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Abstract

To estimate fish population trends and abundance, fisheries sci-
entists commonly apply dynamic population models fitted to relative
abundance indices. Populations are often monitored using longline
fishing gear and the most commonly used relative abundance index in
this case is the catch per unit effort (CPUE), defined as the number of
fish of the targeted species caught per hook and minute of soak time.
Longline CPUE can be affected by interspecific competition and the
retrieval of unbaited or empty hooks, and this can lead to biases in
the apparent abundance trends. Interspecific competition has been
previously studied but the return of empty hooks is ignored in all cur-
rent treatments of longline CPUE. This work proposes and compares
different stochastic models to define indices to address both issues si-
multaneously. Maximum likelihood estimators and their asymptotic
covariance matrices are obtained. Simulating different joint scenar-
ios for interspecific competition and the empty hooks, we show that
CPUE behaves badly in every scenario. Information about the source
of the empty hooks is required to select the appropriate identifiabil-
ity constraint and therefore derive the appropriate abundance index.
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The above methods are applied to build relative indices from 2003
to 2009 for quillback rockfish (Sebastes maliger) in British Columbia
from longline survey data. Due to variation in the incidence of non-
target species, the index trend obtained is moderately sensitive to the
choice of the estimator. The proposed methodology permits the build-
ing of reliable abundance indices for all populations monitored using
longline fishing gear.

1 Introduction

Many fish stock assessments derive information about stock trends from anal-
yses of catch and effort records obtained from a longline fishing event (Clark
and Hare, 2006; Maunder and Aires-da Silva, [2010). In this paper, we define
the event of setting a longline with baited hooks for some fixed amount of
time, hauling the longline and recording the location and the species caught
per hook as a “longline experiment”. The classical relative abundance in-
dex, Catch Per Unit Effort (CPUE), for populations monitored using long-
line gear, is defined as the average number of individuals of targeted species
caught per hook and minute of soak time. This commonly used CPUE index
of abundance ignores the variability introduced by the competition for baited
hooks within and between species. Somerton and Kikkawa| (1995) propose
two different indices, based on instantaneous rate of catch from longline sur-
vey records which takes interspecific competition into account. Haimovic and
Avila-da Silva (2007) claim that CPUE and the instantaneous rate give the
same results. Ward et al.| (2004)) shows with another model that soaktime
and without taking competition into account that soaktime is important.
The authors also proved that other factors may influence the indices but the
effects of those factors are not addressed in this paper. Another important
source of variability in the abundance indices which has received relatively
little attention is the presence of empty hooks, i.e., hooks returning without
bait or fish.

This paper generalizes the use of instantaneous rates of catch from long-
line surveys as relative abundance indices (as proposed by Somerton and
Kikkawa (1995) and [Rothschild| (1967))) and evaluates alternative approaches
to dealing with empty hooks in the formulation of longline survey stock trend
indices.

The paper is divided into three main sections after the introduction. Sec-



tion [2 reviews existing methods for deriving relative abundance indices from
longline catch and effort records. Section [3] presents our generalization of
the previous methods to account for empty hooks. Some simulation studies
are conducted to compare the indices under different levels of interspecific
competition and sources for empty hooks. Section 4] gives the results of the
simulation studies and illustrates the behaviour of the indices for monitoring
the abundance of quillback rockfish (Sebastes maliger). The full technical
details are outlined in the appendix.

2 Review of methods to derive abundance in-
dices from longline records

2.1 Catch Per Unit Effort (CPUE)

In a longline survey CPUE is defined as the ratio between the number of
fish of the target species caught, Ny, and the number of hooks, N, times the

soak time, S:
#Target Nr

#hooks x SoakTime NS

This index ignores the effects of competition and gear saturation.

CPUE =

2.2 The simple exponential model

Somerton and Kikkawa (1995) have proposed two alternative approaches to
deal with the issues of hook competition and gear saturation. Only one is
useful in our context because dealing with gear saturation requires observed
capture times which are not often recorded as in our case study. The number
of available baits on the longline is considered to decrease at an exponential
rate measuring the overall pressure on the hooks. This overall pressure may
be split into a sum of relative abundance indices per species. Using this
approach the k' catch C, for a soak time S and for species r = 1,... R is
given by:
A

Cri = TN(1 - e ) fey, with g4 T N(0,02), (1)

where N stands for the initial number of hooks, A is the overall pressure



on hooks, and A = ) A, is the sum of the specific abundance index per
species, and k is the number of the set. The parameters (A, ..., Ag) define
a relative abundance index for each r speciesﬂ

A few of the drawbacks of this Simple Exponential Model (SEM) are
the assumptions of normality and homoscedasticity of the error terms. It is
intuitive that the variability should be higher for species with higher relative
abundance, i.e., the variance of the error term should not be constant but
should depend in some way on \;. Furthermore C, is a discrete number
(number of fish caught), potentially small and the normal assumption is not
accurate in this case.

2.3 Multinomial Exponential Model

This section reviews the underlying ideas of Somerton and Kikkawal (1995)
and proposes an alternative model which more closely mimics the behavior
of the fish. This model has been originally proposed by |Rothschild (1967)
and describes how the catch of a target species could be reduced by the catch
of other species.

Let us define Tt as the time it takes to catch an individual from the
target species on one particular hook. T is assumed to follow an exponential
distribution of rate Az, i.e

P(Tp > u) = e Y,

where u is some fixed amount of time from when the baited hook was placed
in the species’ habitat. Tyt is an exponential random variable with parame-
ter Ay7 and models the time it takes to catch an individual from any of the
non-target species. We can define T' = min {7, Tyr} as the time it takes to
catch an individual of any species. Thanks to the property of the exponential
distribution, 7T is exponentially distributed with rate A = Ar + Ayp. This
property justifies the decomposition of the overall relative abundance as a
sum of specific abundance given by Somerton and Kikkawa (1995)).

I Mostly one particular species is the target species, let r = 1 while the other species,
r > 1 are non-target species. In this context it is easier to consider only A\; = Ar the
relative abundance for the target species and Ao = Ayr the relative abundance index
which summarizes all the other species.



After the soak period S, for one hook, there are only three possible out-
comes:

e {I =0} = { The hook is still baited.}. It means that the time for a
capture is greater than the soak time. This event occurs with proba-
bility

P(I=0)=P(T > 8) =e*°
e {I # 0} = { The hook is no longer baited.}.
PI#£0)=P(T<S)=1—e"".

Given the hook is no longer baited, there are two possible outcomes:
the catch is either from the target species, i.e. {I = T},which occurs
with probability

P(I=T)=P(Tr < Tx7|T < S)P(T < S) = %(1 — e,

or the catch is from a non-target species, corresponding to the event
{I = NT} which occurs with probability:

P(I = NT) = P(Tyr < Tp|T < S)P(T < ) = A%(1 — ).

Assuming that all the hooks on a longline behave independently, the
likelihood is given by

N N
(N Nr CAS\NB (1 AS\NptNar (AT (Anr )
L()\T7>\NT) - ( NB > < NT + NNT ) (e ) (1 € ) )\ >\ )

(2)
where

e N is the number of hooks on the longline,
e Np is the number of baited hooks at the end of the soak time,
e Np is the number of individuals of the target species caught,

e Nyt is the number of individuals of the non-target species caught.



The combinatorial terms arise since all the hooks are considered indepen-
dent and the order of the catch on the longline has no importance. This
model was originally proposed by Rothschild| (1967) although presented here
with a slightly different approach. This model is called Multinomial Expo-
nential Model (MEM) since the vector (Ng, Ny, Ny7) follows a multinomial
distribution whose vector of probability depends on an exponential term.

If Ay7 is larger than Ar, it corresponds to a high level of competition:
for a given relative abundance of the target species Ar, the catch decreases
as A\yr, the non-target species relative abundance, increases.

2.4 Links between the indices
2.4.1 Links between MEM and SEM

The expected number of fish caught of the target species Nr is the same
under the MEM and SEM assumptions and is given by:

E (Nr) = NATT (1—e).

Moreover, the models share the same parameters, Ay and Ay7. The
main difference is the error term. In the SEM, the error term is normally
distributed with a variance given by:

Varsgy (Nr) = Var(Nyr) = o2,

while in the MEM the total number of fish caught has a multinomial distri-
bution and the variance is given by:

Varyen(Nr) = NATT 1—e ) (1— /\TT 1 —e™9))
Varypm(Nyr) = NAE(1 —e %) (1 — A%(l — )

Furthermore Ny and Ny7 are assumed to be independent in the SEM and
not in the MEM since they are drawn from the same multinomial probability
distribution.



2.4.2 Links between CPUE and MEM

Under the MEM assumption, the expected CPUE of the target species is
given by:

E(CPUE) = :—g (1—e%) =Ar+o0(N)

If the overall relative density index A is small enough, meaning that there is
little competition and the target species is not very abundant, CPUE and
the MEM index give the same results. This theoretical result is consistent
with the expected behavior. Furthermore the limit when the soaktime goes
to 0 is equal to Ay, which means that the relative abundance index is the
equvalent of instantaneous CPUE.

3 Dealing with empty hooks

In longline experiments, it is common for some hooks to return empty; the
hook is no longer baited, but there is no fish on it. There could be several
explanations for these empty hooks such as mechanical removal of bait dur-
ing gear setting/retrieval, consumption of the bait by invertebrates or fish
without being hooked or removal of the hooked fish by predators.

In this paper, we consider the hypothesis that empty hooks arise only from
the escape of fish. Therefore, the question about empty hooks is reduced to
“How should the empty hooks be allocated to the different species?” These
empty hooks provide information that we could use to improve the quality
of our abundance indices. This section describes modifications of the MEM
to incorporate this information and details some statistical properties of the
indices built using these versions of MEM. It also describes different ways to
include the empty hook information into the SEM.

3.1 Full version of the Multinomial Exponential Model

We propose a modified version of the Multinomial Exponential Model to ac-
count for empty hooks. As opposed to the previous version of the MEM, here
each fish caught has a probability of escaping equal to pr, for target species,
and pyr, for non-target species.



We use three additional variables to fully specify the model: Ng is the
number of observed empty hooks; N g) (respectively N ,E;NT)) stands for the
number of target species (respectively non-target species) individuals which
have escaped and these two random variables are not observed. Assuming,
as for the simple version of MEM, that all hooks are independent, we are
able to conditionally describe the outcomes (Figure 1)).

e The number Ny of baited hooks retrieved at the end of the soak time
is the realisation of a binomial random variable with probability of
success e .

Np ~ B (N,e™%).

e Among the N — Ng empty hooks, the total number of individuals from
target species caught is N + N ](ET) and is also binomially distributed:

A
Ny + ND|Ng ~ B <N — Np, 71> :

e Given Ny + N j(ET), the total number of individuals from target species
caught and landed on board is Ny and is also binomially distributed:

Nr|Np + N~ B (Np+ N, (1= pr) )

e Given Nyr + N ,(ENT), the total number of individuals from non-target
species caught and landed on board is Ny7 and also has a binomial
distribution:

Nyr|Nyr + N](;NT) ~ B (NNT + N](;NT), (1- pNT)) :

The full version of Multinomial Exponential Model is summed up through
a probability tree in Figure . N ](ENT) and N g) are missing quantities but the
sum Ng of these two quantities is observed. Appendix [B.1] gives the main
step to define the likelihood of this model:

B N' -\S Np o ~AS N—-Np
“Nal NN &) (e

A Nr A NNt A + A Ng
(o) (0w (22

8

l()\T, ANT, DT pNT)




Figure 1: Conditional description of the model. The observed quantities are
solid lines, the hidden quantities are dashed lines.

The full version of Multinomial Exponential Model may be considered as
a multinomial distribution:

(NB, Nr, Ny, NE) ~ M (N7 a)

with a = ( (1 =) 220 —pr), (1= )N (1 pyr), (1)

In this full version the model is not identifiable since an equivalent version
could be expressed with only three parameters A\, Ax(1—p7) and Ayr(1—py7)
(see annex for more details). Some additional information is required to
estimate the parameters in this model. It is possible to add some biologi-
cal knowledge on the probability of escape through prior distribution in a
Bayesian framework but no information of this kind is available for our case
study. This point is discussed in section [l Considering a frequentist or
an objective Bayesian approach some particular solutions have to be chosen.
The idea is to put a constraint of identifiability which links py7 and py. This
constraint may be expressed as Pr = aPyp. Any choice of o according to
biological consideration may be relevant but in this paper we focus on two
reasonable choices:

1. MEM1: empty hooks come only from non-target species, so pr is as-
sumed to be 0, this corresponds to o = 0. Most of the time the target
species is less abundant than all the non-target species. Allocating the
empty hooks to the non-target species will at worst lead to an underes-
timation of the target species. Furthermore baited hooks are designed
to catch and retain the target species.

ArDr + ANTDNT




2. MEM2: another reasonable choice is to assume that the probability
of escape is the same for target and non-target species, i.e pr = pyr
and a = 1. An empty hook has had the bait stolen by a fish but no
information about the species of this fish is available so that the empty
hooks are allocated according to the relative densities of each group.

3.2 Maximum likelihood estimation of MEM

As all the longline sets are supposed to be independent, the complete like-
lihood is simply the product of the likelihood for each experiment given by
formula[3] At this stage we have to consider two different situations: variable
soak times or similar soak times.

If the soak times are different for all the longline sets, no analytical formu-
lae for the estimators is available and the estimation step has to be performed
using a non linear optimization algorithm.

Mostly, the longline experiments have been designed to share the same
soak time to reduce the causes of variation in the experiment. In this case,
an analytical formula can be derived for MEM1 and MEM2 because all the
information can be summed up through the vector (Ngy, Npy, Nyry, Npy)
which corresponds to (31, N, .1 Noy, Sor, Nyzy, Y1y Ni,), where [ is
the number of the longline set.

Even if the design of the experiment prescribes a constant soak time for
each set, the actual soak time can differ slightly due to weather conditions or
practical reasons. If the difference is not important, it is judicious to consider
a single soak time (the mean for instance) to avoid the need of a numerical
optimization which can produce some instability in the estimation.

As detailed in appendix[B.3], the maximum likelihood estimators are given
by:

MEMl MEM?2
~ . NT+ Q o Nt Ny
Ar = —Npy s ( > Ar = Nri+Nyrt S 5 log Npy
3 _ NNT++NE+ 1 3 _ NnT+ 11, Ny
)\NT - N+ No+ g )\NT - NT++]\]7\][\IT+S 0og Np+
A . o A ~ _ o — 5
PNt = NE++NNT+ pr Pr Ngy+Nry+NnTy PNT

(4)
Maximum likelihood estimators are asymptotically unbiased and the co-
variance matrix is the inverse of the Fisher Information Matrix (Severini,
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2000)). If the total number of hooks N is large enough, the joint distributions
of these estimators can be approximated by a Multivariate Normal distribu-
tion. Asymptotically the covariance matrix for MEM1 is given by:

(1_6—)\5)2 A (1_e—AS)2
VY ey Tl gmemse 1 0
e —T NT (1_67>\S) 1767)‘51 >\NT
Covypm = N(1— e ) oo resx A T 1 0 ,
0 0 pNT(1—PNT)A

AT A%

(5)
and for MEM2 by

(1767)‘5)2 )\T + 1 (1767)\_9)2 . 1 O
A\ S2e=AS)\2 Ayt 1-p S2e—A5)\2 1-p
COUMEM _ TANT (l_e—AS)Q 1 (1_6—)\5)2 ANT 4 1 0
2 N(l _ ef)\S) S2e—A5)\2 1-p S2e=A5)\2 \p 1-p p(1=p)
0 0 ATANT

(6)

The result given by |[Rothschild| (1967)) concerning the asymptotic variance

for the simple version of MEM with pr = pyr = 0 should be the same

replacing, p or pyr with 0 in the above formulae. Nevertheless, the two

formulas are not compatible even if the estimators are. We suspect a mistake
in the formula proposed by Rothschild (1967)).

3.2.1 Bayesian framework for MEM

The multinomial exponential model could also be estimated in a Bayesian
framework. The full specification of the Bayesian version of the MEM re-

quires the definition of some prior distributions for the parameters (Az, An7, pr, PNT)-
The relative abundance index is always less than 1. Therefore, in our study,

the priors have been chosen as poorly informative and independent.

If there is no informative prior on the probability of escape, the model is still
non-identifiable. In a Bayesian framework, an identifiable model can be di-
agnosed since the posterior distribution is the same as the prior distribution.
Nothing has been learned from the data.

To obtain useful results, informative prior distributions could be defined
using biological knowledge or a field experiment. This aspect hasn’t been
investigated in this work. We use the specific forms of the model (MEM1 or
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MEM2) to remove the problem of identifiability.

The estimation procedure has been implemented using the JAGS (Just
Another Gibbs Sampling) software (Plummer, [2008)). An example of JAGS
code is provided in section for MEM1 and for MEM2 and all other
codes are available on request.

3.3 Estimation for other indices

In this section, we will discuss the estimation steps of all the indices previ-
ously presented and highlights the key points of the procedure.

3.3.1 Multiple CPUE

In a given region, you could have several sets of longlines deployed, so the
estimation step requires the fitting of one index using several observations.

If only one set is deployed, the CPUE is obtained by the catch over the
soak time multiplied by the number of hooks. A simple generalization of this
index is detailed in Appendix [A] and proposes to compute CPUE as

ZlL—l Nr,
CPUE = =11
> SN,

where [ = 1,..., L stands for the longline set. If the number of hooks or
the soak times are different, the generalized CPUE computed is a weighted
average of all individual CPUE. A simple average is not sufficient, since for
example, the average will attribute the same weight to an experiment with
200 hooks and to another experiment with only 50 hooks.

3.3.2 Simple Exponential model

In the following, two versions of SEM are derived depending on how empty
hooks are considered:

1. SEM1: empty hooks are assumed to arise only from the non-target
species and N and Nyt are pooled together.

2. SEM2: empty hooks are considered as a ”third” species, and an addi-
tional relative abundance index is defined \g.

12



Hovgard and Lassen (2000) proposed to estimate A using

A . —log(NB/N)
Hov — T

If all longline sets share the same soak time and the same initial number of
hooks N, the MLEs for this model are almost the same as for the MEM with
the exception of empty hooks.

1 . NT+ l N+
AT = §ioap 5108 (NBJr

\ — Nnr+t+Net 1 Ny
SEMl )\NT = N, —Nps S log Nps

N R 2 N N 2
& = (NTL — N2 (1 - 6_A5)> + (NNTl + N, — N2 (1 - 645))

;

1 . NT+ ll N+
Ar = Ny—Npy S 08 Npy
3 o NNT+ l N+
ANt = Ny—Npy S log Np+
1 N 1 N.
Agp = Er__ ~log [
SEM?2 e Ni=Npy 5 08 \ Nay

N “ 2 < A 2
5 = %Zle {(NTI — N)\TT(l — G_AS)> + <NNTZ — NANTT(l — 6_A5)> +

(Nm — N1 - eXS))Q}

To estimate o at least two longline sets are required; otherwise the esti-
mates correspond to a perfect match and there is no additional variability.
We are only interested in building abundance indices for the target species
and since the estimations of Ar in SEM1 and SEM2 are the same, in the
following we call this index SEM.

When the soak times or the initial number of hooks are different, a nu-
merical optimisation algorithm has to be used to define the MLEs for SEM1
and SEM2. This approach should be avoided if possible due to numerical
instability. From a practical point of view the nlm function available in R
software (R Development Core Team| 2009) behaves badly. In this work we
directly optimize the log likelihood function using function optim.

The analytical formulas for Ay are exactly the same, for SEM and MEM1: if
soak times and the initial number of hooks are the same for all sets, there is
no difference between these two indices concerning the relative abundance of
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the target species, which is not true for the non-target species. But this ana-
lytical formula is only valid for SEM when soak times and the initial number
of hooks are the same while MEM only requires the same soak times.

3.4 Simulation studies

Bias and variability of the estimators are evaluated in this section through
simulation studies. Several plausible scenarios have been studied to give some
robust results and advice about the behaviour of all the indices.

Specifying data generators (Operating Models) is the first step of simula-
tion studies. In our specific case, we have at first glance, different solutions.
We can use the Simple Exponential Model but this model doesn’t simulate
any empty hooks, and it provides non-integer catch values because of the
normal hypothesis. The two other solutions (ie MEM1 and MEM2) will be
used to study the different scenarios.

This choice of Operating Model gives obviously an advantage to MEM1
if the data were simulated with MEM1 and to MEM2 in the other case.

For one set of fixed parameters (that is Ay, Ayr, L the total number
of sets, S the soak time, N the number of hooks on a longline) 5000 fake
datasets are generated and the corresponding estimated values for Ay and
Ant computed. A relative bias and a coefficient of variation are derived from
these simulations. To study the impact of the estimation via a numerical
algorithm, we also compute the estimators by maximizing the log likelihood
using a non-linear optimization algorithm.

The values Ar and Ay7 need to be chosen to reflect a plausible situa-
tion. In this work, four values of each parameter have been used which are
107°,5.107°,1074,5.10~* for Ay and 5.107%,1073,5.1073,10~2 for Ayr, and
all of the sixteen combinations of these two parameters have been addressed.
The values have been choosen according the observed relative abundance
derived from the Rockfish survey described in section [3.5]

Three different scenarios for empty hooks have been simulated:

Sc.1) There are no empty hooks. Each hook has caught a fish. This situation
corresponds to pyr = pr = 0. The operating model is MEM with
pnt =pr =0.

Sc.2) The ability to escape is the same across species. The operating model
is MEM2 with a probability of escape set to pr = pyr = 0.2.
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Sc.3) non-target species are better at escaping. The probability of escape
is set to pyr = 0.2 for the non-target species and to pr = 0.02 for
the target species. In this case the oeprating model is a MEM but it
doesn’t fill the assumption of MEM1 or MEM2.

The results of this simulation study are presented in section [4.1]

3.5 Description of the B.C. inshore rockfish longline
survey

Since 2003, Fisheries and Oceans Canada has conducted an annual research
longline survey in the Strait of Georgia with the fisheries research vessel
CCGS Neocaligus. Different regions of the Strait are covered each year,
resulting in each statistical area (PMFA) being surveyed every two to three
years. A 2 km by 2 km grid is overlaid on all inshore rockfish habitat up to
100 m in depth, as determined using Canadian Hydrographic Service charts.
These blocks are stratified by depth into shallow (41-70 m) and deep (71-
100m) and 8% of the blocks, in a given statistical area, are randomly selected
for fishing each year (see Lochead and Yamanaka 2007 for further details).

The snap-type longline gear consists of 1800 ft of leaded groundline with
225 circle hooks (13/0) spaced 8 ft apart. Each hook is attached to the snap
by a 1.2 ft perlon gangion, crimped at both ends, and with a swivel at the
hook. The hooks are baited with Argentinean squid. Soak time for each set is
two hours and measured as the time from deployment of the last anchor when
setting the gear to the retrieval of the first anchor on board when hauling.

As the gear is retrieved, the condition of each hook is recorded as returning
with bait, with catch, empty (i.e. without bait or catch on the hook), or
unknown, if the hook does not return. Catch is recorded to the species level
for both fish and invertebrates.

In this paper, we will focus on quillback, which is one of the numerous
species of Rockfish.

4 Results

4.1 Simulation studies

In the simulation studies, we focus on two measures of quality for the models.
The bias has been chosen since the goal of relative abundance indices consists
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in accurately reconstructing population trends. Unbiased abundance indices
ensure a good trend reconstruction. The standard deviation of the indices is
used as a second measure of quality to compare the models since a precise
estimate is always welcomed.

4.1.1 Competition but no empty hooks

Figure [2] presents the bias for the two indices in the absence of empty hooks.
SEM, MEM1 and MEM2 produce exactly the same results because there are
no empty hooks and the analytical formula has been used.

% Bias for MEM and SEM % Bias for CPUE
At AnT
-
A |5e-04 0.001 0.005 0.01 M | 5e-04 0.001 0.005 0.01
50 %
1e-05| 0 02 | -05 | o 1e-05| -3 | -57 | -25.2 | -41.8
10%
56-05| 0.3 0 0 0.1 5e-05| -3 | -6 | =25 | -418
1e-04| © 0 01 | 04 1e-04 | —35 | —6.4 | 251 | -41.8 5%
5e-04| 0 | -04 | 01 | o041 5e-04 | -58 | -85 | -26.7 | -43.1 1%

Figure 2: Relative bias, defined as the absolute value of the bias divided by
the true value |\p — 5\T|/ Ar, expressed as a percentage averaged over 5000
simulations for 220 hooks per longline and 20 sets. Bias for SEM1, SEM2,
MEM1 and MEM2 is the same in this case. On the right the bias computed
for CPUE indices shows that the bias increases with the increase of relative
abundance of the non-target species and also with the relative abundance of
target species.

The estimations are unbiased for abundance indices built with the expo-
nential model and so competition is effectively taken into account. On the
other hand bias in the CPUE index increases with increasing relative density
of the non-target species. This result confirms that the CPUE index strongly
depends on competition and should be avoided. This behavior is always the
same in all situations which have been addressed in this simulation study.

The coefficient of variation presented in Table (1| depends on the number
of data points relying on N and L but also on the relative abundance, pa-
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rameters Ay and Ayr. This coefficient could be very high for low relative
abundance situations.
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Figure 3: Coefficient of variation for the estimates of Ay for MEM1 computed

over 5000 simulations as a function of the expected number of catch for target
species

The coefficient of variation of the estimators for the relative abundance de-
creases with the expected number caught, which is in this study, L N2 (1 — e=*9).
The relation between these two quantities is illustrated by Figure [3] This
expected number caught describes the actual available information on A\p.

The bias study shows that CPUE behaves poorly when interspecific com-

petition occurs. In the following the results concerning this index will not be
shown.

4.1.2 Competition and empty hooks

SEM and MEM have the same behaviour when no empty hooks are present
in the dataset. Simulations of empty hooks allow the comparison of the
respective behavior of those indices in presence of empty hooks. In our
simulation context, the soak time and the initial number of hooks are constant
in all sets, so that an analytical formula can be used to compute the indices
and SEM and MEM1 produce the same results.
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Since MEM1 and MEM2 relies on two different hypotheses concerning the
origin of the empty hooks, they give some different results. When all species
are equally good at escaping (Sc.2) MEM2 produces unbiased estimators of
the relative abundance while SEM1, SEM2 and MEM1 tend to underestimate
this relative abundance. In the simulations used to produce Figure [d] the
probability of escape for non-target and target fish has been set to 20%,
which corresponds to the underestimation of 20% for the relative abundance
>\T-

% Bias for MEM1 and SEM % Bias for MEM2
ANt AnT
100 %
At 5e-04 0.001 0.005 0.01 At 5e-04 0.001 0.005 0.01
50 %
1e-05| -19.6 | -19.8 -20 -20.7 1e-05 0.5 0.2 0 -0.9

10 %
5e-05| -19.8 | -19.6 | -20.1 [ -19.9 5e-05| 0.2 0.5 -0.2 0.2 °

1e-04 | ~19.9 | -20 | —20.1 | —20.3 1e-04 | 0.1 o | -01 | -03 5%

5e-04 | -20 | -19.9 | -20.1 [ -19.9 5e-04 0 0.1 -0.1 0.1 1%

Figure 4: Simulations under Scenario 2. MEM1, SEM1 and SEM2 produce
the same results and tend to underestimate the relative abundance. MEM2 is
the "true” model in this situation and tends to produce unbiased estimates.

When the non-target species are better at escaping, MEM2 tends to over-
estimate the relative abundance of the target species. Results presented in
Figure 5| are produced when pr = 0.02 and pyr = 0.2. MEM2 attributes
a proportion of the empty hooks to the target species, this proportion de-
pends on Ay and Ay7. Since in this simulation most of the empty hooks arise
from the non-target species, the higher the relative abundance of non-target
species is, the more the relative abundance of target species is overestimated.
The bias in the estimates for MEM1 is constant and equals 2% which corre-
sponds to the missed fish from the empty hooks.

4.1.3 Numerical instability

In order to study the numerical instability of the optimization algorithm, the
maximum likelihood estimators have been computed through the analytical

18



%Bias for MEM1 and SEM %Bias for MEM?2

;‘NT }‘NT

-

A | 5e-04 0.001 0005 0.01 A |5e-04 0.001 0005 0.01
50 %

1e-05| 1.4 | —1.7 | 24 | 3.4 | |1e-05| 227 | 226 [ 22 | 208
10 %

50-05| -2 | -18 | 21 | -2 5e-05| 20 | 21.4 | 221 | 223
1e-04| 22 | -19 | —1.7 | -2.1 1e-04 | 17.9 | 20.1 | 223 | 221 5%
5e-04| -2 | -2 | 2 | -2 5e-04 | 101 | 14 | 201 | 21.2 1%

Figure 5: Simulations under Scl: MEM1 and SEM underestimate the true
relative abundance by exactly the probability of escape for non-target species.
MEM2 considerably overestimates the relative abundance.

formula and using a numerical optimisation algorithm on the same data set
(with shared S and shared N). Whichever scenario is used, the optimisa-
tion algorithm behaves well, i.e, there was less than 5% of difference between
the estimates computed using the analytical formula and the estimates ob-
tained by numerical optimization except when the ratio between the relative
abundance of non-target species Ayt and the relative abundance of the tar-
get species Ay was very high. In the extreme case, with A\y7 = 0.01 and
Ar = le — 05 the average difference between the two estimates varies from
10% to 40%. This poor behaviour occurs when the log-likelihood peak is not
strong enough. Some examples of this behaviour concerning the optimisation
step are illustrated on the real data in section [4.2]

4.2 Rockfish survey results

Figure [6l A shows the different relative abundance indices obtained using the
scientific survey described in section [3.5. The confidence intervals have been
computed using a bootstrap procedure with 5000 resamples.

The estimate for the numerical version of SEM index exhibits a consid-
erable difference in trends and the confidence interval associated with this
estimate is huge. This is due to a numerical instability problem. Indeed,
there are very few quillback caught in 2007 in Area 13 as suggested by the
decrease in the trend for all other indices. Therefore, the numerical opti-
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Figure 6: Four indices computed for Area 13 (A on the left) and for Area 12
and 13 pooled (B on the right) for the quillback population. The numerical
optimisation has some stability issues for year 2007, the results should be the

same then MEM1 estimates.
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mization procedure behaves poorly which produces a poor estimate but also
a large variability using a bootstrap procedure.

3
¢ 71 B Bayesian
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Figure 7: Comparison between the variability given by bootstrap approach
and the variability given by the posterior distribution in a Bayesian frame-
work.

The variability of the indices (see figure [7) computed by a bootstrap ap-
proach is wider than the variability deduced from the posterior distribution.
This point is discussed in the next section.

Another parameter of interest is the probability of escape, since this pa-
rameter measures the efficiency of the gear. Figure |8 shows the posterior
distribution of the parameter pyr estimated in MEMI1. The posterior mean
of pyr is 0.32 with a standard deviation 4.4 1073,

Within the Strait of Georgia survey, the northern Areas (12 and 13) have
been surveyed together in the same years (2003, 2004 and 2007) and have
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Figure 8: Comparison between prior distribution and posterior distribution
for parameter py7 in model MEM1 applied on the quillback population for
the Strait of Georgia. The right panel is an elargement of the left one.

alternated with surveys in the southern Areas (14-20). Since management
isn’t applied at the Area scale, data from Area 12 and 13 have been pooled
to form one dataset. The corresponding relative abundance time series is
shown in Figure [6] B.

Pooling the data from both Areas produces very similar trends in each
of the indices and more precise estimates as shown in Table [2| and solves
the numerical instability for the SEM index. The coefficient of variation is
divided by almost two when using the whole dataset. We didn’t include the
other Areas of the Strait of Georgia (14-20) in the study since they were only
surveyed once in 2005.

Given the uncertainty on the relative abundance indices, no change is
statistically significant in the relative abundance of quillback population be-
tween years in the strait of Georgia. Even if the points estimates tend to show
some increase we can’t conclude that there has been any recovery of quillback
stock because of the uncertainty on the relative abundance estimates. The
same study has been conducted for the yelloweye rockfish (Sebastes ruber-
rimus) showing that the overall trend tends to exhibit a small decrease but
with no statistical significance.
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5 Discussion

The first and most important conclusion of this study is that when inter-
specific competition was accounted for in simulated data, the classical long-
line CPUE estimators gave strongly biased estimates of stock trends in all
cases evaluated. In contrast, the exponential model-based estimators showed
much less bias. Therefore it is advisable to avoid the use of classical CPUE,
at least from longline data, since this index doesn’t take competition into
account. From one year to another, the level of competition can vary and
two CPUE indices computed during two different years are not comparable
which is unacceptable for a relative abundance index. Even if the standard
CPUE for the case studies are not so different from the relative abundance
indices obtained with the alternative approaches, the simulations show that
it is a major concern and that it could be very important for other longline
experiments.

In the absence of empty hooks, the abundance indices built on SEM or
MEM are comparable even if the fundamental assumptions of SEM and MEM
are very different. If Ny is considered as a sum over all hooks of the number of
hooks which have caught a target individual, the central limit theorem claims
that Nr exhibits a normal distribution provided that the number of hooks is
large enough. The central limit theorem does not required the assumption on
the independence of hooks, weak dependence, as Markovian dependance for
example, is sufficient (see Billingsley| (1995)) for a discussion of central limit
theorem under weak dependence conditions). Therefore, the assumption of
normality used in SEM is justified but the SEM assumes the independence
beetween Np and Nyp. However, as the result of the competition, these
two quantities are naturally anticorrelated and the asummption is obviously
unrealistic. In contrast, MEM models the dependence between Ny and Ny
but assumes the independence of hooks.

Ignoring empty hooks will produce poor indices because most of the empty
hooks result from fish escapement which should be accounted for in the rel-
ative abundance index. Empty hooks are of major importance to building
abundance indices even if there is no perfect solution to deal with them. Bi-
ological knowledge can be very useful for deciding how to deal with empty
hooks and the Bayesian framework offers an intuitive way to use this kind
of information to remove the non-identifiability problem. But this biological
knowledge is hard to obtain since the escapement of fish from hooks is dif-
ficult to study. MEM1 and MEM2 require fully explicit choices concerning
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the empty hooks. Even if this required choice is hard to make, the explicit
choice should still be considered. In the SEM model the choice is made by
default and it is even not explicit. We recommend that practitioners design
studies to collect information about the ability of target and common non-
target species to escape and work in a Bayesian framework using the code
provided in Annex [C] The major advantage is that the uncertainty about
empty hooks is translated to uncertainty about the relative abundance in-
dices. If absolutely no information is available, the recommendation is to
use SEM1 since the bias on the relative abundance index doesn’t depend on
the abundance of non-target species. Furthermore, multiplicative constant
bias as seen for MEM1 doesn’t produce biased estimates of population dy-
namic parameters model since the multiplicative constant is absorbed by the
coefficient of proportionality which links abundance indices and biomass.

One major drawback of all of the models formulated in this paper is
the assumption of constant relative abundance along the longline set and
independence between hooks which are obviously not true. This assumption
of independence between the hooks may explain the lower uncertainty on
the estimates of the relative abundance indices produced by the posterior
distribution (figure . Assuming the independance between the hooks, we
assume that the dataset is more informative than it really is. Furthermore
Sigler| (2000)) has shown that the catch rate decreases with time for sablefish
(Anoplopoma fimbria) which tends to prove that the assumption of constant
relative abundance is not always satisfied. Different approaches could be
explored to avoid this assumption. The first one would be to record the
change of habitat along the longline set and using this as a covariate in the
model. Another possibility would be to refine the modeling of the abundance
index. For instance, we could consider a local relative abundance index A7y,
at hook h defined as the sum of the main relative abundance Ay plus a
noise term. The noise term would be chosen as an autoregressive model for
example to use the information of the hooks in the neighbourhood. This
extra variability could account for the variability in the habitat. Another
perspective for dealing with the variability along the longline is to define
the abundance index as piecewise constant function along the longline and
trying to detect the change in this function using the tools of change-point
detection (Lavielle and Lebarbier| 2001)).

The possible variation of Ay during the soak time is also a question of
interest. Some species could be more attracted by a fresh bait and therefore
A would be supposed to decrease with time. This question of attractivity of

24



the baits has been studied by [Fern6 and Olsen| (1995) but currently there
is no solution for taking this into account when building some abundance
indices.
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A CPUE computed from several observations

A CPUE index may be considered as the estimation of the probability of
successes in a binomial trial. If Ny stands for the number of success and p
is the probability of success over N x S trials, then

NT ~ B(p,N X S)

The maximum likelihood estimator p is given by Nr/(N x §) =CPUE. If
independent records Ny, for L longline sets are available with distribution
Nr, ~ B(p, N; x S), a sufficient statistic is the sum of all the catch N; which

is distributed as
ZNTZ = N;: ~ B(p,ZNl X Sl)
l l
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The maximum likelihood estimator is defined as

ZlL:1 NTz
>SN

which defines a generalized CPUE definition.

B More details about the MEM
B.1 Likelihood of MEM with empty hooks

This section gives the key steps of the calculus for the likelihood given in
formula [3| We use brackets to denote pdf’s as many conditioning terms will
appear in the probabilistic expressions derived from the full version of Multi-
nomial Exponential Model. As in (Gelfand and Smith! (1990)), the brackets
denote either a density or a discrete probability distribution.

The likelihood is then defined by:

l()\T> )\NTapTapNT) = [NB,NT, Nnr, NE|)\T> /\NTapTapNT] )
= [Ng|Ar, An7] [Nr, Nvr, Ng|Ng, Ar, AnT, pr, D) -

By definition of the model [Ng|Ar, An7] is a binomial distribution. We
need then to define the joint distribution of (Nr, Ny7, Ng) given N the total
number of unbaited hooks. To obtain this distribution, we need to explicit
the integration term over the hidden quatities N}E) and N ](VET) To make the
writing easier to follow all the parameters will be omitted in the conditioning

term.
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B E N — NB >\_T Nr+k M NnT+Ng—k NT + k i} (1 - )NT
N Nr+k \ \ i Pr pr

k=0
( NNTNZ ]_VEk;_ ' ) pas (1= par)™T
Nr Nyt
(G} A5 o) i
Ng 1 Ap k ANt Ng—k
; (Ng — &)k (TPT> (TpNT>
_ (N — Np)! (ﬁ(l — pT) o (Aﬂ(l _pNT) v <>‘TpT + ANTPNT)NE
Np! Nyp! Ng! \ A A A

The likelihood is then obtained by combining the binomial distribution
of Np with this previous result to give equation [3

B.2 Identifiability

To prove that the full version of the MEM is not identifiable it is sufficient
to express the likelihood with only three parameters. Let us define a =
’\TT(I —pr) and = ’\NTT(I —pnr). Therefore the likelihood given in equation
may be rewritten as:

N!

100 0) = ey (€ (=) T @ ()™ (1 —a - )
(7)

This form of the model is identifiable and it is called the regular form of
the model.
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B.3 Estimators
B.3.1 MEM Estimators

Using the regular form of the model given in equation [7] it is easy to derive
the log likelihood and obtained the maximum likelihood estimators:

« 1 N

A= g log (N—B>,

Those estimators are quite intuitive: for example the o parameter rep-
resents the relative density of catchable individuals from target species and
it is estimated as the ratio between the the catch of target species and the
total number of catch including empty hooks. The ambiguity of the model
lies then in the definition of the relative density and how to link the relative
density of catchable individuals to the actual relative density. In other words,
how much the relative density of catchable individuals has to be increase to
take into account the escaped individuals.

The maximum of the logllikelihood function equals

log N! o Ny? N2™ NJT NYY™ NYe
NB!NT! NT' NNT!NNE NN

" Ny + Nyp+ Ng’

Nry
N7+ Ny7+ Ng'

B =

(o}

This value could be used to compute an AIC criterion.

In the following we will derive the maximum likelihood estimators in our
two specials cases of interest.

B.3.2 MEM1 Estimators

MEM1 corresponds to the assumption that the target species can’t escape,
so taht pr = 0, in this context the log likelihood is given by

L (Ar, Anr,pyr) =K — NpSA + (N — Np)log (1 — e ) + Ny log (Ar)
+ (Nn7 + Ng) log (An7) + Nyrlog (1 — par)
— (N — Np)log ()\) + Nglog (pnr)
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The first derivatives are then derived:

oL (N— NB)SG_)‘S Nr N — Np
O NS dr N- s
Ihr L s S v
OL :_NS+(N_NB)Se_AS+NNT+NE_N_NB
8)\NT B 1 —67)‘5 >\NT A ’
oL Nyt Ng
S + _
IpNT L—pNT DNt

The maximum likelihood estimators given on the left side of equation [4]
are then obtained by determining the roots of this set of equations.

If N the number of hooks is large enough, the distribution of the estima-
tors may be approximated by a normal distribution with mean (Ar, Ayr, pyr)
and a matrix variance which is the inverse of the Fisher information matrix

I defined by
02
F=-FE|—
0]

where 0 represents a generic vector of parameters.
It can be shown that the asymptotic variance matrix for MEM1 is given

by:

ATANT + 1—e— A5 & _ ATANT + 1—e—*S ATANT 0
1 T—e—AS 52— 3 22 T—e—A3 525 32
_ A 1—e=*5 Ap AT 1—e * A
COUMEMI - N _13—‘81\&2‘ + G2¢—AS T)\2NT 1f67]\§\7.;‘ + G2¢—AS )]\V2T 0
0 0 ApnT(1=pNT)

)\NT(l—Efks)

(8)

B.3.3 MEM2 Estimators

The equivalent equations for MEM2 (corresponding to the assumption that
the probability of esacpe is the same for every species)with pr = pyr = p
can be obtained from the following LogLikelihood:

L ()\T, )\NTap) =K — NBSA + (N — NB) log (]_ — 6_/\5) + NT log (/\T)
+ Nyrlog (AnT) + (Nyr + N7)log (1 — p)
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The first derivatives are then derived:

oL (N — NB)SG_AS Nr Nr + Nyt
R Nr _ Nr+ Nyr
DT T Ty P
0L —_N S+(N_NB)S€_>\S+NNT_NT+NNT
0)\NT B 1—67)‘5 >\NT A ’

8[/ NT+NNT NE

=

Ip 1—p p

The maximum likelihood estimators are obtained by determining the
roots of this set of equations.
The asymptotic covariance matrix is then given by:

ATANT + 1—e—*S & _ ATANT + 1—e=*S ATANT O
1 (1—p)(1—e—*9) $Zo—2F )2 (1—-p)(1—e=*%) [PV V)
2
Cov = — _ ATANT 1—e= 29 ApAnT ATANT 1—e 25 Ayp
MEM: =N | T T T @) s 0
0 0 p(1-p)
1—e=AS

(9)

C Some useful codes

C.1 JAGS code for MEM1

var

# data

# Data is a matrix with 4 columns and NData lines

# Col 1 corresponds to Nb, Col2 to N1, Col3 to N2, cold to Ne
NData, P[NDatal], Data[NData,4], N[NDatal,

#variable requiring initialisation

lambdal, lambda2, p,

#variable without initialisation, deduced from the code
alpha[NData, 4];

model {

/* prior density */

p ~ dbeta(0.1,0.1) ;
lambdal ~ dbeta(0.1,0.1);
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lambda2 ~ dbeta(0.1,0.1);
lambda <- lambdal + lambda?2;

/* Model part */

for(j in 1:NData)

{

alphalj,1] <- exp(-lambda * P[jl);

alpha[j,2] <- (1- exp(-lambda * P[j])) * lambdal / lambda;
alpha[j,3] <- (1- exp(-lambda * P[j])) *lambda2/lambda *(1-p);
alphal[j,4] <- (1- exp(-lambda * P[j])) * lambda2 * p /lambda ;
Datalj,] ~ dmulti(alphalj,], N[jl);

}

}

C.2 JAGS code for MEM2

var
# data

# Data is a matrix with 4 columns and NData lines

# Col 1 corresponds to Nb, Col2 to N1, Col3 to N2, cold4 to Ne
NData, P[NDatal, Data[NData,4], N[NDatal,

# variable requiring initialisation

lambdal, lambda2, p,

# variable without initialisation, deduced from the code
alpha[NData, 4];

model {

/* prior density */

p ~ dbeta(0.1,0.1) ;

lambdal ~ dbeta(0.1,0.1);
lambda2 ~ dbeta(0.1,0.1);
lambda <- lambdal + lambda?2;

/* Model part */

for(j in 1:NData)

{

alphal[j,1] <- exp(-lambda * P[j]);

alphal[j,2] <- (1- exp(-lambda * P[j])) * lambdal * (1-p) / lambda;
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alphalj,3] <- (1- exp(-lambda * P[j])) *lambda2/lambda *(1-p);
alpha(j,4] <- (1- exp(-lambda * P[j])) * p ;

Datalj,] ~ dmulti(alphalj,], N[j1);

}

}
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ANT
Ar | 9e-04 | 0.001 | 0.005 | 0.01

le-05 | 43.2 | 44.8 | 50.9 | 56.7
5e-05 | 19.5 | 20.1 | 22.2 | 25.3
le-04 | 13.8 | 144 | 159 | 179
de-04 | 6.2 6.4 74 | 81

Table 1: Coefficients of variation (%) in estimates of Ay using the MEM
models. Results For SEM, MEM1 and MEM2 are exactly the same since the
soak time is shared by all longline sets and there are no empty hooks. The
coefficients of variation have been computed over 5000 simulations for 220
hooks per longline and 20 sets.
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Coefficient of variation (%)
Index Area 13 Area 12 and 13
2003 | 2004 | 2007 || 2003 | 2004 | 2007
MEM1 || 24.1 | 26.6 | 22.7 || 159 | 12.6 | 13.6
MEM?2 || 23.5 29 23.1 || 15.6 | 13.6 | 13.3
SEMN || 25.8 | 30.2 | 29.8 || 15.6 | 13.1 | 13.9
CPUE | 26.4 | 28.1 | 24.7 16 | 13.4 | 14.1

Table 2:  Coefficient of variation of the different relative abundance indices
expressed in percent. The variability strongly decreases when data are pooled
together. The large value for the coefficient of variation for 2007 for the
numerical version of SEM is due to optimization instability.
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