were occasionally predicted; these unrealistic values were generated no-
tably less frequently than when modeling leatherback sea turtle bycatch. Expressing effort
as e? slightly reduced the frequency of these suspiciously large numbers. As there appeared
to be a problem with the exchangeability model in the far right tail of the predictive density
of annual bycatch, the top 0.5% of the largest predicted bycatches were discarded. This level
of truncation still left some questionable large predicted values of bycatch, reducing the risk
of underestimating the extreme right tail of the predictive density.
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Figure 9. Contour plot of the posterior density of (log(µ),log(α)) for the
olive ridley sea turtle constructed using the adjusted systematic sample. A
sample of simulated draws from the distribution lies on top.

Figure 9 is the contour plot of the posterior density of (log(µ),log(α)) derived using the
adjusted systematic sample and e? as the measure of effort. The contour lines are drawn at
10%, 1%, and 0.1%. A simulated random sample from this density is shown on top of the
contour plot. This figure confirms that the samples are from the posterior distribution as
the mass of points are within the inner contours, hiding the contour at 10%.

Table 11 gives the predictive probabilities of ‘at least as extreme” olive ridley bycatch ob-
servations for years 2008-2012. The probabilities are computed using the observed bycatch
from the systematic sample and the adjusted systematic sample. In year 2008 the system-
atic sample has only one observed bycatch; whereas, the adjusted systematic sample has
two observed adjusted bycatch events. The Poisson/gamma exchangeability models have a
slightly higher probability of predicting the observed bycatch in 2008 and 2011, the years
of minimal and maximal observed bycatch, respectively. For the other years, there is very
little, if any, difference between the different models. When comparing the exchangeability
models fitted to the systematic and adjusted systematic datasets, there appears to be very
little difference between the probabilities. This is reassuring as we expect the probabilities
to be similar if the adjusted systematic sample resembles systematic samples consistently
drawn at 15% coverage and the relationship between bycatch and effort is adequate.

Figure 10 compares the predictive density of (τ̃ ) under future levels of effort constructed
using the Poisson/gamma and Poisson/gamma exchangeability models. The exchangeability
models are flatter with a longer tail compared to the Poisson/gamma model, although these
differences are not as extreme as seen for the predictions of leatherback bycatch. Although
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Table 11. Predictive probabilities of “at least as extreme” observations of
olive ridley sea turtle bycatch. The Poisson/gamma and Poisson/gamma ex-
changeability models are denoted as PG and EXPG, respectively. Shown in
parentheses is the dataset used to construct the model: systematic sample
(sys) or adjusted systematic sample (adj.sys). The observed values (obs) are
from the specified sample: the systematic or adjusted systematic sample.

PG(adj.sys) EXPG(sys) EXPG(adj.sys)
year obs e? hooks trips e? hooks trips e? hooks trips

systematic sample
2008 1 0.12 0.14 0.14 0.17 0.19 0.17 0.16 0.18 0.17
2009 4 0.50 0.56 0.55 0.48 0.52 0.52 0.48 0.54 0.53
2010 2 0.32 0.37 0.35 0.37 0.41 0.40 0.36 0.41 0.39
2011 7 0.16 0.19 0.17 0.18 0.20 0.19 0.18 0.21 0.20
2012 6 0.33 0.33 0.31 0.33 0.32 0.32 0.34 0.33 0.32

adjusted systematic sample
2008 2 0.24 0.27 0.25 0.28 0.32 0.29 0.31 0.29 0.30
2009 4 0.51 0.57 0.57 0.51 0.57 0.58 0.58 0.57 0.56
2010 2 0.29 0.32 0.30 0.33 0.36 0.34 0.35 0.33 0.33
2011 7 0.15 0.18 0.17 0.18 0.20 0.19 0.21 0.20 0.21
2012 6 0.33 0.32 0.30 0.33 0.32 0.33 0.33 0.32 0.31

the exchangeability model occasionally produced unrealistic values of τ̃ , it appears to do
better in predicting the tail of the density.

Table 12 provides the means, medians, and credible intervals for the predictive densities
of τ̃ . The means are smaller and the credible intervals shorter for the Poisson/gamma
model. The results are robust to the measure of effort and the dataset (systematic or
adjusted systematic) used to construct the Poisson/gamma exchangeability model. If one
model is to be recommended, I would lean towards the exchangeability model using the
adjusted systematic data with effort expressed as e?. Although the adjusted systematic data
has psuedo systematic samples for three quarters, it has one additional observed bycatch
event and is the most conservative predictive density. Without truncating the predicted
values generated using the recommended exchangeability model, the mean, median, and 95%
credible interval of the predictive density are 32.7, 31, and [7,63], respectively. Truncating
the data had little effect on these three values.

5.6. Humpback Whale. During 2008-2012 there were no observed bycaught humpback
whales in the deep-set fishery. Previously, there were two observed bycatch events during
2002-2007: 1 in 2002 and 1 in 2004. As there were no observed bycatches, the Poisson/gamma
and Poisson/gamma exchangeability models were not considered. Table 13 gives the predic-
tive probabilities of “at least as extreme” humpback bycatch observations for years 2008-2012.
There is little difference between the probabilities for the conditional binomial model with
τmax equal to 25 or 50. Table 14 provides the means, medians, and 95% (at least) credible
intervals for the two different models. Based on observations during 2008-2012, the predic-
tive density created using τmax = 25 seems to have a slight advantage as its density has less
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Figure 10. Predictive densities of annual olive ridley sea turtle bycatch (τ̃ )
for the Poisson/gamma and Poisson/gamma exchangeability models.

Table 12. The means, medians, and credible intervals, including their cov-
erage, are provided for predicted densities of olive ridley sea turtle annual
bycatch (τ̃). The Poisson/gamma Poisson/gamma exchangeability models are
denoted as PG and EXPG, respectively. Shown in parentheses is the dataset
used to construct the model: systematic sample (sys) or adjusted systematic
sample (adj.sys).

model effort mean median credible interval coverage

PG(adj.sys) e? 32.1 31 [16,51] 95%
PG(adj.sys) hooks 32.4 32 [15,50] 95%
PG(adj.sys) trips 32.5 32 [16,51] 95%
EXPG(sys) e? 31.8 30 [8,59] 95%
EXPG(sys) hooks 32.3 31 [9,64] 95%
EXPG(sys) trips 32.7 31 [7,60] 95%
EXPG(adj.sys) e? 32.3 31 [8,61] 95%
EXPG(adj.sys) hooks 32.5 31 [9,61] 95%
EXP(adj.sys) trips 33.3 31 [9,64] 95%

mass above zero (higher probability of no bycatch). If the bycatch rates during 2002-2007
are similar to bycatch rates after 2007 then the density with τmax = 50 would likely fit the
2002-2007 observations better. If it is necessary to select one model, I recommend using
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Table 13. Predictive probabilities of “at least as extreme” observations of
humpback whale bycatch in the adjusted systematic sample. The conditional
binomial model is denoted as BIN. The value of τmax (25 or 50) for the BIN
models is shown in parentheses.

year observed BIN(50) BIN(25)

2008 0 0.86 0.87
2009 0 0.85 0.86
2010 0 0.87 0.88
2011 0 0.85 0.86
2012 0 0.85 0.87

Table 14. The means, medians, and credible intervals, including their cov-
erage, are given for the predicted densities of annual humpback whale bycatch
(τ̃ ). The conditional binomial model is denoted as BIN. The value of τmax is
25 and 50 for the BIN models.

model mean median credible interval coverage

BIN(25) 1.2 1 [0,5] 97%
BIN(50) 1.3 1 [0,5] 96%

Table 15. The means, medians, and credible intervals, including their cover-
age, are given for the predicted densities of annual humpback whale DSI (δ̃).
The conditional binomial model is denoted as BIN. The value of τmax (25 or
50) for the BIN models is given in parentheses.

model mean median credible interval coverage

BIN(25) 0.6 0 [0,3] 97%
BIN(50) 0.7 0 [0,3] 97%

the conditional binomial model with τmax = 50 as it is more conservative. Figure 11 is a
graphical depiction of the predictive density of τ̃ for the conditional binomial model with
τmax = 50.

The methods described in Section 4.3 were used to compute the posterior density of ρ
(probability a bycatch results in DSI). Figure 12 provides a graphical display of the posterior
densities of each category’s probability computed using the Dirichlet model. The posterior,
data, and prior density of ψ (probability that a PR results in a DSI) computed using the
binomial/beta model are graphically displayed in Figure 13. This figure shows that the prior

has very little influence on the posterior density. The predicted posterior density of δ̃ for
humpback whales is provided graphically in Figure 14. Summary statistics of the predicted
densities of δ̃ are provided in Table 15.
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Figure 11. Predictive density of annual humpback whale bycatch (τ̃ ) com-
puted using the conditional binomial model with τmax = 50.
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Figure 12. Posterior density of probabilities for DSI, NSI, and PR injury
categories for humpback and sperm whales.
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Figure 13. The prior, data (likelihood) and posterior densities (densities)
for the probability a PR is a DSI. These densities apply to the humpback and
sperm whales.
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Figure 14. Predicted density of annual humpback whale DSI (δ̃) computed
using the conditional binomial model with τmax = 50.
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Table 16. Predictive probabilities of “at least as extreme” observations of
sperm whale bycatch in the adjusted systematic sample. The conditional bi-
nomial model and Poisson/gamma model are denoted as BIN and PG, respec-
tively. The variable of effort (number of trips or hooks) for the PG models
and the value of τmax (25 or 50) for the BIN models are shown in parentheses.

year observed BIN(50) BIN(25) PG(trips) PG(hooks)

2008 0 0.72 0.74 0.84 0.84
2009 0 0.71 0.74 0.83 0.83
2010 0 0.75 0.77 0.85 0.86
2011 1 0.29 0.26 0.17 0.18
2012 0 0.70 0.73 0.82 0.81

Table 17. The means, medians, and credible intervals, including their cover-
age, are given for the predicted densities of annual sperm whale bycatch (τ̃ ).
The conditional binomial model and Poisson/gamma model are denoted as
BIN and PG, respectively. The variables of effort (number of trips or hooks)
for the PG models and the value of τmax (25 or 50) for the BIN models are
given in parentheses.

model mean median credible interval coverage

PG(hooks) 1.6 1 [0,5] 95%
PG(trips) 1.6 1 [0,6] 95%
BIN(25) 2.5 2 [0,6] 96%
BIN(50) 2.8 2 [0,8] 97%

5.7. Sperm Whale. During 2008-2012 there was one observed sperm whale bycatch event
in the deep-set fishery, and during 2002-2007 there were no observed bycaught sperm whales.
With so few observed takes the Poisson/gamma exchangebility model was not considered.
Table 16 gives the predictive probabilities of “at least as extreme” sperm whale bycatch obser-
vations for years 2008-2012. When comparing the conditional binomial and Poisson/gamma
models, the conditional binomial model has larger probabilities for the year of the one ob-
served bycatch and smaller probabilities for the other years. As year 2011 is also the year
of the one observed green sea turtle bycatch event, any difference between the two tables of
“at least as extreme” probabilities is a consequence of simulation error.

Table 17 provides the means, medians, and 95% (at least) credible intervals for the four
different models. If necessary to select one model, I recommend using the most conservative
predictive density of τ̃ constructed using the conditional binomial model with τmax = 50.

The posterior density of each injury category’s probability and the posterior density of ρ
(probability a bycatch results in a DSI) used for humpback whales was used for the sperm
whales. Summary statistics of the predicted densities are provided in Table 18. The predicted
posterior density of δ̃ for sperm whales constructed using the conditional binomial model
with τmax = 50 for τ̃ is provided graphically in Figure 15.
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Table 18. The means, medians, and credible intervals, including their cov-
erage, are given for the predicted densities of the annual DSI (δ̃) of the sperm
whales. The conditional binomial model and Poisson/gamma model are de-
noted as BIN and PG, respectively. The variables of effort (the number of
trips and hooks) for the PG models and the value of τmax (25 or 50) for the
BIN models are given in parentheses.

model mean median credible interval coverage

PG(hooks) 0.8 0 [0,3] 96%
PG(trips) 0.8 0 [0,3] 96%
BIN(25) 1.2 1 [0,4] 98%
BIN(50) 1.4 1 [0,4] 96%
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Figure 15. Predictive density of the annual sperm whale DSI (δ̃) constructed
using the conditional binomial model with τmax = 50 for τ̃ .

5.8. Main Hawaiian Islands Insular Stock of False Killer Whale. During 2008-2012
there were 2 observed FKW and 1 observed blackfish bycatch events within the 140 km
boundary and no observed bycatch events within the open area. There were 3 observed
FKW and 3 observed blackfish bycatch events within the 140 km boundary during 2002-
2007. Two of the 3 observed FKW bycatch events may have occurred in the open area,
as there were no capture locations recorded and some of the associated set and/or haul
coordinates were located in this area.

As our primary objective is to predict the annual bycatch (τ ) and DSI (δ) within the
open area and there are no observed FKW takes within this area during 2008-2012, one
of the first questions to address is the appropriateness of using data collected outside this
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Table 19. Predictive probabilities of “at least as extreme” observations of
FKW bycatch in the adjusted systematic sample that occurred within the 140
km boundary for different predictive densities. Using the adjusted systematic
sample, the predictive densities were constructed using the Poisson/gamma
model fitted to all observations (total), observations within the boundaries of
Hawaii’s EEZ (hawaii), and observations within the 140 km boundaries (140
km).

year observed total hawaii 140 km

2008 0 .904 .819 .618
2009 0 .841 .723 .467
2010 0 .907 .820 .605
2011 1 .084 .158 .350
2012 2 .006 .022 .129

area when predicting τ . The disadvantages of restricting ourselves to data collected within
the open area are that the bycatch rate would likely be underestimated as a result of too
few observations for such a rare event and a model that could produce a predictive density
without any observed bycatch events would need to be employed. As we want to use the
number of hooks as the unit of effort for predicting future bycatch in the open area (see
Section 2), the conditional binomial model is not appropriate. It is natural to consider
using the data within the 140 km boundaries as this is the assumed boundary of the IFKW
stock. All three observed bycatch events within the 140 km boundary occurred within the
systematic sample. Using the methods described in McCracken (2010), the observed blackfish
has an estimated probability of 0.97 of being a FKW. As this blackfish is very likely a FKW,
hereafter, it is considered a FKW. Fitting the Poisson/gamma model to observations in the
adjusted systematic sample that occurred within the 140 km boundary (approximately 936
thousand hooks), the predictive probability of observing no bycatch during 2008-2012 in
the open area is 0.312. As this value is not in the tail area of the predictive density, the
observation of no bycatch in the open area is consistent with this model.

Now, consider using data collected outside the assumed boundary of the IFKW. During
2008-2012, within the adjusted systematic sample there were 18 observed bycaught FKW
with approximately 29,803 thousand hooks deployed, and within the boundaries of Hawaii’s
EEZ there were 11 observed bycaught FKW with approximately 9,311 thousand hooks de-
ployed. A Poisson/gamma model was fitted to these two data sets (within Hawaii’s EEZ
and total fishing grounds) and the predictive probabilities of observing “at least as extreme”
observed bycatch events of FKW within the 140 km boundaries computed. These probabil-
ities are given in Table 19. The very small predictive probabilities for year 2012 (.022 and
.006) indicate that these two models are inadequate in fitting this observation. Based on
the findings here and in the above paragraph, the decision was to use the Poisson/gamma
model fitted to observations in the adjusted systematic sample that occurred within the 140
km boundary. Hereafter, all results refer to this model.

Predictive densities of τFKW in the open area were constructed for future effort levels of
500 thousand, 600 thousand, and 1 million hooks. This range of values approximately covers
the median, mean, and maximum effort within the open area during 2008-2012. Figure 16
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Figure 16. Predictive density of annual FKW bycatch (τ̃FKW ) in the open
area based on 600 thousand hooks.

Table 20. Means, medians, and credible intervals, including their coverage,
are given for the predicted densities of annual FKW bycatch (τ̃FKW ) in the
open area. Future levels of effort considered are 500 thousand, 600 thousand,
and 1 million hooks.

effort mean median credible interval coverage
(1000s hooks)

500 1.61 1 [0,5] 96%
600 1.90 2 [0,5] 98%
1000 3.24 3 [0,8] 96%

provides a graphical display of the predictive density based on 600 thousand hooks, and
Table 20 provides the predicted means, medians, and 95% (at least) credible intervals for
these predictive densities based on the three levels of future effort.

The posterior density of ι (the probability that a FKW bycaught within the 140 km
boundary is a IFKW) and θ (the probability that a bycatch resulted in a DSI classification)
were constructed as described in Section 4.4 and Section 4.3, respectively. Figure 17 is a
graphical display of the prior, data, and posterior densities of θ when the prior and data
distribution either included or, alternatively, excluded blackfish classifications (see Section
3). The two posterior densities are very similar.

The methods described in Section 4.5 were used to construct predictive densities of δ̃IFKW .
Table 21 provides the means and 95% (at least) credible intervals for the predictive densities
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Figure 17. The prior, data (likelihood), and posterior density of the proba-
bility a false killer whale bycatch results in a DSI classification (θ).

of δ̃IFKW created using the three levels of effort and the two injury classification datasets
(excluding and including blackfish). As the median is 0 for all these densities, it is not
included in the table. Since the two posterior densities of θ in Figure 17 are so similar, it is
not surprising that the predictive densities of δ̃IFKW appear to be very similar between the
two injury classifications datasets within the same level of effort.

For a future effort of 600 thousand hooks (our assumed projected effort for the future) in
the open area and the injury classification dataset excluding blackfish (results in the more

conservative predictive density), the predictive densities of τ̃IFKW and δ̃IFKW have means of
0.30 and 0.27, respectively. These are the recommended predictive densities if required to
select one of each. Figure 18 is a graphical depiction of the recommended predictive densities
of τ̃IFKW and δ̃IFKW . Since the management of marine mammal bycatch is based on a five
year average, the same predictive density for δ̃IFKW is used to construct a predictive density
of the five year average of δ̃IFKW . This is done by drawing five samples of δ̃IFKW from this
predictive density, summing over these five samples, and then dividing by 5 and repeating
this process 10,000 times. As the quantity of DSI is an integer with a small range, the
resulting predictive density is discrete with a small range. Table 22 provides the predictive
density for the 5 year average of δ̃IFKW .

As there is another proposed stock of FKW referred to as the Northwestern Hawaiian
Islands false killer whale (NHIFKW) stock, management requested information on what
proportion of the predicted IFKW bycatch would be expected to occur within the area that
overlaps the proposed range of the NHIFKW stock. This partitioning of the predictions is
given in Appendix B.



41

Table 21. Means, medians, and 95% credible intervals (CI), including their
coverage, are given for the predicted densities of annual IFKW bycatch
(τ̃IFKW ) and annual IFKW DSI (δ̃IFKW ). Future levels of effort considered
are 500 thousand, 600 thousand, and 1 million hooks. The predictive densities
of δ̃IFKW were constructed using (1) only FKW injury classifications (FKW)
and (2) FKW and blackfish classifications (FKW.BF).

τ̃IFKW δ̃IFKW

dataset mean CI coverage mean CI coverage

future effort of 500,000 hooks
FKW.BF 0.25 [0,1] 97% 0.22 [0,1] 97%
FKW 0.24 [0,1] 97% 0.22 [0,1] 97%

future effort of 600,000 hooks
FKW.BF 0.29 [0,1] 96% 0.27 [0,1] 97%
FKW 0.30 [0,1] 95% 0.27 [0,1] 96%

future effort of 1,000,000 hooks
FKW.BF 0.49 [0,2] 98% 0.44 [0,2] 98%
FKW 0.49 [0,2] 98% 0.45 [0,1] 98%
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Figure 18. Predictive densities of annual IFKW bycatch (τ̃IFKW ) and annual

IFKW DSI (δ̃IFKW ).
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Table 22. Predictive density of the 5 year average of annual IFKW DSI.

average predictive probability

0.0 0.2774
0.2 0.3422
0.4 0.2182
0.6 0.1035
0.8 0.0416
1.0 0.0127
1.2 0.0032
1.4 0.0010
1.6 0.0002

6. CONCLUSIONS

In this report, many predictions have been given and many assumptions and caveats re-
lated to these predictions have been listed. Several important caveats should be highlighted.
First, the models used to create predictive densities assume that levels of bycatch are pro-
portional to functions of effort. To add a measure of robustness to these models, the models
were constructed using one of two subsets of the 2008-2012 observer data. One subset of
the data was self-weighting across strata (the systematic sample), and the other was self-
weighting across and within strata (the adjusted systematic sample). Diagnostics indicated
that predictive densities of bycatch that assumed a proportional relationship with effort were
adequate for predicting bycatch during 2008-2012. Second, the predictive density based on
effort as the predictor variable assumes that the associations between effort and bycatch
levels captured in the period ahead will be similar to those in existence during the period
upon which the model is based, years 2008 to 2012, and that the model is relevant to the
extrapolation of the projected effort scenario. Because the effort within a trip is projected
to increase, the projected number of trips was adjusted upward to account for this increased
effort. Appendix A examines the sensitivity of the predictions to this adjustment. Third,
predictive densities were constructed assuming a constant level of yearly effort, when in fact,
effort will vary. Therefore, the predictive densities of τ̃ and δ̃ will likely show more variation
than that predicted. Fourth, the predictive densities of δ̃ assume that the past probabilities
that a bycatch results in a DSI are representative of the future probabilities.

Appendix A. Sensitivity Analysis to Number of Projected Trips

To evaluate the sensitivity of the mean and median of the prior predictive distribution of
future annual bycatch to levels of projected annual effort ranging from 1,300 to 1,525 trips, a
study was undertaken where the distributions of the mean and median for different levels of
projected annual effort were examined. Specifically, the levels of effort examined were from
1,300 to 1,525 trips increasing by intervals of 25 trips. For each level of annual effort, the
prior predictive distribution of annual bycatch was generated 2,000 times. As the loggerhead
sea turtle, green sea turtle, and sperm whale each had only one observed bycatch event
between 2008-2012, the prior predictive distribution based on the conditional binomial model
is theoretically equivalent between these three species. Therefore, the conditional binomial
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Figure 19. Distributions of the mean of the predictive distribution of future
annual bycatch for loggerhead and green sea turtles, and sperm whales (1
observed bycatch event between 2008-2012) based on the conditional binomial
model. The horizontal dash lines bound the values of 2.5 and 3.0.

model(τmax = 50) was fitted to 1 observation and 194 trips (observed effort between 2008-
2012 for the adjusted systematic sample) and 10,000 random draws from the corresponding
prior predictive distributions of annual bycatch generated as described in Section 4.2.3.
The mean and median of the 10,000 draws were recorded as they represent random draws
from the distributions of the mean and median of the prior predictive distribution of future
annual bycatch. Herein, the distributions of the mean and median of the prior predictive
distribution will be referred to as the distribution of the mean and median, respectively.
For the humpback whale there were no observed humpback whale bycatch events between
2008-2012, and the conditional binomial model (τmax = 50) was fitted accordingly.

Figures 19 and 20 are box-and-whisker plots of the distribution of the mean over different
levels of predicted effort. The bottom and top of the individual boxes represent the first and
third quartiles, and the band inside the box is the median. The vertical dashed lines are
called the “whiskers” and show 1.5 times the interquartile range (the difference between the
first and third quartiles) of the data. Points outside 1.5 times the interquartile range are
plotted individually and considered outliers.

First consider Figure 19, the plot corresponding to the conditional binomial model based
on 1 observed bycatch event. The horizontal dashed lines are located at the values of 2.5 and
3.0. As expected, the predictive distribution of the mean shifts upward as effort increases;
however, this shift is gradual as all the box-and-whisker plots lie between the values of 2.4
and 3.1 despite effort increasing from 1,300 to 1,525 trips. This figure shows that the mean
of the predictive distribution of annual bycatch has a very high probability of falling between
2.5 and 3.0 for different levels of projected values of effort between 1,300 and 1,525 trips.

Next consider Figure 20, the plot corresponding to the conditional binomial model based
on 0 observed bycatch events. The horizontal dashed lines are located at the values of 1.1 and
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Figure 20. Distributions of the mean of the predictive distribution of future
annual humpback whale bycatch (0 observed bycatch events between 2008-
2012) based on the conditional binomial model. The horizontal dash lines
bound the values of 1.0 and 1.5.

1.5. As expected, the distribution of the mean shifts upward as effort increases; however, this
shift is gradual as all the box-and-whisker plots lie between the values of 1.0 and 1.5 despite
effort increasing from 1,300 to 1,525. This figure shows that the mean of the predictive
distribution of annual bycatch has a very high probability of falling between 1.15 and 1.40
for different levels of projected values of effort between 1,300 and 1,525.

Now consider the distribution of the median. For each of the predictive distributions based
on the conditional binomial model and 1 observed bycatch, the total mass of the distribution
is at 2 for all levels of projected effort. For each the predictive distributions based on the
conditional binomial model and 0 observed bycatch, the total mass of the distribution is at 1
for all levels of projected effort. In summary, the values for the median of the prior predicted
distribution of annual bycatch for the four species of concern are not sensitive to values of
projected effort between 1,300 and 1,525 trips.

A similar study was undertaken to evaluate the sensitivity of the mean and median of
the prior predictive distribution of future annual DSI to levels of projected annual effort
ranging from 1,300 to 1,525 trips. The same algorithm was used as in the study concerning
future annual bycatch, except that after generating the prior predictive distribution of annual
bycatch, the prior predictive distribution of annual DSI was generated as described in Section
4.3. The mean and median of the 10,000 draws were recorded as they represent random draws
from the distributions of the mean and median of the prior predictive distribution of future
annual DSI.

Figures 21 and 22 are box-and-whisker plots of the distribution of the mean of the predic-
tive distribution of future annual DSI. For sperm whales, Figure 21 shows that the mean of
the predictive distribution of future annual DSI has a very high probability of falling between
1.2 and 1.5 for different levels of projected values of effort between 1,300 and 1,525 trips.
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Figure 21. Distributions of the mean of the predicted distribution of future
annual sperm whale DSI (1 observed bycatch event between 2008-2012) based
on the conditional binomial model. The horizontal dash lines bound the values
of 1.2 and 1.5.

Similarly, Figure 22 shows that the mean of the predictive distribution of annual humpback
DSI has a very high probability of falling between 0.55 and 0.70. The total mass of the
distributions of the median of the predictive distribution of annual DSI of sperm whales are
at the value 1 for all levels of projected effort, and for humpback whales, the total mass of
the distributions of the median are at 0 for all levels of projected effort.

Appendix B. Partition of predicted IFKW bycatch that overlaps

NWHIFKW range

In addition to the predictions for the IFKW, management requested that these predictions
be split between two areas: (1) the portion of the open area that falls within the proposed
boundaries of the Northwestern Hawaiian Islands false killer whale (NWHIFKW) stock and
(2) the portion of the open area that does not overlap the proposed boundaries of the
NWHIFKW stock. Figure 23 shows the relevant boundaries. Based on the set and haul
begin and end locations within the open area that were part of the adjusted systematic
sample, the average yearly proportion of locations that were in the area of the NWHIFKW
stock boundaries was 3.3%. This implies that for the assumed 600 thousand hooks within
the open area, an estimated 20,000 would be within the NWHIFKW stock boundaries and
580,000 would be outside the NWHIFKW stock boundaries. Using these amounts of effort,
the predictive densities of τ̃IFKW and δ̃IFKW suggest a mean of 0.29 IFKW bycatches and 0.26
IFKW DSI in the area outside the boundaries of the NWHIFKW stock boundaries, and an
average of 0.01 bycatches and 0.01 DSI in the area within the NWHIFKW stock boundary.
These are imprecise estimates based only on distribution of effort within the referenced
boundaries, not on interactions between NWHIFKW and IFKW stocks. Therefore, caution
should be exercised when applying these estimates to bycatch projections.
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Figure 22. Distributions of the mean of the predictive distribution of future
annual humpback whale DSI (0 observed bycatch events between 2008-2012)
based on the conditional binomial model. The horizontal dash lines bound the
values of 0.55 and 0.7.
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Figure 23. Boundaries for the proposed NWHI stock, closed area, and the
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